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a Domain D
(set of input-/output-values, set of states)

a Evaluation E=D x D
(pair of input and output value)

m Program PC E

a Deterministic Program P : D — D, x — P(x)
P={(x,P(x))|xe D} CE
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Program P satisfies
RiffPxPCR

R =
{((ir; 01), (12, 02)) |

i1=i2=>01=02}

P satisfies R iff it is
deterministic.

k-Safety Property

R, C E¥

Program P satisfies
Ry iff PX C Ry

Ex.: for D=7
Hom, € E3

P satisfies Hom,, iff

P(x+y)=P(x)+P(y)
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Relational Properties in Dynamic Logic

a Let Pi, P> be two copies of P
a that operate on x; and x»

a Proof obligation:
(P1][P2] ( (old(x1),x1, 0ld(x2), x2) € R)

a Often:
x1 ~in X2 = [ P1]|[P2]x1 ~out X2
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u Non-interference (information flow)

lows = low, — [P1][P2] lows = lows

a Program Equivalence

xx=x = [P][@] n=nr

a Refinement

inAbs ~ inConcr — [C] <A> resaps =~ r€Sconcr

a Relational Algorithmic Properties, e.g., voting schemes

election; ~ eletiony — [P1][P2] winnery = winner,
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Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction
requires the strongest loop invariant.

Justification:
m Strongest loop abstraction is a functional relation.
m Any invariant weaker than the strongest has one input-state
x1, xo such that two post-states satisfy it.
a But outputs must be equal — equality is bound to fail for
either x; or x».
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Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction
requires the strongest loop invariant.

Justification:
m Strongest loop abstraction is a functional relation.
m Any invariant weaker than the strongest has one input-state
x1, xo such that two post-states satisfy it.
a But outputs must be equal — equality is bound to fail for
either x; or x».

Strongest functional invariants hard to specify/infer.
= Relational regression verification is promising!
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® Refinement from algorithms to implementations  [Ulbrich 11]

= Non-interference calculus in KeY [LOPSTR 13]
® Regression verification of C source code [ASE 14]
m Regression verification on PLC code [ICFEM 15]

Verifying relational props of voting schemes [COMSOC 16]
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a Non-interference calculus in KeY [LOPSTR 13]
® Regression verification of C source code [ASE 14]
m Regression verification on PLC code [ICFEM 15]
a Verifying relational props of voting schemes [COMSOC 16]

w Regression verification for LLVM bitcode [VSTTE 16]

Similar, yet not the same

Similar techniques are used.
To be effective/efficient, technique must match application.
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