Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt.



Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt. Sowohl  $\Gamma$  als auch  $\Delta$  kann die leere Menge sein.



Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt.

Sowohl  $\Gamma$  als auch  $\Delta$  kann die leere Menge sein.

Sei  ${\mathcal D}$  eine prädikatenlogische Struktur und  ${\mathcal B}$  eine Variablenbelegung:

$$\operatorname{\mathit{val}}_{\mathcal{D},\beta}(\Gamma{\Rightarrow}\Delta) = \operatorname{\mathit{val}}_{\mathcal{D},\beta}(\bigwedge\Gamma \to \bigvee\Delta)$$



Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt.

Sowohl  $\Gamma$  als auch  $\Delta$  kann die leere Menge sein.

Sei  $\mathcal D$  eine prädikatenlogische Struktur und  $\beta$  eine Variablenbelegung:

$$\operatorname{\mathit{val}}_{\mathcal{D},\beta}(\Gamma{\Rightarrow}\Delta) = \operatorname{\mathit{val}}_{\mathcal{D},\beta}(\bigwedge\Gamma \to \bigvee \Delta)$$

Es gelten die üblichen Vereinbarungen für leere Disjunktionen und Konjunktionen.



axiom 
$$\overline{\Gamma, F \Rightarrow F, \Delta}$$



axiom 
$$\overline{\Gamma, F \Rightarrow F, \Delta}$$
not-left  $\overline{\Gamma, \neg F \Rightarrow \Delta}$ 







$$\begin{array}{c} \textit{axiom} & \overline{\Gamma, F \Rightarrow F, \Delta} \\ \textit{not-left} & \overline{\Gamma, \Rightarrow F, \Delta} \\ \textit{not-right} & \overline{\Gamma, \neg F \Rightarrow \Delta} \\ \textit{not-right} & \overline{\Gamma \Rightarrow \neg F, \Delta} \\ \textit{impl-left} & \overline{\Gamma \Rightarrow F, \Delta} & \Gamma, G \Rightarrow \Delta \\ \textit{impl-right} & \overline{\Gamma, F \Rightarrow G, \Delta} \\ \textit{impl-right} & \overline{\Gamma, F \Rightarrow G, \Delta} \\ \hline \textit{impl-right} & \overline{\Gamma, F \Rightarrow G, \Delta} \\ \hline \end{array}$$



$$axiom \quad \hline \Gamma, F \Rightarrow F, \Delta \qquad \qquad and\text{-left} \quad \frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta}$$

$$not\text{-left} \quad \frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$$

$$not\text{-right} \quad \frac{\Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta}$$

$$impl\text{-left} \quad \frac{\Gamma \Rightarrow F, \Delta}{\Gamma, F \Rightarrow G \Rightarrow \Delta}$$

$$impl\text{-right} \quad \frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma \Rightarrow F \Rightarrow G, \Delta}$$



$$axiom \quad \overline{\Gamma, F \Rightarrow F, \Delta}$$

$$not\text{-}left \quad \frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$$

$$not\text{-}right \quad \frac{\Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta}$$

$$impl\text{-}left \quad \frac{\Gamma \Rightarrow F, \Delta \quad \Gamma, G \Rightarrow \Delta}{\Gamma, F \rightarrow G \Rightarrow \Delta}$$

$$impl\text{-}right \quad \frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma \Rightarrow F \rightarrow G, \Delta}$$

and-left 
$$\frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta}$$

$$\mathit{and\text{-}right} \ \frac{\Gamma {\Rightarrow} F, \Delta \quad \Gamma {\Rightarrow} G, \Delta}{\Gamma {\Rightarrow} F \land G, \Delta}$$



and-left 
$$(\Gamma, F, G \Rightarrow \Delta)$$
  
 $\Gamma, F \land G \Rightarrow \Delta$ 

$$\mathit{and\text{-}right} \ \frac{\Gamma {\Rightarrow} F, \Delta \quad \Gamma {\Rightarrow} G, \Delta}{\Gamma {\Rightarrow} F \wedge G, \Delta}$$

$$\mathit{or\text{-}left} \ \frac{\Gamma, F {\Rightarrow} \Delta \quad \Gamma, G {\Rightarrow} \Delta}{\Gamma, F \vee G {\Rightarrow} \Delta}$$



$$axiom \quad \hline \Gamma, F \Rightarrow F, \Delta \qquad \qquad and\text{-}left \quad \hline \Gamma, F, G \Rightarrow \Delta \\ not\text{-}left \quad \hline \Gamma, F \Rightarrow \Delta \\ not\text{-}right \quad \hline \Gamma, F \Rightarrow \Delta \\ not\text{-}right \quad \hline \Gamma, F \Rightarrow \Delta \\ \hline r \Rightarrow \neg F, \Delta \\ impl\text{-}left \quad \hline \Gamma, F \Rightarrow G, \Delta \\ \hline r \Rightarrow F, \Delta \quad \Gamma, G \Rightarrow \Delta \\ \hline impl\text{-}right \quad \hline \Gamma, F \Rightarrow G, \Delta \\ \hline r \Rightarrow F, G, C \\ \hline r \Rightarrow F,$$



### all-left

$$\frac{\Gamma, \forall x F, F(X/x) \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

X neue Variable.



all-left

$$\frac{\Gamma, \forall x F, F(X/x) \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

X neue Variable.

all-right

$$\frac{\Gamma \Rightarrow F(f(\bar{x})/x), \Delta}{\Gamma \Rightarrow \forall x F, \Delta}$$

f neues Fktsymbol  $\bar{x} = x_1, \dots, x_n$  alle freien Variablen in  $\forall x F$ .

all-left

ex-right

$$\frac{\Gamma, \forall x F, F(X/x) \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow \exists x F, F(X/x), \Delta}{\Gamma, \Rightarrow \exists x F, \Delta}$$

X neue Variable.

X neue Variable.

all-right

$$\frac{\Gamma \Rightarrow F(f(\bar{x})/x), \Delta}{\Gamma \Rightarrow \forall x F, \Delta}$$

f neues Fktsymbol  $\bar{x} = x_1, \dots, x_n$  alle freien Variablen in  $\forall x F$ .

all-left

ex-right

$$\frac{\Gamma, \forall x F, F(X/x) \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

 $\frac{\Gamma \Rightarrow \exists x F, F(X/x), \Delta}{\Gamma, \Rightarrow \exists x F, \Delta}$ 

X neue Variable.

X neue Variable.

all-right

ex-left

$$\frac{\Gamma \Rightarrow F(f(\bar{x})/x), \Delta}{\Gamma \Rightarrow \forall x F, \Delta}$$

$$\frac{\Gamma, F(f(\bar{x})/x) \Rightarrow \Delta}{\Gamma, \exists x F \Rightarrow \Delta}$$

f neues Fktsymbol  $\bar{x} = x_1, \dots, x_n$  alle freien Variablen in  $\forall x F$ .

f neues Fktsymbol  $\bar{x} = x_1, \dots, x_n$  alle freien Variablen in  $\exists x F$ .

### identity-right

$$\Gamma, \Rightarrow s = s, \Delta$$



### $identity ext{-}right$

$$\Gamma$$
,  $\Rightarrow$ s = s,  $\Delta$ 

#### $symmetry\mbox{-}right$

$$\frac{\Gamma \Rightarrow s = t, \Delta}{\Gamma \Rightarrow t = s, \Delta}$$



### $identity ext{-}right$

$$\Gamma, \Rightarrow s = s, \Delta$$

#### $symmetry\mbox{-}right$

$$\frac{\Gamma \Rightarrow s = t, \Delta}{\Gamma \Rightarrow t = s, \Delta}$$

### symmetry-left

$$\frac{\Gamma, s = t \Rightarrow \Delta}{\Gamma, t = s \Rightarrow \Delta}$$



#### $identity ext{-}right$

### eq-subst-right

$$\Gamma, \Rightarrow s = s, \Delta$$

$$\frac{\Gamma, s = t \Rightarrow F(t), \Delta}{\Gamma, s = t \Rightarrow F(s), \Delta}$$

#### symmetry-right

$$\frac{\Gamma \Rightarrow s = t, \Delta}{\Gamma \Rightarrow t = s, \Delta}$$

### symmetry-left

$$\frac{\Gamma, s = t \Rightarrow \Delta}{\Gamma, t = s \Rightarrow \Delta}$$



#### $identity ext{-}right$

### eq-subst-right

$$\Gamma, \Rightarrow s = s, \Delta$$

$$\frac{\Gamma, s = t \Rightarrow F(t), \Delta}{\Gamma, s = t \Rightarrow F(s), \Delta}$$

#### symmetry-right

$$\frac{\Gamma \Rightarrow s = t, \Delta}{\Gamma \Rightarrow t = s, \Delta}$$

 $eq ext{-}subst ext{-}left$ 

### symmetry-left

$$\frac{\Gamma, s = t \Rightarrow \Delta}{\Gamma, t = s \Rightarrow \Delta}$$

$$\frac{\Gamma, F(t), s = t \Rightarrow \Delta}{\Gamma, F(s), s = t \Rightarrow \Delta}$$



## Ableitungsbaum in S

Ein Ableitungsbaum ist ein Baum, dessen Knoten mit Sequenzen markiert sind und für jeden Knoten n die folgende Einschränkung erfüllt:

• ist  $n_1$  der einzige Nachfolgerknoten von n und sind  $\Gamma \Rightarrow \Delta$  und  $\Gamma_1 \Rightarrow \Delta_1$  die Markierungen von n und  $n_1$ , dann gibt es eine Sequenzenregel

$$\Gamma_1 \Rightarrow \Delta_1$$
 $\Gamma \Rightarrow \Delta$ 

## Ableitungsbaum in S

Ein Ableitungsbaum ist ein Baum, dessen Knoten mit Sequenzen markiert sind und für jeden Knoten n die folgende Einschränkung erfüllt:

• ist  $n_1$  der einzige Nachfolgerknoten von n und sind  $\Gamma \Rightarrow \Delta$  und  $\Gamma_1 \Rightarrow \Delta_1$  die Markierungen von n und  $n_1$ , dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1}{\Gamma \Rightarrow \Delta}$$

**2** besitzt n die beiden Nachfolgerknoten  $n_1$  und  $n_2$  und sind  $\Gamma \Rightarrow \Delta$ ,  $\Gamma_1 \Rightarrow \Delta_1$  und  $\Gamma_2 \Rightarrow \Delta_2$  die Sequenzen an den Knoten n,  $n_1$  und  $n_2$  dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma \Rightarrow \Delta}$$

### $Geschlossener\ Ableitungsbaum$

Wir nennen einen Beweisbaum geschlossen oder vollständig wenn er zusätzlich noch die folgende Bedingung erfüllt:

**3** es gibt eine Substitution  $\sigma$ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat,  $\sigma(A)$  ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.



### $Geschlossener\ Ableitungsbaum$

Wir nennen einen Beweisbaum geschlossen oder vollständig wenn er zusätzlich noch die folgende Bedingung erfüllt:

**3** es gibt eine Substitution  $\sigma$ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat,  $\sigma(A)$  ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.



## $Geschlossener\ Ableitungsbaum$

Wir nennen einen Beweisbaum geschlossen oder vollständig wenn er zusätzlich noch die folgende Bedingung erfüllt:

**3** es gibt eine Substitution  $\sigma$ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat,  $\sigma(A)$  ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.

Man beachte daß zunächst  $A \equiv p(s) \Rightarrow p(t)$  kein Axiom zu sein braucht. Ist  $\sigma$  aber ein Unifikator von s und t dann ist  $\sigma(A) \equiv p(\sigma(s)) \Rightarrow p(\sigma(t))$  zu einem Axiom wird.



# Korrektheit und Vollständigkeit des Sequenzenkalküls

#### Theorem

Es seien  $M \subseteq For_{\Sigma}$ ,  $A \in For_{\Sigma}$ . Dann gilt

$$M \vdash_{S} A \Rightarrow M \models A$$



# Korrektheit und Vollständigkeit des Sequenzenkalküls

#### Theorem

Es seien  $M \subseteq For_{\Sigma}$ ,  $A \in For_{\Sigma}$ . Dann gilt

$$M \vdash_{S} A \Rightarrow M \models A$$

#### Theorem

Es seien  $M \subseteq For_{\Sigma}$ ,  $A \in For_{\Sigma}$ . Dann gilt

$$M \models A \Rightarrow M \vdash_{S} A$$

