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Section 1

Algorithm Description
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Section 2

Specification and Proof



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



General KeY Strategy

I Autopilot Strategy Macro
I If proof fails:

I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



General KeY Strategy

I Autopilot Strategy Macro

I If proof fails:
I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



General KeY Strategy

I Autopilot Strategy Macro
I If proof fails:

I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



General KeY Strategy

I Autopilot Strategy Macro
I If proof fails:

I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time

I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Violation of Single Pivot Partition Invariant

less k great



Violation of Single Pivot Partition Invariant

less k great



Violation of Single Pivot Partition Invariant

while (a[great] > pivot2) {

if (great -- == k) {

break outer;

}

}

while (a[great] == pivot2) {

if (great -- == k) {

break outer;

}

}
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Section 3
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Statistics – Single Pivot Partition

Method Nodes Branches Time [s] Rule Apps Interactive SMT

case right 14784 114 17,7 18919 0 0

split 17609 90 23,8 24189 0 0

sort(array, left, right) 18495 101 18,8 22839 0 0

sort(array) 654 7 0,4 1342 0 0

Total 51542 312 60.7 67289 0 0



Statistics – Swap Pivot Values Partition

Method Nodes Branches Time [s] Rule Apps Interactive SMT

move great left 1245 16 0,8 2346 0 0

move less right 2120 14 1,8 3224 0 0

swap values 123636 407 246,6 138039 0 0

Total 127001 437 249.2 143609 0 0



Statistics – Dual Pivot Partition

Method Nodes Branches Time [s] Rule Apps Interactive SMT

calc indices 24533 8 49,6 24835 0 0

insertionsort indices 50816 365 137,4 73056 0 34

prepare indices 5332 28 6,4 7153 0 0

move great left 1650 15 1,1 2605 0 0

move great in loop 1580 18 1,1 2787 0 0

move less right 1928 14 1,4 2967 0 0

loop body 52134 287 57,3 56263 18 0

split 28751 98 109,6 51666 0 36

sort(int[],left,right) 51342 305 459,6 76973 114 116

sort(int[]) 611 5 0,4 1236 0 0

Total 218677 1143 823,9 299541 132 186

Entire Proof 297220 1892 1133,8 510439 132 186
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