# Formale Systeme

Prof. P.H. Schmitt

Fakultät für Informatik Universität Karlsruhe (TH)

Winter 2007/2008





# Termersetzungssysteme Einstieg

Termersetzungssysteme sind eine sehr erfolgreiche Methode in der Gleichungslogik.

Aus einer Menge symmetrischer Gleichungen E wird ein gerichtetes Termersetzungssystem.

Die den Termersetzungssystemen zugrunde liegende Idee einer eindeutigen Normalform und die schrittweise Normalisierung eines symbolischen Ausdrucks ist so elementar, daß sie in vielen Zusammenhängen in unterschiedlichen Ausprägungen eine Rolle spielt.

Der übergreifende Begriff sind die Reduktionssysteme.



# Reduktions systeme

Ein **Reduktionssystem**  $(D, \succ)$  besteht aus einer nichtleeren Menge D und einer beliebigen, binären Relation  $\succ$  auf D.

Wir benutzen die folgenden Bezeichnungen:

- $\rightarrow$  die reflexive, transitive Hülle von  $\succ$
- $\stackrel{+}{\rightarrow}$  die transitive Hülle von  $\succ$
- $\leftrightarrow$  die reflexive, transitive, symmetrische Hülle von  $\succ$



von Reduktionssystemen

**1** Ein Reduktionssystem  $(D,\succ)$  heißt **konfluent**, wenn für jedes Tripel  $s,s_1,s_2\in D$  mit  $s\to s_1,\ s\to s_2$  ein  $t\in D$  existiert mit  $s_1\to t$  und  $s_2\to t$ .

- **1** Ein Reduktionssystem  $(D, \succ)$  heißt **konfluent**, wenn für jedes Tripel  $s, s_1, s_2 \in D$  mit  $s \to s_1$ ,  $s \to s_2$  ein  $t \in D$  existiert mit  $s_1 \to t$  und  $s_2 \to t$ .
- **2**  $(D, \succ)$  heißt **lokal konfluent**, wenn für alle  $s, s_1, s_2 \in D$  mit  $s \succ s_1, s \succ s_2$  ein  $t \in D$  mit  $s_1 \rightarrow t$  und  $s_2 \rightarrow t$  existiert.

- Ein Reduktionssystem  $(D, \succ)$  heißt **konfluent**, wenn für jedes Tripel  $s, s_1, s_2 \in D$  mit  $s \to s_1$ ,  $s \to s_2$  ein  $t \in D$  existiert mit  $s_1 \to t$  und  $s_2 \to t$ .
- **②**  $(D, \succ)$  heißt **lokal konfluent**, wenn für alle  $s, s_1, s_2 \in D$  mit  $s \succ s_1, s \succ s_2$  ein  $t \in D$  mit  $s_1 \rightarrow t$  und  $s_2 \rightarrow t$  existiert.
- **1** ( $D, \succ$ ) heißt **noethersch** (oder **wohlfundiert** oder **terminierend**), wenn es keine unendlichen Folge  $s_0 \succ s_1 \ldots \succ s_i \succ \ldots$  gibt.

- Ein Reduktionssystem  $(D,\succ)$  heißt **konfluent**, wenn für jedes Tripel  $s,s_1,s_2\in D$  mit  $s\to s_1,\ s\to s_2$  ein  $t\in D$  existiert mit  $s_1\to t$  und  $s_2\to t$ .
- **②**  $(D, \succ)$  heißt **lokal konfluent**, wenn für alle  $s, s_1, s_2 \in D$  mit  $s \succ s_1, s \succ s_2$  ein  $t \in D$  mit  $s_1 \rightarrow t$  und  $s_2 \rightarrow t$  existiert.
- **1** ( $D, \succ$ ) heißt **noethersch** (oder **wohlfundiert** oder **terminierend**), wenn es keine unendlichen Folge  $s_0 \succ s_1 \ldots \succ s_i \succ \ldots$  gibt.
- Ein konfluentes und noethersches Reduktionssystem heißt kanonisch.

- Ein Reduktionssystem  $(D,\succ)$  heißt **konfluent**, wenn für jedes Tripel  $s,s_1,s_2\in D$  mit  $s\to s_1,\ s\to s_2$  ein  $t\in D$  existiert mit  $s_1\to t$  und  $s_2\to t$ .
- **②**  $(D, \succ)$  heißt **lokal konfluent**, wenn für alle  $s, s_1, s_2 \in D$  mit  $s \succ s_1$ ,  $s \succ s_2$  ein  $t \in D$  mit  $s_1 \to t$  und  $s_2 \to t$  existiert.
- **1** ( $D, \succ$ ) heißt **noethersch** (oder **wohlfundiert** oder **terminierend**), wenn es keine unendlichen Folge  $s_0 \succ s_1 \ldots \succ s_i \succ \ldots$  gibt.
- Ein konfluentes und noethersches Reduktionssystem heißt kanonisch.
- **1** Ein Element  $s \in D$  heißt **irreduzibel** (oder eine **Normalform**) in  $(D, \succ)$ , wenn kein  $t \in D$  existiert mit  $s \succ t$ .

- Ein Reduktionssystem  $(D,\succ)$  heißt **konfluent**, wenn für jedes Tripel  $s,s_1,s_2\in D$  mit  $s\to s_1$ ,  $s\to s_2$  ein  $t\in D$  existiert mit  $s_1\to t$  und  $s_2\to t$ .
- **2**  $(D, \succ)$  heißt **lokal konfluent**, wenn für alle  $s, s_1, s_2 \in D$  mit  $s \succ s_1$ ,  $s \succ s_2$  ein  $t \in D$  mit  $s_1 \rightarrow t$  und  $s_2 \rightarrow t$  existiert.
- **1** ( $D, \succ$ ) heißt **noethersch** (oder **wohlfundiert** oder **terminierend**), wenn es keine unendlichen Folge  $s_0 \succ s_1 \ldots \succ s_i \succ \ldots$  gibt.
- Ein konfluentes und noethersches Reduktionssystem heißt kanonisch.
- **1** Ein Element  $s \in D$  heißt **irreduzibel** (oder eine **Normalform**) in  $(D, \succ)$ , wenn kein  $t \in D$  existiert mit  $s \succ t$ .
- **③** Sei  $s \in D$ . Ein Element  $s_0 \in D$  heißt eine **Normalform für s** in  $(D, \succ)$ , wenn  $s_0$  irreduzibel ist und  $s \to s_0$  gilt.

#### Theorem

Sei  $(D, \succ)$  ein kanonisches Reduktionssystem. Dann gilt:



#### Theorem

Sei  $(D, \succ)$  ein kanonisches Reduktionssystem. Dann gilt:

• Zu jedem  $s \in D$  gibt es eine eindeutige Normalform. Diese bezeichnen wir mit irr(s).



#### Theorem

Sei  $(D, \succ)$  ein kanonisches Reduktionssystem. Dann gilt:

- Zu jedem  $s \in D$  gibt es eine eindeutige Normalform. Diese bezeichnen wir mit irr(s).
- ② Für  $s, t \in D$  gilt

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$



#### Theorem

Sei  $(D, \succ)$  ein kanonisches Reduktionssystem. Dann gilt:

- Zu jedem  $s \in D$  gibt es eine eindeutige Normalform. Diese bezeichnen wir mit irr(s).
- $\bullet$  Für  $s, t \in D$  gilt

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

(D,≻) sei berechenbar im folgenden Sinne: Es gibt einen Algorithmus, der zu jedem t ∈ D ein t' mit t ≻ t' liefert, wenn ein solches existiert, und andernfalls ausgibt "t ist irreduzibel", Dann ist die Relation ↔ entscheidbar.



#### Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ .



## Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ . D.h. es gilt  $s \to s_1$  und  $s \to s_2$ .



#### Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ . D.h. es gilt  $s \to s_1$  und  $s \to s_2$ . Wegen der Konfluenz von  $(D, \succ)$  gibt es  $t \in D$  mit  $s_1 \to t$  und  $s_2 \to t$ .



#### Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ .

D.h. es gilt  $s \rightarrow s_1$  und  $s \rightarrow s_2$ .

Wegen der Konfluenz von  $(D,\succ)$  gibt es  $t\in D$  mit

 $s_1 \rightarrow t \text{ und } s_2 \rightarrow t.$ 

Das widerspricht der Irreduzibilität von  $s_1, s_2$ .



#### Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ .

D.h. es gilt  $s \rightarrow s_1$  und  $s \rightarrow s_2$ .

Wegen der Konfluenz von  $(D,\succ)$  gibt es  $t\in D$  mit

 $s_1 \rightarrow t \text{ und } s_2 \rightarrow t.$ 

Das widerspricht der Irreduzibilität von  $s_1, s_2$ .

Existenz einer Normalform für  $s \in D$ ,



#### Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ .

D.h. es gilt  $s \rightarrow s_1$  und  $s \rightarrow s_2$ .

Wegen der Konfluenz von  $(D, \succ)$  gibt es  $t \in D$  mit

 $s_1 \rightarrow t \text{ und } s_2 \rightarrow t.$ 

Das widerspricht der Irreduzibilität von  $s_1, s_2$ .

Existenz einer Normalform für  $s \in D$ ,

Setze  $s_0 = s$  und wählen ein  $s_{i+1}$  mit  $s_i \succ s_{i+1}$ , solange  $s_i$  nicht irreduzibel ist.



#### Eindeutigkeit und Existenz der Normalform

Angenommen es gäbe für  $s \in D$  zwei Normalformen  $s_1, s_2$ .

D.h. es gilt  $s \rightarrow s_1$  und  $s \rightarrow s_2$ .

Wegen der Konfluenz von  $(D, \succ)$  gibt es  $t \in D$  mit

 $s_1 \rightarrow t \text{ und } s_2 \rightarrow t.$ 

Das widerspricht der Irreduzibilität von  $s_1, s_2$ .

Existenz einer Normalform für  $s \in D$ ,

Setze  $s_0 = s$  und wählen ein  $s_{i+1}$  mit  $s_i \succ s_{i+1}$ , solange  $s_i$  nicht irreduzibel ist.

Da  $(D, \succ)$  noethersch ist, wird nach endlich vielen Schritten ein irreduzibles  $s_i$  erreicht.



$$Beweis \\ s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$



$$Beweis$$

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

Die Implikation von rechts nach links ist trivial. Gelte jetzt  $s \leftrightarrow t$ .



$$Beweis$$

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

Gelte jetzt  $s \leftrightarrow t$ .

Nach Definition von  $\leftrightarrow$  gibt es eine Folge  $s = s_0, s_1, \dots, s_n = t$ , so daß für alle  $0 \le i < n$  entweder  $s_i \succ s_{i+1}$  oder  $s_{i+1} \succ s_i$  gilt.



$$Beweis$$

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

Gelte jetzt  $s \leftrightarrow t$ .

Nach Definition von  $\leftrightarrow$  gibt es eine Folge  $s = s_0, s_1, \dots, s_n = t$ , so daß für alle  $0 \le i < n$  entweder  $s_i \succ s_{i+1}$  oder  $s_{i+1} \succ s_i$  gilt.

Der Nachweis von irr(s) = irr(t) geschieht durch Induktion über n.



$$Beweis$$
 $s \leftrightarrow t \ gdw \ irr(s) = irr(t)$ 

Gelte jetzt  $s \leftrightarrow t$ .

Nach Definition von  $\leftrightarrow$  gibt es eine Folge  $s = s_0, s_1, \dots, s_n = t$ , so daß für alle  $0 \le i < n$  entweder  $s_i \succ s_{i+1}$  oder  $s_{i+1} \succ s_i$  gilt.

Der Nachweis von irr(s) = irr(t) geschieht durch Induktion über n.

Der Induktionsanfang n = 0, d.h. s = t ist trivial.



$$Beweis$$

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

Gelte jetzt  $s \leftrightarrow t$ .

Nach Definition von  $\leftrightarrow$  gibt es eine Folge  $s = s_0, s_1, \dots, s_n = t$ , so daß für alle  $0 \le i < n$  entweder  $s_i \succ s_{i+1}$  oder  $s_{i+1} \succ s_i$  gilt.

Der Nachweis von irr(s) = irr(t) geschieht durch Induktion über n.

Der Induktionsanfang n = 0, d.h. s = t ist trivial.

Sei also die Behauptung für Folgen der Länge n-1 schon bewiesen. Also gilt  $irr(s_1)=irr(t)$ .



$$Beweis$$

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

Gelte jetzt  $s \leftrightarrow t$ .

Nach Definition von  $\leftrightarrow$  gibt es eine Folge  $s = s_0, s_1, \dots, s_n = t$ , so daß für alle  $0 \le i < n$  entweder  $s_i \succ s_{i+1}$  oder  $s_{i+1} \succ s_i$  gilt.

Der Nachweis von irr(s) = irr(t) geschieht durch Induktion über n.

Der Induktionsanfang n = 0, d.h. s = t ist trivial.

Sei also die Behauptung für Folgen der Länge n-1 schon bewiesen. Also gilt  $irr(s_1) = irr(t)$ .

Im Fall  $s_0 > s_1$  gilt offensichtlich  $irr(s_0) = irr(s_1)$ , und wir sind fertig.



$$Beweis$$

$$s \leftrightarrow t \ gdw \ irr(s) = irr(t)$$

Gelte jetzt  $s \leftrightarrow t$ .

Nach Definition von  $\leftrightarrow$  gibt es eine Folge  $s = s_0, s_1, \dots, s_n = t$ , so daß für alle  $0 \le i < n$  entweder  $s_i \succ s_{i+1}$  oder  $s_{i+1} \succ s_i$  gilt.

Der Nachweis von irr(s) = irr(t) geschieht durch Induktion über n.

Der Induktionsanfang n = 0, d.h. s = t ist trivial.

Sei also die Behauptung für Folgen der Länge n-1 schon bewiesen. Also gilt  $irr(s_1) = irr(t)$ .

Im Fall  $s_0 > s_1$  gilt offensichtlich  $irr(s_0) = irr(s_1)$ , und wir sind fertig.

Falls  $s_1 \succ s_0$  gilt, folgt aus der Konfluenz, daß ebenfalls  $irr(s_0) = irr(s_1)$  gelten muß.



#### $Entscheidbarkeit\ von \leftrightarrow$

Zu gegebenem s, t wird wie folgt entschieden, ob  $s \leftrightarrow t$ .



#### $Entscheidbarkeit\ von \leftrightarrow$

Zu gegebenem s,t wird wie folgt entschieden, ob  $s \leftrightarrow t$ . Beginnend mit  $s_0 := s$ , liefert der vorausgesetzte Algorithmus Elemente  $s_i$  mit  $s_0 \succ s_1 \succ s_2 \succ \ldots$ , bis hierbei ein irreduzibles  $s_m$  erreicht ist.



#### $Entscheidbarkeit\ von \leftrightarrow$

Zu gegebenem s,t wird wie folgt entschieden, ob  $s \leftrightarrow t$ . Beginnend mit  $s_0 := s$ , liefert der vorausgesetzte Algorithmus Elemente  $s_i$  mit  $s_0 \succ s_1 \succ s_2 \succ \ldots$ , bis hierbei ein irreduzibles  $s_m$  erreicht ist. Da  $(D,\succ)$  noethersch ist, tritt das auf jeden Fall ein und wird durch " $s_m$  ist irreduzibel" mitgeteilt, ferner gilt  $s_m = irr(s)$ .



#### $Entscheidbarkeit\ von \leftrightarrow$

Zu gegebenem s, t wird wie folgt entschieden, ob  $s \leftrightarrow t$ .

Beginnend mit  $s_0 := s$ , liefert der vorausgesetzte Algorithmus Elemente  $s_i$  mit  $s_0 \succ s_1 \succ s_2 \succ \ldots$ , bis hierbei ein irreduzibles  $s_m$  erreicht ist.

Da  $(D, \succ)$  noethersch ist, tritt das auf jeden Fall ein und wird durch " $s_m$  ist irreduzibel" mitgeteilt, ferner gilt  $s_m = irr(s)$ .

Entsprechend erhält man irr(t) aus t.



#### $Entscheidbarkeit\ von \leftrightarrow$

Zu gegebenem s, t wird wie folgt entschieden, ob  $s \leftrightarrow t$ .

Beginnend mit  $s_0 := s$ , liefert der vorausgesetzte Algorithmus Elemente  $s_i$  mit  $s_0 \succ s_1 \succ s_2 \succ \ldots$ , bis hierbei ein irreduzibles  $s_m$  erreicht ist.

Da  $(D, \succ)$  noethersch ist, tritt das auf jeden Fall ein und wird durch " $s_m$  ist irreduzibel" mitgeteilt, ferner gilt  $s_m = irr(s)$ .

Entsprechend erhält man irr(t) aus t.

Nach (2) ist  $s \leftrightarrow t$  genau dann, wenn irr(s) = irr(t).



## Noethersche Induktion

#### Theorem

Für ein noethersches Reduktionssystem  $(D,\succ)$  gilt das folgende Beweisprinzip der Noetherschen Induktion:

Es sei  $X \subseteq D$ , so daß für alle  $a \in D$  gilt

$${b|a \succ b} \subseteq X \Rightarrow a \in X.$$

Dann ist X = D.



# Noethersche Induktion

# Proof.

Angenommen es gibt  $a_0 \in D \setminus X$ . Nach Annahme über X gilt  $\{b|a_0 \succ b\} \not\subset X$ .

Es gibt also ein a<sub>1</sub> mit

$$a_0 \succ a_1, a_1 \notin X$$

Nach Annahme über X gilt wieder  $\{b|a_1 \succ b\} \not\subseteq X$  und es gibt ein  $a_2$  mit  $a_0 \succ a_1 \succ a_2, a_2 \notin X$ 

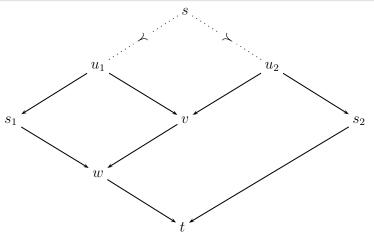
Fährt man in dieser Weise fort, so erhält man eine unendliche Folge  $(a_i)_{i\in\mathbb{N}}$  mit  $a_i \succ a_{i+1}$  für alle i. Das ist ein Widerspruch, denn  $(D,\succ)$  war als noethersch vorausgesetzt.



# Von lokaler zu uneingeschränkter Konfluenz

#### Theorem

Wenn  $(D,\succ)$  ein noethersches und lokal konfluentes Reduktionssystem ist, dann ist  $(D,\succ)$  konfluent, d. h. kanonisch.



#### **Beweis**

Wir verwenden noethersche Induktion bezüglich der Menge

$$egin{array}{ll} {\sf Confl} &:=& \{s| {\sf für \ alle \ } s_1, s_2 \ & {\sf mit \ } s \to s_1, s \to s_2 \ & {\sf existiert \ ein \ } t \ {\sf mit \ } s_1 \to t, s_2 \to t \} \end{array}$$

Dazu müssen wir also zeigen, daß für alle s gilt:

$$\{s'|s\succ s'\}\subseteq \mathsf{Confl} \Rightarrow s\in \mathsf{Confl}$$

Es seien  $s, s_1, s_2$  gegeben mit  $s \rightarrow s_1$ ,  $s \rightarrow s_2$ .

Im Falle  $s=s_1$  oder  $s=s_2$  ist man fertig. (Etwa:  $s_1=s\to s_2$ ).

Sei also  $s \neq s_1$ ,  $s \neq s_2$ .



### Beweis(Forts.)

#### Nachweis von

$$\{s'|s\succ s'\}\subseteq \mathsf{Confl} \Rightarrow s\in \mathsf{Confl}$$

im Falle  $s \rightarrow s_1$ ,  $s \rightarrow s_2$  mit  $s \neq s_1$ ,  $s \neq s_2$ .

Es existieren  $u_1, u_2$  mit  $s \succ u_1 \rightarrow s_1$  und  $s \succ u_2 \rightarrow s_2$ .

Wegen der lokalen Konfluenz von  $(D,\succ)$  existiert ein v mit  $u_1 \to v, u_2 \to v$ .

Nach Voraussetzung ("Induktionsannahme") liegt  $u_1$  in Confl. Also gibt es ein w mit  $s_1 \to w$  und  $v \to w$ .

Entsprechend schließen wir aus der Induktionsannahme  $u_2 \in \text{Confl}$ , daß ein Term t existiert mit  $s_2 \to t$  und  $w \to t$ .

Wir haben  $s_1 \to t$  und  $s_2 \to t$  und somit  $s \in Confl$ , was zu beweisen war.



# Beispiele für Reduktionssysteme Polynomalgebra

• Ein **Potenzprodukt** in den Unbestimmten  $X_1, \ldots, X_n$  über einem Körper K ist ein Ausdruck der Form

$$X_1^{e_1} * \ldots * X_n^{e_n}$$

mit natürlichen Zahlen  $e_j$ ,



# Beispiele für Reduktionssysteme Polynomalaebra

• Ein **Potenzprodukt** in den Unbestimmten  $X_1, ..., X_n$  über einem Körper K ist ein Ausdruck der Form

$$X_1^{e_1} * \ldots * X_n^{e_n}$$

mit natürlichen Zahlen  $e_j$ ,

• Ein **Monom** in den Unbestimmten  $X_1, \ldots, X_n$  über K ist ein Ausdruck der Form

$$c*pp$$
,

wobei  $c \neq 0$  ein Element aus K ist und pp ein Potenzprodukt.



### Beispiele für Reduktionssysteme

Polynomalgebra (Forts.)

• Ein **Polynom** in den Unbestimmten  $X_1, \ldots, X_n$  über K ist ein Ausdruck der Form

$$m_1 + \ldots + m_k$$

mit Monomen  $m_i$ .



### Beispiele für Reduktionssysteme

 $Polynomalgebra\ (Forts.)$ 

• Ein **Polynom** in den Unbestimmten  $X_1, ..., X_n$  über K ist ein Ausdruck der Form

$$m_1 + \ldots + m_k$$

mit Monomen  $m_i$ .

• Die Menge aller Polynome über K bildet mit den naheliegenden Produkt- und Summendefinition den Polynomring  $K[X_1, \ldots, X_n]$ .



### Zulässige Ordnungen

Eine Ordnungsrelation  $\prec$  auf der Menge aller Monome heißt **zulässig**, wenn für beliebige Monome  $m, m_1, m_2$  gilt:

- lacktriangledown aus  $m_1 \prec m_2$  folgt  $m_1 * m \prec m_2 * m$  und



### Zulässige Ordnungen

Eine Ordnungsrelation  $\prec$  auf der Menge aller Monome heißt **zulässig**, wenn für beliebige Monome  $m, m_1, m_2$  gilt:

- lacktriangledown aus  $m_1 \prec m_2$  folgt  $m_1 * m \prec m_2 * m$  und
- **②** 1 ≤ *m*

Die lexikographische Ordnung der Monome ist ein typisches Beispiel einer zulässigen Ordnungsrelation.



#### Die Polynomreduktion

Sei  $B \subseteq K[X_1, \ldots, X_n]$ .

Die Reduktionsrelation  $\succ_B$  auf  $K[X_1, \dots, X_n]$ , die Polynomreduktion für B, wird wie folgt definiert.

 $f \succ_B g$  gilt genau dann, wenn

• das größte Monom in f ist  $m = c_1 * pp_1$  für  $c \in K$  und ein Potenzprodukt  $pp_1$  und



#### Die Polynomreduktion

Sei  $B \subseteq K[X_1, \ldots, X_n]$ .

Die Reduktionsrelation  $\succ_B$  auf  $K[X_1, \dots, X_n]$ , die Polynomreduktion für B, wird wie folgt definiert.

 $f \succ_B g$  gilt genau dann, wenn

- das größte Monom in f ist  $m=c_1*pp_1$  für  $c\in K$  und ein Potenzprodukt  $pp_1$  und
- es gibt ein Polynom  $h \in B$  mit größtem Monom  $u = c_2 * pp_2$  mit  $pp_1 = v * pp_2$  und



#### Die Polynomreduktion

Sei  $B \subseteq K[X_1, \ldots, X_n]$ .

Die Reduktionsrelation  $\succ_B$  auf  $K[X_1, \dots, X_n]$ , die Polynomreduktion für B, wird wie folgt definiert.

 $f \succ_B g$  gilt genau dann, wenn

- das größte Monom in f ist  $m=c_1*pp_1$  für  $c\in K$  und ein Potenzprodukt  $pp_1$  und
- es gibt ein Polynom  $h \in B$  mit größtem Monom  $u = c_2 * pp_2$  mit  $pp_1 = v * pp_2$  und
- $g = f c_1 * c_2^{-1} * v * h$



### Ein konkretes Beispiel für die Polynomreduktion

Sei 
$$B=\{h_1=xy^2-x,h_2=x-y^3\}$$
  $f=x^7y^2+x^3y^2-y+1.$  Für  $h=h_1$  haben wir in der Notation der Definition der Polynomreduktion  $c_1=c_2=1,\;pp_1=x^7y^2,\;pp_2=xy^2$  und  $v=x^6.$  Für  $g=f-c_1*c_2^{-1}*v*h=x^7+x^3y^2-y+1$  gilt dann

$$x^{7}y^{2} + x^{3}y^{2} - y + 1 \succ_{B} x^{7} + x^{3}y^{2} - y + 1$$

 $f \succ_R \varrho$ 



### Eigenschaften der Polynomreduktion

• Das Reduktionssystem  $(K[X_1, ..., X_n], \succ_B)$  ist stets noethersch.



### Eigenschaften der Polynomreduktion

- Das Reduktionssystem  $(K[X_1, ..., X_n], \succ_B)$  ist stets noethersch.
- Es muß nicht immer konfluent sein.



### Eigenschaften der Polynomreduktion

- Das Reduktionssystem  $(K[X_1, ..., X_n], \succ_B)$  ist stets noethersch.
- Es muß nicht immer konfluent sein.
- Aber für jede Menge B gibt es eine Menge G, die dasselbe Ideal in dem Ring K[X<sub>1</sub>,...,X<sub>n</sub>] erzeugt wie B, so daß ≻<sub>B</sub> konfluent ist.
   G läßt sich aus B berechnen, z.B. mit dem Buchbergerschen Algorithmus.



Für zwei  $\lambda$ -Terme M,N ist die  $\beta$ -Reduktion  $\succ_{\beta}$  definiert durch:  $M \succ_{\beta} N$  genau dann, wenn

• ein Teiltermvorkommen  $(\lambda x M_1) N_1$  in M gibt und



Für zwei  $\lambda$ -Terme M,N ist die  $\beta$ -Reduktion  $\succ_{\beta}$  definiert durch:  $M \succ_{\beta} N$  genau dann, wenn

- ein Teiltermvorkommen  $(\lambda x M_1) N_1$  in M gibt und
- N entsteht aus M, indem  $(\lambda x M_1) N_1$  ersetzt wird  $M_1[x \leftarrow N_1]$ ,



Für zwei  $\lambda$ -Terme M,N ist die  $\beta$ -Reduktion  $\succ_{\beta}$  definiert durch:  $M \succ_{\beta} N$  genau dann, wenn

- ein Teiltermvorkommen  $(\lambda x M_1) N_1$  in M gibt und
- N entsteht aus M, indem  $(\lambda x M_1) N_1$  ersetzt wird  $M_1[x \leftarrow N_1]$ ,
- wobei  $M_1[x \leftarrow N_1]$  aus  $M_1$  entsteht, indem jedes freie Vorkommen von x ersetzt wird durch  $N_1$ .



Für zwei  $\lambda$ -Terme M,N ist die  $\beta$ -Reduktion  $\succ_{\beta}$  definiert durch:  $M \succ_{\beta} N$  genau dann, wenn

- ein Teiltermvorkommen  $(\lambda x M_1) N_1$  in M gibt und
- N entsteht aus M, indem  $(\lambda x M_1) N_1$  ersetzt wird  $M_1[x \leftarrow N_1]$ ,
- wobei  $M_1[x \leftarrow N_1]$  aus  $M_1$  entsteht, indem jedes freie Vorkommen von x ersetzt wird durch  $N_1$ .

#### Eigenschaften:

• Die  $\beta$ -Reduktion auf der Menge aller  $\lambda$  -Terme ist konfluent.



Für zwei  $\lambda$ -Terme M,N ist die  $\beta$ -Reduktion  $\succ_{\beta}$  definiert durch:  $M \succ_{\beta} N$  genau dann, wenn

- ein Teiltermvorkommen  $(\lambda x M_1) N_1$  in M gibt und
- N entsteht aus M, indem  $(\lambda x M_1) N_1$  ersetzt wird  $M_1[x \leftarrow N_1]$ ,
- wobei  $M_1[x \leftarrow N_1]$  aus  $M_1$  entsteht, indem jedes freie Vorkommen von x ersetzt wird durch  $N_1$ .

#### Eigenschaften:

- Die  $\beta$ -Reduktion auf der Menge aller  $\lambda$  -Terme ist konfluent.
- Die  $\beta$ -Reduktion ist nicht noethersch, so hat z.B. der Term  $(\lambda x(xx))\lambda x(xx)$  keine Normalform.



# Beispiele für Reduktionssysteme Semi-Thue-Systeme

Sei R eine Menge von Paaren (r,s) von Wörtern über einem Alphabet  $\Sigma$ , d.h.  $r,s\in\Sigma^*$ . Die Relation  $\succ_R$  auf der Menge  $\Sigma^*$  aller Wörter über  $\Sigma$  ist definiert durch:

$$u \succ_R v$$
 
$$\mathsf{gdw}$$
 es gibt  $(r,s) \in R$  und  $z,y \in \Sigma^*$ , so daß  $u = xry$  und  $v = xsy$ .

 $(\Sigma, R)$  heißt ein **Semi-Thue-System** (string rewriting system).

Im Unterschied zu den Termersetzungssystemen treten in Semi-Thue-Systemen keine Variablen auf und damit keine Substitutionen. Außerdem ist die interne Struktur von Wörtern wesentlich ärmer als die interne Struktur von Termen.

