
Tutorial:

Integrating Object-oriented Design and

Deductive Verification of Software

Wolfgang Ahrendt, Reiner Hähnle
Vladimir Klebanov, Philipp Rümmer

www.key-project.org

20th International Conference on Automated Deduction
July 23, 2005

OO Design and Deductive Verification of Software CADE-20 1 / 113

Part I

Intro, Overview, Architecture

OO Design and Deductive Verification of Software CADE-20 2 / 113

What is this Tutorial all About?

It is about an approach and tool for the

I Design

I Formal specification

I Deductive verification

of

I OO software

The approach, tool, and project is named

in the following: ’KeY’

OO Design and Deductive Verification of Software CADE-20 3 / 113

KeY Project Partners

University of
Karlsruhe (TH)

Peter H. Schmitt

Richard Bubel
Andreas Roth

Steffen Schlager
Isabel Tonin

Chalmers University
of Technology

Reiner Hähnle

Wolfgang Ahrendt
Tobias Gedell

Wojciech Mostowski
Philipp Rümmer

Angela Wallenburg

University of
Koblenz-Landau

Bernhard Beckert

Gerd Beuster
Vladimir Klebanov

OO Design and Deductive Verification of Software CADE-20 4 / 113

Some Buzzwords Early On

I Java as target language

I Dynamic logic as program logic

I Verification = symbolic execution + induction

I Sequent style calculus + meta variables + incremental closure

I Interactive prover with advanced UI

I Deep integration with two standard SWE tools:
I TogetherCC, a commercial CASE tool
I Eclipse, an open extensible IDE

I Specification languages
I JML
I OCL/UML

I Smart cards as main target application

OO Design and Deductive Verification of Software CADE-20 5 / 113

A first ’Kick & Rush’ Demo

Intention:

I First impression, look & feel

I Motivate tutorial issues

I But for now:
I No details
I Few explanations

More Demos to come

OO Design and Deductive Verification of Software CADE-20 6 / 113

First Demo

OO Design and Deductive Verification of Software CADE-20 7 / 113

What Have You (and What Have You NOT) Seen?

I In TogetherCC: UML class diagrams (annotated with OCL)

I In Eclipse: Java code annotated with JML

I Generation of proof obligations (POs) from Eclipse (or TogetherCC)
+ starting the KeY prover from Eclipse (or TogetherCC)

I Within the KeY prover:
I POs rendered in JavaDL sequents
I Construction + presentation of sequent proofs
I (how to use the prover, really)
I (design of the calculus)
I (“taclet” language for defining rules)
I (automation, implementation, . . .)

I (how far does this carry us)

OO Design and Deductive Verification of Software CADE-20 8 / 113

Outline of our Tutorial

I Part I (you are here)
I Intro
I First Demo
I Dynamic Logic intro
I Specification: JML (+ UML/OCL)
I Proof obligations
I Integration in standard tools
I Second Demo

I Part II
I JavaCardDL: the logic
I Sequent Calculus
I Symbolic execution
I Design of the JavaCardDL calculus (demos)

OO Design and Deductive Verification of Software CADE-20 9 / 113

Outline of our Tutorial (contd.)

I Part III
I The “taclet” language and framework
I Induction (demo)
I Arithmetic (demo)
I Automation

I Part IV
I Interaction with the Prover (demo)
I Case studies

OO Design and Deductive Verification of Software CADE-20 10 / 113

The Logic: Dynamic Logic for Java

Dynamic Logic (DL)

I Each FOL formula is a DL formula

I If φ a DL formula and α a program:

I 〈α〉φ is a DL formula
I [α]φ is a DL-Formula

I DL formulas are closed under FOL operators and connectives

Modalities can be arbitrarily nested

Dynamic Logic for Java (JavaDL)

I In 〈α〉φ, and [α]φ, α is a list of Java statements

I No encoding of programs

OO Design and Deductive Verification of Software CADE-20 11 / 113

Meaning of Dynamic Logic Formulas

For deterministic programs (like single threaded Java):

I 〈α〉φ : p terminates and φ holds in the final state
(total correctness)

I [α]φ : If p terminates, then φ holds in the final state
(partial correctness)

OO Design and Deductive Verification of Software CADE-20 12 / 113

Relation to Hoare Logic

“Partial correctness” assertion

Hoare triple:

{ψ} α {φ}

“If α is started in a state satisfying ψ and terminates,
then its final state satisfies φ.”

in DL

????ψ −> [α]φ

OO Design and Deductive Verification of Software CADE-20 13 / 113

JavaDL Examples

Valid formulas

I 〈x = 1; y = 3;〉 x < y

I x < y −> 〈x++;〉 x <= y

I [while(true){x = x;}] false

Non-valid formulas

I x < y −> 〈x = y; y = x;〉 y < x

I x < y −> 〈x++;〉 x < y

I [while(x != 0){x = x;}] false

OO Design and Deductive Verification of Software CADE-20 14 / 113

Alternative Formalisms for Correctness Assertions

Correctness Assertions
Can be stated:

1. In the oo specification languages
I JML (Java Modeling Language)
I OCL (Object Constraint Language, part of UML)

2. In JavaDL directly

Proof Obligations (POs)

Always in JavaDL,
Either generated from specifications (1.) and implementations,
or “hand-crafted” (2.)

OO Design and Deductive Verification of Software CADE-20 15 / 113

Architectural Set Ups (1. – 4.)

With “hand-crafted” POs

1. KeY stand alone prover, loading POs from .key files

With automatic PO generation

I From JML and Java

2. JML browser + KeY stand alone prover
3. Eclipse with KeY plug-in

I From OCL/UML and Java

4. TogetherCC with KeY-extensions

OO Design and Deductive Verification of Software CADE-20 16 / 113

Java Modeling Language (JML)

A notation for formally specifying

I Behaviour of Java methods

I Admissible states of Java objects

Important features

I Pre/post conditions and invariants

I Notational consistency with Java expressions
(Java expressions allowed in JML expressions,
including side effect free method calls)

I “Specification only” fields and methods

I Restricting scope of side effects

JML specs appear as comments in .java files

OO Design and Deductive Verification of Software CADE-20 17 / 113

JML example 1

/*@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin == insertedCard.correctPIN;

@ ensures customerAuthenticated;

@ assignable customerAuthenticated;

@*/

public void enterPIN (int pin) {

if

OO Design and Deductive Verification of Software CADE-20 18 / 113

JML example 2

/*@ <example 1>

@ also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter == \old\old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

@*/

public void enterPIN (int pin) {

if

OO Design and Deductive Verification of Software CADE-20 19 / 113

JML example 3

/*@ <example 1> also <example 2>

@ also

@

@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter >= 2;

@ ensures insertedCard == null;

@ ensures \old(insertedCard).invalid;

@ assignable insertedCard, wrongPINCounter,

@ insertedCard.invalid;

@*/

public void enterPIN (int pin) {

if

OO Design and Deductive Verification of Software CADE-20 20 / 113

JML example 4

public classclass ATM {

/*@

@ public invariantpublic invariant

@ accountProxies != null;accountProxies != null;

@ public invariantpublic invariant

@ accountProxies.length == maxAccountNumber;accountProxies.length == maxAccountNumber;

@ public invariant

@ (\forall int i;

@ i >= 0 && i < maxAccountNumber;

@ (accountProxies[i] == null

@ ||

@ accountProxies[i].accountNumber == i));

@*/

private /*@ spec_public @*/

OfflineAccountProxy[] accountProxiesaccountProxies =

new OfflineAccountProxy [maxAccountNumber];

OO Design and Deductive Verification of Software CADE-20 21 / 113

Eclipse

I The modern IDE for Java

I Provides powerful coding support:
I Code templates, code completion
I Import management

I Freely available via eclipse.org

I Very popular and widely distributed

I Well documented plug-in interface

OO Design and Deductive Verification of Software CADE-20 22 / 113

KeY-Eclipse integration

Eclipse context menues, like:

Trigger generation of selected POs + launch prover window
OO Design and Deductive Verification of Software CADE-20 23 / 113

Generating Proof Obligations

I JML expessions e automatically translated into formula T (e)
(in simple cases FOL, in general JavaDL)

I Java is not translated, calculus works on unaltered source code

I Both combined in JavaDL

OO Design and Deductive Verification of Software CADE-20 24 / 113

Proof Obligations: Postconditions

Given:

I Implementation α of method m of class C

I JML ’requires’ P for m

I JML ’ensures’ Q for m

I JML declares ’invariant’ I for C

Prove:

I T (I)&T (P) −> 〈α〉 T (Q)

T (expr) = translation of the JML expression expr into DL

OO Design and Deductive Verification of Software CADE-20 25 / 113

Proof Obligations: Invariants

Given:

I Implementation α of method m of class C

I JML invariant I of C

I JML precondition P of m

Prove:

I T (P)&T (I) −> 〈α〉 T (I)

OO Design and Deductive Verification of Software CADE-20 26 / 113

Alternative to JML:

OCL/UML

Unified Modeling Language — UML

Visual language for OO modelling
Standard of Object Management Group (OMG)
Best-known feature: class diagrams

Object Constraint Language — OCL

Textual specification language
UML sub-standard
Pre/post condition and invariants, attached to class diagrams

OO Design and Deductive Verification of Software CADE-20 27 / 113

KeY-TogetherCC Integration

TogetherCC

Commercial case tool (Borland), supporting UML

KeY extends TogetherCC by:

I Authoring support for OCL constraints
OCL – natural language translation and co-editing

I PO generation from TogetherCC context menues

I Launching the KeY prover from TogetherCC context menues

OO Design and Deductive Verification of Software CADE-20 28 / 113

JavaCard

Main target application: smart cards

I Relative small applications

I Often security/financially/legally critical

KeY system supports a smart card version of Java: JavaCard

OO Design and Deductive Verification of Software CADE-20 29 / 113

JavaCard vs. Java

Features omitted in JavaCard

I Multi threading

I Floating point types

I Garbage collection (implementation optional)

I Dynamic class loading

Additional feature of JavaCard

I Transaction mechanism

OO Design and Deductive Verification of Software CADE-20 30 / 113

JavaCard

KeY supports

100% JavaCard

OO Design and Deductive Verification of Software CADE-20 31 / 113

Second Demo

OO Design and Deductive Verification of Software CADE-20 32 / 113

After the Break

I Part I
I Intro
I First Demo
I Java Dymanic Logic intro
I Specification: JML (+ UML/OCL)
I Proof obligations
I Integration in standard tools
I Second Demo

I Part II
I JavaCardDL: the logic
I Sequent Calculus
I Symbolic execution
I Design of the JavaCardDL calculus (demos)

OO Design and Deductive Verification of Software CADE-20 33 / 113

Part II

Logic and Calculus

OO Design and Deductive Verification of Software CADE-20 34 / 113

Dynamic Logic Syntax

A first-order program logic for modeling change of computation states

ProgramFormula ::=
FOFormula |
TotalCorrectnessModality ProgramFormula |
PartialCorrectnessModality ProgramFormula

TotalCorrectnessModality ::= ’〈’ CompilableJavaCardStatement ’〉’

PartialCorrectnessModality ::= ’[’ CompilableJavaCardStatement ’]’

I Modal formulas closed under logical operations (cf. Hoare logic)

I JavaCardDL formulas contain unaltered JavaCard source code

OO Design and Deductive Verification of Software CADE-20 35 / 113

Why Dynamic Logic?

Application-specific SW Analysis Universal
a a

Type system Dynamic Logic Logical Framework
Static Analysis Hoare Logic HOL

Approximation Encoding
Efficiency Soundness

I Transparency wrt target programming language
I More expressive and flexible than Hoare logic
I Can use reference implementations instead of FOL theories
I Symbolic execution more natural interactive proof paradigma

than induction on syntactic structure
I Proven technology that scales up

OO Design and Deductive Verification of Software CADE-20 36 / 113

Why Dynamic Logic?

Application-specific SW Analysis Universal
a a

Type system Dynamic Logic Logical Framework
Static Analysis Hoare Logic HOL

Approximation Encoding
Efficiency Soundness

I Transparency wrt target programming language

I More expressive and flexible than Hoare logic
I Can use reference implementations instead of FOL theories
I Symbolic execution more natural interactive proof paradigma

than induction on syntactic structure
I Proven technology that scales up

I Programs are “first class citizens”

I No encoding of program syntax into logic

I No encoding of program semantics into logicOO Design and Deductive Verification of Software CADE-20 36 / 113

Why Dynamic Logic?

Application-specific SW Analysis Universal
a a

Type system Dynamic Logic Logical Framework
Static Analysis Hoare Logic HOL

Approximation Encoding
Efficiency Soundness

I Transparency wrt target programming language

I More expressive and flexible than Hoare logic

I Can use reference implementations instead of FOL theories
I Symbolic execution more natural interactive proof paradigma

than induction on syntactic structure
I Proven technology that scales up

Not merely partial/total correctness:

I Correctness of program transformations

I Security properties

I Natural temporal extensions (Beckert & Mostowski ’03)
OO Design and Deductive Verification of Software CADE-20 36 / 113

Why Dynamic Logic?

Application-specific SW Analysis Universal
a a

Type system Dynamic Logic Logical Framework
Static Analysis Hoare Logic HOL

Approximation Encoding
Efficiency Soundness

I Transparency wrt target programming language
I More expressive and flexible than Hoare logic

I Can use reference implementations instead of FOL theories

I Symbolic execution more natural interactive proof paradigma
than induction on syntactic structure

I Proven technology that scales up

Class initialization much easier to specify with code

OO Design and Deductive Verification of Software CADE-20 36 / 113

Why Dynamic Logic?

Application-specific SW Analysis Universal
a a

Type system Dynamic Logic Logical Framework
Static Analysis Hoare Logic HOL

Approximation Encoding
Efficiency Soundness

I Transparency wrt target programming language
I More expressive and flexible than Hoare logic
I Can use reference implementations instead of FOL theories

I Symbolic execution more natural interactive proof paradigma
than induction on syntactic structure

I Proven technology that scales up

OO Design and Deductive Verification of Software CADE-20 36 / 113

Why Dynamic Logic?

Application-specific SW Analysis Universal
a a

Type system Dynamic Logic Logical Framework
Static Analysis Hoare Logic HOL

Approximation Encoding
Efficiency Soundness

I Transparency wrt target programming language
I More expressive and flexible than Hoare logic
I Can use reference implementations instead of FOL theories
I Symbolic execution more natural interactive proof paradigma

than induction on syntactic structure

I Proven technology that scales up

I Used in verification systems KIV, VSE since 1986

I Massive case studies involving imperative programs

OO Design and Deductive Verification of Software CADE-20 36 / 113

Some JavaCardDL Syntax Issues

I FO logical variables disjoint from program variables

I No quantification over program variables
I Programs contain no logical variables

I ASCII syntax, key words preceded ‘\’
I Usual precedence, add brackets where necessary

I If program p appears in a DL formula then the class definitions
of all types referenced in p are assumed to be present as well

OO Design and Deductive Verification of Software CADE-20 37 / 113

Dynamic Logic Semantics I

Program formulas evaluated relative to
computation state s and variable assignment β

Example

\forall int x ; (〈int i = j++;〉 (i = x))

Definition
s, β |= 〈p〉φ iff p totally correct wrt s and β iff p started in s terminates
normally and s ′, β |= φ in final state s ′ after execution of p

s, β |= [p]φ iff p partially correct wrt s and β iff whenever started in s p

terminates normally then in s ′, β |= φ final state s ′ after execution of p

(We rely on Java programs being deterministic)

OO Design and Deductive Verification of Software CADE-20 38 / 113

Dynamic Logic Semantics Example

Kripke structure, where worlds are computation states
Boolean program variables a, b, c , programs p, q

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

q

p q

q

p

q

p

a

s1 |= 〈p〉 a ?(ok) s1 |= 〈q〉 a ?(–) s5 |= 〈q〉 a ?(–) s5 |= [q] a ?(ok)

OO Design and Deductive Verification of Software CADE-20 39 / 113

First-Order Formula Syntax

FOFormula ::= TernaryOpFormula | BinaryOpFormula |
UnaryOpFormula | NullaryOpFormula |
QuantifiedFormula | AtomicFormula

TernaryOpFormula ::=
’\if (’ FOFormula ’) \then (’ FOFormula ’) \else (’ FOFormula ’)’

BinaryOpFormula ::= FOFormula BinaryOp FOFormula

BinaryOp ::= ’&’ | ’|’ | ’ −> ’ | ’ <−> ’

UnaryOpFormula ::= ’!’ FOFormula

NullaryOpFormula ::= ’true’ | ’false’

QuantifiedFormula ::= Quantifier Type LogVar ’;’ FOFormula

Quantifier ::= ’\forall’ | ’\exists’

OO Design and Deductive Verification of Software CADE-20 40 / 113

Dynamic Logic Example Formulas

\forall int y ; ((〈x = 1;〉 x = y) <−> (〈x = 1*1;〉 x = y)) Syntax ?
ok

\exists int x; ([x = 1;] (x = 1)) Syntax ? bad

I x cannot be logical variable, because it occurs in program

I x cannot be program variable, because it is quantified

〈x = 1;〉 ([while (true) {}] false) Syntax ? ok

I Program formulas can appear nested

〈int x;〉 \forall int y ; ((〈p〉 x = y) <−> (〈q〉 x = y)) ok

I p, q equivalent relative to computation state restricted to x

OO Design and Deductive Verification of Software CADE-20 41 / 113

First-Order Term Syntax

Terms are statically typed like in Java

I Type is partially ordered finite set of type symbols {t1, . . . , tr} closed
under u, contains Java types

I Each logical variable x ∈ LogVar has static type t, declared t x

I x is term of type t for variable declared as t x

I Function symbols and predicate symbols declared with signature
I Type FunctionSymbol [’(’ Type {’,’ Type }∗ ’)’]
I PredicateSymbol [’(’Type {’,’ Type }∗ ’)’]

I Arguments of complex terms must conform to (in the sense of Java)
type declared in their signature

I Equality symbol ’ = ’ for most argument types

I Otherwise no overloading of variables, functions, predicates

OO Design and Deductive Verification of Software CADE-20 42 / 113

Type System Semantics

Type system semantics accounts for dynamic types of terms

I Universe U disjoint union of subuniverses Ut for each type t

I Let T (t) =
⋃

t0≺t Ut0 be the universe elements typeable with t

I Each term has static type (declared type of outermost symbol)

I The dynamic (runtime) type of a term e is the t such that e I ∈ Ut

I Check dynamic type with type function: Type’::instance(’Term’)’

OO Design and Deductive Verification of Software CADE-20 43 / 113

Type System Semantics

Type system semantics accounts for dynamic types of terms

I Universe U disjoint union of subuniverses Ut for each type t

I Let T (t) =
⋃

t0≺t Ut0 be the universe elements typeable with t

I Each term has static type (declared type of outermost symbol)

I The dynamic (runtime) type of a term e is the t such that e I ∈ Ut

I Check dynamic type with type function: Type’::instance(’Term’)’

I Type t interpreted in the (possibly empty) subuniverse Ut

I Not all subuniverses Ut are populated (allow abstract classes)

OO Design and Deductive Verification of Software CADE-20 43 / 113

Type System Semantics

Type system semantics accounts for dynamic types of terms

I Universe U disjoint union of subuniverses Ut for each type t

I Let T (t) =
⋃

t0≺t Ut0 be the universe elements typeable with t

I Each term has static type (declared type of outermost symbol)

I The dynamic (runtime) type of a term e is the t such that e I ∈ Ut

I Check dynamic type with type function: Type’::instance(’Term’)’

Each T (t) contains typable objects, at least nullI

OO Design and Deductive Verification of Software CADE-20 43 / 113

Type System Semantics

Type system semantics accounts for dynamic types of terms

I Universe U disjoint union of subuniverses Ut for each type t

I Let T (t) =
⋃

t0≺t Ut0 be the universe elements typeable with t

I Each term has static type (declared type of outermost symbol)

I The dynamic (runtime) type of a term e is the t such that e I ∈ Ut

I Check dynamic type with type function: Type’::instance(’Term’)’

OO Design and Deductive Verification of Software CADE-20 43 / 113

Type System Semantics

Type system semantics accounts for dynamic types of terms

I Universe U disjoint union of subuniverses Ut for each type t

I Let T (t) =
⋃

t0≺t Ut0 be the universe elements typeable with t

I Each term has static type (declared type of outermost symbol)

I The dynamic (runtime) type of a term e is the t such that e I ∈ Ut

I Check dynamic type with type function: Type’::instance(’Term’)’

Dynamic type of e always conforms to its static type

OO Design and Deductive Verification of Software CADE-20 43 / 113

Type System Semantics

Type system semantics accounts for dynamic types of terms

I Universe U disjoint union of subuniverses Ut for each type t

I Let T (t) =
⋃

t0≺t Ut0 be the universe elements typeable with t

I Each term has static type (declared type of outermost symbol)

I The dynamic (runtime) type of a term e is the t such that e I ∈ Ut

I Check dynamic type with type function: Type’::instance(’Term’)’

OO Design and Deductive Verification of Software CADE-20 43 / 113

Rigid and Flexible Terms in Dynamic Logic

Certain FO terms correspond to Java locations:
program variables, array access, attribute access

Example

〈int i;〉 \forall int x ; (i + 1 = x −> 〈i++;〉 (i = x))

I Interpretation of i depends on computation state ⇒ flexible

I Interpretation of x and + must not depend on state ⇒ rigid

A term containing at least one flexible symbol is flexible, otherwise rigid

OO Design and Deductive Verification of Software CADE-20 44 / 113

Rigid and Flexible Terms in Dynamic Logic

Certain FO terms correspond to Java locations:
program variables, array access, attribute access

Example

〈int i;〉 \forall int x ; (i + 1 = x −> 〈i++;〉 (i = x))

I Interpretation of i depends on computation state ⇒ flexible

I Interpretation of x and + must not depend on state ⇒ rigid

Locations are always interpreted flexible

A term containing at least one flexible symbol is flexible, otherwise rigid

OO Design and Deductive Verification of Software CADE-20 44 / 113

Rigid and Flexible Terms in Dynamic Logic

Certain FO terms correspond to Java locations:
program variables, array access, attribute access

Example

〈int i;〉 \forall int x ; (i + 1 = x −> 〈i++;〉 (i = x))

I Interpretation of i depends on computation state ⇒ flexible

I Interpretation of x and + must not depend on state ⇒ rigid

Logical variables, standard library functions declared rigid

A term containing at least one flexible symbol is flexible, otherwise rigid

OO Design and Deductive Verification of Software CADE-20 44 / 113

Kripke Semantics

I States s = (U, Is) ∈ S have typed universe U, FO interpretation Is

I U is fixed: all objects with dynamic type t are in Ut from beginning

I Semantics of Java program p is partial function ρ(p) : S → S

I A JavaCardDL formula φ is valid iff s, β |= φ for all β and all s

OO Design and Deductive Verification of Software CADE-20 45 / 113

Kripke Semantics

I States s = (U, Is) ∈ S have typed universe U, FO interpretation Is

I U is fixed: all objects with dynamic type t are in Ut from beginning

I Semantics of Java program p is partial function ρ(p) : S → S

I A JavaCardDL formula φ is valid iff s, β |= φ for all β and all s

Is interprets rigid symbols identically in each state

OO Design and Deductive Verification of Software CADE-20 45 / 113

Kripke Semantics

I States s = (U, Is) ∈ S have typed universe U, FO interpretation Is

I U is fixed: all objects with dynamic type t are in Ut from beginning

I Semantics of Java program p is partial function ρ(p) : S → S

I A JavaCardDL formula φ is valid iff s, β |= φ for all β and all s

Objects have attributes o.<created> and o.<initialized>

These are set appropriately during object creation

OO Design and Deductive Verification of Software CADE-20 45 / 113

Kripke Semantics

I States s = (U, Is) ∈ S have typed universe U, FO interpretation Is

I U is fixed: all objects with dynamic type t are in Ut from beginning

I Semantics of Java program p is partial function ρ(p) : S → S

I A JavaCardDL formula φ is valid iff s, β |= φ for all β and all s

s, β |= 〈p〉φ iff ρ(p)(s) ↓ and ρ(p)(s), β |= φ

OO Design and Deductive Verification of Software CADE-20 45 / 113

Kripke Semantics

I States s = (U, Is) ∈ S have typed universe U, FO interpretation Is

I U is fixed: all objects with dynamic type t are in Ut from beginning

I Semantics of Java program p is partial function ρ(p) : S → S

I A JavaCardDL formula φ is valid iff s, β |= φ for all β and all s

Quantification over all computation states

OO Design and Deductive Verification of Software CADE-20 45 / 113

State Update Semantics

Need to define ρ for each program p — start with assignment

Definition
State update of I at t x with u ∈ T (t)

I u
x (y) =

{
I (y) x 6= y

u x = y

Assignment semanticsis state update:

ρ(x=e;)(I) = I e
I ,β

x

I e must be side effect-free, no reference type

I Identify states with interpretation since U is fixed

OO Design and Deductive Verification of Software CADE-20 46 / 113

Program Semantics

In general, ρ(p) defines operational semantics for p

I ρ(if (b) {α} else {γ};)(I) =

{
ρ(α)(I) I , β |= b = TRUE

ρ(γ)(I) otherwise

I ρ(while (b) {α};)(I) = I ′ iff there are I = I0, . . . , In = I ′ such that
I Ij , β |= b = TRUE for 0 ≤ j < n
I ρ(α)(Ij) = Ij+1 for 0 ≤ j < n
I In, β |= b = FALSE undefined otherwise

Problems:

I Definitions work only under simplistic assumptions:
b side-effect free, no exceptions, no breaks, . . .

I We need a calculus (syntactic characterization)

Develop a calculus for JavaCard that directly realizes
an operational semantics with adequate syntactic means

OO Design and Deductive Verification of Software CADE-20 47 / 113

Sequents and their Semantics

Sequent ::= [FormulaList] ’==>’ [FormulaList]

FormulaList ::= ProgramFormula {’,’ ProgramFormula}∗

Notation
ψ1, . . . , ψm
︸ ︷︷ ︸

Antecedent

==> φ1, . . . , φn
︸ ︷︷ ︸

Succedent

Schema variables φ, ψ match program formulas

Schema variables Γ/∆ match sublists of antecedent/succedent

Semantics

same as formula of sequent: (ψ1& · · ·&ψm) −> (φ1| · · · |φn)

(No free logical variables occur in program formulas)

OO Design and Deductive Verification of Software CADE-20 48 / 113

Sequent Rules

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

Sound rule (essential):

|= (fml(Γ1==>∆1) & · · ·& fml(Γr==>∆r)) −> fml(Γ==>∆)

Complete rule (desirable):

|= fml(Γ==>∆) −> (fml(Γ1==>∆1) & · · ·& fml(Γr==>∆r))

Admissible to have no premisses (iff conclusion is valid: axiom)

OO Design and Deductive Verification of Software CADE-20 49 / 113

Some Simple Sequent Rules

not left
Γ ==> A,∆

Γ, !A ==> ∆

imp left
Γ ==> A,∆ Γ,B ==> ∆

Γ,A −> B ==> ∆

close goal
Γ,A ==> A,∆

close by true
Γ ==> true,∆

all left
Γ, \forall t x ;φ, {x/et′}φ ==> ∆

Γ, \forall t x ;φ ==> ∆

et′ var-free term of type t ′ ≺ t

OO Design and Deductive Verification of Software CADE-20 50 / 113

Sequent Calculus Proofs

Goal to prove validity of: G = ψ1, . . . , ψm ==> φ1, . . . , φn

I find rule R whose conclusion matches G
I instantiate R such that conclusion identical to G
I check that side conditions of R are satisfied

I mark G as closed if R was axiom

I recursively find proofs for resulting premisses G1, . . . , Gr

I tree structure with goal sequent as root

I proof is finished when all goals are closed

Goal-directed proof search
In KeY tool proof displayed as Java Swing tree bla

OO Design and Deductive Verification of Software CADE-20 51 / 113

Proof by Symbolic Program Execution

Which sequent rules for program formulas?
What corresponds to top-level connective in sequential program?

First executable statement: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

〈p;ω〉φ, [p;ω]φ

where p; single legal Java statement, ω the remaining program

Sequent rules execute symbolically the first active statement
Sequent proof corresponds to symbolic program execution

OO Design and Deductive Verification of Software CADE-20 52 / 113

A Naive Rule for Assignment

assignment
{x/xold}Γ, x = {x/xold}e ==> 〈ω〉φ, {x/xold}∆

Γ ==> 〈x = e;ω〉φ,∆
xold new program variable that “rescues” old value of x

Problems

I Renaming makes it difficult to keep track of computation state

I Does not work when e has side effects or when x is not variable

I Does not work for reference types

I “Eager” rule: bad if state change at x is cancelled out by later
assignment or is irrelevant for φ

OO Design and Deductive Verification of Software CADE-20 53 / 113

Specifying Initial Values

How to express correctness for arbitrary initial value of program variable?
Cannot quantify over program variables!

Not allowed: \forall int i; 〈p(··· i ···)〉φ
(program 6= logical variable)

Not intended: ==> 〈p(··· i ···)〉φ (Validity of sequents:
quantification over all states)

Not allowed: \forall int n; 〈p(··· n ···)〉φ
(no logical variables in programs)

Solution
Use explicit construct to record state change information

(State) update \forall int n; ({i := n}〈p(··· i ···)〉φ)

OO Design and Deductive Verification of Software CADE-20 54 / 113

Explicit State Updates

Updates record state change

Syntax(v, e have value types, e conforms to v)
If v is program variable, e , e ′ FO terms, and φ any DL formula, then
{v := e}φ is DL formula and {v := e}e ′ is FO term

Semantics
I , β |= {v := e}φ iff I eI ,β

v , β |= φ
Semantics identical to that of assignment

Updates work like “lazy” assignments

I Updates are not assignments: may contain logical variables

I Updates are not equations: change interpretation of PVs

OO Design and Deductive Verification of Software CADE-20 55 / 113

Computing the Effect of Updates

The simplest case: x program variable with value type

Similar for FOL formulas (like substitution)

Update followed by program formula

{x := e}(〈p〉φ) {x := e}(〈p〉φ) unchanged!

Update computation delayed until p symbolically executed

OO Design and Deductive Verification of Software CADE-20 56 / 113

Computing the Effect of Updates

The simplest case: x program variable with value type

Apply update to program variable

{x := e}y y

{x := e}x e

Similar for FOL formulas (like substitution)

Update followed by program formula

{x := e}(〈p〉φ) {x := e}(〈p〉φ) unchanged!

Update computation delayed until p symbolically executed

OO Design and Deductive Verification of Software CADE-20 56 / 113

Computing the Effect of Updates

The simplest case: x program variable with value type

Apply update to logical variable

{x := e}w w

Similar for FOL formulas (like substitution)

Update followed by program formula

{x := e}(〈p〉φ) {x := e}(〈p〉φ) unchanged!

Update computation delayed until p symbolically executed

OO Design and Deductive Verification of Software CADE-20 56 / 113

Computing the Effect of Updates

The simplest case: x program variable with value type

Apply update to complex term

{x := e}f (e1, . . . , en) f ({x := e}e1, . . . , {x := e}en)

Similar for FOL formulas (like substitution)

Update followed by program formula

{x := e}(〈p〉φ) {x := e}(〈p〉φ) unchanged!

Update computation delayed until p symbolically executed

OO Design and Deductive Verification of Software CADE-20 56 / 113

Composition of Updates

Updates lazily applied (delayed until “final” state), but eagerly simplified

Applying updates to updates: composition of states

{l1 := r1}{l2 := r2} = {l1 := r1, l2 := {l1 := r1}r2}

Results in parallel update: {l1 := v1, . . . , ln := vn}
Semantics

I All li and vi computed in old state

I All updates done simultaneously

I On conflict li = lj , vi 6= vj last update wins

For example, {i := 1 + 2, i := 2} {i := 2}

OO Design and Deductive Verification of Software CADE-20 57 / 113

Assignment Rule Revisited

assign
Γ ==> {x := e}φ,∆
Γ ==> 〈x = e;〉φ,∆

Rules dealing with programs need to account for updates

Notational convention:

I Updates already present in conclusion not displayed explicitly

I New updates in premise inserted after last present update

Updates simplified eagerly!
Demo: rh assign.key

OO Design and Deductive Verification of Software CADE-20 58 / 113

Some Non-Trivial Java Features

Illustrate main ideas in JavaCardDL calculus

I Complex expressions with side effects
int i = 0; if ((i=2) >= 2) {i++;} // value of i?

I Exceptions (try-catch-finally)

I Aliasing
Different navigation expressions may be same object reference

I |= o.age
.
= 1 −> 〈u.age = 2;〉 o.age .

= u.age ?

Depends on whether I |= o
.
= u

OO Design and Deductive Verification of Software CADE-20 59 / 113

The Design Space of a Calculus

All JavaCard language features are fully addressed in KeY

Be aware of the full design space!

I Program transformation, up-front

I Local transformation, done by a rule on-the-fly

I Modeling with first-order formulas

I Special purpose constructs in program logic

OO Design and Deductive Verification of Software CADE-20 60 / 113

The Design Space of a Calculus

All JavaCard language features are fully addressed in KeY

Be aware of the full design space!

I Program transformation, up-front

I Local transformation, done by a rule on-the-fly

I Modeling with first-order formulas

I Special purpose constructs in program logic

Pro: Feature needs not be handled in calculus
Contra: Soundness, modified source code
Example in KeY: Only a few rare features, for example, inner classes

OO Design and Deductive Verification of Software CADE-20 60 / 113

The Design Space of a Calculus

All JavaCard language features are fully addressed in KeY

Be aware of the full design space!

I Program transformation, up-front

I Local transformation, done by a rule on-the-fly

I Modeling with first-order formulas

I Special purpose constructs in program logic

Pro: Flexible, easy to implement, usable, less rules needed
Contra: Not expressive enough for all features
Example in KeY: Complex expressions, method expansion (many others)

OO Design and Deductive Verification of Software CADE-20 60 / 113

The Design Space of a Calculus

All JavaCard language features are fully addressed in KeY

Be aware of the full design space!

I Program transformation, up-front

I Local transformation, done by a rule on-the-fly

I Modeling with first-order formulas

I Special purpose constructs in program logic

Pro: No extension required, enough to express most features
Contra: Creates difficult FO POs, unreadable antecedents, too eager
Example in KeY: Dynamic types, branch predicates

OO Design and Deductive Verification of Software CADE-20 60 / 113

The Design Space of a Calculus

All JavaCard language features are fully addressed in KeY

Be aware of the full design space!

I Program transformation, up-front

I Local transformation, done by a rule on-the-fly

I Modeling with first-order formulas

I Special purpose constructs in program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Abrupt termination, method call, updates, blocks

OO Design and Deductive Verification of Software CADE-20 60 / 113

Highlights from JavaCardDL
Expressions with Side Effects

Local program transformation ensures side effect-free expressions

Compute complex subexpressions separately and store in temp. variable

i = j++; int var = j;

j = (int)(j+1);

i = var;

Require guards in all rules to be simple expressions

if-split
Γ, b

.
= TRUE ==> 〈π p ω〉φ,∆ Γ, b

.
= FALSE ==> 〈π ω〉φ,∆

Γ ==> 〈π if (b) {p}; ω〉φ,∆

Demo: rh post incr.key

OO Design and Deductive Verification of Software CADE-20 61 / 113

Highlights from JavaCardDL
Abrupt Termination

Redirection of control flow via exceptions

〈π try {pq} catch(T e) {r} finally {s}; ω〉φ

Solution: symbolic execution rules work on first active statement after
prefix, followed by postfix

Γ ==> U〈 π ξ; ω 〉φ, ∆

Prefix Active statement Postfix

OO Design and Deductive Verification of Software CADE-20 62 / 113

Highlights from JavaCardDL
Abrupt Termination

Redirection of control flow via exceptions

〈π try {pq} catch(T e) {r} finally {s}; ω〉φ
Solution: symbolic execution rules work on first active statement after
prefix, followed by postfix

Γ ==> U〈 π ξ; ω 〉φ, ∆

Prefix Active statement Postfix

OO Design and Deductive Verification of Software CADE-20 62 / 113

Highlights from JavaCardDL
Try-throw // Symbolic execution

Catching a throw statement is controlled by prefix and postfix

try-throw (exc simple)

Γ ==>

〈π if (exc instanceof T)

{try {e=exc; r} finally {s}}
else {s throw exc}; ω

〉

φ

Γ ==> 〈π try {throw exc; q} catch(T e) {r} finally {s};ω〉φ

Demo: rh exc.key

Symbolic Execution

Symbolic: Only static information available, proof splitting

Execution: Runtime infrastructure required in calculus

OO Design and Deductive Verification of Software CADE-20 63 / 113

Highlights from JavaCardDL
Aliasing

Naive alias resolution causes proof split at each reference type access

Γ, o.age
.
= 1 ==> 〈π u.age = 2; ω〉o.age .

= u.age

Unnecessary in many cases!

Γ, o.age
.
= 1 ==> 〈π u.age = 2; o.age = 2; ω〉o.age .

= u.age

Γ ==> 〈π o.age = 1; u.age = 2; ω〉u.age .
= 2

Updates avoid such proof splits:

I Delay application of state computation after program execution

I Eager simplification of updates, accumulate effect

Simplification and application of updates with reference types not trivial!
Demo: rh alias.key

OO Design and Deductive Verification of Software CADE-20 64 / 113

After the Break

But how does this work in practice?

I How are rules implemented?

I How “automatic” are they applied?

I What about Java integer types?

I And loops? How does induction work?

I How does the prover interface support its user?

Stay tuned to KeY 1.0 !

OO Design and Deductive Verification of Software CADE-20 65 / 113

Part III

The Prover:

Concepts, Implementation, Automation

OO Design and Deductive Verification of Software CADE-20 66 / 113

Taclets and Taclet Language

Taclets

Taclets . . .

I have logical content like rules of the calculus.

I have pragmatic information for interactive application.

I have pragmatic information for automated application.

I keep all these concerns separate but close to each other.

I can easily be added to the system.

I are given in a textual format.

I can be “validated” w.r.t. more primitive taclets.

OO Design and Deductive Verification of Software CADE-20 68 / 113

Taclet Syntax

Consider a “modus ponens” rule:

Γ, φ, ψ ==> ∆

Γ, φ, φ −> ψ ==> ∆

Here it is as a taclet:

\find (b −> c ==>) \assumes (b ==>) \replacewith(c ==>)
\heuristics(simplify)

I schema variables

I turnstile (`)

I find clause

I action clause

I assumes clause

I heuristic declaration

OO Design and Deductive Verification of Software CADE-20 69 / 113

A Branching Rule

close goal {

\assumes (b ==>) \find (==> b)

\closegoal

\heuristics(closure)

};

???cut {

\add (b ==>); \add (==> b)

};

OO Design and Deductive Verification of Software CADE-20 70 / 113

“The Small Print”

Consider the rule for existential quantifiers:

Γ, φ(f (x1, . . . , xn)) ==> ∆

Γ, \exists t x ;φ(x) ==> ∆

where x1, . . . , xn are the free variables occurring in φ(x) and f is a new function symbol with static type t.

ex_left {

\find (\exists u; b ==>)

\varcond (\new(sk, \dependingOn(b)))

\replacewith ({\subst u; sk}b ==>)

\heuristics (delta)

};

\new(v), \notFreeIn(x,y),

\isLocalVariable(v), \static(v), ...

OO Design and Deductive Verification of Software CADE-20 71 / 113

Java Card Taclets

Rule if else split

Γ, B
.
= true ==> 〈.. α1; ...〉F , ∆

Γ, B
.
= false ==> 〈.. α2; ...〉F , ∆

Γ ==> 〈.. if (B) α1 else α2; ...〉F , ∆

with B a Boolean expression without side effects

Corresponding taclet

if else split {

\find (==> <{.. if(#se) #s0 else #s1 ...}>post)

\replacewith (==> <{.. #s0 ...}>post) \add (#se = TRUE ==>);

\replacewith (==> <{.. #s1 ...}>post) \add (#se = FALSE ==>)

\heuristics(if split)

};

OO Design and Deductive Verification of Software CADE-20 72 / 113

Soundness

“Higher order skolemization”

Modus ponens:
Γ, φ, ψ ==> ∆

Γ, φ, φ −> ψ ==> ∆

Validation proof obligation:

\forall φ; \forall ψ; ((φ −> ψ) & φ) −> ψ

After skolemization:
((p −> q) & p) −> q

Cross-checking against other Java semantics

I Bali

I Java semantics in Maude

OO Design and Deductive Verification of Software CADE-20 73 / 113

Summary

Taclets . . .

I simple and powerful

I compact and clear notation

I no complicated meta-language

I esay to apply with a GUI

I validation possible

OO Design and Deductive Verification of Software CADE-20 74 / 113

Integer Arithmetics

Data Type Gap

Specification Level

I Abstract data types

I Integer (Z), Set, List

Implementation Level

I Concrete programming language data types

I byte, short, int, long, Array

OO Design and Deductive Verification of Software CADE-20 76 / 113

Data Type Gap: Integer Semantics

OCL type Integer

I Infinite range, operators have usual mathematical semantics (Z)

Java types byte, short, int, long

I Different finite ranges

I Semantics of operators as in Z except that:

overflow occurs if result exceeds range,
i.e., result is calculated modulo size of data type.

I Overflow occurs silently

OO Design and Deductive Verification of Software CADE-20 77 / 113

More Formal Semantics of Java Integer Types

Range of primitive integer types in Java

Type Range Bits

byte [−128, 127] 8
short [−32768, 32767] 16
int [−2147483648, 2147483647] 32
long [−263, 263 − 1] 64

OO Design and Deductive Verification of Software CADE-20 78 / 113

Examples

Valid for Java integer semantics
MAX INT+1 = MIN INT

MIN INT*(−1) = MIN INT

\exists int x, y; !x = 0 & !y = 0 & x*y = 0

Not valid for Java integer semantics

\forall int x; \exists int y; y > x

Not a sound rewrite rules for Java integer semantics

x+1 > y+1 x > y

OO Design and Deductive Verification of Software CADE-20 79 / 113

General Problem revisited

I Semantic gap between Z and Java integers

I Defining a JavaDL semantics for Java integers that. . .

I is a correct data refinement of Z Req. (Z)
I reflects Java integer semantics Req. (J)

3 possible approaches

Semantics Description Req. (Z) Req. (J)

SOCL corresponds to semantics of Z
√

X
SJava corresponds to Java semantics X

√

SKeY hybrid of SOCL and SJava

√ √

OO Design and Deductive Verification of Software CADE-20 80 / 113

Semantics SOCL

SOCL assigns Java integers the semantics of Z

I Req. (Z) trivially fulfilled

I Req. (J) violated, incorrect programs can be “verified”

Example:
|=SOCL

〈y=x+1;〉 y = x +Z 1

but for x = MAX INT program not correct

OO Design and Deductive Verification of Software CADE-20 81 / 113

Semantics SJava

SJava assigns Java integers the semantics defined in the JLS

I Req. (Z) violated
several abstract states mapped onto one concrete state

I Req. (J) trivially fulfilled

No incorrect programs can be verified, but

I Existence of “incidentally” correct programs

I Difficult to reason about

OO Design and Deductive Verification of Software CADE-20 82 / 113

Our Approach: Semantics SKeY

1. Show the program correct for Z

2. Show that no overflow occurs at every step

Program correct w.r.t. Java semantics

OO Design and Deductive Verification of Software CADE-20 83 / 113

A Sequent Calculus For SKeY

Example: Rule for addition
generates conditions that no overflow occurs
with help of predicate inT(x) ≡ MIN T ≤ x ≤ MAX T

(1) Γ ==> {z := x + y}〈〉φ
(2) Γ, inT (x), inT (y) ==> inT (x + y), 〈z=x+y;〉φ

Γ ==> 〈z=x+y;〉φ

OO Design and Deductive Verification of Software CADE-20 84 / 113

Summary

The KeY system has 3 pluggable integer semantics,
of which SKeY has the best properties:

I Safe (though slight loss of completeness)

I Familiar reasoning

I Modularized proofs

I Proof reuse possible when switching from other semantics

OO Design and Deductive Verification of Software CADE-20 85 / 113

Proving Loops with Induction

Basic Integer Induction Rule

(1) Γ ==> IH(0), ∆

(2) Γ ==> \forall int i ; (i ≥ 0&IH(i) −> IH(i + 1)), ∆

(3) Γ, \forall int i ; (i ≥ 0 −> IH(i)) ==> ∆

Γ ==> ∆

IH = induction hypothesis
i = induction variable

OO Design and Deductive Verification of Software CADE-20 87 / 113

An Example

To be proven:

\forall int nl ; (nl > 0 & i = 0 −> {n := nl}〈while (i<n) i++;〉 i ≥ n)

To be proven (after skolemization):

nl0 > 0 & i = 0 −> {n := nl0}〈while (i<n) i++;〉 i ≥ n

Induction hypothesis:

{n := nl0}{i := n− k}〈while (i<n) i++;〉 i ≥ n

Induction variable: k

OO Design and Deductive Verification of Software CADE-20 88 / 113

Induction Obligations

Base case (k = 0)

{n := nl0}{i := n− 0}〈while (i<n) i++;〉 i ≥ n

Step case (k y k + 1)

{n := nl0}{i := n− k1}〈while (i<n) i++;〉 i ≥ n −>
{n := nl0}{i := n− (k1 + 1)}〈while (i<n) i++;〉 i ≥ n

OO Design and Deductive Verification of Software CADE-20 89 / 113

Summary

Induction . . .

I programs can be proved with the “basic” integer induction rule

I lots of human interaction necessary

I quite a viscous task

I research in automation is underway

I invariant rule an alternative

OO Design and Deductive Verification of Software CADE-20 90 / 113

Automation

Means of Automation Implemented in KeY

I Global strategies for automatically applying rules in series

I Free-variable calculus for constructing witnesses for quantified
formulas (non-destructive, proof-confluent calculus)

I Invocation of external theorem provers, decision procedures
I Simplify (from ESC/Java)
I ICS
I Planned: Export to SMT-LIB format

OO Design and Deductive Verification of Software CADE-20 92 / 113

Strategies

Responsible for selecting next proof expansion step for each goal

1. All possible expansion steps for a goal are computed
I Steps described by:

Applied rule/taclet, position, values of schema variables
I Information is cached in RuleIndex and updated when sequent is altered

2. For each possible rule application a cost value is computed
I Integer value: Lower numbers → Preferred steps
I Cost functions take into account for instance:

Kind of rule, unifications necessary, depth and context of position
I Different strategies use different cost functions

3. Step with lowest costs is executed
I Again caching: Priority queue for sorting expansion steps

Procedure is iterated until no further rules are applicable or chosen
maximum number of rule applications is reached

OO Design and Deductive Verification of Software CADE-20 93 / 113

Strategies Currently Present in KeY

Strategies optimized for symbolically executing programs

I Come in different flavours: With/Without unwinding loops, etc.

I Concentrate on eliminating program and simplifying sequents

Strategy handling first-order logic

I Implements a complete first-order theorem prover

I But: Weak support for theories (particularly arithmetic)

Implementation of Strategies

I Strategies are written Java, direct part of prover

I Creating new special-purpose strategies is easy

I Cost functions described using a library of feature functions and
connectives

OO Design and Deductive Verification of Software CADE-20 94 / 113

Free-Variable Calculus

Existential variables used to postpone instantiation

I In KeY called metavariables

I Mostly for universally quantified formulas in antecedent

Constraints used to represent unification

I Formula constraints (conjunctions of equations) added when terms
have to be substituted for metavariables

true � [X0 ≡ 0], false � [X0 ≡ 1], \forall int x ; x = 0 ==>

X0 = 0, \forall int x ; x = 0 ==>

\forall int x ; x = 0 ==>

OO Design and Deductive Verification of Software CADE-20 95 / 113

Incremental Closure in Free-Variable Calculus

Closing proofs by simultaneously closing its goals

I When applying taclets with \closegoal, involved constraints are
collected for goal

I Proof can be closed if consistent closure constraints exist for all goals

I In KeY: Consistency of closure constraints is checked recursively,
closure constraints for all subtrees of proof tree are cached

Color codes in proof tree for status of goals and subtrees

black no closing constraints exist
blue closing constraints exist

green goal is closed with a valid constraint (i.e. no restrictions)

OO Design and Deductive Verification of Software CADE-20 96 / 113

Free-Variable Calculus (2)

Calculus is non-destructive and proof-confluent

I Unifiers are never directly applied to proof

I No backtracking necessary (but: interactive backtracking possible)

I Calculus is mostly useful for pure first-order logic, combination with
theories and modal logic ongoing issue

OO Design and Deductive Verification of Software CADE-20 97 / 113

Part IV

The Prover: Interaction and Guidance

Case Studies

OO Design and Deductive Verification of Software CADE-20 98 / 113

Interaction and Automation

For realistic programs: Fully-automated verification impossible

Goal in KeY: Integrate automated and interactive proving

I All easy or obvious proof steps should be automated

I Sequents presented to user should be simplified as far as possible

I Primary steps that require interaction: induction, treatment of loops

I Taclets enable interactive rule application mostly using mouse

Typical workflow when proving in KeY
(and other interactive provers)

1. Prover runs automatically as far as possible

2. When prover stops user investigates situation and gives hints
(makes some interactive steps)

3. Go to 1

OO Design and Deductive Verification of Software CADE-20 99 / 113

Working with Proof Trees

Displayed information

I Inner nodes labelled with rule that was applied

I Colors: Green signals closed subtrees
Blue subtrees closed for suitable instantiation
of metavariables

Navigation

I By selecting inner nodes or leaves in tree

I By selecting leaves in goal list

OO Design and Deductive Verification of Software CADE-20 100 / 113

Working with Proof Trees (2)

Modifying the proof tree

I Extension: Only through application of rules to goals
(as usual in Gentzen-style sequent calculi; next slides)

I Closure: Through taclets with \closegoal
I Pruning: Deletion of subtrees

(button in toolbar, context menu in tree display)

OO Design and Deductive Verification of Software CADE-20 101 / 113

Working with Sequents: Sequent View

For goals/leaves of tree

I Obtaining information about
formulas/terms (press Alt-key)

I Selecting formulas/terms,
applying rules to them

For inner nodes

I Parts involved in rule application
are highlighted

OO Design and Deductive Verification of Software CADE-20 102 / 113

Extension of Proof: Application of Single Taclets

Application of a taclet requires:

I A proof goal

I (Optional) focus of rule application: term/formula
(part of sequent that can be modified by rule)

I Instantiation of schema variables of taclet

Principal procedure in KeY when applying taclet interactively

1. Selection of application focus using mouse pointer

2. Selection of particular rule from context menu

3. Instantiation of schema variables

OO Design and Deductive Verification of Software CADE-20 103 / 113

Schema Variables: Taclet Instantiation Dialog

Primarily two purposes:

I Enter values of schema variables explicitly

I Provide assumptions of taclet (assumes clause)

OO Design and Deductive Verification of Software CADE-20 104 / 113

Schema Variables: Taclet Instantiation Dialog

Primarily two purposes:

I Enter values of schema variables explicitly

I Provide assumptions of taclet (assumes clause)

OO Design and Deductive Verification of Software CADE-20 104 / 113

Schema Variables: Taclet Instantiation Dialog

Primarily two purposes:

I Enter values of schema variables explicitly
I Provide assumptions of taclet (assumes clause)

Drag’n’drop can be used for copying data from sequent view

OO Design and Deductive Verification of Software CADE-20 104 / 113

Applying Taclets using Drag’n’Drop

Possible for taclets with find-part and exactly one assumption, like

I Rewriting a term using an equation

I Instantiating formulas with universal-type quantifier

Applying equations

I Hold Ctrl, drag the equation to the
term to be rewritten

Instantiating quantified formulas

I Hold Ctrl, drag instantiation term to
quantified formula

OO Design and Deductive Verification of Software CADE-20 105 / 113

Extension of Proof: Automated Application of Rules

Selection of active strategy

I Menu in toolbar

Invocation of strategies

I Explicitly . . .
(button in toolbar, context menus in proof tree and sequent view)

I . . . or automatically after each interaction
(meaningful for strategies simplifying/normalising the goals)

Application of strategies possible on

I All goals of a proof

I One particular goal

I Particular subterm or subformula

OO Design and Deductive Verification of Software CADE-20 106 / 113

Extension of Proof: Reusing Existing Proof

To Be Done

OO Design and Deductive Verification of Software CADE-20 107 / 113

“Fundamental” Case Studies: Libraries

Java Collections Framework (JCF)

I Part of JCF (treating sets) was specified using UML/OCL

I Parts of reference implementation were verified

I It was investigated how the consistency of JCF classes with common
algebraic datatypes can be shown

JavaCard API

I Most parts of JavaCard API were specified using UML/OCL

I Some parts of reference implementation were verified

OO Design and Deductive Verification of Software CADE-20 108 / 113

Security Case Studies: JavaCard Software

Safety/security properties were treated (specified in dynamic logic)

I No exceptions are thrown, apart from well-specified ISOExceptions

I Transactions are properly used
(do not commit or abort a transaction that was never started, all
started exceptions are also closed)

I Data consistency
(also if a smartcard is “ripped out” during operation)

I Absence of overflows for integer operations

Two studies in this area
(for which some critical parts were verified)

I Demoney (about 3000 lines):
Electronic purse application provided by Trusted Logic S.A.

I SafeApplet (about 600 lines): RSA based authentication applet

OO Design and Deductive Verification of Software CADE-20 109 / 113

Safety Case Studies

Computation of Railway Speed Restrictions

I Software by DBSystems for computing schedules for train drivers:
Speed restrictions, required break powers

I Software was formally specified using UML/OCL (based on existing
informal specification), verification planned

I Program translated from Smalltalk to Java

I Program consists of more than 25 classes

Command Parser for Chemical Analysis Devices

I Software by Agilent Technologies

I Ongoing, Goal: specify parser and verify it

I Parser originally written in C++: reimplementation in MeDeLa, then
(automatic) conversion to Java

OO Design and Deductive Verification of Software CADE-20 110 / 113

Part V

Wrap-Up

OO Design and Deductive Verification of Software CADE-20 111 / 113

Some Current Directions of Research in KeY

I Multi-threaded Java

I Integration of deduction and static analysis

I Counter examples

I Symbolic error propagation

I Automating of Induction

I Modular verification

I Verification of MISRA C

I Proof visualization, proving as debugging

Extension of dynamic logic (fixpoints, global induction)
Granularity of concurrency model
JCSP implementation ready as prototype

OO Design and Deductive Verification of Software CADE-20 112 / 113

Some Current Directions of Research in KeY

I Multi-threaded Java

I Integration of deduction and static analysis

I Counter examples

I Symbolic error propagation

I Automating of Induction

I Modular verification

I Verification of MISRA C

I Proof visualization, proving as debugging

Mutual call of analyser/prover, common semantic framework
Implementation of static analysis in theorem proving frame
Replacing loops with generic proof of body
Abstraction of verified program on-the-fly

OO Design and Deductive Verification of Software CADE-20 112 / 113

Some Current Directions of Research in KeY

I Multi-threaded Java

I Integration of deduction and static analysis

I Counter examples

I Symbolic error propagation

I Automating of Induction

I Modular verification

I Verification of MISRA C

I Proof visualization, proving as debugging

Generate counter example from failed proof attempt
Counter example search as proof of uncorrectness

OO Design and Deductive Verification of Software CADE-20 112 / 113

Some Current Directions of Research in KeY

I Multi-threaded Java

I Integration of deduction and static analysis

I Counter examples

I Symbolic error propagation

I Automating of Induction

I Modular verification

I Verification of MISRA C

I Proof visualization, proving as debugging

Symbolic error classes modeled by formulas
Error injection by instrumentation of JavaCardDL rules
Symbolic error propagation via symbolic execution

OO Design and Deductive Verification of Software CADE-20 112 / 113

Some Current Directions of Research in KeY

I Multi-threaded Java

I Integration of deduction and static analysis

I Counter examples

I Symbolic error propagation

I Automating of Induction

I Modular verification

I Verification of MISRA C

I Proof visualization, proving as debugging

Simplification of induction claim by code-driven decomposition
“Rippling” applied to updates guides generalization

OO Design and Deductive Verification of Software CADE-20 112 / 113

Some Current Directions of Research in KeY

I Multi-threaded Java

I Integration of deduction and static analysis

I Counter examples

I Symbolic error propagation

I Automating of Induction

I Modular verification

I Verification of MISRA C

I Proof visualization, proving as debugging

Generation of proof obligations ensuring “global correctness”
Reduce proof effort by analysing modifiable locations

OO Design and Deductive Verification of Software CADE-20 112 / 113

Acknowledgments

Funding Agencies:

I Deutsche Forschungsgemeinschaft (DFG)

I Deutscher Akademischer Auslandsdienst (DAAD)

I Vetenskapsradet (VR)

I VINNOVA

I Stiftelsen för internationalisering av högre utbildning och forskning
(STINT)

The many students who did a thesis or worked as developers

Alumni:
W. Menzel (em.), T. Baar (EPFL), A. Darvas (ETH), M. Giese (RICAM)

Colleagues who collaborated with us:
J. Hunt, K. Johanisson, A. Ranta, D. Sands

OO Design and Deductive Verification of Software CADE-20 113 / 113

