
KeY Quicktour

Thomas Baar

University of Karlsruhe

Dept. of Computer Science

D-76128 Karlsruhe

baar@ira.uka.de

Reiner Hähnle

Chalmers University of Technology

Dept. of Computing Science

S-41296 Gothenburg

reiner@cs.chalmers.se

Steffen Schlager

University of Karlsruhe

Dept. of Computer Science

D-76128 Karlsruhe

schlager@ira.uka.de

Contents

1 Introduction/Prerequisites 2
1.1 Version Information . 2
1.2 Logical Foundations . 2
1.3 The KeY-Prover . 2

2 Tutorial Example 4

3 Creating a Formal Specification in the OCL 6
3.1 The Basic Idea . 6
3.2 Application in the Tutorial Example 7
3.3 Constraints in Natural Language and OCL 7

4 How to Parse a Specification 10
4.1 Application in the Tutorial Example 11

5 How to Analyse/Verify a Specification 11
5.1 Informal Description of Options for Analysis and Specification . . . 12
5.2 Application in the Tutorial Example 14

6 Current Limitations and Restrictions 17

A Formal Description of Generated Proof Obligations 17
A.1 Options Offered in the Class Menu 18
A.2 Options Offered in the Method Menu 18

1

1 Introduction/Prerequisites

This document constitutes a tutorial introduction to the KeY-Tool. The KeY-Tool is
an integrated environment for creating, analysing, and verifying UML/OCL models
and their implementation. The main focus of the KeY-Tool are class diagrams.
Other kinds of diagrams are currently not supported yet.

The KeY-Tool is an extension of the commercial CASE tool Together Con-

trolCenter1 (in the following referred to as TogetherCC). We assume that the
reader is familiar with the CASE tool TogetherCC. Here we concentrate on the
description of the KeY extensions. Furthermore, we assume that the KeY-Tool has
been already installed successfully.

The KeY-Tool is designed as an add-on to TogetherCC. Thus, all features
offered by TogetherCC are available and the user can work with a powerful UML
CASE tool in a familiar environment. The design philosophy of the KeY-Tool is to
encourage but not to force users to take advantage of formal methods. Users are
able to decide themselves at which point the KeY extensions are useful.

For a longer discussion on the architecture, design philosophy, and theoretical
underpinnings of the KeY-Tool please refer to [1].

The most recent version of the KeY-Tool can be downloaded from http://

i12www.ira.uka.de/~key/download.htm.

1.1 Version Information

This tutorial was tested for TogetherCC versions 6.0, and 6.0.1.

1.2 Logical Foundations

Deduction with the KeY-Prover is based on a sequent calculus for a Dynamic Logic
for JavaCard (JavaDL) [2]. A sequent has the form φ1, . . . , φm ` ψ1, . . . , ψn (m,n ≥
0), where the φi and ψj are JavaDL-formulas. The formulas on the left-hand side
of the sequent symbol ` are called antecedent and the formulas on the right-hand
side are called succedent. The semantics of a sequent is the same as that of the
formula (φ1 ∧ . . . ∧ φm) → (ψ1 ∨ . . . ∨ ψn) (m,n ≥ 0).

1.3 The KeY-Prover

In this section we give a short introduction into the handling of the KeY-Prover
which is shown in Figure 1. The KeY-Prover window consists of two panes where
the left pane is additionally tabbed. Each pane is described below.

Left pane, Proof Obligations: Some properties you may want to prove require
to prove several proof obligations. E.g., following the principle Design by
Contract you have to prove that the pre-condition presub of a method m in
a subclasses implies the pre-condition presuperof meth in its superclass and,
vice versa, that the post-condition postsub of meth in the subclass implies
the post-condition postsuper of meth in its superclass. Thus, the two proof
obligations presuper → presub and postsub → postsuper are generated and
displayed in tab Proof Obligations. Each proof obligation in this tab requires
its own separate proof. You can switch between different proofs by selecting
the according proof obligation.

1To obtain the tool TogetherCC please contact http://www.togethersoft.com. A free time-
restricted trial version is available.

2

Left pane, Proof: This pane contains the whole proof tree which represents the
current proof. The nodes of the tree correspond to sequents (goals) at different
proof stages. Click on a node to see the corresponding sequent and the rule
that was applied on it in the following proof step (except the node is a leaf).
Leaf nodes of an open proof branch are coloured red whereas leaves of closed
branches are coloured green.

Left pane, Goals: In this pane the open goals of a certain proof (corresponding
to one entry in tab Proof Obligations) are listed. To work on a certain goal
just click on it and the selected sequent will be shown in the right pane.

Right pane: In this pane you can either inspect inner, already processed nodes of
the proof tree or you can continue the proof by applying rules to the open
goals, whichever you choose in the left pane.

Rules can be applied either interactively or non-interactively using heuristics:

Interactive Proving: Moving the mouse over the current goal you will no-
tice that a subterm of the goal is highlighted (henceforth called the focus
term). Pressing the left mouse button displays a list of all proof rules
currently applicable to the focus term.

A proof rule is applied to the focus term simply by selecting one of
the applicable rules and pressing the left mouse button. The effect is
that a new goal is generated. By pushing the button Goal Back in the
main window of the KeY-Prover it is possible to undo one or several rule
applications. Note, that it is currently not possible to backtrack from an
already closed goal.

Automatic Proving: Automatic proof search is performed applying so-called
heuristics which can be seen as a collection of rules suited for a certain
task. For example, the heuristic simplify boolean contains rules to sim-
plify boolean expressions. To determine which heuristics should be used
select menu item Options → Heuristics. A dialog pops up where you can
define the active heuristics (right pane) from a set of available heuristics
(left pane). Furthermore, you can set the maximal number of automatic
rule applications. To save your settings for further proofs select menu
item Options → Save Settings.

To start (respectively continue) the proof push button Apply Heuris-
tics. In the status line of the KeY prover a button appears to stop the
heuristics. Furthermore, this it contains a progress bar showing the re-
lation of already applied rules and the maximal number of automatic
rule applications. If the checkbox Autoresume heuristics is selected, the
prover automatically resumes applying heuristics after an interactive rule
application.

There is one exception from this behaviour: If the heuristics simplify updates
is selected — which is recommended to always be the case — this heuris-
tics is always applied after each interactive proof step, even if Autoresume
heuristics is not selected. This comes from the particular importance of
simplifying updates to the KeY JavaDL-calculus.

In the following we describe the menu items available in the main menu of the
KeY-Prover.

File → Load: Loads a previously saved proof.

Attention: loading and saving of proofs is currently (Vers. 0.9) not functional
if so called “implicit” attributes are part of the proof. “Implicit” attributes
are part of the object initialisation scheme of the JavaDL-calculus rules.

3

File → Save: Saves current proof. Note, that if there are several proof obligations
(see tab Proof Obligations in the left pane) only the one currently worked on
is saved.

File → Exit: Quits the KeY-Prover (be warned: the current proof is lost!).

View → Pretty&Untrue: This menu item allows you to toggle between two dif-
ferent views. If unselected, terms and formulas are displayed in their internal
representation which is often very hard to read. For example, the formula
5 < 6 would be displayed as lt(5, 6). For a user-friendly representation of
terms and formulas select Pretty&Untrue. Be warned: Some rule applications
require the user to provide a term or formula. However, using the user-frienly
syntax to enter terms or formulas is currently not possible (therefore “un-
true”) and the syntax of the internal representation has to be used. Thus, if
you want to enter the formula 5 < 6 you have to type lt(5, 6).

View → Smaller: Decreases the font size in the right prover pane.

View → Larger: Increases the font size in the right prover pane.

Options → Heuristics: Allows to define the set of activated heuristics.

Options → LDT Models: Here you can choose between different semantics for
Java integer arithmetic. Three choices are offered:

• Java semantics: Corresponds exactly to the semantics defined in the
Java language specification. In particular this means, that arithmetical
operations may cause over-/underflow.

• Arithmetic semantics ignoring overflow (default): Treats the primitive
finite Java types as if they had the same semantics as mathematical
integers with infinite range.

• Arithmetic semantics prohibiting overflow: Same as above but the result
of arithmetical operations is not allowed to exceed the range of the Java
type as defined in the language specification.

What is behind all this goes beyond the scope of this quicktour. If you want
to know more, please refer to [5]. Otherwise, just ignore this menu item and
use the default settings.

Options → Update Simplifier: Here you can define policies how updates should
be simplified. As the description of LDT Models above, this goes beyond the
scope of this quicktour. Please use the default settings unless you know what
you are doing.

Options → Save Settings: Here you can save changes to the settings in menu
Options permanently, i.e. for future sessions with the KeY-Prover.

2 Tutorial Example

In this tutorial we use a simple paycard application to illustrate most of the capa-
bilities offered by the KeY-Tool. The tutorial example is a standard TogetherCC

project (contained in the file paycard.tpr) and can reside anywhere in the file system
of your computer. After opening the project you can inspect the class structure of
the project as depicted in Figure 2 (select tab <default>, if necessary).

4

Figure 1: The KeY-Prover.

The class diagram shown in Figure 2 consists of the six classes PayCard, PayCard-
Junior, CardException, ChargeUI, IssueCardUI, and Start. The class Start

provides the main method of the application. You can compile and execute the
application from within TogetherCC by selecting the menu item Run → Run
or by using the function key F9. Try this now. TogetherCC first compiles the
Java source code and immediately executes it afterwards. If TogetherCC re-
ports errors during compilation one reason could be a wrong setting in project
options. Please change in the project options (Tools → Options → Project Level)
the value of Builder → Built-in Javac → Compiler Options → Destination directory
to $PROJECT DIR$ and try again.

The tutorial example is a simple paycard scenario. Running the application, in
the first dialog the customer (user of the application) can obtain a paycard with
a certain limit: a standard paycard with a limit of 1000, a junior paycard with a
limit of 100, or a paycard with a user-defined limit. The initial balance of a newly
issued paycard is zero. In the second dialog the customer may charge his paycard
with a certain amount of money. But the charge operation is only successful if the
current balance of the paycard plus the amount to charge is less than the limit of
the paycard. Otherwise, i.e. if the current balance plus the amount to charge is
greater or equal the limit of the paycard, the charge operation does not change the
balance on the paycard and, depending on the class, either an attribute counting
unsuccessful operations is increased or an exception is thrown. The KeY-Tool aims
to formally prove that the implementation actually satisfies such requirements. For
example, one can formally verify the invariant that the balance on the paycard is
always less than the limit of the paycard.

The static structure of the example application is modelled in the class diagram.
The intended semantics of some classes is defined with the help of invariants denoted
in the Object Constraint Language (OCL). Likewise, the behaviour of most methods
is described in form of pre-/postconditions in the OCL.

5

Figure 2: Class Structure of Tutorial Example.

3 Creating a Formal Specification in the OCL

Rigorous specification is a necessary prerequisite to discuss the “correctness” of an
UML model and its implementation in a meaningful way. This is a considerable
obstacle, in particular, for novice users in formal methods. The KeY-Tool helps
users to come up with meaningful requirement specifications in the OCL.

3.1 The Basic Idea

Probably only few software developers feel happy when faced with the task of writ-
ing a specification in a formal language like the OCL. Many developers are not
familiar with that kind of activity and refuse to learn how to write formal con-
straints for the system they intend to build. The situation is not helped by the
fact that most CASE tools treat formal constraints just as a kind of comment. In
practice, requirement specifications are mostly written in natural language, with all
its ambiguities. Formal specification languages are rarely, if ever, used.

For the user of the KeY-Tool the situation is different. Since the KeY-Tool can
analyse and give feedback on OCL constraints (see Section 5) they are actually and
immediately useful. Hence, the user has a new motivation to formulate constraints
in a formal language. But the KeY-Tool can even support the user in generating
formal specifications in the first place. The technology behind this is a template-
like and easy-to-understand mechanism. Consider, for example, the behavioural
specification of class PayCard where we require that the value of the attribute
balance is always greater or equal zero and less than limit. Such requirements
where the value of an attribute attr of a class aClass has to be within a certain
interval occur quite often. The specification of such a requirement has the following
form in general:

6

context aClass:

inv: lowerBound < attr and attr < upperBound

There is a plethora of similar constraints needed in related situations (for exam-
ple AttributeHasKeyProp, and, as examples for pre-/postconditions, ProduceFor-
AssociationSet, GetFromAssociationSet, and IncreaseAttribute). The KeY-
Tool contains predefined blueprints (or templates) of such constraints which we call
KeY-Idioms.

In addition to KeY-Idioms there is a slightly more complicated way to generate
a specification, called KeY-Pattern. Again, the basic idea is to use blueprints. In
contrast to KeY-Idioms, where the blueprints are merely attached to a single class
or method, they are now attached to OO design patterns like Composite, Observer,
etc. The KeY-Patterns can be used in the same way as the other design patterns
that are available in TogetherCC.

Each KeY-Pattern contains a set of blueprints that are selected and instantiated
by the user during a customisation dialog. As it is the case for standard patterns,
TogetherCC generates a concrete design after finishing the dialog. In addition,
concrete OCL constraints are generated as instances of OCL blueprints.

3.2 Application in the Tutorial Example

We demonstrate how to generate a specification for the class PayCard, i.e. an
invariant, which states that the value of the attribute balance is always greater or
equal zero and less than limit. First, use the mouse to select class PayCard and
push the right mouse button to get a pop-up context menu. Please select the menu
item Choose Pattern.... A pattern selection dialog lists all predefined patterns and
you should now select KeY Idiom → InvariantConstraints, which lists a number of
available OCL blueprints for class invariant specification.

Please choose the blueprints AttributeLowerBound and AttributeUpperBound

by clicking on the according checkboxes and fill in the required slots: “Attribute
with lower bound” should be “balance”, “Lower bound for attribute” should
be “0”, “Attribute with lower bound” should be “balance”, “lowerOperator”
should be “≥”, “Upper bound for attribute” should be “limit”, and “upperOperator”
should be “<” (see Figure 3). After pushing the Finish button, the pattern dialog
disappears and the intended specification is generated and added to class PayCard.
As this example shows, it is possible to select several blueprints simultaniously.
Then, the resulting OCL specification is the conjunction of the instantiated OCL
blueprints.

In a similar way, the blueprints of the KeY-Patterns are instantiated. Note, that
in case of KeY-Patterns the relevant part of the current class diagram is generated
and selecting a class prior to invocation of the dialog is not necessary.

3.3 Constraints in Natural Language and OCL

A tool for simultaneous development of natural language and OCL constraints is
currently being integrated into the KeY-Tool. It consists of a syntax directed editor
for constraints. Here, we will see an example of how to use this syntax editor to
construct a simple invariant.

At the current level of integration, the syntax editor can be started from the
context menu of classes and methods in TogetherCC, for the editing of invariants
or pre- and postconditions, respectively. This tool is work in progress, we refer to
the (forthcoming) manual for important details and limitations which we omit here.

The basic idea of the editor is that the user constructs an abstract syntax tree
of a specification (for instance, an invariant of a class), by selecting alternatives

7

Figure 3: Generation of OCL Expressions.

from menus. The syntax tree is at all times presented in both OCL and English
to the user. Since the editing always takes place by selection from menus, the
editor can ensure that only syntactically correct specifications are constructed. Type
correctness is also ensured.

Creating a New Class Invariant for PayCard First, delete any previously
added invariant for the class PayCard. Then, just right-click on the class in the
“Designer” pane of TogetherCC, and select Edit Invariant [GF] from the KeY
Extension part of the context menu which appears.

The syntax editor will now start. This usually takes a little while: the editor
window might appear quickly, but it is not ready for input until some text has
appeared in the three main areas of the window (which are blank to start with).
Figure 4 shows what the editor window will look like when it is ready for input.

The Editor Window. The editor window consists of three main parts. The
upper left part shows an abstract syntax tree of the invariant we are editing. The
upper right part also shows the abstract syntax tree (as a string), but also the
rendering of the abstract syntax into OCL and English. Unfinished parts of the
invariant are shown as questions marks (also referred to as metavariables)—these
mark spots which have yet to be filled in by the user. The current metavariable
is highlighted. When we start editing a new invariant, the OCL and English parts
are empty (i.e. just a ”?” is shown). The abstract representation contains some
information which is not explicit in English or OCL (for instance that the class of
the invariant we are editing is PayCard), and is therefore not completely empty.

8

Figure 4: Editing a new invariant in the syntax editor

Editing proceeds by filling in questions marks by selecting refinements from the
menu in the lower half of the editor window. The “r” in each list item just stands for
”refine”, what comes after the “r” is the name of the refinement (from the abstract
syntax). To select a refinement, just double-click on it. The current metavariable
(question mark) will then be filled in.

Choosing Refinements. We use an even simpler example than above: we will
add the invariant that the balance of a PayCard is always greater than or equal to
zero. The first step would be to find a refinement corresponding to the greater-
than-or-equal relation for integers. To do this, we need to know that there are ways
to make the list of refinements more informative than just showing a name from
the abstract syntax. We can choose to show refinements in abstract syntax or in
English2, and we can choose to show type information or not.3 These choices are
made using the Menus menu in the upper right corner of the editor window. In
this menu, plain and printname refers to abstract syntax and English, respectively.
The alternatives typed and untyped refers to type information.

To find a suitable refinement, we can scroll through the list of refinements in
the lower half of the editor window, possibly switching between abstract syntax and
English, or typed and untyped presentation using the Menus menu. Eventually, we
should find the refinement intGTE, “? is greater than or equal to ?” in English.
The type for intGTE is Instance Integer → Instance Integer → Sent, i.e. it
takes two instances of a class of integers and creates a sentence. Figure 5 shows the
editor after the selection of this refinement (by double-clicking).

2This is a current limitation, the user should be able to see refinements in abstract syntax, in
OCL, or in English.

3A current bug is that showing refinements in English and also with type information results
in a somewhat garbled display, where the type information partly overlaps the English text.

9

Figure 5: The first refinement step

Navigation. If there is more than one metavariable (as in Figure 5), we can fill
them in in any order. The button bar in the middle of the editor window makes
it possible to navigate the syntax tree. For instance, the buttons marked “?<”
and “>?” are used to step back and forward among the metavariables. The list
of refinements always refers to possible ways of filling in the current metavariable
(which is highlighted).

The left metavariable can in the example be filled in by choosing the refinement
PayCard balance and then self. For the right one we can simply choose the
refinement Zero.

Finishing Up. Editing proceeds until there are no more metavariables to fill in.
In the case of the example, we end up with the OCL constraint self.balance >=

0, and the English rendering “the balance of the payCard is greater than or equal
to zero”. We can then just close the editor window, and the invariant will appear
in the “Inspector” pane in TogetherCC.

4 How to Parse a Specification

We are now ready to take a closer look on the ways how to make use of OCL
constraints in model analysis and verification of correctness properties.

A specification consists of OCL expressions for invariants of classes and for pre-
/postconditions of methods. Of course, OCL expressions can only live in the context
of an UML diagram (and therefore UML diagrams and even the implementation in
a target language are also part of the specification), but we concentrate on OCL
expressions for now.

The first step is to ensure syntactical correctness of OCL expressions. The KeY-
Tool features an integrated OCL parser which can be invoked via a menu item in the
context menu. The currently used parser was developed at Dresden University of

10

Technology (see http://dresden-ocl.sourceforge.net/index.html for details).
It can also be used as a stand-alone system.

4.1 Application in the Tutorial Example

To parse OCL constraints, the KeY-Tool offers menu items ParseInvariant and
ParseMethodSpec, respectively, as part of the context menus of classes and methods.

As an example let us invoke ParseInvariant in class PayCard and the parser will
tell you that the invariant (balance ≥ 0) and (balance < limit) is syntacti-
cally well-formed. Try to modify the invariant into a syntactically incorrect OCL
expression (say, by misspelling balance as ballance). The parser points to the
position, where the error occurred.

Please try also to invoke ParseMethodSpec, e.g., in class PayCard on method charge.

5 How to Analyse/Verify a Specification

Analysis. OCL constraints make the semantics of a class diagram more precise.
A minimal requirement that must be fulfilled by these constraints is that it is
actually possible for a model/implementation to satisfy them. In other words,
OCL constraints must be consistent or free of contradictions. The KeY-Tool
includes functionality to analyse the constraints.

Verification. OCL constraints, in particular, pre- and postconditions, can be seen
as abstractions of an implementation. In this context, an implementation is
called correct iff it actually implies properties expressed in its specification.
The KeY-Tool includes functionality to verify4 the correctness of an imple-
mentation with respect to its specification.

In each case, the KeY-Tool generates suitable proof obligations in terms of logical
formulas. When analysing a specification no code needs to be considered, hence the
resulting proof obligations are formulas of sorted first-order predicate logic. On
the other hand, if the correctness of an implementation is to be verified, proof
obligations will contain code of the target programming language (Java Card, in
our case). For these we use a Dynamic Logic5 that is able to express properties of
Java Card programs.

In both cases, proof obligations are passed to the integrated interactive theorem
prover KeY-Prover (see Section 1.3), which is able to handle predicate logic as well
as Dynamic Logic. The KeY-Prover was developed as a part of the KeY-Project and
is implemented in Java. It features interactive application of proof rules as well as
automatic application controlled by heuristic information. In the near future a state-
of-the-art automatic proof engine based on saturated tableaux will be integrated.
This will increase deductive power of the KeY-Prover dramatically, at least for
predicate logic problems.

In the following the ideas behind the various options for analysis and verification
are described informally. A formal description of the generated proof obligations is
contained in Appendix A. Examples of application within the context of the case
study in this tutorial are described in Section 5.2.

4Sometimes analysis of a specification is called horizontal verification and what we call verifi-

cation is called vertical verification.
5Dynamic Logic can be seen as an extension of Hoare logic.

11

Figure 6: Options offered by the Class Menu.

5.1 Informal Description of Options for Analysis and Speci-
fication

All options can be invoked via context-sensitive menu items. Therefore, every option
“knows” the model element it is applied to: in case of a class menu item this is the
current class and in case of a method menu item this is the current method in the
current class.

The proof obligations generated by invoking one of the options are derived from
the invariant, the pre- and postconditions, and possibly the target code attached to
the current model element.

Both, invariants and pre-/postconditions can be empty. In this case, the KeY-
Tool assumes them to be true by default. Note that this differs from some other
approaches. In Eiffel, for example, invariants are “inherited” from the parent class
(see [4]).

In the following, options whose proof obligations are formulated in predicate
logic are marked with (PL) and proof obligations formulated in Dynamic Logic are
marked with (DL).

5.1.1 Options Offered in the Class Menu

Figure 6 shows the options offered in the class context menu (to open the menu
select a class and push the right mouse button).

StructuralSubtyping (PL) Structural subtyping is one aspect of Liskov’s sub-
stitution principle, namely that objects of classes inherited from class C may
be used in place of objects from class C itself. The principle implies that an
object of current class CC must satisfy all constraints declared in all parent
classes of CC.

12

Figure 7: Options offered by the Method Menu.

In particular, the generated proof obligation ensures that the invariant (that
is the structural aspect) of the current class CC is logically stronger than the
one in the immediate parent class.

InheritedMethodsPreserveInvariant (PL) Suppose you are writing code for a
new class CC which inherits from a library class PC. The implementation of
PC is not available or it could be changed without notice. The only reliable
information about PC are its interface and the specification of PC, that is,
the invariants, pre- and postconditions of its methods.

Assume m(. . .) is a method implemented in class PC, but not reimplemented
in subclass CC. What can we say about m and the invariant of CC? The
generated proof obligation ensures that the invariant of CC can be inferred
provided that the implementation of m meets its specification (invariant and
pre-/postconditions) in PC.

5.1.2 Options Offered in the Method Menu

Figure 7 shows the options offered in the method context menu (to open the menu
select a method and push the right mouse button).

BehaviouralSubtyping (PL) Behavioural subtyping is another consequence of
Liskov’s substitution principle. If we consider a method specification as a
contract between the supplier (the class that implements the methods) and
the client (the class that calls the method) we conclude that for contracts to
be satisfied, the following must hold:

1. A method in a subclass of the supplier class must be applicable at least in
all those situations, where the specification of the method in the supplier

13

class promises it to be applicable.

2. Application of a method in a subclass of the supplier class results in
a state that has all the properties promised by the specification of the
method in the supplier class.

In other words: preconditions of any method must become logically weaker
and postconditions must become logically stronger in subclasses.

PreservesInvariant (DL) Correctness of an implementation of a method means
that the implementation obeys the invariant of the class and ensures the post-
condition of the method. Here it is checked that the execution of a method
obeys the invariant under the assumption that the invariant and a possibly
existing precondition hold.

Note that an invariant can be violated even if the obligation generated here is
verified for every method (and constructor) of its class Cm, because methods of
other classes might manipulate the state of objects of Cm. This phenomenon
is sometimes called Indirect Invariant Effect [4, p.405] or Representation Ex-
posure.

EnsuresPostCondition (DL) A proof obligation is computed ensuring that the
postcondition of the current method holds after being executed under the
assumption that possibly existing precondition and invariant hold.

Correctness (DL) Identical to the combination of PreservesInvariant plus En-
suresPostCondition.

5.2 Application in the Tutorial Example

Now we apply the described options in the tutorial example. First, we demonstrate
the generation of proof obligations, then we show how these can be handled by the
KeY-Prover. Be warned that the names of the proof rules and the structure of the
proof obligations may be subject to changes in the future.

5.2.1 Options Offered in the Class Menu

StructuralSubtyping Invoked from the context-sensitive menu of class PayCard-
Junior, this option starts the KeY-Prover with the proof obligation
⇒((self.balance ≥ 0) & (self.balance < self.juniorLimit)) &

(self.juniorLimit < self.limit) ->

(self.balance ≥ 0) & (self.balance < self.limit).6

This proof obligation is a pure first-order predicate logic formula. The premiss
of the implication is the translated invariant of the subclass PayCardJunior

and the conclusion is the translated invariant of the superclass PayCard.7

There are two ways to prove this with the KeY-Prover:

Automatic: Focus on the window titled PO for StructuralSubtyping and via
menu item Options → Heuristics... select heuristics simplify and sim-
plify int and set Maximum heuristics applications to 20. Then, push
button Apply Heuristics to start the proof.

The KeY-Prover simplifies the open goal automatically and informs you
that the goal could be proven. You can quit the KeY-Prover with menu
item File → Exit.

6If the formula displayed in the KeY-Prover looks different enable the checkbox Pretty&Untrue

from the menu group View.
7The translation is necessary because the syntax of the OCL and predicate logic differs.

14

Interactive: To prove the proof obligation in the example interactively, per-
form the following proof steps:

1. Apply rule imp right to the whole formula in the succedent in order
to remove the implication. As a result, the premiss of the implication
becomes the antecedent of the sequent and the conclusion becomes
the succedent.

2. Apply rule and left to the whole formula in the antecedent. This
rule removes the conjunction operator.

3. Apply rule and left to formula
((0 < self.balance) | self.balance=0) &

(self.balance < self.juniorLimit) to remove the conjunction.

4. Apply rule and right to the whole formula in the succedent. Formulas
in the succedent of a sequent are implicitly disjuntively connected.
Thus, the conjunction operator cannot just be replaced by a comma
as it is the case in the antecedent, where the formulas are implicitly
conjunctively connected. Rather, applying rule and right results in
two sequents, each of them containing one of the conjunctives in the
succedent.

5. Now the formula (self.balance ≥ 0) is contained as well in the
antecendent as in the succedent. This goal can be closed by applying
rule close goal to (self.balance ≥ 0) in the succedent because a
sequent of the form φ,Γ ` φ,∆ is an axiom.

6. In the succedent we have the formula (self.balance < self.limit)

and in the antecedent we have (self.balance < self.juniorLimit)

and (self.juniorLimit < self.limit). To close this goal we
have to make use of the transitivity of the relation “<”. This is
done by applying rule less trans to formula (self.juniorLimit <

self.limit). A dialog pops up where you can enter the formula
the transitivity should be applied on. In this case the only possi-
ble formula (self.balance < self.juniorLimit) is already sug-
gested by the KeY-Prover. Thus, just push button Apply.

7. Now, on both sides of the sequent we have the formula (self.balance
< self.limit) and, as above, we can close this goal by applying rule
close goal on (self.balance < self.limit) in the succedent.

5.2.2 Options Offered in the Method Menu

BehaviouralSubtyping Select method charge of class PayCardJunior in the
class diagram and invoke Behavioural Subtyping from the context menu. You
will obtain two proof obligations (displayed in tab Proof obligation in the
left pane of the KeY-Prover). The first proof obligation ⇒(amount>0) →
(amount>0) is trivial and proven automatically if heuristic simplify is selected.

To prove the second proof obligation select all heuristics and set the number
of automatic proof steps to 100. When the heuristics stop three goals are left
and you have two possibilities to continue:

1. Interactive proof steps + heuristics.

Select checkbox Autoresume heuristics in the main window of the prover.

To close the first goal apply rule insert eq to the formula (self.balance)
< PayCardJunior::balance(self) in the antecedent of the sequent.
This will replace self.balancewith PayCardJunior::balance(self)+amount.8

8This proof step is sound because of the equation self.balance =

PayCardJunior::balance(self)+amount in the antecedent.

15

Then apply rule add less back to PayCardJunior::balance(self)+amount
< CardJunior::balance(self) in order to subtract PayCardJunior::balance(self)
on both sides of the inequation. Now the goal will be closed automati-
cally by applying heuristics.

To close the remaining two goals apply rule insert eq9 to the the left-hand
side of the inequation (self.balance) < PayCardJunior::balance(self).

2. Automatic proof using a decision procedure.

We have integrated a so-called decision procedure for integer arithmetics
in the KeY-Prover. This decision procedure which is called Simplify10

can decide whether a formula in a certain fragment of integer arithmetic
(Presburger arithmetic) is valid. You can invoke Simplify by highlighting
the whole sequent and clicking the left mouse button. Then there is a
menu entry Decision Procedure “Simplify”. You can close all remaining
goals by running Simplify.

Instead of doing this for all goals, you can just use the button Run
SIMPLIFY in the main toolbar above the sequent window to apply the
decision procedure to all open goals.

Note: You do not have to check whether the formulas in the sequent are
really Presburger arithmetic or not. You can always try to run Simplify.11

If the validity of the formula cannot be established by Simplify you get
an according message from the KeY-Prover.

PreservesInvariant Try to apply this to method charge in class PayCardJunior.
Proving this property requires to verify the actual implementation of charge
against the invariant. Therefore, the generated proof obligation contains Java

code in the generated Dynamic Logic formula.

First, select all available heuristics and set the maximal number of automatic
proof steps to 1000. Then select checkbox Autoresume heuristics and start
the proof by pushing the button Apply Heuristics. When the heuristics stop
one goal is still open. This goal cannot be proven automatically by applying
heuristics, thus we have to continue either interactively or by running the
decision procedure Simplify.

If you want to prove the goal interactively apply rule add less to the formula
(self.balance) < 0 in the succedent of the sequent and enter amount in the
input slot of the rule instantiation dialog. After that apply switch params to
the first part of the new created formula. Then the goal can be proven by
running the heuristics.

EnsuresPostCondition We demonstrate this options by means of method check-

Sum in class JuniorPayCard. The postcondition of this method states that
the return value is 1 if the parameter sum is less than juniorLimit and 0 if
sum is greater or equal juniorLimit.

To proof that the implementation of method checkSum ensures the postcondi-
tion select all heuristics and set the maximal number of heuristic proof steps
to 1000. The goal can be proven automatically applying heuristics.

9One of the two goals contains two inequations with the same left-hand side self.balance in
the antecedent and, thus, two rules insert eq are offered. In this case choose the second one. We
are currently working on improving the naming of the rules.

10Simplify is part of ESC/Java [3] developed at Compaq.
11If the sequent containes formulas that are not in the fragment of Presburger arithmetic, these

formulas are left out. This corresponds to the sound proof step weakening.

16

Correctness Again we use method checkSum in class JuniorPayCard to demon-
strate this option. Select all heuristics and set the maximal number of heuristic
proof steps to 250. The goal can be proven automatically applying heuristics.

6 Current Limitations and Restrictions

The current version of the KeY-Tool is far from being a polished and universally
applicable tool. Here is a list of open issues we are now working on and intend to
resolve in near future:

1. Supported platforms

• Linux is tested, Solaris should work as well

• Windows NT, 2000 and XP should work when using the KeY byte code
version.

2. Restrictions on UML models:

• implementation classes must not define packages

• when invoking an analysis/verification option all involved classes (usually
the current class and the parent class) must be members of the current
diagram

3. Restrictions of the KeY-Prover:

• Manual not available yet (will be available soon!)

• powerful automated deduction system only partly integrated

A Formal Description of Generated Proof Obliga-
tions

In general, proof obligations are based on assertions (invariants, preconditions, post-
conditions) attached to a current element (class or method) or its (direct) parent
classes12.

To facilitate the description of the proof obligations we take advantage of the
following abbreviations, where we assume to have a total order on parent classes
with index set P = {1, . . . , n}.

Class INV invariant of the current class
INV Pi invariant of the i-th parent class

Method m.PRE precondition of method m in current class
m.POST postcondition of method m in current class
m.PREPi precondition of method m in i-th parent class
m.POSTPi postcondition of method m in i-th parent class

With the exception of postconditions (m.POST,m.POST Pi) the abbreviations
stand for pure predicate logic (PL) formulas (at this stage we assume that the OCL
expressions from the UML model were translated already into PL formulas).

12We allow a class to have more than one parent class here. However, since interfaces are
currently not supported, due to the Java class hierarchy restrictions, the actual proof obligations
involve only one parent class.

17

Postconditions are PL formulas up to @pre-expressions and result-variables that
need special attention when translating OCL into PL. It is assumed that this trans-
formation has been done.

All PL formulas contain the variable self referring to the current object. In
some cases the occurrence of self is important and needs to be emphasised. For
this we write INV (self), m.PRE(self), etc., instead of INV , m.PRE, etc.

The structure of the rest of this section parallels that of Section 5.1.

A.1 Options Offered in the Class Menu

StructuralSubtyping (PL) The invariant of the current class CC is stronger
than the ones of the parent classes:

(PO)
∧

i∈P (∀ self : CC INV (self) → INV Pi(self))

InheritedMethodsPreserveInvariant(PL) In principle, we have to prove that
the inherited implementation of method m preserves the invariant (where we
can make use of the precondition):

(Goal) ∀self : CC m.PRE(self) ∧ INV (self) → 〈m〉INV (self)

If we assume that the implementation of m meets its specification as given in
parent class Pi we know in addition:

(Assumption) ∀pself : Pi m.PRE
Pi(pself) ∧ INV Pi(pself) →

〈m〉m.POSTPi(pself) ∧ INV Pi(pself)

As all constraints that are valid for instances pself of Pi should also be valid
for the instance self of the current class CC, we have:

(Lemma) ∀self : CC m.PREPi(self) ∧ INV Pi(self) →
〈m〉m.POSTPi(self) ∧ INV Pi(self)

Now, we apply a valid proof rule

Al → 〈m〉Bl Ag → Al Ag ∧ rename(Bl) → rename(Bg)
Ag → 〈m〉Bg

saying that allows to prove a formula of the form Ag → 〈m〉Bg with the help
of a lemma of form Al → 〈m〉Bl and (1) Ag → Al and (2) Ag∧rename(Bl) →
rename(Bg), where rename(X) renames all OCL properties that can be af-
fected by executing m (in terms of Dynamic Logic: all non-rigid symbols) in
X and resolves @pre-constructs.

Let MinP = {i ∈ P | m is implemented in Pi}. We can obtain as (1) and (2)
in the context of (Goal) and (Lemma):

(PO1)
∧

i∈MinP ∀self : CC m.PRE(self) ∧ INV (self) →
m.PREPi(self) ∧ INV Pi(self)

(PO2)
∧

i∈MinP ∀self : CC m.PRE(self) ∧ INV (self)∧
rename(m.POSTPi(self) ∧ INV Pi(self)) →

rename(INV (self))

The first proof obligation can be simplified using m.PRE = m.PREPi :

(PO1′)
∧

i∈MinP ∀self : CC m.PRE(self) ∧ INV (self) → INV Pi(self)

A.2 Options Offered in the Method Menu

BehaviourSubtyping(PL) The precondition of the current method is weaker
than the precondition of the parent method. The postcondition of the current
method is stronger than the postcondition of the parent method.

Let MinP be defined as above.

18

(PO1)
∧

i∈MinP ∀self : CC m.PREPi(self) → m.PRE(self)

(PO2)
∧

i∈MinP ∀self : CC m.PREPi(self) ∧m.PRE(self) →
rename(m.POST (self) → m.POST Pi(self))

PreservesInvariant(DL) The implementation of the current method obeys (pre-
serves) the invariant of the current class.

(PO) ∀self : CC m.PRE(self) ∧ INV (self) → 〈m〉INV (self)

If method m is a constructor, then the subformula m.PRE(self)∧INV (self)
can be assumed to be equivalent to true. Therefore, in this case the proof
obligation is simplified to:

(POC) ∀self : CC 〈m〉INV (self)

EnsuresPostCondition(DL) The implementation of the current method satisfies
its postcondition.

(PO) ∀self : CC m.PRE(self) ∧ INV (self) → 〈m〉m.POST (self)

As above, if m is a constructor, then m.PRE(self) ∧ INV (self) can be
assumed to be equivalent to true. The proof obligation is simplified to:

(POC) ∀self : CC 〈m〉m.POST (self)

Correctness(DL) PreservesInvariant plus EnsuresPostCondition:

(PO) ∀self : CC m.PRE(self) ∧ INV (self) →
〈m〉INV (self) ∧m.POST (self)

Again, if m is a constructor, then m.PRE(self)∧INV (self) can be assumed
to be equivalent to true. The proof obligation is simplified to:

(POC) ∀self : CC 〈m〉INV (self) ∧m.POST (self)

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The Key Tool. Techni-
cal report in computing science no. 2003-5, Department of Computing Science,
Chalmers University and Göteborg University, Göteborg, Sweden, Feb. 2003.
Available at: http://i12www.ira.uka.de/~beckert/pub/key03.pdf.

[2] B. Beckert. A dynamic logic for the formal verification of Java Card programs.
In I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and
Security. Revised Papers, Java Card 2000, International Workshop, Cannes,
France, LNCS 2041, pages 6–24. Springer, 2001.

[3] ESC/Java (Extended Static Checking for Java). http://research.compaq.

com/SRC/esc/.

[4] B. Meyer. Object-Oriented Software Construction (Second Edition). Prentice-
Hall, 1997.

[5] S. Schlager. Handling of Integer Arithmetic in the Verification of Java Programs.
Master’s thesis, Universität Karlsruhe, 2002. Available at: http://i12www.

ira.uka.de/~key/doc/2002/DA-Schlager.ps.gz.

19

