L_oop Analysis in KeY

Tobias Gedell

gedel | @s. chal ners. se

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 1/29

Introduction

There are currently two ways of handling loops in KeY:

> Symbolic execution - repeated unwinding of loops

Can be performed automatically by the system, but time
consuming and not always possible.

> Induction

Hard to use and cannot automatically be applied by the system.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 2/29

Symbolic execution - drawbacks

Example:

for(int i =0; i <a.length; i++) a[i] = i;

> Time consuming: If a. | engt h is large than we need to execute
the loop many times.

> Not possible: If a. | engt h is unknown we do not know when to
stop.

We want to do better!

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 3/29

Symbolic execution - how It works

for(int i =0; I <a.length; 1++) a[i] =1; ...

Symbolic execution - how It works

for(int I = O;
{a[0] := 0O}
for(int 1 = 1;

| < a.length;

| < a.length;

| ++) a[1i]

| ++) alli]

I, ... ~

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 5/29

Symbolic execution - how It works

for(int i =0; | <a.length; 1++) afi] =1; ... ~
{a[0] := 0}
for(int 1 =1; | < a.length; 1++) a[i] =1 ~

{a[0] := 0, a[l] := 1}
for(int I =2; I <a.length; 1++) afi]

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 6/29

Symbolic execution - how It works

for(int i =0; | <a.length; 1++) afi] =1; ... ~
{a[0] := 0}
for(int 1 =1; | < a.length; 1++) a[i] =1 ~

{a[0] := 0, a[l] := 1}
for(int I =2; I <a.length; 1++) afi]

I
¢

{a[0] :=0, a[l] =1, a[2] := 2, ...} ...

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 7/29

Symbolic execution - how It works

for(int i =0; I < a.length; 1++) a[i] = I ~
{a[0] := 0}

for(int 1 =1; | < a.length; 1++) a[i] =1 ~
{a[0] := 0, a[l] := 1}

for(int 1 =2; I < a.length; 1++) a[i] =1 ~
{a[0] :=0, a[l] :=1, a[2] =2, ..} ...

We iteratively construct the update describing all side-effects of the
loop.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 8/29

Symbolic execution - how It works

For this example the update could have been constructed in a much
more direct way!

We can see that for each iteration of the loop the update
{a[l] := 1} will be added. We also know that these updates do not

clash with each other.

We can, therefore, skip the execution of the loop and instead directly
construct the update:

{vI € [0,a.length —1].a[I]:=1,1 :=a.l ength}

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 9/29

L_oop Analysis - the idea

The idea behind the new treatment of loops is that we systematically:

1. Calculate the update of the loop body and abstract over the value
of the loop variable,

tafl] =1}

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 10/29

L_oop Analysis - the idea

The idea behind the new treatment of loops is that we systematically:

1. Calculate the update of the loop body and abstract over the value
of the loop variable,

tafl] =1}

2. calculate the range of the loop variable,

[0, a.length - 1]

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 11/29

L_oop Analysis - the idea

The idea behind the new treatment of loops is that we systematically:

1. Calculate the update of the loop body and abstract over the value
of the loop variable,

tafl] =1}

2. calculate the range of the loop variable,

[0, a.length - 1]
3. make sure that some properties are fulfilled by the loop,

For example no clashing.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 12/29

L_oop Analysis - the idea

The idea behind the new treatment of loops is that we systematically:

1. Calculate the update of the loop body and abstract over the value
of the loop variable,

tafl] =1}

2. calculate the range of the loop variable,

[0, a.length - 1]
3. make sure that some properties are fulfilled by the loop,

For example no clashing.

4. replace the loop by the abstracted update, quantified over by the
range of the loop variable.

{VI € [0,a.l ength —1].a[l]:=1,1 :=a.l ength}

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 13/29

L_oop Analysis - calculating the update

When calculating the abstract update for the loop body, there are
mainly two ways to go:

> We can create a program analysis that calculates all assignments
that are made.

Pros: could be tailor made for specific purposes like checking for
clashes.

Cons: much implementation work, can already be done by KeY.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 14/29

L_oop Analysis - calculating the update

When calculating the abstract update for the loop body, there are
mainly two ways to go:

> We can create a program analysis that calculates all assignments
that are made.

Pros: could be tailor made for specific purposes like checking for
clashes.

Cons: much implementation work, can already be done by KeY.
> We can also let KeY compute the update.

Pros: little implementation work, can check additional properties.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 15/29

LLoop Analysis - soundness properties

Observation: What we want to do is quite similar to loop vectorization
and parallelization. Instead of executing the loop in a sequential order
we execute it in parallel.

This can only be done when some properties are fulfilled:

> The loop variable is monotonically increasing/decreasing.
(The order of the updates must be clear.)

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 16/29

LLoop Analysis - soundness properties

Observation: What we want to do is quite similar to loop vectorization
and parallelization. Instead of executing the loop in a sequential order
we execute it in parallel.

This can only be done when some properties are fulfilled:

> The loop variable is monotonically increasing/decreasing.
(The order of the updates must be clear.)

> The loop condition is of the form, i op e, where the value of ¢ is not

modified by the loop body.
(We need to be able to calculate the range of the loop variable.)

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 17/29

LLoop Analysis - soundness properties

Observation: What we want to do is quite similar to loop vectorization
and parallelization. Instead of executing the loop in a sequential order
we execute it in parallel.

This can only be done when some properties are fulfilled:

> The loop variable is monotonically increasing/decreasing.
(The order of the updates must be clear.)

> The loop condition is of the form, i op e, where the value of ¢ is not
modified by the loop body.
(We need to be able to calculate the range of the loop variable.)

> The loop body does not terminate the loop by executing a br eak,
raising an exception or something similar.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 18/29

LLoop Analysis - soundness properties

Observation: What we want to do is quite similar to loop vectorization

and parallelization. Instead of executing the loop in a sequential order
we execute it in parallel.

This can only be done when some properties are fulfilled:

> The loop variable is monotonically increasing/decreasing.
(The order of the updates must be clear.)

> The loop condition is of the form, i op e, where the value of ¢ is not
modified by the loop body.
(We need to be able to calculate the range of the loop variable.)

> The loop body does not terminate the loop by executing a br eak,
raising an exception or something similar.

> There is no dependence between the loop iterations.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 19/29

LLoop Analysis - soundness properties

There are mainly two different kinds of dependencies:
for(int i =0; i <=10; i++) s: a[i] = a[i - 1];

s, - the statement s where the loop variable has the value v.

> Data dependence
A statement s, writes to a location that is read by a statement s;.

If £ < [,
(@fi] =a[i - 1])

we cannot execute the loop in parallel.

If & > 1,

(afi] = a[i + 1]),

we execute it in parallel and replace a on the RHS with an array
containing the original values of a.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 20/29

LLoop Analysis - soundness properties

There are mainly two different kinds of dependencies:

> Output dependence
A statement s, writes to a location that is overwritten by a
statement s;.

Both the cases where k£ > [and [< k,

@ =1(1))

can be handled by using a last-win clash semantics for the
constructed quantified updates.

We must only make sure that the updates comes in the right order.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 21/29

Loop Analysis - benefits of KeY

Traditionally, in the field of loop vectorization and parallelization, the
test for dependence gives just a boolean answer.

If some part of the program is unknown, it must approximate and say
that there is a dependence.

We, on the other hand, have a theorem prover backing us up!

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 22/29

Loop Analysis - benefits of KeY

Traditionally, in the field of loop vectorization and parallelization, the
test for dependence gives just a boolean answer.

If some part of the program is unknown, it must approximate and say
that there is a dependence.

We, on the other hand, have a theorem prover backing us up!

Consider for example:

for(it =0; I <=10; I =1 + 1) a[i] = b[I + c];

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 23/29

Loop Analysis - benefits of KeY

Traditionally, in the field of loop vectorization and parallelization, the
test for dependence gives just a boolean answer.

If some part of the program is unknown, it must approximate and say
that there is a dependence.

We, on the other hand, have a theorem prover backing us up!

Consider for example:

for(it =0; I <=10; I =1 + 1) a[i] = b[I + c];

Question: Is there any dependence between the loop iterations?

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 24/29

Loop Analysis - benefits of KeY

Answer: It depends on the value of a, b and c.
for(i =0; 1 <=10; i =i + 1) a[i] = b[i + c];

If « and b are the same array and c is between -10 and -1 then there is
a dependence.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 25/29

Loop Analysis - benefits of KeY

Answer: It depends on the value of a, b and c.
for(i =0; 1 <=10; i =i + 1) a[i] = b[i + c];

If « and b are the same array and c is between -10 and -1 then there is
a dependence.

Instead of giving up and approximating, we calculate a constraint
describing when no dependence is present.

If we can then show that the constraint is fulfilled, we can replace the
loop with a quantified update.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 26/29

L_oop Analysis - example

Example:

for(it =0; 1 <=10; 1 =1 + 1) a[i] = Db[I + c];
Constraint for non-dependence:

(a!=b\/ 0>10+c \/ -1 <¢c)

New rule for loops:

LooP
I' - <{..old-rule(loop) ...} >¢, A, c
I' - <{.. replace-by-update(ioop) ...} >¢p, A, !lc

I' E<{.. loop ..} >0, A

loop = for(..;..;..)..

where :
¢ = non-dependence-constraint(loop)

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 27/29

LLoop Analysis - In practice

How many loops can we handle with this method?

DeMoney & IButtonAPI & SafeApplet

Yes ‘ Need extensions \ No

3\ 3 \4

Extensions:

> Transform of f set += LEN KEY

Into offset = offsety + LEN KEY * i.(2)

> Create objects in updates. (1)

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 28/29

LLoop Analysis - observations

> The dependence analysis is tailor made for solving constraints of a
certain kind and the more information KeY gives to it, the better
result do we get.

The dependence analysis can be seen as a specialized prover for
a limited subset of integer problems.

> We need quantified updates with a deterministic semantics for
clashes—Iast-win clash semantics.

> Only works for a special class of loops.

4th KeY Workshop - Lokeberg June 9th, 2005 — p. 29/29

	Introduction
	Symbolic execution - drawbacks
	Symbolic execution - how it works
	Symbolic execution - how it works
	Symbolic execution - how it works
	Symbolic execution - how it works
	Symbolic execution - how it works
	Symbolic execution - how it works
	Loop Analysis - the idea
	Loop Analysis - the idea
	Loop Analysis - the idea
	Loop Analysis - the idea
	Loop Analysis - calculating the update
	Loop Analysis - calculating the update
	Loop Analysis - soundness properties
	Loop Analysis - soundness properties
	Loop Analysis - soundness properties
	Loop Analysis - soundness properties
	Loop Analysis - soundness properties
	Loop Analysis - soundness properties
	Loop Analysis - benefits of KeY
	Loop Analysis - benefits of KeY
	Loop Analysis - benefits of KeY
	Loop Analysis - benefits of KeY
	Loop Analysis - benefits of KeY
	Loop Analysis - example
	Loop Analysis - In practice
	Loop Analysis - observations

