Secure Information Flow Analysis
using KeY

Jing Pan® Philipp Rummer?

ljinpan@madstud.chalmers.se

2philipp@cs.chalmers.se

4th KeY Symposium, 2005

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005 1/21

Secure Information Flow Overview

Definition
The attacker cannot learn about initial value of high variable h from
final value of low variable | . (confidentiality))
Example
program secure?
h=l; Yes
I=6; Yes
I=h; I=I-h; Yes (though insecure parts)
I=h; No (direct flow)
if(h>=0) I=1; else I=0; No (indirect flow)

Equivalent A variation of high input does not cause a variation of low
output. (non-interference)

10th June 2005 2/21

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY

Previous Work in KeY

"a variation of high input does not cause a variation of low output”
WL 3h (=17 = ({p(l,h)p(t RO =17)

Problems:
@ doubled program size
@ instances of h might need other variables
New approach:
@ Do not double the program but need to record final state of | .
@ Symbolically execute program until the final value for | is obvious.

@ Using the idea from previous approach, derive a second proof
obligation from information of open goals .

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005 3/21

Formalizing Secure Information Flow in KeY

@ Definition in .key

sorts {
TermList;

}

functions { //a list for arbitrary terms
TermList nil;
Termlist cons(TermList, any);

}

predicates { //to hold final value of low variables
secure(TermList);

}

@ Proof obligation
({a}) secure (L)

where L is the complete TermList of prog vars that are supposed to be low

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005

4/21

Verifying Secure Information Flow in KeY |

@ If o terminates properly (not abruptly), after symbolically executing

program or applying induction rules correctly on loops we get

open goals:
Mo==>Ap,secure (cons...(cons(cons (nil,too),to1),..-tom))

I .F-i::> A, secure (cons...:(. cons(cons (nil,tig), ti1),...tim))
.I.';]::>An,secure (cons...:(. cons(cons (Nil,tno),tn1),- .- thm))
@ Each column represents the final values for a low variable.
to iff Og
fin(l;) = i:ij“ |ff (SF
ty it O
where j € {0.m} fin(v) ' final value ofv o« (AT A=V A)
10th June 2005

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY

6/21

Verifying Secure Information Flow in KeY Il

@ Derive a function from open goals for each |;. KeY uses
conditional term "if (¢) (tihen) (teise)”

fin() = if (o) (toj) (
if (&) () (

|f (©n) (ty) (defaultTerm)...)...)

defaultTerm can be any term; may use t, to make proof simpler.

@ "a variation of high input does not cause a variation of low output"

YR.WH. A\ (fin(l) = fin(l)))

0<j<m

A% hyho, b A S hhy, . ohy fin(l) € fin()[A/HY]

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 7121

Example(1) |

program "if (h>0) I=1; else I=0; " (I —low, h — high)
@ Create .key file:

sorts {
TermList;
}

functions {
TermList nil;
Termlist cons(TermList, any);

}

predicates {
secure(TermList);
}

program {

}

<if (h>0) I=1; else I=0;}> secure(cons(nil, 1))

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 9/21

Example(1) Il

@ After symbolically run proof in KeY it stops with two open goals:

==> 0 < h, secure(cons(nil, 0))
0 < h ==> secure(cons(nil, 1))

@ To continue proof
@ Click button "Extract security proof" in Toolbar.
@ Select the variables that are supposed to be secret (In this case, h).
@ A new proof is generated:
==>
all hl:int. all h2:nt.
({h:=h1} if (!0 < h) (0)
(if © < h) (1) @)
= ({h:=h2} if (10 < h) (0)
(if (0 < h) (@) @)

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 10/21

Example(1) 1l

@ Run prover, proof stops with two open goals:

0< h2 ==>0¢< h1
0< hl==>0¢< h2

@ Conclusion: program "if (h>0) I=1; else I=0; " leaks information
of the sign of high variable h

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 11/21

Abstracting Programs

Motivation: Sometime computation that program performs is not really
interesting for us, such as in Secure Information Flow Analysis study.

Example
h=I++; (1)
h=x/y; (2)

I, X, y —Ilow, h— high

v

Idea: Remove unnecessary knowledge about program state (values of
variables). (Abstraction)
eg. Example (1)

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 12/21

Abstraction of Programs in KeY

KeY translates a piece of program into simultaneous update

v=A_lp:=1t,....Ih =t}
to describe states of variables |1, .. ,...I,.

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 13/21

Abstraction of Programs in KeY

KeY translates a piece of program into simultaneous update

v=A_lp:=1t,....Ih =t}
to describe states of variables |1, .. ,...I,.

@ Carry out from update?
Var state is clear but unnecessary work in computing results . Not good.

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 13/21

Abstraction of Programs in KeY

KeY translates a piece of program into simultaneous update

v={lh :=tg,...,Ih =t}

to describe states of variables |1, .. ,...I,.

@ Carry out from update?
Var state is clear but unnecessary work in computing results . Not good.

@ Carry out from program?
in only one step. Sounds right!

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 13/21

Rule For Abstraction — Attempt 1

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY

Rule For Abstraction — Attempt 1

@ Example 1. What KeY does

((h=1++}) & ~
= (@nt)(1 +1)}) & ~

{h

od

{hi=1, 1:=1+1} <{}>”q>'

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005 14/21

Rule For Abstraction — Attempt 1

@ Example 1. What KeY does
({h=1++1}H o ~
({h=1I; I =(int)(I1+1);}) d ~

{hi=1, 1:=1+1} <{}>';1>'

@ Wanted
» locations whose states may change after execution of program
» new state of those locations

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 14/21

Rule For Abstraction — Attempt 1

@ Example 1. What KeY does

({h=l++Ho ~
({h=lL1=(@nt)(I+1):}) ® ~
{hi=1, 1:=1+1} ({}>‘;1>'

@ Wanted
» locations whose states may change after execution of program
» new state of those locations

@ Abstracting program

{h=1++} > ~
{h=1L1:=fH} {}) ¢

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 14/21

Rule For Abstraction — Attempt 1

@ Example 1. What KeY does

({h=l++Ho ~
({h=lL1=(@nt)(I+1):}) ® ~
{hi=1, 1:=1+1} ({}>‘;1>'

@ Wanted
» locations whose states may change after execution of program
» new state of those locations

@ Abstracting program
{h=1++1} P ~
{h=1L1:=fH} {}) ¢

@ Arule can be

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 14/21

Rule For Abstraction — Attempt 2

Is it suitable for general case?

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY

Rule For Abstraction — Attempt 2

Is it suitable for general case? NO!

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY

Rule For Abstraction — Attempt 2

Is it suitable for general case? NO!
@ Example 2: What KeY does

(fh=x/y;h) o ~
(-(v = 0) = fh:=jdiv (x.y)N({}®) A (v~ 0—
({throw new java.lang.ArithmeticException (); PR

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 15/21

Rule For Abstraction — Attempt 2

Is it suitable for general case? NO!
@ Example 2: What KeY does

(fh=x/y;h) o ~
(+(y = 0) = {h=idiv (CY)D{HH ®) A (v = 0—
({throw new java.lang.ArithmeticException (); PR

@ Need to handle exception(s) as well. We want it to be

(fh=x/y;h) o ~
((y = 0) = {h = Y)DHH ®) A (v = 0—
({throw new java.lang.ArithmeticException (); 1 ®)

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 15/21

Rule For Abstraction
Looks complicated ...

]jO (—\[,'O —
I/l (_‘L"‘l —

i (=t v (L)0
A(tm— ({..throw Eq ..})d))

/\(1 — ({..throw E; ..})®))
A (o — ({..throw Ep..}Hd))

{. a.ho

Ei — exception classes that may be thrown in the execution of «

i — condition to throw E;

v, — update which occurs before E; is thrown but after E;_; is thrown
(if there are any)

v — update which occurs when no exception is thrown

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 16/21

Taclet

schema variables {

program statement #tconcreteStatement
formula post;

}
rules {
abstract {
find (<{. #concreteStatement ...}> post)
varcond (#concreteStatement isAbstractable)
replacewith (#abstract(<{.. ...}> post))
2
}

Only certain statements can be treated so far, so we use varcond to
identify here.

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 17/21

Implementation Issues

@ Something we need to construct abstraction of program

([(v,¥i,E) - i=1,....m],v) 3

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005 18/21

Implementation Issues

@ Something we need to construct abstraction of program

([(v,¥i,E) - i=1,....m],v) (3)

@ Deductively extract (3) from program statement. Some samples:

Fv=vog——1 (9, {Vv:=vo,vo:=F(vo) })
Fv=v+(e) | (o, v)
Fv+=e | (o, v)

Fvo=¢eo | [00, 10] Fvi=eyl[o1, 1]
+ v:eo/el l} ([00, o1, (l/on,VliO,E)], \' Z:f(Vo,Vl))

where E & java.lang.ArithmeticException

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 18/21

Example(2)

@ Given proof obligation

==>
<{int h; int I;}>
<f{h = I++ + ++|;}>
secure(cons(nil, 1)

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY

Example(2)

@ Given proof obligation

==>
<{int h; int I;}>
<f{h = I++ + ++|;}>
secure(cons(nil, 1)

@ After applying abstract rule, proof turns to

==>
{h:=f4(1),
I:=f2(1)}

<{}> secure(cons(nil, 1))

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 19/21

Example(2) more complicated one

@ Given proof obligation

==>
<fint x; int y; int z;}>
{x =y I= z++}}>
secure(cons(cons(cons(nil, x),y),z))

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005 20/21

Example(2) more complicated one

@ Given proof obligation
==>
<fint x; int y; int z;}>
<{x =y I= z++}>
secure(cons(cons(cons(nil, x),y),z))

@ After applying abstract rule, proof turns to
==>
(Iz =0
> {x:=f5(y, 2z),
y:=f5(y, 2),
z:=f4(z)}
<{}> secure(cons(cons(cons(nil, x), y), z)))
&(z=0
-> {z:=f4(z2)}
<
throw new java.lang.ArithmeticException ();
}> <{}> secure(cons(cons(cons(nil, x), y), 2)))

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 20/21

Contribution and Future Work

@ Adapt for arrays and attribute variables.
new structures can be easily extended
@ Leakage by program termination behavior.
analyze open goals
@ Formalize insecurity property.
negation of new proof obligation
@ Formalize declassification (intended leakage).
probably non-trivial

Jing Pan (jinpan@mdstud.chalmers.se, philipSecure Information Flow Analysis using KeY 10th June 2005 21/21

Contribution and Future Work

@ Adapt for arrays and attribute variables.
new structures can be easily extended
@ Leakage by program termination behavior.
analyze open goals
@ Formalize insecurity property.
negation of new proof obligation
@ Formalize declassification (intended leakage).
probably non-trivial
@ Result
» Approach works fine on small examples.
» Able to treat about 40 operators in Java including those ones with
side-effects.
@ Future Work
» Generalize our approach for more statements, such as if and
while .

» Formalize application of program abstraction, i.e, when abstracting
program is meaningful.

Jing Pan (jinpan@mdstud.chalmers.se, philigSecure Information Flow Analysis using KeY 10th June 2005 21/21

	Introduction
	Formalizing Secure Information Flow Analysis in DL
	Program Abstraction Interpretation
	Summary

