
Dual Pivot Quicksort: Verification and Proof
using KeY

Jonas Schiffl

Karlsruher Institut für Technologie

July 27th, 2016



Introduction

Why verify Dual Pivot Quicksort?

I Inspired by discovery of Timsort Bug

I Widely used standard library algorithm

I Complex enough

I Simple enough



Introduction

Why verify Dual Pivot Quicksort?

I Inspired by discovery of Timsort Bug

I Widely used standard library algorithm

I Complex enough

I Simple enough



Introduction

Why verify Dual Pivot Quicksort?

I Inspired by discovery of Timsort Bug

I Widely used standard library algorithm

I Complex enough

I Simple enough



Introduction

Why verify Dual Pivot Quicksort?

I Inspired by discovery of Timsort Bug

I Widely used standard library algorithm

I Complex enough

I Simple enough



Introduction

Why verify Dual Pivot Quicksort?

I Inspired by discovery of Timsort Bug

I Widely used standard library algorithm

I Complex enough

I Simple enough



Introduction

Why verify Dual Pivot Quicksort?

I Inspired by discovery of Timsort Bug

I Widely used standard library algorithm

I Complex enough

I Simple enough



Section 1

Algorithm Description



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Quicksort

array index

value of
element
at index



Dual Pivot Quicksort

array index

value of
element
at index



Dual Pivot Quicksort

array index

value of
element
at index



Dual Pivot Quicksort

array index

value of
element
at index



Dual Pivot Quicksort

Why use Dual Pivot Quicksort?

I Theory: Average number of swaps reduced by 20%
(Yaroslavskiy 2009)

I Practice: Multi-pivot Quicksorts are more cache-efficient
(Kushagra 2014)

I Benchmarking shows it is faster



Dual Pivot Quicksort

Why use Dual Pivot Quicksort?

I Theory: Average number of swaps reduced by 20%
(Yaroslavskiy 2009)

I Practice: Multi-pivot Quicksorts are more cache-efficient
(Kushagra 2014)

I Benchmarking shows it is faster



Dual Pivot Quicksort

Why use Dual Pivot Quicksort?

I Theory: Average number of swaps reduced by 20%
(Yaroslavskiy 2009)

I Practice: Multi-pivot Quicksorts are more cache-efficient
(Kushagra 2014)

I Benchmarking shows it is faster



Dual Pivot Quicksort

Why use Dual Pivot Quicksort?

I Theory: Average number of swaps reduced by 20%
(Yaroslavskiy 2009)

I Practice: Multi-pivot Quicksorts are more cache-efficient
(Kushagra 2014)

I Benchmarking shows it is faster



Java Implementation – Choosing a Sorting Algorithm

data type?

length?

byte

Counting Sort Insertion Sort

>29

<=29

length?

short, char

>3200 <47

Quicksort

else

length? highly structured?

int, long, float, double

<47

>285

else
no

Merge Sort

yes



Java Implementation – Choosing a Sorting Algorithm

data type?

length?

byte

Counting Sort Insertion Sort

>29

<=29

length?

short, char

>3200 <47

Quicksort

else

length? highly structured?

int, long, float, double

<47

>285

else
no

Merge Sort

yes



Java Implementation – Quicksort

Quicksort

Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions

All 5
elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?

Pivot Values Partition
yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Quicksort

Quicksort Select 5 evenly spaced array elements

Sort elements in their positions
All 5

elements
distinct?

Single Pivot Partition

no

Dual Pivot Partition

yes

Central
part

large?
Pivot Values Partition

yes

Recursion

no



Java Implementation – Single Pivot Partition

array index

value of
element
at index



Java Implementation – Single Pivot Partition

array index

value of
element
at index



Java Implementation – Dual Pivot Partition

array index

value of
element
at index



Java Implementation – Dual Pivot Partition

array index

value of
element
at index



Java Implementation – Swap Pivot Values Partition

array index

value of
element
at index



Java Implementation – Swap Pivot Values Partition

array index

value of
element
at index



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Java Implementation – Partitioning

less k great



Section 2

Specification and Proof



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



Work Flow

I Encapsulating source code in its own Java class

I Subdivision into three classes: One per partitioning style

I Writing specification
Running KeY
Adapting specification or source code



General KeY Strategy

I Autopilot Strategy Macro
I If proof fails:

I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



General KeY Strategy

I Autopilot Strategy Macro

I If proof fails:
I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



General KeY Strategy

I Autopilot Strategy Macro
I If proof fails:

I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



General KeY Strategy

I Autopilot Strategy Macro
I If proof fails:

I Confirm by generating counterexample
I Find violated specification condition
I Adapt specification (or source code)

I If no proof is found:
I Increase number of steps (?)
I Interactive Rule Apps (Quantifier Instantiation,

if-then-else-split)
I Heap Simplification + SMT Solver



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time

I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Feasibility – Problems with KeY

I Computation time
I Method extraction
I Exact Localization
I SMT Solver
I Block Contracts

I Error in specification or lack of resources?

I Localizability

I Stability

I Responsiveness



Violation of Single Pivot Partition Invariant

less k great



Violation of Single Pivot Partition Invariant

less k great



Violation of Single Pivot Partition Invariant

while (a[great] > pivot2) {

if (great -- == k) {

break outer;

}

}

while (a[great] == pivot2) {

if (great -- == k) {

break outer;

}

}

while (a[great] > pivot) {

--great;

}

...



Violation of Single Pivot Partition Invariant

less great k

... ... ...

< = > = >



Section 3

Conclusive Remarks



Conclusive Remarks

I Verifying a large, complex, real-world Java program with KeY
is feasable, but not without challenges

I Correct sorting, but invariant is violated



Conclusive Remarks

I Verifying a large, complex, real-world Java program with KeY
is feasable, but not without challenges

I Correct sorting, but invariant is violated



Conclusive Remarks

I Verifying a large, complex, real-world Java program with KeY
is feasable, but not without challenges

I Correct sorting, but invariant is violated



Conclusive Remarks

I Verifying a large, complex, real-world Java program with KeY
is feasable, but not without challenges

I Correct sorting, but invariant is violated



Further Work

I Prove permutation property

I Prove method as-is

I Prove entire sort(int[]) method

I Prove entire sort method



Further Work

I Prove permutation property

I Prove method as-is

I Prove entire sort(int[]) method

I Prove entire sort method



Further Work

I Prove permutation property

I Prove method as-is

I Prove entire sort(int[]) method

I Prove entire sort method



Further Work

I Prove permutation property

I Prove method as-is

I Prove entire sort(int[]) method

I Prove entire sort method



Further Work

I Prove permutation property

I Prove method as-is

I Prove entire sort(int[]) method

I Prove entire sort method



Further Work

I Prove permutation property

I Prove method as-is

I Prove entire sort(int[]) method

I Prove entire sort method



Statistics – Single Pivot Partition

Method Nodes Branches Time [s] Rule Apps Interactive SMT

case right 14784 114 17,7 18919 0 0

split 17609 90 23,8 24189 0 0

sort(array, left, right) 18495 101 18,8 22839 0 0

sort(array) 654 7 0,4 1342 0 0

Total 51542 312 60.7 67289 0 0



Statistics – Swap Pivot Values Partition

Method Nodes Branches Time [s] Rule Apps Interactive SMT

move great left 1245 16 0,8 2346 0 0

move less right 2120 14 1,8 3224 0 0

swap values 123636 407 246,6 138039 0 0

Total 127001 437 249.2 143609 0 0



Statistics – Dual Pivot Partition

Method Nodes Branches Time [s] Rule Apps Interactive SMT

calc indices 24533 8 49,6 24835 0 0

insertionsort indices 50816 365 137,4 73056 0 34

prepare indices 5332 28 6,4 7153 0 0

move great left 1650 15 1,1 2605 0 0

move great in loop 1580 18 1,1 2787 0 0

move less right 1928 14 1,4 2967 0 0

loop body 52134 287 57,3 56263 18 0

split 28751 98 109,6 51666 0 36

sort(int[],left,right) 51342 305 459,6 76973 114 116

sort(int[]) 611 5 0,4 1236 0 0

Total 218677 1143 823,9 299541 132 186

Entire Proof 297220 1892 1133,8 510439 132 186


	Algorithm Description
	Quicksort
	Dual Pivot Quicksort
	Java Implementation

	Specification and Proof
	Work Flow
	Working with KeY
	Violation of Single Pivot Partition Invariant

	Conclusive Remarks
	Statistics


