Relational Verification

16th KeY Symposium
July 2016

Mattias Ulbrich

KIT - Die Forsch iversitat in der Helmholtz-Gemeinschaft www.kit.edu

http://www.kit.edu

I Title refinement A\‘(IT

More precisely:

Effective/Efficient Verification of
Relational Properties

Mattias Ulbrich — Relational Verification 2/12

I Title refinement AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

More precisely:

Effective/Efficient Verification of
Relational Properties

Mattias Ulbrich — Relational Verification 2/12

I Preliminaries ﬂ("‘

a Domain D
(set of input-/output-values, set of states)

Mattias Ulbrich — Relational Verification 3/12

I Preliminaries ﬂ("‘

a Domain D
(set of input-/output-values, set of states)

a Evaluation E=D x D
(pair of input and output value)

Mattias Ulbrich — Relational Verification 3/12

I Preliminaries AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

a Domain D
(set of input-/output-values, set of states)

a Evaluation E=D x D
(pair of input and output value)

m Program PC E

Mattias Ulbrich — Relational Verification 3/12

I Preliminaries AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

a Domain D
(set of input-/output-values, set of states)

a Evaluation E=D x D
(pair of input and output value)

m Program PC E

a Deterministic Program P : D — D, x — P(x)
P={(x,P(x))|xe D} CE

Mattias Ulbrich — Relational Verification 3/12

I Properties and Hyperproperties AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Functional Property
FCE

the set of “good”
evaluations.

Mattias Ulbrich — Relational Verification 4/12

Properties and Hyperproperties

Functional Property
FCE

the set of “good”
evaluations.

Program P satisfies
Fiff PCF

Mattias Ulbrich — Relational Verification

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

4/12

Properties and Hyperproperties AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Functional Property
FCE

the set of “good”
evaluations.

Program P satisfies
Fiff PCF

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification 4/12

Properties and Hyperproperties AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Functional Property Relational Property

FCE RCEXE
the set of “good” the set of “good”
evaluations. evaluation pairs.

Program P satisfies
Fiff PCF

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification 4/12

Properties and Hyperproperties AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Functional Property Relational Property

FCE RCEXE
the set of “good” the set of “good”
evaluations. evaluation pairs.

Program P satisfies Program P satisfies
Fiff PCF Riff PxPCR

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification 4/12

Properties and Hyperproperties

Functional Property
FCE

the set of “good”
evaluations.

Program P satisfies
Fiff PCF

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification

Relational Property
RCEXE

the set of “good”
evaluation pairs.

Program P satisfies
RiffPxPCR

R =
{((ir; 01), (12, 02)) |

i1=i2=>01=02}

P satisfies R iff it is
deterministic.

T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

4/12

Properties and Hyperproperties

Functional Property
FCE

the set of “good”
evaluations.

Program P satisfies
Fiff PCF

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification

Relational Property
RCEXE

the set of “good”
evaluation pairs.

Program P satisfies
RiffPxPCR

R =
{((ir; 01), (12, 02)) |

i1=i2=>01=02}

P satisfies R iff it is
deterministic.

T

yyyyyyyyyyyyyyyyyyyyyy

k-Safety Property

R, C E¥

,,,,,,,,,,,,

4/12

Properties and Hyperproperties

Functional Property
FCE

the set of “good”
evaluations.

Program P satisfies
Fiff PCF

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification

Relational Property
RCEXE

the set of “good”
evaluation pairs.

Program P satisfies
RiffPxPCR

R =
{((ir; 01), (12, 02)) |

i1=i2=>01=02}

P satisfies R iff it is
deterministic.

T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

k-Safety Property

R, C E¥

Program P satisfies
Ry iff PX C Ry

4/12

Properties and Hyperproperties

Functional Property
FCE

the set of “good”
evaluations.

Program P satisfies
Fiff PCF

Ex.: for D = 7.
F={(i,o) | o >0}

postcondition
result > 0

Mattias Ulbrich — Relational Verification

Relational Property
RCEXE

the set of “good”
evaluation pairs.

Program P satisfies
RiffPxPCR

R =
{((ir; 01), (12, 02)) |

i1=i2=>01=02}

P satisfies R iff it is
deterministic.

k-Safety Property

R, C E¥

Program P satisfies
Ry iff PX C Ry

Ex.: for D=7
Hom, € E3

P satisfies Hom,, iff

P(x+y)=P(x)+P(y)

4/12

I Relational Properties in Dynamic Logic AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

a Let Pi, P> be two copies of P

Mattias Ulbrich — Relational Verification 5/12

I Relational Properties in Dynamic Logic AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

a Let Pi, P> be two copies of P

a that operate on x; and x»

Mattias Ulbrich — Relational Verification 5/12

I Relational Properties in Dynamic Logic

a Let Pi, P> be two copies of P
a that operate on x; and x»

a Proof obligation:
(P1][P2] ((old(x1),x1, 0ld(x2), x2) € R)

Mattias Ulbrich — Relational Verification 5/12

Relational Properties in Dynamic Logic

a Let Pi, P> be two copies of P
a that operate on x; and x»

a Proof obligation:
(P1][P2] ((old(x1),x1, 0ld(x2), x2) € R)

a Often:
x1 ~in X2 = [P1]|[P2]x1 ~out X2

Mattias Ulbrich — Relational Verification 5/12

I Instances AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

u Non-interference (information flow)

IOWl = /0W2 — [Pl][PQ] /OW1 = /OW2

Mattias Ulbrich — Relational Verification 6/12

I Instances AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

u Non-interference (information flow)

lows = low, — [P1][P2] lows = lows

a Program Equivalence

xx=x = [P][@] n=nr

Mattias Ulbrich — Relational Verification 6/12

I Instances AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

u Non-interference (information flow)

lows = low, — [P1][P2] lows = lows

a Program Equivalence

xx=x = [P][@] n=nr

a Refinement

inAbs ~ inConcr — [C] <A> resaps =~ r€Sconcr

Mattias Ulbrich — Relational Verification 6/12

I Instances AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

u Non-interference (information flow)

lows = low, — [P1][P2] lows = lows

a Program Equivalence

xx=x = [P][@] n=nr

a Refinement

inAbs ~ inConcr — [C] <A> resaps =~ r€Sconcr

a Relational Algorithmic Properties, e.g., voting schemes

election; ~ eletiony — [P1][P2] winnery = winner,

Mattias Ulbrich — Relational Verification 6/12

Effective/Efficient Verification of
Relational Properties

Mattias Ulbrich — Relational Verification 7/12

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Effective/Efficient Verification of
Relational Properties

Mattias Ulbrich — Relational Verification 7/12

I Synchronised Traces AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Mattias Ulbrich — Relational Verification 8/12

I Synchronised Traces AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

O—0

O
O

O
O
O
O

I Synchronised Traces AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

()
N

O

()
o/

O

Mattias Ulbrich — Relational Verification 8/12

I Synchronised Traces AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Mattias Ulbrich — Relational Verification 8/12

I Synchronised Traces AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

-/ /

\ J

Prove this linear segment

Mattias Ulbrich — Relational Verification 8/12

I Losely Synchronised Traces AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Mattias Ulbrich — Relational Verification 9/12

I Why is relational verification often simpler? A\‘("'

Consider only single-loop programs with a single variable.

Mattias Ulbrich — Relational Verification 10/12

Consider only single-loop programs with a single variable.

Proving an equality using individual loop abstraction
requires the strongest loop invariant.

Mattias Ulbrich — Relational Verification 10/12

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction
requires the strongest loop invariant.

Justification:
m Strongest loop abstraction is a functional relation.
m Any invariant weaker than the strongest has one input-state
x1, xo such that two post-states satisfy it.
a But outputs must be equal — equality is bound to fail for
either x; or x».

Mattias Ulbrich — Relational Verification 10/12

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction
requires the strongest loop invariant.

Justification:
m Strongest loop abstraction is a functional relation.
m Any invariant weaker than the strongest has one input-state
x1, xo such that two post-states satisfy it.
a But outputs must be equal — equality is bound to fail for
either x; or x».

Strongest functional invariants hard to specify/infer.
= Relational regression verification is promising!

Mattias Ulbrich — Relational Verification 10/12

I Contributions so far AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

® Refinement from algorithms to implementations [Ulbrich 11]

= Non-interference calculus in KeY [LOPSTR 13]
® Regression verification of C source code [ASE 14]
m Regression verification on PLC code [ICFEM 15]

Verifying relational props of voting schemes [COMSOC 16]

Mattias Ulbrich — Relational Verification 11/12

I Contributions so far AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

u Refinement from algorithms to implementations [Ulbrich 11]

a Non-interference calculus in KeY [LOPSTR 13]
® Regression verification of C source code [ASE 14]
m Regression verification on PLC code [ICFEM 15]

a Verifying relational props of voting schemes [COMSOC 16]

Similar, yet not the same

Similar techniques are used.
To be effective/efficient, technique must match application.

Mattias Ulbrich — Relational Verification 11/12

I Contributions so far

u Refinement from algorithms to implementations [Ulbrich 11]

a Non-interference calculus in KeY [LOPSTR 13]
® Regression verification of C source code [ASE 14]
m Regression verification on PLC code [ICFEM 15]
a Verifying relational props of voting schemes [COMSOC 16]

w Regression verification for LLVM bitcode [VSTTE 16]

Similar, yet not the same

Similar techniques are used.
To be effective/efficient, technique must match application.

Mattias Ulbrich — Relational Verification 11/12

I Relational Verification AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

a To show: Related input

Loop synchronisation gives related output

i ISS
o O

Mattias Ulbrich — Relational Verification 12/12

I Relational Verification

Loop synchronisation

N,‘n

f1 Ox

O&)

out

(O

Mattias Ulbrich — Relational Verification

uuuuuuuuuuuuuuuuuu

a To show: Related input
gives related output

aaaaaaaaaaaa

12/12

I Relational Verification

Loop synchronisation

N,‘n

f1 Ox

Oé)

out

(O

Mattias Ulbrich — Relational Verification

uuuuuuuuuuuuuuuuuu

a To show: Related input
gives related output

a Loops are synchronised

aaaaaaaaaaaa

12/12

I Relational Verification

a To show: Related input

Loop synchronisation gives related output

~in ————— @ Loops are synchronised

out

Mattias Ulbrich — Relational Verification 12/12

I Relational Verification

Loop synchronisation

Y

f1 X n
Y
“\
i
Cx ~out

Mattias Ulbrich — Relational Verification

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

To show: Related input
gives related output

Loops are synchronised

at least loosely
synchronised

12/12

I Relational Verification

Loop synchronisation

Y

f1 X n
N ~
i
Cx ~out

Mattias Ulbrich — Relational Verification

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

To show: Related input
gives related output

Loops are synchronised

at least loosely
synchronised

12/12

I Relational Verification

Loop synchronisation

flO

Oé)

e

Mattias Ulbrich — Relational Verification

Of2

S

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

To show: Related input
gives related output

Loops are synchronised

... at least loosely
synchronised

Abstract loops by
invariants

12/12

I Relational Verification

Loop synchronlsatlon

fl

Inv

/@ Inv

Mattias Ulbrich — Relational Verification

:

To show: Related input
gives related output

Loops are synchronised

.. at least loosely
synchronised

Abstract loops by
invariants

12/12

I Relational Verification

Loop synchronisation

x

fl

N,‘n

x

b 2

5

x

out

b 2

Mattias Ulbrich — Relational Verification

b 2

f2

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

a To show: Related input
gives related output

u Loops are synchronised

m ... at least loosely
synchronised

a Abstract loops by
invariants

—> Use Cpl as loop invariant
for both programs.

(—coupling invariant)

12/12

I Relational Verification

— a To show: Related input
Loop synchronisation gives related output

u Loops are synchronised

1 ~ 1Y = f2

& <

~

m ... at least loosely
synchronised

Cpl m Abstract loops by

% invariants

—> Use Cpl as loop invariant
for both programs.

~

(—coupling invariant)

Mattias Ulbrich — Relational Verification 12/12

I Relational Verification

— a To show: Related input
Loop synchronlsatlon gives related output

u Loops are synchronised

f2

v

m ... at least loosely
synchronised

a Abstract loops by

)%) invariants
g)

Use Cpl as loop invariant
for both programs.

(—coupling invariant)

Mattias Ulbrich — Relational Verification 12/12

I Relational Verification

— a To show: Related input
Loop synchronisation gives related output

* - VN u Loops are synchronised

~

m ... at least loosely

N invariants
Cpl .
Cpl ’ = Use Cpl as loop invariant
for both programs.

= (—coupling invariant)

synchronised
Cpl
(_I > a Abstract loops by

Mattias Ulbrich — Relational Verification 12/12

