

Formale Systeme

LTL und Büchi-Automaten Prof Dr Peter H Schmitt

Omega-Strukturen (Wiederholung)

Definition

Eine omega-Struktur $\mathcal{R}=(\mathbb{N},<,\xi)$ für eine aussagenlogische Signatur P besteht aus der geordneten Menge der natürlichen Zahlen

$$(\mathbb{N},<)$$

interpretiert als Menge abstrakter Zeitpunkte und einer Funktion

$$\xi: \mathbb{N} \to 2^P$$

mit der Intention

 $p \in \xi(n) \Leftrightarrow \text{ in } \mathcal{R} \text{ ist } p \text{ zum Zeitpunkt } n \text{ wahr }$

LTL und Büchi-Automaten

Für einen Automaten $\mathcal{B} = (S, V, s_0, \delta, F)$ mit

 $V = 2^{\Sigma}$, wobei

 Σ = Menge aussagenlogischer Atome,

können wir

- ▶ Omega-Strukturen ξ über Σ und
- ▶ unendliche Wörter $w \in V^{\omega}$ über V identifizieren.

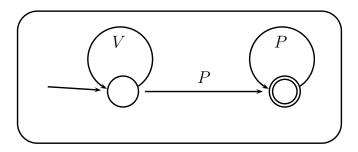
Notation

Für die folgenden drei Beispiele vereinbaren wir die folgende Notation

- ▶ eine aussagenlogische Signatur Σ mit $p, q \in \Sigma$
- V = 2^Σ
- ▶ $P = \{b \in V \mid p \in b\}$
- $\blacktriangleright \ \ Q = \{b \in V \mid q \in b\}$

Automat für $\Diamond \Box p$

Für den Automaten A_{dbp}

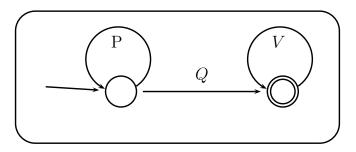


gilt

$$\xi \in L^{\omega}(\mathcal{A}_{dbp}) \quad \Leftrightarrow \quad \xi \models \Diamond \Box p$$

Automat für p U q

Für den Automaten $A_{puntila}$

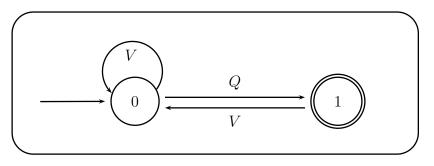


gilt

$$\xi \in L^{\omega}(\mathcal{A}_{puntilg}) \quad \Leftrightarrow \quad \xi \models p \mathbf{U} q$$

Automat für $\Box \Diamond q$

Für den Automaten A_{infq}



gilt

$$\xi \in L^{\omega}(\mathcal{A}_{infq}) \quad \Leftrightarrow \quad \xi \models \Box \Diamond q$$

Lemma

Automat für Konjunktion

Seien

$$\begin{split} \mathcal{A}_1 &= (S_1, V, s_1^0, \delta_1, F_1), \\ \mathcal{A}_2 &= (S_2, V, s_2^0, \delta_2, F_2) \end{split}$$

Büchi-Automaten, C_1 , C_2 LTL-Formeln mit

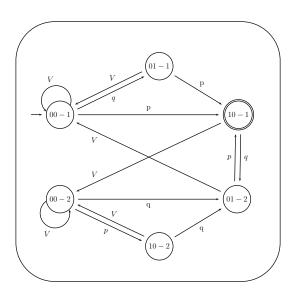
$$A_1 \models C_1$$

 $A_2 \models C_2$

Dann gibt es einen Büchi-Automaten $\mathcal C$ mit

$$C \models C_1 \wedge C_2$$

Automat für $\Box \Diamond p \land \Box \Diamond q$



Allgemeine Konstruktion für Konjunktionsautomaten


```
Gegeben A_i = (S_i, s_i^0, \delta_i, F_i)
Gesucht \mathcal{C} = (S, s^0, \delta, F) mit L^{\omega}(\mathcal{C}) = L^{\omega}(A_1) \cap L^{\omega}(A_2).
 S
                                                 = S_1 \times S_2 \times \{1,2\}
 s^0
                                                 = (s_1^0, s_2^0, 1)
                                                 = F_1 \times S_2 \times \{1\}
 falls s_1 \in F_1 und i = 1
 (t_1, t_2, 2) \in \delta((s_1, s_2, i), a) \Leftrightarrow t_1 \in \delta_1(s_1, a) \text{ und } t_2 \in \delta_2(s_2, a)
 falls s_2 \in F_2 und i = 2
 (t_1, t_2, 1) \in \delta((s_1, s_2, i), a) \Leftrightarrow t_1 \in \delta_1(s_1, a) \text{ und } t_2 \in \delta_2(s_2, a)
 sonst
 (t_1, t_2, i) \in \delta((s_1, s_2, i), a) \Leftrightarrow i \in \{1, 2\},
                                                        t_1 \in \delta_1(s_1, a) und t_2 \in \delta_2(s_2, a)
```

Theorem

Zu jeder LTL-Formel

В

gibt es einen – effektiv konstruierbaren – Büchi-Automaten

 \mathcal{A}_{B}

mit

$$L^{\omega}(\mathcal{A}_{\mathcal{B}}) = \{ \xi \in V^{\omega} \mid \xi \models \mathcal{B} \}$$

Beweis: Konstruktion folgt Weitere Details im Skriptum.

Beweis

Konstruktion

Gegeben: LTL-Formel B

P Menge der AL-Atome, B in Negationsnormalform

nur: \neg , \wedge , \vee , **U**, **V**, X in B

Gesucht: Büchi-Automat $A_B = (V, S, S_0, \delta, F)$

$$V=2^{P}$$

subF(B) sei die Menge aller Teilformeln von B

$$S = \{s \subseteq subF(B) \mid \mathbf{0} \notin s, \mathbf{1} \in s\}$$

wenn
$$(C_1 \land C_2) \in s$$
 dann $C_1 \in s$ und $C_2 \in s$
wenn $(C_1 \lor C_2) \in s$ dann $C_1 \in s$ oder $C_2 \in s$ }

$$S_0 = \{s \in S \mid B \in s\}$$

$$E_i = A_i \mathbf{U} B_i$$
 für $1 \le i \le k$ alle Fmln der Form $A \mathbf{U} B$ in $subF(B)$.

$$\mathcal{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_k\}$$
 mit

$$\mathcal{F}_i = \{ s \in S \mid E_i \notin s \text{ oder } E_i \in s \text{ und } B_i \in s \}$$

Konstruktion

Die Übergangsfunktion δ

Für $s, t \in S$ und $a \in 2^P$ gilt $t \in \delta(s, a)$ wenn alle folgenden Bedingungen erfüllt sind

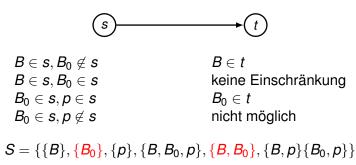
- 1. Für alle $p \in P$ mit $p \in s$ gilt $p \in a$.
- 2. Für alle $p \in P$ mit $\neg p \in s$ gilt $p \notin a$.
- 3. Falls $X A \in s$ dann $A \in t$.
- 4. Falls $A \cup B \in s$, dann gilt $B \in s$ oder $(A \in s \text{ und } A \cup B \in t)$.
- 5. Falls $A \lor B \in s$, dann $(B \in s \text{ und } A \in s)$ oder $(B \in s \text{ und } A \lor B \in t)$.


```
B = \Diamond \Box p
B = 1 \mathbf{U} \square p
B = 1 \mathbf{U} \neg (\neg 0 \mathbf{U} \neg p)
B = 1 \, \mathbf{U} \, (0 \, \mathbf{V} \, p)
V = \{\{p\} \equiv p, \{\} \equiv \neg p\}
subFmI(B) = \{B, B_0 = 0 \ V \ p, p,
                                                                    1,0}
S = \{\{B\}, \{B_0\}, \{p\}, \{B, B_0, p\}, \{B, B_0\}, \{B, p\}, \{B_0, p\}\}\}
E_1 = 1 \ \mathbf{U} \ B_0 \ \text{i.e.} \ A_1 = \mathbf{1}, \ B_1 = B_0
\mathcal{F} = \{ F_1 \}
F_1 = \{\{B_0\}, \{p\}, \{B_0, p\}, \{B, B_0\}, \{B, B_0, p\}\}
```

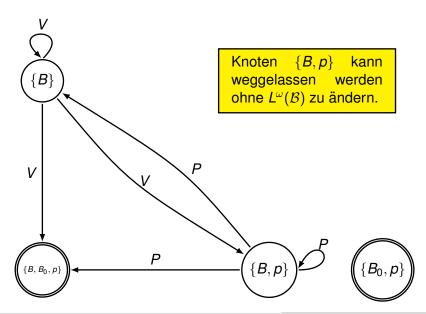

Übergangsfunktion

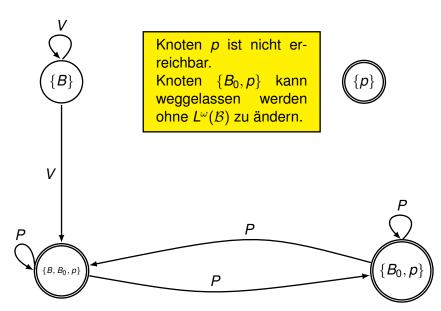
- 4. Falls $A \cup B \in s$, dann gilt $B \in s$ oder $(A \in s \text{ und } A \cup B \in t)$.
- 5. Falls $A \lor B \in s$, dann $(B \in s \text{ und } A \in s)$ oder $(B \in s \text{ und } A \lor B \in t)$.
- 4. Falls 1 **U** $B_0 \in s$, dann gilt $B_0 \in s$ oder (1 $\in s$ und 1 **U** $B_0 \in t$).
- 5. Falls $0 \mathbf{V} p \in s$, dann $(p \in s \text{ und } 0 \in s)$ oder $(p \in s \text{ und } 0 \mathbf{V} p \in t)$.
- 4. Falls $B \in s$, dann gilt $B_0 \in s$ oder $B \in t$.
- 5. Falls $B_0 \in s$, dann $(p \in s \text{ und } B_0 \in t)$.

Übergangsfunktion

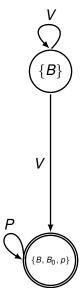


Sackgassen





Endergebnis



Beide verbleibenden Zustände sind Startzustände. Man sieht aber, daß es genügt {B} als Startzustand zu haben.

Korollar

Erfüllbarkeit und Allgemeingültigkeit von LTL Formeln ist entscheidbar.

Beweis:

Man konstruiert die Büchi-Automaten A_B und $A_{\neg B}$. Es gilt

B ist erfüllbar $\Leftrightarrow L^{\omega}(A_B) \neq \emptyset$

B ist allgemeingültig $\Leftrightarrow L^{\omega}(A_{\neg B}) = \emptyset$

Für jeden Büchi-Automaten C ist die Frage $L^{\omega}(C) = \emptyset$? entscheidbar.

Vergleich der Ausdrucksstärke

Zur Beschreibung von Mengen von Omega-Strukturen sind äquivalent:

- ▶ Büchi-Automaten
- ▶ ω-reguläre Mengen
- ► Monadische Logik zweiter Stufe

Die LTL-beschreibbaren Mengen sind eine echte Teilklasse der durch Büchi-Automaten bescheibbaren.

Äquivalent sind:

- ▶ LTL
- Prädikatenlogik erster Stufe
- ▶ stern-freie ω-reguläre Mengen