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PREFACE TO THE FIRST EDITION

This document describes an annotated sublanguage of Ada 95, intended for use in safety-critica
applications.

SPARK 95 is described here in terms of the complete Ada 95 language: this document is intended to be
read in conjunction with the International Standard “Ada 95 Reference Manual” , ANSI/ISO/IEC
8652, and in Part 2 of this document, the section numbers correspond to those of the Ada 95 manual.
The document is not intended to be a tutorial on the spark language, as this purpose is admirably
served by the book by John Barnes (Barnes, 2003).

Following the overview of seark in Part 1, Part 2 catalogues the differences between spark 95 and
Ada 95. Part 3 gives the collected syntax of sPark 95, laid out in a manner which facilitates its
comparison with the Ada syntax. Throughout this document, a margina marking * signals a
modification of an Ada syntax rule, and the marking + indicates that a syntax rule belongs to sPark
only.

The firgt version of sPark (based on Ada 83) was produced at the University of Southampton (with
MoD sponsorship) by Bernard Carré and Trevor Jennings. Subsequently the language was
progressively extended and refined, first by Program Validation Limited and then by Praxis Critical
Systems Ltd.

The authors welcome comments on spARk from all interested parties.

Gavin Finnie
Praxis Criticd Systems, October 1999

PREFACE TO THE SECOND EDITION

The second edition of this document accompanies release 6.0 of the seark Examiner. The well-
established policy of making incrementa and backwards-compatible enhancements to the SPARK
language has been followed with this release. There are changes both to the compilable core of
sPARK and its annotation language; the latter has been extended to simplify the description of
interactions between a spAark program and its external environment.

We continue to welcome comments on spark from all interested parties

SUMMARY OF MODIFICATIONSLEADING TO THE SECOND EDITION
Modular types (Section 3.5.4) Modular types are now included in sPark with 3 restrictions:
1 TheModulus of atype must be a positive power of 2.
2 Subtypes of modular types are not permitted.
3 Unary arithmetic operators are not permitted.
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Exit statementsand loop labels(Section 5.7)  Loop statement identifiers may now appear in
exit statements; however, the restriction that the exit may apply only to the most closely enclosing
loop remains.

Global modes on function subprograms (Section 6.1.2) For consistency with procedure
globals and with parameters, the mode in may now appear in function global annotations.

Predefined types (Section A.1) The following types are now regarded as predefined in
package Standard: Duration, Long_Integer and Long_Float. The latter two definitions are for the
convenience of users whose compiler also provides them.

External Variables (Section 7) Modes in or out can now optionally appear in own variable
and refinement clauses. The presence of amode indicates that the own variable is regarded as
providing a channg of communication between the spARk program and its environment. Such
variables are called external variables. External variables are treated as being volatile (i.e.
referenced values may change without an intervening update and repeated updates are not regarded
asineffective). The use of external variables greatly simplifies the capture of desired system
behaviour in spArRk annotations.

Null Derives(Section 6.1.2) A new form of the derives annotation can be used to show that no
export within the visible part of a spArRk program is derived from the imports of that subprogram. For

example: --# derives null fromX, Y, Z; Thenull derivesform isespecidly useful in
conjunction with external variables of mode in.

Peter Amey
Praxis Critical Systems, September 2001

PREFACE TO THE THIRD EDITION
The third edition of this document accompanies release 6.2 of the seark Examiner.
We continue to welcome comments on spark from al interested parties

SUMMARY OF MODIFICATIONSLEADING TO THE THIRD EDITION
Tagged types (section 3.9) These are now permitted in sPARK under certain restrictions.
Modular types(Section 3.5.4) Subtypes of modular types are now permitted.

Type assertion annotation A new class of annotation—the type assertion—has been introduced
with thisrelease. This annotation allows the base type of a signed integer type declaration to be
indicated to the Examiner. This supplies additional useful information to the Examiner when
generating V Cs to show the absence of Overflow_Check.
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Configuration file The configuration file is a new mechanism, which replaces the
existing target-data file mechanism, that allows the detail of packages Standard and System to be
given to the Examiner.

Roderick Chapman
Praxis Critical Systems, October 2002

PREFACE TO THE FOURTH EDITION

The fourth edition of this document accompanies Release 7.1 of the spark Examiner. Release 7.0,
and later versions, provide, for the first time, support for concurrent programming in spark. Full
details of the concurrency extensionsto spARrk are described in the manual SPARK - The SPADE
Ada 95 Kernel (including RavenSPARK). Concurrency featuresare not included in this manual

which describes only sequential spark.. We continue to welcome comments on sPARk from all
interested parties.

SUMMARY OF MODIFICATIONSLEADING TO THE FOURTH EDITION

Mogt of the effort involved in Release 7.0 of the spark Examiner has been focussed on implementing
the Ravenscar Profile to support concurrent programming in sPark ; there were no changes to the core
sequential sPaRK language. Release 7.1 provides private subprograms and relaxes restrictions on the
use of array elements as actual parameters.

Some modest Examiner changes have been made as follows:

Duration. Duration wasinitialy not a predefined identifier in spark because the absence of any
form of tasking made it irrelevent. It was later added to the language at the request of some users,
unfortunately, this proved a problem for other users who were re-using the identifier for other
purposes. To satisfy both groups, the predefinition of Duration is now controlled by a command line
switch.

Proof involving unconstrained parameters. Significant improvements have been made to proof
involving calls to subprograms with unconstrained formal parameters.

Full details of changes leading to Release 7.1 of the Examiner can be found in the Examiner Release
Note.

Peter Amey
Praxis Critica Systems, October 2003
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PREFACE TO EDITION 4.3
Edition 4.3 of this document accompanies release 7.2 of the spark Examiner.

SUMMARY OF MODIFICATIONSLEADING TO EDITION 4.3
Full-range subtypes of non-tagged records are now alowed in SPARK.

Declarations of constants of type String are now alowed in SPARK without requiring a declaration
of aconstraining string subtype.

Instantiations of the predefined generic function Unchecked Conversion are now alowed in
SPARK.

Some significant improvements to the Examiner have been made with this release:

The VC Generator has been improved to generate hypotheses for local variables being within their
designated subtype. VC Generation of for loops that have a dynamic range has also been
implemented. Finally, the Examiner can generate proof rules for composite constants under the
control of both a new command-line switch and a new annotation. Please see the release 7.2 release
note for more details of these, and other, changes.

Rod Chapman
Praxis High Integrity Systems, December 2004

PREFACE TO EDITION 4.6
Edition 4.6 of this document accompanies release 7.3 of the sPar< Examiner.

SUMMARY OF MODIFICATIONS LEADING TO EDITION 4.6
SPARK now alows a body to have a hidden exception handler part.
The rules regarding the use of the ‘ Succ and ‘ Pred attributes have been clarified.

Significant improvements to the Examiner and Simplifier are included with this release. For a
summary, please see the accompanying toolset Release Note.

Rod Chapman
Praxis High Integrity Systems, December 2005

SUMMARY OF MODIFICATIONSLEADING TO EDITION 4.7



SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page vi

SPARK now allows the use of obsolete Ada 83 floating-point attributes in SPARK 95 mode.

Robin Neatherway
Praxis High Integrity Systems, October 2006
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The Rationale of SPARK

[ Here we present unchanged the Rationale from the original spark! Report. Subsequent devel opment
of seark has rendered certain parts of it inaccurate, and these are indicated in this Edition by

footnotes referring to additional notes which immediately follow the Rationale. |

“ It is not too late! | believe that by careful pruning of the Ada language, it is il
possible to select a very powerful subset that would be reliable and efficient in
implementation and safe and economic in use. The sponsors of the language have
declared unequivocally, however, that there shall be no subsets. This is the strangest
paradox of the whole strange project. |f you want alanguage with no subsets, you must
make it small. ”

From Professor Hoare's 1980 ACM Turing Award Lecture.

TERMSOF REFERENCE

The designers of programming languages are presented with many, often conflicting, requirements,
support for high-integrity programming is only one of them. As an extreme example, in the case of
‘C’ - amed at convenience of use and efficiency for low-level systems programming - we must
suppose that safety was not a major preoccupation. The design of Ada was obvioudy more
professional, but its expressive power and generality were only achieved at great cost in complexity.

Here our requirements of a programming language are quite limited, in terms of its applicability, but
very srict. We are mainly concerned with software to perform system control functions. The
integrity of the software is vital: it must be verifiable. We can assume that the programs are to be
developed by professionals, supported by whatever tools are available, and that if necessary
substantial resources will be expended in achieving high integrity of software prior to its application;
but the problems involved in proving its fithess of purpose must be tractable, in practical terms.

We assume that software is to be developed systematically, through the construction of the following
objects:

A definition of regquirements.

A program specification.

A program design.

A program text, written in the chosen high-order language.

A trandation of this text into binary code, for a particular processor.

1 Note: The SPARK programming language is not sponsored by or affiliated with SPARC International Inc.
and is not based on SPARCO architecture.
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It should be demonstrable— by logica reasoning — that each object hereis functionally consistent
with its “parent”: that the specification meets the defined requirements, that the design conforms to
the specification, and so on.

Some issues — such as the problems of requirements capture, the well-foundedness of different

specification methods and their applicability — cannot be addressed here, although of course they are
quite asimportant as the rest. But clearly, to assess the value of a programming language for safety-
critical work we must consider much more than the possible abuses of goto statements and pointers.
The extent to which a formal specification, in VDM or ‘Z’ for instance, can be steered towards a
design appropriate for implementation in the language, and the ease with which a design can be
refined into program code, are important - both to help obtain the functional consistency we require,
and to facilitate its verification. Well-tried, effective tools must exist to support program
development, and a trustworthy compiler is essential.

As well as these logical considerations we aso have sociological ones. the genera intdligibility of
the language, the size of the community of its users, their mastery of the technology at their disposal.
All these matters must eventually be taken into account.

THE NEED FOR A * SAFE SUBSET” OF ADA

The Ada language in its complete formis not suitable for rigorous program development, for two
closdly-related reasons:

Inadequacy of its definition: The first requirement of a language for rigorous programming is that
its definition be precise, and logically coherent. The language itsdf must not contain any
ambiguities which would alow the congtruction of programs of uncertain meaning. The
definition must also be complete.

In general the initia conception of a programming language is largely informal, and usudly its
first definition is not entirely coherent. However, if the language has sufficient merit it may
undergo a process of refinement. The discovery of its deficiencies and the best ways of
overcoming them may come partly through practical experience of using it, partly through
attempts to congtruct its forma definition. But for high-integrity work a formal definition of the
language must eventually be established, as the essential basis of its rigorous use.

The officia definition of Adais not entirely clear or logicaly consistent; despite the enormous
importance attached to the language, it till has serious defects (McGettrick, 1982; Goodenough,
1987). A large amount of work has been done on the formal semantics of Ada, ever since 1980
(Bjorner and Oest, 1980), but as far as we know no satisfactory formal definition hasyet been
completed. For these reasons formal verification may be impossible, and we can never be sure of
the integrity of compiled code.

Excessive complexity: We bdlieve that, in trying to shift the burden of programming from the
programmer to the compiler as far as possible, the designers of Ada have been much too
ambitious. Evenif al the problems of logical coherence of the language were overcome in some
way, the programming extravagances which it alows would still make correctness proofs very
difficult, even impossible to establish in practice. We again quote from Hoare's Turing Award
Lecture (Hoare, 1980):
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“The original objectives of the language included reliability, readability of programs, formality of
language definition, and even simplicity. Gradually these objectives have been sacrificed in
favour of power, supposedly achieved by a plethora of features and notational conventions, many
of them unnecessary and some of them, like exception handling, even dangerous. We relive the

history of the design of the motor car. Gadgets and glitter prevail over fundamental concerns for
safety and economy.”

These problems are obvioudly related: it is the richness of Ada which makes its formalisation so
difficult. Even if asound formal definition were produced, the language it defined could not be the
Ada of the Reference Manual, since the latter has logical defects. And athough formalisation might
move some of the arguments about the language onto a more logical terrain, it could not resolve them
satisfactorily: the enormous complexity of the formal definition would preclude the social processes
essentia to its judtification and refinement (DeMillo et d., 1979).

Unfortunately we cannot expect Ada to evolve significantly in the direction we would wish. Any
features, once offered, are hard to take away. Besides, there is a mgjor inhibiting factor, well
summarised by Goodenough (1987):

“Almost all languages go through revisions as a result of initial implementation. Eventually
languages tend to converge to a fairly standard interpretation which gets enshrined in a standard.
However in the case of Ada we had the standard almost before the implementations, so that problems
are coming to light after standardisation rather than before.”

The Ada Language Maintenance Committee from time to time approves “Ada commentaries’ which
attempt to resolve “issues’ arising from the Reference Manual; afew of these effectively make small
changes to the officia definition. The language is to undergo a major review in 1988, but in view of
the enormous investments which have already been made and the Language Maintenance
Committee's policies to date, we cannot anticipate any radical simplifications. For this reason we do
not believe that the complete Ada language will ever be appropriate for safety-critical programming.

On a much more positive note, Ada has some very desirable features, not possessed by any other

language likely to have widespread use. The designers of Ada were greatly influenced by experience
with Pasca and its derivatives, and had the advantage of hindsight. At the centre of Adais the core

of Pascal, with some minor but neverthel ess valuable improvements (for example in the form of the
case and iterative constructs). Around this Ada has features, enployed in Euclid and Modula for
instance, to alow data abstraction and facilitate systematic program design. Some of these (with
certain restrictions), notably

packages,
private types,
functions with structured values,

thelibrary system,

we regard as essential extensions to Pascal, for the rigorous construction of large programs from
their specifications.

The question which naturally arises is whether it is possible to extract from the complete language a
logically coherent “kernel”, containing those features we require and no more. Sometimes, when a
language is inappropriate for high-integrity work, its foundations are so insecure that the search for a
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safe subset would be pointless; this appliesto FORTRAN and ‘C’ for instance. However we believe
that the core of Adais sound. The contentious issues, the complexity and impediments to formal
definition stem from its more advanced features - such as tasks and exception-handling, to name the
most problematic. As confirmation of this, by 1980 forma definitions had already been produced for

subsets of Ada (Bundgaard and Schultz, 1980; Pederson, 1980), which contained al but its most
troublesome features (principally separate compilation, generics, tasks and exceptions). Even in this

work, “ the main problem in defining the static semantics turned out to be the handling of derived
subprograms and the arranging of a proper model of the scope of predefined operators’ .

We see little merit in derived types?, and consider that overloading of al kinds should be avoided as
far as possible. The following sections describe a kernel which we believe to be coherent, and whose
formal definition should be very much smpler even than the 1980 subset definitions.

THE DEVELOPMENT OF SPARK - GENERAL STRAT EGY

SPADE-Pascal was developed essentialy by excising from 1SO-Pascal those features which were

considered particularly “dangerous’, or which could give rise to intractable validation problems -
such as variant records, and the use of functions and procedures as parameters - and then resolving
the remaining difficulties by introducing “annotations’ (forma comments). A different strategy had
to be followed here, for two reasons. Firstly, whereas | SO-Pascal is a small language, which we had
mostly wanted to retain, Ada is very large and we wished to prune it severely. Secondly, whereas the
forma basis of Pascal had been established, and its defects catalogued in a number of published
papers, Ada is less well understood and the flaws in the language have not been delineated as
precisaly. It therefore seemed essentid to adopt a “constructive” approach initialy, sketching out a
kerndl of required features rather than excising unsatisfactory constructs one by one.

To obtain the expressive power we required, without introducing unnecessary complexity, it was
decided that we should aim to adopt essentially the Pascal core of Ada (athough of course the Pascal
features are not precisely matched in Ada— in fact Adaimproves on some of them), supplemented
by the Ada features mentioned above which support systematic program development (principally
packages, private types, functions with structured values and the library system). This subset was
then refined, by (a) imposing a number of restrictions, and (b) incorporating a system of annotations,
somewhat similar in form to the annotations of SPADE-Pascal (Carré and Debney, 1985) and Anna -
the language for annotating Ada programs developed by Luckham et al (1987). The following
section discusses in some detail our criteria, in the refinement of this subset.

CONSIDERATIONSIN THE REFINEMENT OF THE ADA SUBSET

Logical Soundness

The need for a sound language definition has already been stressed. It isfor this reason that from the
outset we excluded the use of Adatasks3, whose proper formal definition has not yet been achieved.

2 See Additional Note 7
3 See Additional Note 8
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Without a calculus to reason about Ada tasking - which alows extremely complex interactions
between concurrent processes, with a high degree of non-determinism - it should not be employed in
safety-critical systems.

The meaning of a program must be completely determined by its text; it must not be affected by the
manner in which the program is compiled. As an example of a violation of this rule, in full Ada
different lega orders of elaboration of compilation units can give different results. (This
particular problem is overcome in SPARK by the restrictions imposed on variable definitions within
packages and on initidization expressions) Unfortunately, ambiguities are often due not to
particular features, but to their use in combination. We have therefore not attempted to cata ogue the
“problem areas’, but we believe that the language simplifications made below - for a variety of
reasons - together eliminate all the problems of logical coherence.

Complexity of Formal Language Definition

We attach great importance to complexity of formal definition, as a basis for accepting or discarding
language features, because it is a good indicator of the difficulty of reasoning about programs (as
opposed to an informal language definition, which can be of beguiling smplicity). The complexity
of the forma definition of a language also directly determines the complexity of its support tools,
such as compilers, which should themselves be error-free; in choosing aur subset of Ada, we have
aimed to reduce its complexity to such a level that the construction of a correct (formally verified)
compiler would be technically feasible in a reasonable period of time - though in our opinion it
would still be a major undertaking.

Our ultimate concern of course is the fitness of purpose of the binary code version of a program,
executed on a chip. If itsintegrity is vita it would be most unwise to place complete confidence in
the compiler which produced it, however carefully the compiler was written. Another argument for
smplicity of the high-level language therefore is the need for a simple correspondence between
program source code and its compiled version, to allow correctness of the latter to be checked. (We
envisage that a compiler employed for safety-critical work will have, as part of its documentation, a
precise definition of the mapping which it performs; and that the code which it produces will be
“instrumented”, with forma comments, to facilitate its verification. Compilers of this kind are not
yet available, but some are being developed; the potential simplicity of mappings to binary was
therefore taken into account in designing sPARK.)

Analysis of compiled code may be necessary not only because the trandation of program source code
is unreliable but because a program may contain implementation-dependent features, in particular
address clauses or machine code insertions, whose analysis is outside our province but which may
be erroneous. (The sparRk Examiner will accept address clauses, but issue warning messages when it
encounters them. It will also accept procedures consisting of machine code, if their specifications
contain the required descriptive annotations - see Section 6 of Part 2 - but again it will warn the user
of their presence.)

For these reasons we considered the following features of Ada to be undesirable, in the context of
safety-critical programming.

Exceptions, designed for dealing with errors or other exceptional situations, might at first sight seem
very desirable for safety-critical programming. However, it is easier and more satisfactory to write a



SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 6

program which is exception-free, and prove it to be so, than to prove that the corrective action
performed by exception-handlers would be appropriate under al possible circumstances®; if checks
with recovery actions are required in a program, these can be introduced without resorting to
exception handlers, and in genera the embedded code will be easier to verify. Since exception-
handling dso serioudy complicates the forma definition of even the sequential part of Ada we
believe it should be omitted.

The concept of generic units is an interesting one, which does find significant applications in the
Ada Input-Output library. However, it is another feature which seriously complicates the formal
definition of Ada. Also, the code re-usability which it aims to provide is not achieved as easily as
one might imagine: it is till necessary to prove correctness of every ingtantiation of a generic object.
The proofs may be simplified by first establishing some properties of the generic object in abstract
terms (assuming for instance that the operators which it employs obey certain axioms), and then
showing that each instantiation is a valid concrete interpretation. But if the generic unit is non-
trivia, the required proofs may remain non-trivial also. Furthermore, generics cause overloading,
which we are anxious to avoid. We do not believe that, in our application area, the complexity
introduced by generic unitsis justified.

As was mentioned earlier, derived types® which involve the implicit declaration of user-defined
subprograms serioudy complicate the formal definition of Ada, and cause overloading. spARrRk does
not alow the use of derived types other than integer and real types.

All Ada features which require dynamic storage allocation were ruled out, for several reasons. The
specification and modelling of access type manipulations, which can involve diasing, is extremely
difficult; for progranms using access types it may also be very difficult to achieve security (i.e. the
detection of al language violations - see Section 4.5 below), let done verification. Other features
which require dynamic storage allocation such as dynamically constrained arrays, discriminants
and recursion may be less troublesome in this regard, but quite generally, dynamic storage dlocation
makes the problem of verifying compiled code impossibly difficult: for this a simple correspondence
between program variables and memory addresses is essentia. The use of dynamic storage
dlocation is aso dangerous in that it is aways very difficult, and usualy impossible, to establish
memory requirements. In seark al condraints are statically determinable.

A number of other features of minor importance have also been removed, which incur a pendty in
complexity smply to support lazy programming. spAaRk does not alow the use of default
expressions of subprogram parameters, or mixing positional and named parameterswithin the
same subprogram call. Default expressions of record components are also banned.

So far we have considered only the reduction of complexity by the piece-meal elimination of
language features. Further simplifications rely on the use of annotations (whose consistency with
program code will be checked by SPADE tools).

Ada's scope, visibility and overloading rules are extremely complicated; they are very likely to
cause confusion to the programmer and they impede verification quite unnecessarily. In spPark the
notions of scope and visibility are much simpler, the rules concerning the use and reuse of identifiers

4 See Additional Note 1
5 See Additional Note 7
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being essentialy those of SPADE-Pascal. To make this possible we have banned overloading of
character literals, enumeration literals and subprograms, block statements and use clauses, and
restricted the application of renaming declarations.

Any Ada feature which does not appear in sPark can still be employed if the subprogram which

makes use of it has its body hidden by means of a “hide’ directive - see Section 6.3 of Part 2. It is
possible to modd cals of hidden subprograms by employing their annotations (which are
mandatory), but it is impossible to check consistency of these annotations with the code
implementation until code is revealed. The facility for hiding subprogram bodies is intended to be
used principally to support top-down program design; its use to hide undesirable features is
obvioudly not recommended. The sparRk Examiner issues warning messages whenever it encounters
hidden subprogram bodies.

Expr essive Power

The systematic development of a sizeable program involves decomposition of the programming
problem, based on the recognition of useful abstractions. Most familiar is the decomposition of a
programming problem into subproblems, each to be solved separately by independent functional
units, through procedural abstraction.

Using specifications of the procedures for solving the subproblems, we can change the leved of detail
to be considered when we wish to combine them. In effect, procedural abstraction extends the virtual
machine defined by a programming language by adding to it new operations.

Less familiar perhaps, but quite as important to software development, is data abstraction — the
addition to the virtua machine of new kinds of data objects, together with operations to create,
modify, insert and extract information from those objects.

Pascal supports procedural abstraction but not data abstraction. Ada offers a useful improvement to
Pascal's facility for procedural abstraction (by allowing function subprograms to return structured
objects), and it supports data abstraction through packages and private types. This is a most
important contribution to safety in programming, whose inclusion we considered essential.

As with many other features of Ada, we found the rules governing the use of packages too
permissive; we have imposed restrictions which simplify the use clause and reduce the contexts in
which it can be placed®. For purposes of data abstraction it is not necessary o employ package
variables, and we seriously considered the possibility of disallowing these, to avoid possible side
effects. However, the package feature would then lose another of its important applications, in
controlling access to variables; the solution was to render all package variables visibleto SPADE(i.e.
to give them the appearance of global variables) by means of annotations.

To ensure that we had retained all the properties of packages which were essential for our purposes, a
number of VDM and Z specifications (such as the Z specification case studies (Hayes, 1987)) were
implemented in sPArRK. The well-known problems of refinement of specifications were encountered,
but we believe the package features retained, together with our annotations for strengthening
package specifications, form a useful basis for data abstraction.

6 See Additional Note 2
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Security

We say that a programming language is insecure if a program can violate the definition of the
language in any way which it isimpossible, or even very difficult, to detect prior to the program's
execution.

It is important to note the distinction between our view of language security and the conventional
one. It has aways been considered important to detect and report all language violations. However,
until recently language violations (as well as the methods of formal language definition) have been
viewed entirely in terms of the practical capabilities of compilers. errors have been classified as
“compilation errors’ (covering syntactic and “static semantic” errors) and “run-time errors’
(including for instance range violations of values of dynamically-evaluated expressions). The over-
riding concern has been to ensure that language violations are eventually captured; whilst it has been
considered very desirable to detect them at compilation time - and indeed this need is reflected in
many features of Ada - the detection of errors at run-time has been regarded as a tolerable alternative.

In a safety-critical rea-time system, a“run-time error” can be quite as hazardous as any other kind of
malfunction: all language violations must be detected prior to program execution. The distinction
between “compile-time” and “run-time’ errors is losing interest - save to the extent that this
classfication indicates the difficulty of detecting different kinds of language errors prior to program
execution. (Loosely speaking, “compilation errors’ can be detected in the course of compilation by
fast (i.e. polynomiaktime) deterministic algorithms, whereas establishing the absence d “run-time
errors’ such as range errors prior to program execution usualy requires forma proof (German,
1978), which can be much more difficult). The shift in emphasis from staticaly and dynamically
decidable properties to a more genera notion of well-formation of programs, possibly giving rise to
proof obligations in the course of program construction, appears explicitly in recent languages such
as NewSpeak (Currie, 1984) and Verdi (Craigen, 1987; Sadtink, 1987).

The need to detect al language violations prior to run-time was taken into account in the design of
sPARK. Theinsecuritiesin Ada are of severa different kinds, which had to be overcome in different
ways. Here we only indicate the nature of the problems and their solutions; full details will be given
in Part 2.

An important example of an insecurity in Adais the fact that it is possible to employ an illegal order
of compilation, without an indication of this language violation being given. Elimination of this
problem from spAarRk was a direct consequence of our simplification of compilation unit inter-
dependencies, dready mentioned in Section 4.1 above.

Aliasing through parameter passing is undesirable in any programming language, but in Ada it may
cause a program to give different results with different compilers, depending on whether they passin
out parameters by reference or by copying in and copying back. The execution of a program is said
to be “erroneous’ in the Language Reference Manua if its effect depends on the choice of
parameter-passing mechanism, but this language violation cannot usualy be detected. As in
SPADE-Pascal, the mandatory annotations in subprogram declarations together with the rules
governing the choice of actua parameters (see Section 6 of Part 2) will allow the sparRk Examiner to
provide complete protection against diasing through parameter passing, which eliminates the
insecurity mentioned above.

Finally we outline the way in which language violations associated with dynamic semantics (i.e.
“run-time errors’) are to be trapped, prior to program execution, in employing spArRk. With the
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language restrictions imposed above (banning for instance the use of access types) the problem here
reduces to that of range-checking.

It is obvioudly essential to prove that dynamically computed values of expressions to be assigned to
variables or subprogram parameters, or to be employed as array indices, meet their type constraints.
(And of course even where an assignment isto a variable or parameter of type INTEGER, we should
check that the assigned value will aways lie in the range INTEGER'RANGE.) Wherever a range
check is required, the verification-condition generator of the SPARK Examiner will generate theorems
whose proofs (obtained with the help of the SPADE Proof-Checker) establish that the range
constraints are met.

To make check-statements and the associated theorems immediately comprehensible, sPark - like
SPADE-Pascal - does not allow the use of anonymous (sub)types or (sub)type aliasing” (so that all
relevant ranges have simple names, chosen by the program author) and we disallow redefinition of
constant and (sub)type identifiers within their scope. Further restrictions to simplify the generation
and proof of the theorems associated with range-checking -- which is very similar to the process of
program verification in genera — will be outlined in the next section.

Verifiability

For verification purposes, each (package and subprogram) unit of a program is provided with a
specification, which defines the effect of executing its code on its environment. The problem of
verifying a program is thereby reduced to that of separately verifying each of its units (i.e. proving
that the code of each unit is in consonance with its specification): to verify a unit which employs
other units, we only need models of the units which it employs directly - which can be based on their
specifications rather than their code. In this way the verification task remains tractable even for large
programs. Here we consider first those Bnguage issues which are relevant to the separability of
program units for verification purposes, we then consider language features which affect the
smplicity of verification of the units themselves.

Ada supports the notion of separate verification of program units, for instance through the concept of
packages, with their specifications. However, putting the principle into practice required substantial
simplifications to the language. The simplification of scope and visibility rules mentioned above was
considered to be essential for the practical study of the interaction between any subprogram and its
environment. (Global-definitions also help by reducing the set of variables to be considered, in
anaysing any procedure, to those which it employs (directly or indirectly) rather than al those whose
scopes contain the procedure.)) The simplifications of program unit inter-dependencies and
annotations of these units were also found essential, for without them the specifications of program
units would be inadequate for verification purposes. Sde-effects, which would invaidate the
separate analysis of program units, are not allowed in spark: function subprograms cannot have side-
effects (al non-local variables which they employ8 must be passed as parameters), and any other
“invisible’ modifications of variables of global significance (such as assignments to package
variables) must be rendered visible through annotations.

7 See Additional Note 3
8 See Additional Note 4
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With regard to verification of individual units, apart from the restrictions mentioned above a few
minor restrictions oncontrol structure have been found desirable, to facilitate analysis of dl kinds;
they impede programmers very little, since Adaisrich in this respect. In spARk, (1) goto statements
are illegal, (2) exit statements dways apply to their innermost enclosing loops, (3) if an exit

statement contains a when clause then its closest-containing compound statement must be a loop
statement, (4) if an exit statement does not contain a when clause then its closest-containing
compound statement must be an if statement without an else or elsif clause, whose closest-containing
compound statement is a loop statement, (5) a function subprogram contains exactly one return
statement, which must be the last statement in its body, and (6) procedure subprograms do not
contain return statements.

With these restrictions it becomes easy to detect data-flow and information-flow errors, side-effects

and errors such as aliasing errors, as well as other syntactic and “ static semantic” errors. It isaso
guaranteed that code is “reducible’, i.e. that every loop has a single entry point, simplifying the
generation of verification conditions from loop invariants.

Since data-flow errors are easily detected, there is no merit here in initialising all variables explicitly
in their declarations, as is sometimes recommended (Currie, 1984). Indeed, this can involve the
assignment of meaningless initial values, making it difficult to detect failure to perform proper
initializations by data flow analysis and obscuring program proof. Because of this - and to reduce the
num?(g:r of methods of assignment - explicit initializations in declarations are prohibited in
SPARK®,

To simplify formal proof, and render the SPADE Proof Checker as efficient as possible, we associate
a notion of scope with proof rules. These always appear as annotations within packages; to SPADE,
aproof ruleisvisible only inside the package which containsit and - if theruleisin avisible part - in
those places where the package is used. (The proof of correctness of spark programs will be the
subject of a separate report.)

Bounded Space and Time Requirements

In real-time control applications it is essentia that the memory requirements of a program should not
exceed that available. This is one of the reasons why we have removed all language features which

require dynamic storage alocation. All constraints are statically determinable. It may be necessary
to bound the depth of procedure calls and to calculate the space required for these, but this problem
should be tractable.

We have not made any provision to bound execution time, for instance by limiting the number of
iterations around program loops, as has been proposed for NewSpeak. We bdlieve that to ensure that
execution times are satisfactory, bounds on numbers of loop iterations should be obtained by proof
methods, similar in nature to proofs of termination.

OUR ASSESSMENT OF SPARK

In our opinion the language proposed here would be satisfactory for developing highintegrity
software. The Ada subset without annotations would still not be sufficiently secure (because of

9 See Additional Note 5
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possible diasing problems for instance), but with the spark annotations we believe that al language
violations other than range errors could be detected statically, in polynomia time. Range analysis
would inevitably involve proof obligations, but these could easily be generated.

We have not yet constructed a formal definition of the languagel©, but our restrictions have removed
the mgjor difficulties in producing this - in fact the formalisation of sPARK would be on relatively
well-trodden ground, apart from the definition of annotations and their role.

The simplicity of the language implies that tools for static analysis of spark could be relatively
simple and robust. Simplicity of the spark scope and visibility rules, the absence of side effects, and
the “separability” of subprograms would aso make the generation of range validity conditions and
verification conditions relatively straightforward.

Some readers may be dismayed to see so many features of Adaremoved, and fedl that sPaRK is “too
smal”. It is by no means the largest subset of Ada which would be amenable to analysis by the
techniques employed in SPADE, but it is significantly larger than SPADE-Pascal, which has been
found adequate for a substantial number of safety-critical projects. The additional features which
appear in sPARK (such as packages and private types) make programming simpler and safer, rather
than complicate the verification task. Of course, the extent to which Ada must be smplified for
high-integrity programming will be a matter of opinion: our preoccupation with simplicity is based
on experience of what can be achieved with a high degree of confidence in practice, rather than what
can be proved in principle.

Pedagogical considerations also suggest to us that drastic simplifications must be made. Safety-
critical work demands complete mastery of a programming language, so that the programmer can
concentrate on what he or she wants to say rather than struggle with the means of expression. In this
regard, sPARK is presented here as a complicated set of restrictions of a very large language, to alow
direct comparison with full Ada; however, a much lighter description of spark could be produced,
which would make the language as easy to learn as Modula-2. Initia training based on a sPARK
manual, bringing out the essential ideas of high-integrity programming in Ada, might be very
worthwhile.

Finaly, we must stress that the use of an annotated subset such as spark will not solve al our

problems. Forma specification and proof of programs may become alittle easier but it remains very
difficult. And we do not have any formaly-verified Ada compilers. We believe that the
development of a high-integrity separRk compiler is feasible; in the meantime, the use of spark would
mostly employ the relatively well exercised paths through an Ada compiler, and authors of validation
tests could concentrate on the more important features of the language. On those rare occasions
where we have used the term “ safe subset”, for “safe” read “less dangerous’.

ADDITIONAL NOTES ON RATIONALE

Subsequent development of sPark has rendered inaccurate certain parts of the preceding Rationale,
and these are indicated in this Edition by footnotes referring to the following list.

10 see Additional Note 6
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1 The spark Examiner can now generate verification conditions that can be used to prove the
absence of run time errors and show that the program is exception free.

2 Rather than simplifying the use clause and reducing the contexts in which it can be placed,
sPARK does not permit the basic use clause at all. sPAarRk 95 permits the use type clause in
certain contexts.

Subtype diasing is permitted for scalar types and nontagged record types.
Function subprograms are allowed to read non-local variables (but not to update them).
Initializations in declarations are now optiona in sPARK, but the initia values must be constant.

o o1~ W

A forma definition of (most of) the sPark language has now been constructed (Program
Validation Ltd, 1994).

7 searK 95 now includes a subset of tagged types and type extension. Although these are aform
of derived type, additiona seark rules limit the complexity that results.

8 The advent of the Ravenscar Profile now provides a method of constructing concurrent Ada
programs with deterministic behaviour. sPark now optionaly includes support for the
Ravenscar Profile which is fully described in the manual SPARK - The SPADE Ada 95
Ravenscar Kernel (including RavenSPARK).

DEVELOPMENT OF SPARK 95

The original sPARK language was based on Ada 83. The standardisation of Ada 95 provided an
opportunity to review the spARK language to ensure that it remained a true Ada subset and to seek to
exploit beneficia new features of Ada

The sPark 95 language therefore includes not only the necessary changes to sParRk 83 to maintain
compatibility with Ada, but also those mgjor new language features of Ada 95 that are consistent
with the objectives and philosophy of spark. We have aso made some extensions to the language of
SPARK annotations, in order to provide increased flexibility in the use of information flow analysis.

SPARK 95 includes the following major language extensions introduced by Ada 95:
Child packages

The introduction of child packages in Ada 95 greatly assists the development of large
programs in a modular and hierarchic manner. Private child packages in particular are a
sgnificant addition to spARrk since they provide a natural way of achieving the encapsulation
and top-down refinement of program state.

Use Type Clauses

sPARK has a stricter visibility model than Ada and prohibits the use clause. Ada 95 has
introduced the use type clause which makes operators of a specified type directly visible. This
has significant benefits in spark, eiminating the need for (often tedious) renaming of
predefined operators for types from another unit.

Modular Types
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SPARK 95 introduces modular types from Ada95, but with a number of restrictions, most notably
that atype' s modulus must be a power of 2. Modular types are particularly useful in low-level
interfacing code, checksumming and cryptographic agorithms.

Tagged Types

Tagged record type and extensions of those types are included in spArRk 95 with certain
restrictions principally the exclusion of class-wide operations and dynamic dispatch.

Changes to Ada 95 rules for parameters, principally the readability of parameters of mode out have
aso alowed extended global annotations and optional information flow anaysis.

In sPARK 83 every procedure subprogram must have a derives annotation which firstly identifies its
imports and exports (this information being needed for language conformance checking and data
flow analysis) and secondly states the dependency relations between those imports and exports (this
information being needed for information flow anaysis).

In sPARK 95, the form of the global annotation for a procedure has been extended so that optionally a
mode (n, out or in out) may be specified for each global. Along with the modes of formal
parameters, this information then fully identifies imports and exports.

Theresult isaclearer separation in sPARK between the annotations required for language security and
those required for deeper anayss, giving the user more flexibility. It means that the derives
annotation and information flow analysis are no longer mandatory. Selected parts of a SPARK
program can then be analysed in such a way that full language conformance checking and data flow
analysis are performed but full information flow analysisis not carried out.

DEVELOPMENT OF RavenSPARK

The development of RavenSPARK is described in the manual SPARK - The SPADE Ada 95
Ravenscar Kernel (including RavenSPARK).
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Specification of SPARK

This section catal ogues the differences between spark 95 and Ada 95. Anything not mentioned here
isthe samein spARK 95 asit isin Ada 95.

SPARK 95 is a sub-language of Ada 95, supplemented with annotations (forma comments). Since
annotations always begin on each line with the Ada comment symbol “-", al sPARk programs
comply with the Ada standard.

The section numbers used here correspond to those of the International Standard “ Ada 95 Reference
Manual”, ANSI/ISO/IEC 8652, January 1995. We shall refer to this language reference manual as

the Ada LRM. The context-free syntax of the spark language is described in the same form asin the
Ada LRM; syntax rules marked with an asterisk (*) are variants of rules of standard Ada and those

marked with a plus (+) are additiona rules. Section Il of this Report contains a collected syntax of
SPARK.
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LEXICAL ELEMENTS
Numeric Literals

Based Literals
Based red literals shall not be employed.

*  based_literal ::=
base # based_numeral # [exponent]
base ::= numeral
based_numeral ::=

extended_digit { [underline] extende d_digit }
extended_digit ::=digit | A|B|C|D|E|F

Comments

In sPARK, if the first two adjacent hyphensin aline are immediately followed by a sharp symbol (#),
then these symbols are considered to be the start of an annotation (see Section 2.11), which
influences the legality of a sPARK program.

Pragmas

Pragmas are only alowed at the following places in aspark program:
a any place where a declaration or a statement would be allowed;
where a body would be allowed in a declarative part;
between a context clause and its following library unit or secondary unit;
at any place where a compilation unit would be allowed.

The presence or absence of a pragma, other than pragma Elaborate Body and pragma Import, has no
effect on the legality of a spaRk text. The pragma Elaborate Body is discussed in Section 10.2.1 and
the pragma Import in Annex B.1.

Reserved Words

In addition to the reserved words of Ada, the identifierslisted below are reserved words in sPARK.

assert from inherit own
initializes
check global invariant post
pre
hide

derives hold main_program some
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Further identifiers are reserved for use by certain spark language tools (see Annex M) and should not
be used if generation of verification conditionsis required.

Allowable Replacements of Characters
sPARK employs standard characters; replacement characters shall not be used.

Annotations

In sPaRrK, if the first two adjacent hyphens in a line are immediately followed by a sharp symbol
(#11), then these symbols and al subsequent symbols in the line, up to the next pair of adjacent
hyphens (if such a pair is present), form part of an annotation. An annotation can extend over any
number of lines, but every non-blank continuation line must begin (after any leading spaces) with the
three characters - - #.

Like other kinds of Ada comments, spARk annotations will be ignored by an Ada compiler.
However, a seark annotation is a forma statement, which conveys information to the sPark
Examiner.

Some examples of annotations are given below.
--# global in A B, G
--# derives A fromB, C

--# gl obal out CurrentSynbol, I|nput; -- Comrent enbedded
--# derives CurrentSynbol fromlnput; -- in an annotation.

The inclusion of the following kinds of annotations is imposed by certain language rules of sPARK:

global definitions (see Section 6.1.2)
dependency relations (see Section 6.1.2)
inherit clauses (see Section 7.1.1)
own variable clauses (see Section 7.1.3)
initialization specifications (see Section 7.1.4)
refinement definitions (see Section 7.2.1)
main program annotations (see Section 10.1.1)

The presence or absence of such annotations influences the legality of a searRk program.

11 To maximise compatibility with other software tools, the SPARK Examiner allows the annotation
introduction character to be defined by the user
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DECLARATIONSAND TYPES

Declar ations

SPARK does not have declarations associated with discriminants,tasks, generics or exceptions, which
are not alowed in the language.

Subprogram declarations and package declarations are not considered to be basic declarations in
SPARK, but subprogram declarations are nevertheless still permitted in the visible and private parts of
packages (see Section 7.1), and package declarations are still permitted in declarative parts (see
Section 3.11). Subprogram declarations are also permitted in declarative parts when immediately
followed by pragma Import (see Sections 3.11 and B.1). spark does not have abstract subprogram
declarations.

Renaming declarations too are not considered to be basic declarations in sPark. They are till
permitted in the visible parts of packages (see Section 7.1), and in declarative parts (see Section
3.11), but are subject to restrictions in gpplication (see Section 8.5).

*  basic_declaration ::=

type_declaration | subtype_declaration
| object_declaration | number_declaration
defining_identifier ::= identifier

SPARK does not permit an enumeration literal to be declared with a character literal as its name (see
Section 3.5.1), nor afunction to be declared with an operator symbol as its name (see Section 6.1).

Typesand Subtypes

The following classes of types are all excluded from spark: decimal fixed point , access, task and
protected.

Type Declarations

Type declarations and definitions are restricted to those types which are supported by searx. Hence
there are no incomplete type declarations, discriminant parts, task type declarations, protected type
declarations, access type definitions or derived type definitions other than type extensions of tagged
record types.

*  type_declaration ::=
full_type_declaration |
private_type_declaration |
private_extension_declaration
*  full_type_declaration ::= type defining_identifier is type_definition ;

*  type_definition ::=
enumeration_type_definition |integer_type_definition
| real_type_definition | array_type_definition
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| record_type_definition | modular_type_definition
| record_type_extension

+ record_type_extension ::= new type_mark with record_definition ;

Subtype Declaraions
SPARK does not have discriminant constraints, digits constraints or delta constraints.

subtype_declaration ::=
subtype defining_identifier is subtype_indication ;
subtype_indication ::= subtype_mark [ constraint ]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint
*  scalar_constraint ::= range_constraint
*  composite_constraint ::= index_constraint

All constraints shall be statically determinable in sPaRK.

If the subtype indication has no congtraint, then the given type mark must denote a scalar type or a
record type. Thus an Ada subtype declaration of the form

subtype Tl is T2;

isonly alowed in sParK if T2 denotes a scalar subtype or arecord subtype. In the former case, it may
be regarded as equivdent to

subtype Tl is T2 range T2'First .. T2'Last;
A subtype indication for a Boolean subtype must not include a constraint, since only full-range
Boolean subtypes are permitted in sPARK.
Objects and Named Numbers

In sPARK, the result of evaluating a function call or an aggregate is not considered to be an aobject.
Together with the absence of certain language constructs in sPARK, this means that an object is
restricted to being one of the following:

the entity declared by an object declaration;
a component of another object.
Similarly, the following (and no others) represent constants in sPARK:
an object declared by an object declaration with the reserved word constant;
aforma parameter of modein;
aloop parameter;
a selected component or indexed component of a constant.
The only indefinite subtypesin sPARK are unconstrained array subtypes.
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Object Declarations
sPARK and Ada object declarations differ in the following respects. In sPark,

1 In both constant and variable declarations, the nominal subtype shall be given by a subtype
mark and shall not be unconstrained. (The only exception to this is the admission of
declarations of constants of type string).

There are no aliased objects.
There are no single task declarations or single protected declarations.
The expression initializing an object shall not contain any of the following constructs:

a name denoting an object which has not been declared by a constant or named number
declaration;

afunction cal which is not a call of a predefined operator or attribute;
an indexed component;
a selected component whose prefix denotes a record object.

*  object_declaration ::= defining_identifier_list : [ constant ] subtype_mark [ := expression ] ;
defining_identifier_list ::= defining_identifier { , defining_identifier }

Rule (1) above prevents the declaration of objects of an anonymous nominal subtype. For instance,
in Adathe following declaration would be valid:

Index : Integer range 1 .. 10;
Here the object | ndex has been declared with an anonymous subtype of Integer. In spaRrk the
declaration of | ndex would be of the form:

subtype I ndex_Range is Integer range 1 .. 10;
I ndex : Index_Range;

Furthermore, since spARK reguires the nominal subtype to be constrained, the actual subtype of an
object declared by an object declaration is dways the same as its nomina subtype and the object is
only ‘constrained by itsinitia value' in the case of constant string declarations.

Rule (4) above means that an initiad value assigned by an object declaration is aways statically
determinable in sPARK.

Derived Typesand Classes

sPark does not have derived type definitions other than record type extensions. Nevertheless,
numeric types are still considered to be implicitly derived from a corresponding root numeric type
(see 3.5.4 and 3.5.6).

Derivation Classes

sPARK has no class-wide types, but does have the implicitly defined universal types for the integer,
real and fixed point classes.
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Scalar Types

In sPARK, the range in a range condtraint shall be static. Furthermore, no static range shal be a null
range, i.e. the upper bound of a static range shall be greater than or equal to the lower bound of the
range.

*  range_constraint ::= range static_range
range ::= range_attribute_reference
| simple_expression .. simple_expression

sPaRK does not have the following attributes: ‘Image, 'Wide_Image, 'Wide Vaue, 'Wide Width,
‘Width, 'Vaue.

The attribute reference SBase (for a scalar subtype S) is alowed only as the prefix of the name of
another attribute reference: for example, SBase'First.

In sPARK, the attributes 'Succ and 'Pred are not defined for Real types nor the type Boolean.

Enumeration Types

In sPARK, enumeration literals are not regarded as parameterless functions, but simply as names
denoting the distinct values of the associated enumeration type.

Enumeration literals shall not be overloaded, i.e. the same enumeration literal shall not occur in two
enumeration type definitions which are both directly visible at any point.

Since the character literals belong to the enumeration type Character in package Standard, character
literals cannot be used as enumeration literals in a user-defined enumeration type definition.

enumeration_type_definition ::=
(' enumeration_literal_specification { , enumeration_literal_specification } )
*  enumeration_literal_specification::= defining_identifier

Character Types
User-defined character types are not permitted in sPARK .
Thetype Wide_Character is not predefined in sPARK.

Boolean Types
In sPARK, the type Boolean is still considered to be predefined as

type Boolean is ( False, True );
However the ordering operators (see Section 4.5.2) are not defined for Boolean types.

Integer and Modular Types

* integer_type_definition ::= signed__ integer_type_definition



355

3.5.6

35.7

359

3.6

SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 21

signed_integer_type_definition ::=
range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_simple_expression

Although spaRrRk does not have derived type definitions, an integer type is still considered to be
implicitly derived from root_integer in sPar. Therefore, al the predefined integer operators and
basic operations are applicable to the new type.

Modular types are alowed wit h the following restrictions:
The Modulus of atype must be a positive power of 2.
Unary arithmetic operators (unary -, +, abs) are not permitted. The unary “not” operator is
allowed, as are dl binary arithmetic and logical operators.
Operations of Discrete Types
The operations of the enumeration type Boolean include the predefined equality and inequality
operators, but not the ordering operators nor the attributes 'Pos and 'Val.
Real Types
real_type_definition ::= floating_point_definition | fixed_point_definition

Although spaRrk does not have derived type definitions, real types (both floating-point and fixed-
point) are ill considered to be implictly derived from root_real. Therefore, the predefined
operators and basic operations of such types are still available in sPark. In addition, many of the

attributes that Ada associates with floating-point and fixed-point types are incorporated in sPARK (see
Appendix A).

It is important to note that the real types provide only approximations to the real numbers, and that
both floating- point and fixed-point arithmetic are implementati on-dependent.

Floating Point Types
In sPARK, the expression specifying the requested decimal precision shall be a simple expression.
*  floating_point_definition ::=
digits static_simple_expression [ real_range_specification ]
real_range_specification ::=
range static_simple_expression .. static_simple_expression
Fixed Point Types
sPaRK does not have decimal fixed point types and hence has no decimal fixed point definitions.
In sPARK, the expression specifying the delta of a fixed point type shall be a sinple expression.

*  fixed_point_definition ::= ordinary_fixed_point_definition
* ordinary_fixed_point_definition ::=

delta static_simple_expression real_range_specification
Array Types

sPARK and Ada array type definitions differ in the following respects. In sPARK,
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1 A discrete subtype definition shall be a subtype mark only, and not specified in terms of an
anonymous subtype.

2 A component definition shall be a subtype mark only, and not specified in terms of an
anonymous subtype.

3 A component definition shall not contain the reserved word aliased

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition
unconstrained_array_definition ::=
array (index_subtype_definition { , index_subtype_definition } ) of
component_definition
index_subtype_definition ::= subtype_mark range <>
constrained_array_definition ::=
array (discrete_subtype_definition { , discrete_subtype_definition } ) of
component_definition
*  discrete_subtype_definition ::= discrete_subtype_mark
*  component_definition ::= subtype_mark

Rules (1) and (2) above, together with the restrictions on object declarations, prevent the occurrence
of anonymous subtypes in declarations of array objects. For instance, in Ada a onstrained array
variable might be declared as follows:

Upper _Case_Table : array (1 .. 10) of Character range 'A" .. 'Z
whereasin spARK this variable declaration would take the following form:

subtype | ndex_Range is Integer range 1 .. 10;

subtype Capital _Letter is Character range 'A" .. 'Z';

type Upper_Case_Array is array (lndex_Range) of Capital _Letter;
Upper _Case_Tabl e : Upper_Case_Array;

These rules also prevent the use of anonymous subtype array constants. Thus in SPARK an array
(variable or constant) must belong to a named subtype.

Index Congtraints and Discrete Ranges

sPARK and Adaindex constraints and discrete ranges differ in the following respects. In sPark,

1 Anindex constraint shall be specified by subtype marks only, and not in terms of aronymous
subtypes.

2 Inthe spArRk grammar, an index constraint is not defined in terms of discrete ranges, but the
latter are still used elsawhere. It will be noted, from the definition below, that al discrete
ranges are static in sPARK.

* index_constraint ::= (discrete_subtype_mark { , discrete_subtype_mark } )
*  discrete_range ::= discrete_subtype_indication | static_range

Thus, whereas an acceptable Ada declaration for an array variable might be of the form



SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 23

Ten_Characters : String(l .. 10);
in sPARK the same object would be declared as follows:

subtype I ndex_Range is Integer range 1 .. 10;
subtype String_10 is String(lndex_Range);
Ten_Characters : String_10;

36.3 String Types
The type Wide_String is not predefined in sPARK.
String literas are only compatible with the unconstrained array type String.

The concatenation operator, ‘&’, is defined for type String (though not for other one-dimensional
array types), but its use is severely restricted (see Section 4.5.3).

The ordering operators <, <=, >= and > are defined for type String but not for any other one-
dimensiona arrays.

In sPaRrK, al subtypes of String shall have a lower index bound equal to 1.

3.7 Discriminants

Discriminants are not supported in SPARK.

38 Record Types
spARK and Ada record type definitions differ in the following respects. In spARK,
1 arecord type definition shall not contain the reserved words abstract or limited
arecord definition cannot be null record unless it is tagged!?;
a component list cannot have a variant part;
a component list cannot be the reserved word null unless the record is tagged;
a component item cannot be a representation clause;

o o1~ WD

a component declaration cannot have a default expression;

*  record_type_definition ::= [tagged] record_definition
*  record_definition ::=

record

component_list

end record | null record
*  component_list ::= component_item { component_item } | null
*  component_item ::= component_declaration
*  component_declaration ::=

defining_identifier_list : component_definition ;

12 Note that atagged null record serves only as a basis for type extension; direct use of the null record is not
possible.
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Rules (2) and (4) above mean that there are no untagged null records in sPARK.

Since a component definition must be a subtype mark (see 3.6), arecord component cannot have an
anonymous subtype.

381 Variant Parts and Discrete Choices

Variant parts are not supported, but discrete choices are used in aggregates and case statement
aternatives.

In sPARK, the syntactic category discrete_choice differs from Adain the following respects:

1
2

*

an expression as a discrete choice shall be a smple expression and shall be static;

the category does not include the choice others, which is instead directly incorporated into the
syntax for array aggregates (Section 4.3.3) and case statements (Section 5.4).

discrete_choice_list ::= discrete_choice { | discrete_choice }
discrete_choice::= static_simple_expression | discrete_range

39 Tagged Typesand Type Extensions
Tagged types and type extensions are subject to the following additiona rules:

1
2
3

9
10

Abstract types may not be used.
Controlled types may not be used.

Tagged types and type extensions may only be declared in the specification of library unit
packages.

At most one tagged type or type extensionmay be declared in any package.

A subprogram declaration may not have the same name as a potentialy inheritable
subprogram unless it successfully overridesiit.

Actua parameters matching formals of tagged types must be objects (or ancestor type
conversions of objects) not genera expressions.

The operand of an ancestor type conversion must be an object (not an expression).

When completing a private extension the type named in the private part must be exactly the
same as that named in the visible part (Ada requires only that it has to be derived from the
sameroot). Thisissmply amatter of smplicity and clarity.

The ancestor part of an extension aggregate may not be a type mark.

The primitive operations of atagged type or type extension do not include functions that return
the tagged type: i.e. afunction result may not be a controlling operand.

Note also that spark prohibits class-wide operations including dynamic dispatch (equivaent to
pragma Restrictions (No_Dispatch) in RM H.4 (19).



3.10

3.11

SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kerndl Issue4.7

(excluding RavenSPARK) Page 25

Access Types

Access types are not dlowed.

Declarative Parts

Declarative partsin spark and Ada differ in the following respects. In spARK,

1

subprogram declarations are not alowed in a declarative part (except when immediately
followed by pragma Import - see Annex B.1), but subprogram bodies are permitted;

there are restrictions on the position of renaming declarations (which are not basic declarations
iN SPARK);

use clauses are not basic declarative items in sPARK, but the use type clause is permitted in an
embedded package declaration (see following syntax).

declarative_part ::=
{ renaming_declaration }
{ declarative_item | embedded_package_declaration
| external_subprogram_declaration }
declarative_item ::= basic_declarative_item | body
basic_declarative_item ::=
basic_declaration | representation_clause
embedded_package_declaration ::=
package_declaration
{ renaming_declaration | use_type_clause }
external_subprogram_declaration ::=
subprogram_declaration
pragma Import ( pragma_argument_association, pragma_argument_association
{, pragma_argument_association }) ;
body ::= proper_body | body_stub
proper_body ::= subprogram_body | package_body



SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 26

4 NAMESAND EXPRESSIONS

4.1 Names
spARK and Ada names differ in the following respects. In sPARK,
1 character literas, operator symbols and type conversions are not names,
2 dicesare not allowed,
3 thereareno (explicit or implicit) dereferences.

*  name ::= direct_name
| indexed_component
| selected_component
| attribute_reference
| function_call
*  direct_name ::= identifier
*  prefix ::= name

sPARK excludes most whole-array operations on unconstrained array objects, in order that rules
relating to index bounds may be statically checked. Consequently, the name of an unconstrained
array object (formal parameter) shall only appear in the following contexts:

1 asthe prefix of an attribute reference;
2 asthe prefix of an indexed component;

3 asan actua parameter in acall to a subprogram where the corresponding formal parameter is
also unconstrained;

as an operand, of type String, of one of the relational operators=,/ =, <, <=,> or >=;
5 inaprocedure or function annotation (see Section 6.1.1).

412 Slices
Slices are not alowed in sPARK.

413  Selected Components
In sPARK a selector name cannot be acharacter_literal or an operator_symbol.

selected_component ::= prefix . selector_name
*  selector_name ::= identifier

Since a selector name cannot be an operator symbol, operator subprograms can only be called using
an infix notation.
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The prefix of an expanded name shall not denote a loop statement; nor, except within the parent unit
name of a subunit separate clause, shal it denote a subprogram. (Hence, apart from this exception,
the prefix of an expanded name in spARk must denote a package.)

Attributes

The spaRK syntax for attribute designators excludes the aternative Access since the corresponding
dtribute is not supported.

attribute_reference ::= prefix ' attribute_designator

*  attribute_designator::= identifier [ ( expression [, expression]) ]| Delta | Digits
range_attribute_reference ::= prefix ' range_attribute_designator
range_attribute_designator::= Range [ ( static_expression ) ]

The attributes supported by seark arelisted in Annex K.

Literals

In sPARK, character literals are not regarded as parameterless functions, but simply as constructs
denoting values of the predefined type Character.

The rules governing the use of string literalsin spAarRK were given in Section 3.6.3.
Theliteral null does not exist in SPARK.

Aggregates

An aggregate is not a primary in sPARk, which implies that whenever an aggregate is used in an
expression it must be quaified by an appropriate type mark to form a qualified expression. An
unqualified aggregate is permitted as an “aggregate item”, but only inside an aggregate for a multi-
dimensional array type (see Section 4.3.3).

Asin Ada, the type denoted by the qualifying type mark determines the required type for each of the
aggregate components. In spARK, it also statically determines any subtype constraints; hence, for
each component value that is an array, the upper and lower bounds (for each index position) shall be
equal to those imposed by the corresponding component subtype.

The evaluation of an aggregate is not considered to create an object in spark, but smply a value of
the appropriate type.

Record Aggregates

In a record aggregate each named component association can only have a single aggregate choice,
and others cannot be used. As reflected in the spark syntax, positional and named component
associations shall not be mixed within the same record aggregate (Ada aready forbids this mixing for
array aggregates). sPARK does not permit the reserved words null record in an aggregate unless it is
an extension aggregate.

*  record_aggregate ::= positional_record_aggregate | named_record_aggregate
+ positional_record_aggregate ::= ( expression { , expression })
+ named_record_aggregate ::=

( record_component_association {, record_component_association } )
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*  record_component_association ::= component_selector_name => expression

432 Extension aggregates
The ancestor part of an extension aggregate may not be a type mark.
As for record aggregates above, the grammar prevents mixing of named and positional associations.

*  extension_aggregate ::= (ancestor_part with record_component_association_list) |
(ancestor_part with null record)
*  ancestor_part ::= expression
+ record_component_association_list ::= named_record_component_association
| positional_record_component_association

+ positional_record_component_association ::= expression { , expression }
+ named_record_component_association ::=

record_component_association { , record_component_association }

433 Array Aggregates

In the sparRk grammar the syntactic category discrete_choice does not include the choice others,
which is instead directly incorporated in the array aggregate syntax.

array_aggregate ::= positional_array_aggregate | named_array_aggregate
*  positional_array_aggregate ::=
(aggregate_item , aggregate_item { , aggregate_item } )
| (aggregate_item {, aggregate_item } , others => aggregate_item)
named_array_aggregate ::=
(‘array_component_association {, array_component_association }
[, others => aggregate_item])
| (others => aggregate_item)
* array_component_association ::= discrete_choice_list => aggregate_item
+ aggregate_item ::= expression | array_aggregate

In sPARK, al choices of named associations in an array aggregate shall be static. This follows from
the static nature of discrete ranges and discrete choices in sPARK (see Sections 3.6.1 and 3.8.1).

Since an aggregate must be qualified by an appropriate type mark, the bounds of an array aggregate
are aways known from the context in sparRk. The number of components in a positiona array
aggregate, or the range of choicesin anamed array aggregate, must be (statically) consistent with the
bounds associated with the quaifying type mark.

*

4.4 Expressions
sPaRK and Ada expressions differ in the following respects. In sPARK,
1 null isnot aprimary;
2 dlocators and aggregates are not primaries;
3 character literals and type conversions are primaries.

expression ::=
relation { and relation } | relation { and then relation}
| relation{ or relation } | relation { or else relation }
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| relation { xor relation }

relation ::=
simple_expression [ relational_operator simple_expression ]

| simple_expression [not ]in range

| simple_expression [ not ]in subtype_mark
simple_expression ::=

[ unary_adding_operator ] term { binary_adding_operator term }
term ::= factor { multiplying_operator factor }
factor ::= primary [** primary] | abs primary | not primary

*  primary =
numeric_literal | character_literal | string_literal
| name | type_conversion

| qualified_expression | (expression)
Rule (3) aboveis required because character literals and type conversions are not namesin SPARK.

Operators and Expression Evaluation

Logical Operators and Short-circuit Control Forms

Thelogical operators and, or and xor for one-dimensiona arrays of Boolean components are defined
only when both operands have the same upper and lower bounds.

Relational Operators and Membership Tests

In sPARK, the ordering qperators<, <=, >, >=are not defined for Boolean types or any array type
except String.

The equality operators = and / = for array types other than String are defined only when, for each
index position, the operands have equal bounds.

The equality operators = and / = are defined for floating point types, but their use is discouraged and
dicits a warning from the spArk Examiner.
Binary Adding Operators

The concatenation operator, “&”, has arestricted use in spark. It is defined only for result type String
and each operand must be either a string literal, a static character expression, or another
concatenation.

Multiplying Operators

In sPark, a multiplication or division with operands of fixed point types shal be qualified or
explicitly converted to identify the result type.

Type Conversions

The only (explicit) view conversionsin sPARK are those involving ancestor conversion of an extended
type; furthermore, such an ancestor conversion must be a view conversions (implying that its operand
isan object). All other type conversions are value conversions.

*  type_conversion ::= subtype_mark ( expression )
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In sPARK atype conversion where the operand type and the target type are array types must satisfy the
following additional conditions (which are statically determinable in spPARK):

1 Thetarget subtype shall be a constrained array subtype.

2 For each index position, both the upper and the lower bounds of the operand array shall be
equal to those of the target subtype.

The operand of a type conversion shal not e a character literal or a string literal, nor such an
expression enclosed in parentheses.

In sPARK a type conversion other than a view conversion cannot be an actud parameter in a
subprogram call whaose corresponding formal parameter is of mode in out or out.

Qualified Expressions
In sPARK, the type mark of a qualified expression shall not denote an unconstrained array type.

If the type mark denotes a constrained array subtype, then for each index position the upper and
lower bounds of the operand shal be equal to those associated with that subtype.

Allocators
Allocators are not allowed in sPARK.

Static Expressions and Static Subtypes

In sPaRK, the definition of static expression is extended to include enumeration literals explicitly. (In
Adatheir static nature is defined indirectly in terms of their status as static functions but this does not
apply in sPARK.)

A sPark program shall not contain a static expression whose vaue violates a range congtraint or an
index congtraint.
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5 STATEMENTS

51 Simple and Compound Statements- Sequences of Statements
SPARK imposes the following restrictions on the use of simple and compound statements:

1

2

Statements cannot be labelled, however, loop statement identifiers may be used (see Section
5.5).

The following kinds of simple statements cannot be employed:
entry call statements

goto statements
requeue statements
delay statements

abort satements
raise statements

The following kinds of compound statements cannot be employed:
block statements

accept statements

select statements

Code statements can be employed in spaRk programs, under the same conditions asin Ada (see
Section 13.8 of the Ada LRM). In the definition of spark this feature is provided by the
code insertion - see Section 6.3.

sequence_of_statements ::= statement { statement }
statement ::=

simple_statement | compound_statement
simple_statement ::= null_statement

| assignment_statement | procedure_call_statement

| exit_statement | return_statement

compound_statement ::=
if statement | case_statement

| loop_statement
null_statement ::= null;

statement_identifier ::= direct_name
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Assignment Statement

In sPark, an implicit subtype conversion (‘diding’) never occurs in an array assignment: for each
index position, the upper and lower bounds of the value of the right-hand side expression shall be
equa to those associated with the subtype of the array variable. Thisfollows from the rules on type
conversion (Section 4.6).

(Note that the rules of Section 4.1 prevent assignment to an unconstrained array parameter.)

There are additional rules concerning the use of externa variables, or functions which reference
externa variables, (see Section 7) in assignment statements:

1 Externa variables of mode out may not be referenced.
2 Externa variables of mode in may not be updated.

3 Externd variables, and functions which globally reference externa variables, may not form
part of assigned expressions, they may only appear directly in smple assignment statements.

Rule 3 isto prevent ordering effectsin the reading of external devices.

Case Statements

In the spARK grammar the syntactic category discrete choice does not include the choice others,
which isinstead directly incorporated in the case statement syntax.

*  case_statement ::=
case expression is
case_statement_alternative
{ case_statement_alternative }
[ when others => sequence_of_statements ]
end case;

case_statement_alternative ::=
when discrete_choice_list => sequence_of statements

Although type conversions are not names in spARK, therulein LRM 5.4(7) regarding the range of
values to be covered by the discrete choices still applies. Hence if the expression in a case statement
is a type conversion whose subtype mark denotes a static and constrained scalar subtype (as all
subtype merks do in spARK), then the range of values covered shall be exactly those belonging to that
subtype.

Loop Statements

A loop statement may be named by a loop statement identifier, asin Ada. There are restrictions on
the use of loop indentifiersin exit statements, see Section 5.7. A loop identifier may not be used as a
prefix of aloop parameter (c.f. Section 8.3).

A loop parameter specification shall include an explicit subtype mark for the range over which the
loop parameter will iterate. This prevents the loop parameter from having an anonymous subtype.
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loop_statement ::=
[ loop_statement_identifier : ]
[ iteration_scheme ]
loop
sequence_of_statements
end loop [ loop_statement_identifier ] ;
iteration_scheme ::= while condition
| for loop_parameter_specification
*  loop_parameter_specification ::=
defining_identifierin [ reverse ] discrete_subtype_mark [ range range ]|

5.6 Block Statements
Block statements cannot be used in sPARK.

5.7 Exit Statements
In sPaRK, the following restrictions are imposed on the use of exit statements:
An exit statement always applies to the most closaly enclosing loop statement.

An exit statement may name a loop label which, if present, must match the label of the most
closely enclosing loop statement.

3 If an exit statement contains a when clause then its closest-containing compound statement
shall be aloop statement.

4 If an exit statement does not contain a when clause then its closest-containing compound
statement shall be an if statement, which has no esif or ese clauses, and whose closest-
containing compound statement is aloop statement; in this case the exit statement shall be the
last statement within theif statement.

*  exit_statement ::= exit [ simple_name ] [ when condition ] ;

58 Goto Statements
sPARK does not allow the use of goto statements.
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6 SUBPROGRAMS

6.1 Subprogram declarations
spARK and Ada subprogram declarations differ in the following respects. In sPARk,

1 adeclaration of aprocedure or afunction may contain a corresponding annotation (see Section
6.1.1);

afunction designator must be an identifier (not an operator symbol);
a subprogram cannot have a parent unit name (only packages may be child units);
aformal parameter cannot have a default expression;

there are no abstract subprogram declarations;

o o~ WD

there are no access parameters.

*  subprogram_declaration ::=
procedure_specification ; procedure_annotation
| function_specification ; function_annotation
+ procedure_specification ::=
procedure defining_identifier parameter_profile
+ function_specification ::=
function defining_designator parameter_and_result_profile
*  designator ::= identifier
*  defining_designator ::= defining_identifier
defining_program_unit_name ::= [ parent_unit_name . ] defining_identifier
operator_symbol ::= string_literal
defining_operator_symbol ::= operator_symbol
parameter_profile ::= [ formal_part ]
parameter_and_result_profile ::= [ formal_part ] return subtype_mark
formal_part ::=
( parameter_specification { ; parameter_specification } )
*  parameter_specification ::=
defining_identifier_list : mode subtype_mark
mode ::=[in ]| inout | out

In sPaRrK, the subtype mark following return in the profile of a function shall not denote an
unconstrained array subtype.

6.1.1 Procedure and Function Annotations
A procedure annotation may have up to two constituents, as follows.

+ procedure_annotation ::=
[ global_definition ]
[ dependency_relation ]
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The purpose of global definitions and dependency relations is explained in the next section. It will
be seen there that spARK imposes certain rules of consistency between the global definition and
dependency relation of a procedure, its body and its environment. Hence these constituents of
procedure annotations affect the legality of sPark texts.

A function subprogram annotation does not contain a dependency relation and its globa definition (if
any) may have asimpler form, omitting global modes, for reasons explained below.

+ function_annotation ::=
[ global_definition ]

Global Definitions and Dependency Relations

To explain the role of subprogram annotations we shall employ the terminology of Sections 3.3 and
6.1 of the Ada LRM, which define the reading and updating of values of abjects, and the modes of
formal parameters of subprograms, as follows:

“...The vdue of an object is read when the value of any part of the object is evaluated or when the
value of an enclosing object is evaluated. The value of a variable is updated when an assgnment is
performed to any part of the variable, or when an assignment is performed to an enclosing object.”

“...The parameter mode of aformal parameter conveys the direction of information transfer with the
actual parameter; in,in out or out.”

We shall dso employ the terms local and global in the same way as the Ada LRM (see its Section
8.1): “ .... A declaration is local to a declarative region if the declaration occurs immediately within
the declarative region. An entity is local to a declarative region if the entity is declared by a
declaration that is local to the declarative region. A declaration is global to a declarative region if the
declaration occurs immediately within another declarative region that encloses the declarative region.
An entity is global to a declarative region if the entity is declared by a declaration that is global to the
declarative region.”

In Ada, appropriate use of parameter modes in a subprogram specification provides some protection,
controlling to some extent the reading and updating of globa variables by the subprogram. In sPARK,
the transactions between a subprogram and its environment are specified and controlled much more
precisaly, by adding annotations to subprogram specifications and imposing some additional rules.
To explain these, it is useful to consider briefly the design processes we employ, first for procedures
and then for function subprograms.

The purpose of a procedure isto perform an (updating) action, involving the computation of values
and assignments of them to variables which are external to the procedure. It can return avalue to its
calling environment by updating a globa variable directly; aternatively, it can return a result
indirectly by updating aformal parameter of modein out or out. For any procedure P, we describe
the global variables and formal parameters employed to convey its results to its calling environment
as the exported variables of P. To derive its results the procedure P may itself need to read vaues
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previoudy derived in its calling environment. The global variables and formal parameters used to
convey these values we describe as the imported variables of P.

Note on terminology. imported variables may be formal parameters of mode in, which in Ada terms
are congtants rather than variables. In the remainder of this subsection, we use the term variable to
include formal parameters as well as objects declared by a variable declaration.

In the early stages of the design of a procedure one chooses its exported variables, and determines
which (initial values of) imported variables may be required by the procedure, to derive (the final
value of) each exported variable. In using sPaRrK, this information is given with the procedure
specification. If any of the imported or exported variables are global variables rather than formal
parameters of the procedure, their names and modes of use within the procedure are given in aglobal
definition; aso, the imported variables from which each exported variable is derived may be
specified in a dependency relation.

The syntax of global definitions and dependency relations is given below. It will be noted that these
definitions and relations are specified in terms of entire variables, i.e. variables that are not
subcomponents of composite variables.

+

global_definition ::=
--# global [global_mode] global_variable_list ; { [global_mode] global_variable_list ; }

+ global_mode ::=in | in out | out
+ global_variable_list ::= global_variable {, global_variable }
+ global_variable ::= entire_variable
+ entire_variable ::= [ package_name . ] direct_name
+ dependency_relation ::=
--# derives [dependency_clause { & dependency_clause } [& null_dependency_clause]] ;
| --# derivesnull_dependency_clause ;
+ dependency_clause ::=
exported_variable_list from [ imported_variable_list ]
+ exported_variable_list ::= exported_variable {, exported_variable }
+ exported_variable ::= entire_variable
+ imported_variable_list ::=* | [*, ] imported_variable { , imported_variable }
+ imported_variable ::= entire_variable
+ null_dependency_clause ::= null from imported_variable { , imported_variable }

The modes in a global definition are analagous to those in a forma parameter specification. For
example,

--# global inl; inout J, K out L;

states that the global variable | isanimport of the procedure, J and K are both imports and exports,
and L is an export.

An example of adependency relation is
--# derives A, B, CfromX, Y, Z

which states that the find value of each of the exported variables A, B and C is derived from the
initial values of the imported variables X, Y and z.
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The use of * in an imported variable list is a convenient abbreviation for the case where each
exported variable in the corresponding exported variable list depends on itsdlf, i.e. its exported value
is derived from its imported value. If present, it must be the first (or only) item in the imported
variable list. The * notation is permitted even if the variable it represents is aready present in the
imported variable ligt.

For example, the dependency relation
--# derives A, B, State from*, State;

is an abbreviation for

--# derives A fromA, State &
--# B fromB, State &
--# State from State;

Note that annotations can be broken across multiple lines as described in section 2.11.

Where annotations indicate the importing of external variables (see Section 7) it is sometimes the
case that the subprogram simply consumes values from the external variable without using the values
read to derive any entity within the sPark program itsdlf. For example, a“busy wait” procedure can
be viewed as simply consuming clock cycles without exporting any value to its calling environment.
An extension to the derives annotation, a null_dependency_clause, is used to describe such cases.

For example, adelay procedure which reads an external clock and waits X clock ticks before
returning can be specified as follows:

procedure Delay (X : in C ock.Ticks);

--# global in Cock.State; -anexternal variable
--# derives null from X, d ock. State;

The appearance of the identifier null can be taken as meaning that nothing visible inside the spark
programis derived from the imports associated with the null export.

Whereas a procedure subprogram is designed to update variables in its calling environment, in sPARK
the execution of a function subprogram is not allowed to have any side-effects, i.e. it shal not update
any global variables, directly or indirectly. In our terminology, a function subprogram cannot have
any exported variables. It may have imported variables other than its formal parameters, i.e. in its
execution it may read some global variables directly - in which case the function specification must
be followed by a global definition naming al those variables However, since a function has no
exported variables, its associated globa definition may take a simpler form which simply lists the
names of the variables. The mode of these variables may be given, but it can only be mode “in”, for
consistency with imported formal parameters. Moreover, since the data flow between a function
subprogram and its caling environment is completely prescribed by its designator, forma part and
global definition, the specification of a function subprogram does not contain a dependency relation.

Note that a function without either formal parameters or a global definition is permitted; such a
function effectively has a constant return value.

A function may globally import an external variable of mode in but this imposes limitations on how
calls of the function may be used. See Sections5.2, 6.4.1, 6.5and 7.

An example illustrating the use of these annotationsis given in Figure 1.
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The following rules apply to the forma parameters, global definition and dependency relation of a
subprogram (or main program - see Section 10.1.1):

1 A name cannot gppear more than once in the same global definition.

2 The name of avariable V can only appear in the global definition of a subprogram or main
program P if

Pand V arelocal to the same declarative region (including the case where V is aforma
parameter of a subprogram or main program that immediately encloses P), or

the name of V appears in the global definition of a subprogram or main program that
immediately encloses P, or

V is an own variable (see Section 7.1.3) of a package Q, and P and Q are loca to the
same declarative region, or

V isan ownvariable of a package that immediately encloses P, or

V is an own variable of a private child of a package that immediately encloses P or an
own variable of apublic descendant of such a private child, or

V isinherited (see Section 7.1.1) by a package that immediately encloses P, or

Pisthe main program and V isinherited by P.

3 If the name of avariable V appearsin the global definition of a procedure subprogram P, and
V is a forma parameter of mode in of a subprogram or main program that immediately
encloses P, or the name of V appears with mode in in the globa definition of such a
subprogram or main program, then the mode of V in the global definition of P shall aso be in.

4 A namein the global definition of a subprogram or main program P shall nat be redeclared
immediately within P or within aloop statement whose nearest enclosing program unit is P.

5 Every variable name that appears as an imported variable in the dependency relation of a
procedure subprogram or main program P shall either denote aformal parameter of P of mode
in or in out or shall appear in the global definition of P with modein or in out.

6 Every variable name that appears as an exported variable in the dependency relation of a
procedure subprogram or main program P shall either denote aformal parameter of P of mode
in out or out or shal appear in the global definition of P with mode in out or out.

7 Externa variables with mode out may only appear as exports in a dependency relation and
may only have global mode out. Conversely, externa variables with mode in may only
appear as imports and may only have global mode in.

8 If a procedure subprogram or main program P has a dependency relaion, every forma
parameter of P and every variable in the global definition of P shall appear at least once in the
dependency relation, as an imported variable or an exported variable. Moreover, every formal
parameter of mode in out and every variable which appears in the global definition with mode
in out shall appear in the dependency relation as both an imported variable and an exported
variable.
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9 A name cannot appear more than once as an exported variable of a dependency relation. A
name cannot appear more than once in the same imported variable list (but * is permitted even
if the variable it representsis aready present in the list).
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-- This procedure transfers the contents of A(1l) .. A(M into A(N+1)

whil e simultaneously transferring the contents of A(M1)

-- A(1) .. A(N without using an appreci abl e anount of auxiliary nenory.
-- is an Ada version of ALGORI THM 284: | NTERCHANGE OF TWD BLOCKS OF DATA by W

A(MN)

into

A(NHM)

It

-- Fletcher, Comm ACM vol. 9 (1966), p. 326. The ACM publication explains

-- the algorithm
is

D I, J, K L, R: Integer;
T : Float;

function GCD(X, Y : Integer) return Integer
is

C, Db R: Integer;

C:=D;, D:
end | oop;
return C

end GCD,

procedure Swap(TenpVal : in out Float; Index : |ndexRange)
--# global in out A

--# derives A fromA, TenpVal, Index &

--# TempVal from A, | ndex;
-- This procedure exchanges the values of TenpVal and A(Index).
is
T : Float;
begi n
T := A(Index); A(lndex) := TenpVal; TenpVal := T,

end Swap;
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begin - - Interchange
D:= GX(M N;
R:=(M+ N / b
| = 1;
while | <= D loop
J:=1; T:=A);
K:=1;
while K <= R oop
if J <= Mthen
J:=J +N
el se
J:=1J M
end if;
Swap(T, J)
K:= K+ 1;
end | oop;
I =1 + 1;
end | oop;

end | nt erchange;
Figure1: An extract from a SPARK program, illustrating the use of global definitions and dependency
relations.



6.2

6.3

SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 42

Formal Parameter Modes

The rules of sPARK, in particular the rules to prohibit aiasing in the execution of procedures (see
Section 6.4), prevent the possibility o assigning to an object via one access path and then reading its
value via a distinct access path. This ensures that the effect of the program will not depend on
whether the parameter is passed by copy or by reference.

Subprogram Bodies
SPARK and Ada subprogram bodies differ in the following respects. In SPARK,

1 A designator shall appear at the end of every subprogram body (repeating the designator of the
subprogram specification).

2 The seark grammar rule for code insertion alows the inclusion of code statements, asin Ada
If a subprogram implementation consists of code statements, the spark Examiner will report
thisfact, but it will effectively ignore them.

3 Rules governing the form and placement of return statements in subprograms are given in
Section 6.5.

The implementation of a subprogram may be hidden from the spark Examiner, by means of a hide
directive (see Annex M), though thisis not part of the core spark language.

*  subprogram_body ::=
procedure_specification
[ procedure_annotation ]
is
subprogram_implementation
|  function_specification
[ function_annotation ]
is
subprogram_implementation
+ subprogram_implementation ::=
declarative_p art
begin
sequence_of_statements
end designator ;
| begin
code_insertion
end designator ;
+ code_insertion ::= code_statement { code_statement }

A declaration of a procedure subprogram may contain a procedure annotation (as defined in Section
6.1). If such aprocedure annotation contains a global definition, in which one or more variables are
abstract (as defined in Chapter 7), then a second procedure annotation (which is a refinement of the
first - c.f. Section 7.2.1) shall occur, in the body stub if this exists or in the procedure body otherwise;
wheress if the procedure annotation in the procedure declaration contains no abstract variables, the
procedure shall haveonly one procedure annotation.

If a subprogram declaration does not exist for a procedure, there shall be only one procedure
annotation, occurring in the body stub if this exists, or in the procedure body otherwise.
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A declaration of a function subprogram may contain a global definition (see Section 6.1). If it does,
and one or more variables in this definition are abstract, then a second globa definition (which is a
refinement of the first) shall occur, in the body stub if this exists or in the subprogram body
otherwise; whereas if the function subprogram declaration does not contain a global definition with
abstract variables, the subprogram shall have no further globa definitions.

If a subprogram declaration does not exist for a function subprogram, there shall exist at most one
global definition for the subprogram, occurring in the body stub if this exists or in the subprogram
body otherwise.

In a sark subprogram body, parameters and globa variables of the subprogram which are not
exported by it shall not be updated, directly or indirectly.

Using knowledge of the imported and exported variables of a subprogram, its body may be analysed
to determine whether it is free of certain anomalies. (For a description of the analyses see Bergeretti
and Carré (1985)). These anomalies may be classified as follows:

1 A statement Sin which the value of avariable V isread when it is undefined, that is, V is not
imported by the subprogram and no path from the start of the subprogram to S includes a
statement that updates V. A program containing such a statement is not alegal spARk program.

2 A gatement Sin which the value of avariable V isread when it may be undefined, that is, V is
not imported by the subprogram and there exists a path from the start of the subprogramto S
that does not include a statement that updates V. This represents a programming error unless
the programmer can show, by reasoning (formally or otherwise) about the program’s dynamic
semantics, that al such paths are non-executable.

3 An unset exported value, that is, an exported variable which is not updated on any path
through the subprogram. This renders the program illegal in spARK.

4 A potentially unset exported value, that is, an exported variable which is not updated on all
paths through the subprogram. This represents a programming error unless the programmer
can show by reasoning that the paths on which the variable is not updated are non-executable.

5 Information flow relations of the subprogram body which are not consistent with its
dependency relation (given explicitly for a procedure subprogram, and implicitly for a function
subprogram). This indicates a difference between the stated intention of the subprogram and
its implementation.

6 Others such as ineffective statements and invariant expressions in conditions, which may be
unintended by the programmer and could be indicative of programming errors.

The sPARK Examiner performs the analysis described above and reports any discrepancies.

Subprogram Calls

In sPARK, positional and named parameter associations shall not both be used in the same subprogram
call.

*  procedure_call_statement ::=
procedure_name [ actual_parameter_part ] ;
*  function_call ::=
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function_name [ actual_parameter_part ]
* actual_parameter_part ::= ( parameter_association_list )

+ parameter_association_list ::=
named_parameter_association_list | positional_parameter_association_list

+ named_parameter_association_list ::=
formal_parameter_selector_name => explicit_actual_parameter
{, formal_parameter_selector_name => explicit_actual_parameter }
+ positional_parameter_association_list ::=
explicit_actual_parameter { , explicit_actual_parameter }
explicit_actual_parameter ::= expression | variable_name

The rules below prevent aliasing of variables in the execution of procedure subprograms. See
Section 6.1.2 for the definitions of imported, exported and entire variables. (If a procedure
subprogram has two procedure annotations as a consegquence of refinement (c.f. Chapter 7), then in
applying the rules to calls of a procedure P occurring outside the package in which P is declared, the
annotation in the declaration should be employed; whereas in applying the rules to calls within the
body of this package, the annotation in the procedure body or body stub should be used.)

1 |If avariable V named in the global definition of a procedure P is exported, then neither V nor
any of its subcomponents can occur as an actual parameter of P.

2 If avariable V occurs in the global definition of a procedure P, then neither V nor any of its
subcomponents can occur as an actual parameter of P where the corresponding formal
parameter is an exported variable.

3 If an entire variable V or a subcomponent of V occurs as an actual parameter in a procedure
call statement, and the corresponding formal parameter is an exported variable, then neither V
nor any subcomponent of V can occur as another actua parameter in that statement.

Where one of these rules prohibits the occurrence of avariable V or any of its subcomponents as an
actua parameter, the following constructs are also prohibited in this context:

1 atype conversion whose operand is a prohibited construct;
2 aqualified expression whose operand is a prohibited construct;
3 aprohibited construct enclosed in parentheses.

In spARK every call of a subprogram, in the compilation unit where its proper body or body stub is
declared, shall follow that declaration. A subprogram declared in a package shall not be called in a
private child of that package or in any descendant of such a private child. These rules, together with
the rules of Sections 3.11 and 7.1.1, imply that subprograms cannot be called recursively.

Parameter Associations

Only an explicit type conversion which is a view conversion (see section 4.6) may be used as an
actual parameter in a subprogram call where the corresponding formal parameter is of mode in out or
out.
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If a forma parameter is of a constrained array subtype, the upper and lower bounds of the
corresponding actual parameter (for each index position) must be equal to those of the forma
parameter. (This follows from the rules on type conversion in Section 4.6.)

An external variable (see Section 7) or a function which references an external variable, may not be
used as an actual parameter.

Actual parameters matching formals of tagged types must be objects (or view conversions of objects)
not general expressions.
Return Statements

The last statement in the sequence of statements of a function subprogram shall be areturn statement,
which shdl include an expression.

*  return_statement ::= return expression ;
No other occurrences of return statements are allowed in SPARK.

If the result subtype of a function is a constrained array subtype, the expression in the return
statement in the function subprogram body must have upper and lower bounds (for each index
position) equa to those of that subtype. (This follows from the rules on type conversion in Section
4.6.)

Externa variables, and functions which reference external variables, may not be used within
expressions in return statements although they may appear aone in such statements. This restriction
isto avoid the introduction of ordering effects in the reading of external devices.

Overloading of Operators
In sPark user-defined operators are not permitted.
Renaming declarations are allowed for operators (see Section 8.5).



SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 46

PACKAGES
sPARK has several important concepts associated with packages which do not exist in Ada

Package Inheritance The inheritance of one package by another (or by the main program) is
achieved by naming the package to be inherited in the inherit clause (an annotation) of the recipient
package, n much the same way as the with clause is employed to specify dependencies between
compilation units. (The conditions under which inheritance is permitted are specified in Section
7.1.1). Within a package, the visibility of declarations occurring outside the package is restricted to
entities declared in those packages which it inherits. The principal reason for employing this form of
inheritance is that, whilst the Ada package features provide satisfactory control of visibility from the
exterior, of the contents of a package, visibility from within of declarations outside a package is
largely determined by the context of the package declaration; it cannot easily be controlled or even
be made explicit. The rules of inheritance provide a relatively simple yet quite precise means of
specifying, and controlling, the access to externa entities (the consistency of inherit clauses with
code being checked by the spArRk Examiner).

Own Variables of Packages The concepts of “own variables’ and “refinement” (discussed below)
are particularly relevant to the design of Ada programs in terms of “abstract state machines’ or
ASM's (Booch, 83), a machine being implemented by a package, with its state being represented
by variables declared within the package.

To introduce these concepts, the text below consists of a package P, whose body contains a
declaration of a variable V, and a procedure A which reads and updates this variable. When the
procedure A is called, by a procedure to which P is visible, the variable V is read and updated,
despite the fact that it is not visible at the place where A is declared, or where it is caled. In other
words, the call of A has a sde-effect.

package P is

procedure A;
--# global in out ?7?7;
--# derives ??? from ???

procedure A;
-- This procedure reads and updates the variable V.
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To make explicit the fact that the procedure A reads and updates V (which is essentid, if we are
to verify that V is employed as intended), we mugt first make evident the existence of this “state
variable”, in those parts of the program whose execution may directly or indirectly cause it to be
read or updated. This can be achieved by raming the state variable V in an own variable clause,
an annotation placed immediately before the visible and private parts of the package.

package P
--# own V;
is

procedure A;
--# global in out V;
--# derives V fromV,

procedure A;
-- This procedure reads and updates the variable V.

An own variable clause of a package has the visbility, within annotations, of a declaration

occurring in the the visible part of the package. If an own variable clause of a package P nhames a
variable V, its effect (with regard to annotations) is to raise the declaration of V to a place in the
visible part of P that precedes all required occurrences of the name of this variable.

With this convention, the dependency relation of the procedure A in our example can be
constructed, according to the rules of Section 6.1. This in turn will adlow information flow
anaysis of those parts of the program which employ the package P, taking into account the
reading and updating of V.

Refinement The above example of the use of an own variable annotation is unusually smple, in that
the “abstract state maching” package P has only one variable, V. In practice, the following
circumstances arise.

In writing the specification of an abstract state machine (ASM) package, we should have clear
notions of the purpose of the procedures and function subprograms to be declared in this
specification, and of how these subprograms are to read and/or update the “ state” (or values of
the variables) of the ASM. However, until the package body has been designed in detail, we
may not know exactly how the ASM state will be represented: the implementation of the ASM
may eventually require a number of objects of scalar or composite types, and possibly even
some further ASM's. Thus it may be very difficult, initidly, to list al the state variables and to
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define precisdy the dependency relations of the subprograms declared in the package
specification.
Even if the specification of ASM's to this level of detail could be achieved at an early stage, it

would often be counter-productive. For in analysing code that employs an ASM (i.e. code
containing calls of subprograms of the ASM), it is important to take into account all the uses
and modifications of the state of the ASM, but the details of its concrete representation are not
relevant: these are significant only in anaysing the code of the ASM itself. Inclusion of these
details in the specification of the ASM would make the dependency relations of subprograms
declared there cumbersome, and furthermore, it would greatly complicate the dependency
relations of al subprogramsthat used the ASM, directly or indirectly.

Both these difficulties can be overcome by employing the method of refinement. In constructing
the specification of an ASM we can describe its state and annotate its visible subprograms in
terms of own variables that may be either concrete (i.e. variables declared immediately within the
package, as in the above example), or abstract (in which case their names play the role of visible
representatives of variables or collections of variables or even ASM's eventually to be declared in
the body of the ASM being specified). When the body of an ASM is written, each abstract own
variable of its specification appears there, as the subject of a refinement clause, in an annotation
of the form

--# own V1 is W1, w2, ... , Wp &
--# V2 is W1, w2, ... , Wq &
--# Vn is Wil, W2, ... , Wir ;

Here the refinement clauses give for each abstract own varigble Vi a lis of its constituents Wij,
these being names either of variables declared immediately within the package body, or of
(abstract or concrete) own variables of ASM's declared immediately within this body or as private
children of the package (or public descendents of such private children).

As a very smple example of refinement, the following is the specification of a stack ASM in
which the state of the ASM is represented by a single abstract own variable called “ State”. Note
that the dependency relations of the subprograms are given in terms of this abstract variable.

package Stack

--# own State;

is
function Enpty return Bool ean;
--# gl obal St at e;

procedure Cl ear;
--# gl obal out State;
--# derives State from

procedure Pop(X : out Integer);
--# global in out State;

--# derives State from State &
--# X from State;
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procedure Push(X : in Integer);

--# global in out State;

--# derives State from State, X;
end Stack;

In the body of the package, given below, the abstract variable State is represented by two concrete

variables, Pointer and Vector, which are declared within this body. The text d the body begins
with a refinement annotation, associating State with Pointer and Vector.

If a subprogram declaration in the visible part of a package has a globa definition containing one
or more abstract own variables of the package, then its body, which appears in the package body,
must also have a global definition (called the refinement of the original one). Each abstract
variable occurring in the original definition is replaced by one or more of its constituents in the
new one. In the case of a procedure subprogram, the new global definition is accompanied by a
new dependency relation - again caled a refinement of the origina one - describing the
dependencies between the imports and exports of the procedure, as represented by its (concrete)
parameters and its (abstract or concrete) global variables. Rules of consistency of refinements, of
global definitions and dependency relations, are given in Section 7.2.1.

package body Stack
--# owmn State is Pointer, Vector;
is

St ackSi ze : constant Integer := 100;

subtype PointerType is Integer range O .. StackSize;
Poi nter : PointerType;

subtype I ndexRange is Integer range 1 .. StackSize;

type VectorType is array (lndexRange) of Integer;
Vector : VectorType;

function Enpty return Bool ean
--# gl obal Pointer;
is
begin
return Pointer = 0;
end Enpty;
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procedure Cl ear
--# gl obal out Pointer, Vector;
--# derives Pointer from &

--# Vector from
is
begin
Pointer := 0;
Vector := VectorType' (I ndexRange => 0);
end Cl ear;

procedure Pop(X : out Integer)
--# global in out Pointer; in Vector;
--# derives Pointer from Pointer &

--# X from Pointer, Vector;
is
begin
X := Vector(Pointer);
Pointer := Pointer - 1;
end Pop;
procedure Push(X : in Integer)

--# global in out Pointer, Vector;
--# derives Pointer fromPointer &

--# Vector from Pointer, Vector, X;
is
begi n
Pointer := Pointer + 1;
Vector (Pointer) := X;
end Push;
end Stack;

External Variables Where an own variable represents a connection between the seark program and
its external environment it may be given a mode indicating whether it is to be regarded as an input
(mode in) from the environment or an output to it (mode out). Maode in out is not permitted.
Own variables with such modes are caled externa variables. Specia rules apply to externa
variables in order to capture correctly their volatile nature. Refinement constituents may
themsealves be given modes to indicate that they are externa variables.

External variables are regarded as volatile: successive reads of a external variable are considered
to return potentidly different values and successive writes to external variables are not regarded
as ineffective.  This behaviour applies regardiess of whether values are referenced or updated

indirectly via subprogram cals or directly via assignment or return statements.

External variables, and functions which reference external variables, may only be used directly in
assignment and return statements. They may not be used in expressions, conditionals or as actual
parameters.

An example of the use of external variables in a device driver package is given in Figure 3
starting on page 60.
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Package Specifications and Declarations
sPARK and Ada package structure differ in the following respects. In sPaRK,

1 a package declaration contains an optiond inherit clause (described in Section 7.1.1 below)
before the package specification;

2 a package specification consists of the package name, a package annotation (described in
Sections 7.1.2 - 7.1.4), avisible part and an optiona private part;

3 apackage specification must end with the name of the package.

*  package_declaration ::= [ inherit_clause ] package_specification ;
+ private_package_declaration ::= [ inherit_clause ] private package_specification ;
package_specification ::=
package defining_program_unit_name
package_annotation
is
visible_part
[ private
private_part ]
end [ parent_unit_name . ] identifier
+ visible_part ::=
{ renaming_declaration }
{ package_declarative_item }
+ private_part ::=
{ renaming_declaration }
{ package_declarative_item }
+ package_declarative_item::=
basic_declarative_item | subprogram_declaration
| external_subprogram_declaration

*

The visible and private parts of a package specification each consist of a list of basic declarative
items and subprogram declarations, optionally preceded by renaming declarations for operators

inherited by the package (See Section 8.5). A subprogram declaration may be qualified by an
immediately following pragma Import (see Annex B.1).

The private part of a package specification may be hidden from the seark Examiner by means of a
hide directive (see Annex M), though thisis not part of the core spARk language.

It is to be noted that in sPaRK, a package specification cannot contain @ckage declarations, but
packages can ill be declared within package bodies.

A further illustration of the specification of seark packagesisgivenin Figure 2.

Inherit Clauses

A package declaration (or a main program) may begin with an inherit clause.

+ inherit_clause ::=
-#inherit package_name {, package_name };
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Note that annotations can be broken across multiple lines as described in section 2.11.

A package (or main program) P is said to inherit a package Q if the inherit clause of P contains a
name (or a prefix) denoting Q. In addition, all packages (and the main program) are deemed to
inherit the package Standard without it being named in an inherit clause.

A package (or main program) P can inherit a package Q only if
the declaration of P iswithin the scope of Q or Q isalibrary package contained in the program
library, and
every package (or main program) whose body contains the declaration of P, but not that of Q,
inherits Q.
In addition, a package P can inherit a private child of a package Q only if P is also a private child of
Q or adescendant of such achild (or if Q is package Standard).

Furthermore, mutual inheritance is forbidden, that is, it is not permissible to have a sequence of
packages P1, ..., Pn, such that each package inherits its successor in the sequence and Pn inherits P1.

We define the set of packages owned by alibrary package (other than package Standard) to be the
private children of P and their public descendants. If a package is owned by alibrary package P, then
the only packages it may inherit are P itsdlf, other packages owned by P, and packages inherited by
P.

A namein a package (or main program) P can only denote an entity declared outside the declarative
region of Pif itis

a package inherited by P, or

an entity declared in the visible part of a package inherited by P, or

an entity declared in the private part of a package which is inherited by P, and of which Pisa
private descendant, or

an entity declared in the private part of a package which is inherited by P, and of which Pisa
public descendant, provided the name does not occur in the visible part of P, or

an entity declared in the private part or body of a package which is inherited by P, and whose
body includes the declaration of P, or

an own variable of a package which is inherited by P (wherever that variable may be declared
within the inherited package), when its name occurs in an annotation within P (see Section
7.1.3).

We may describe any such entity as being inherited by the package P.

An entity E of a package Q (other than package Standard), inherited by a package P, shall be denoted
in Pby Q.E. Denotations of entities of package Standard are not prefixed with their package name.
A child package is denoted by a direct name at places where its declaration is directly visible (for
example within the body of its parent).
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Package Annotations

A package annotation may contain an own variable clause (described in the next Section), and if so,
it may aso contain an initialization specification (see Section 7.1.4).

+ package_annotation ::=
[ own_variable_clause [ initialization_specification ] ]

Own Variable Clauses

The names that occur in an own variable clause of a package are called the own variables of that
package. Where such an own variable hasamodeit is called an external variable.

+ own_variable_clause ::=
--#own own_variable_list ;

+ own_variable_list ::= mode own_variable { , mode own_variable }
+ own_variable ::= direct_name

A name cannot occur more than once in the same own variable clause.

Every own variable of a package shall occur either
in a variable declaration immediately within the declarative region of the package, or
as asubject of arefinement definition of the package (c.f. Section 7.2.1),

but not both. Own variables which occur in variable declarations are described as concrete own
variables, whereas own variables which are subjects of refinement definitions are said to be abstract.

The name of a variable whose declaration occurs mmediately within the declarative region of a
package shall be a (concrete) own variable of the package if and only if it is not a congtituent of a

refinement definition of the package (cf. Section 7.2.1). All variables declared in a package
specification shall be (concrete) own variables of the package.

All subjects of arefinement definition of a package shall be (abstract) own variables of that package.
The name of an abstract own variable of a package shal not be the subject of any declaration
(variable or otherwise) which occurs immediately within the declarative region of the package.

An own variable clause is only visible within annotations. Subject to this restriction the visibility of
an own variable clause, outside its package, is that of a declaration in the visible part of the package.
Within the specification of its package, the own variable clause is visible in all annotations; and
within the body of its package, the clause is visible only within the refinement definition (if this
exists). An own variable clause of a library package P is not visible within a descendant package
owned (see Section 7.1.1) by P.

The following rules ensure that inconsi stencies between external variable modes are not introduced
by refinement:

1 Refinement congituents may not be of modein out.
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Refinement congtituents of moded own variables must have the same mode as their subject.
Refinement congtituents of unmoded own variables can have any or no mode (excluding
in out).

4  Refinement constituents which refine to own variables of private child packages must have the
same mode as that given to the own variable in the child package.

5 Own variables of embedded packages which have been announced in a previous refinement
clause must have the same mode as was given in that refinement clause.

Package Initializations and Initiaization Specifications

An initidization specification is an annotation in a package specification whose purpose is to indicate
which variables are to be initialized by the elaboration either of the package specification or of its
body, ie are to be updated by a package initidization or initialized at their declarations.

+ initialization_specification ::=
--#initializes own_variable_list ;

External variables may not appear in an initiaization specification (such variables are considered to
be implicitly initialized by the environment to which they are connected).

A variable whose declaration occurs immediately within the declarative region of a package shall be
updated by the sequence of statements of the package initidization or initialized at its declaration
(but not both) if and only if

it isan own variable of the package, named in its initialization specification, or

its name occurs, without a mode, in the congtituent list of a refinement clause, whose subject is
named in the initialization specification.

If an abstract own variable of a package occurs in an initidization specification of the package, and
any refinement constituent of this variable is an own variable of another package, declared
immediately within the body or as (a public descendant of) a private child of the first one, then the
congtituent shall be named in an initialization specification of the embedded or descendant package.

Conversdly, every own variable which occurs in the initialization specification of a package declared
immediately within the body of another package or as (a public descendant of) a private child of

another package shall occur as a congtituent of a refinement definition of the enclosing or ancestor
package, and the subject of the refinement clause to which the consituent belongs shall occur in an

initialization specification of the enclosing or ancestor package.
Package Bodies
spARK and Ada package bodies differ in the following respects. In srARrk,

1 apackage body must end with the name of the package;
2 apackage body may begin with arefinement definition (described in Section 7.2.1).
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*  package_body ::=
package body defining_program_unit_name
[ refinement_definition ]
is
package_implementation
end [ parent_unit_name . ] identifier ;
+ package_implementation ::=
declarative_part
[ begin
package_initialization ]
+ package_initialization ::=
sequence_of_statements

The package implementation consists of a declarative part, possibly followed by a package
initialization. By use of the hide directive (not part of the core sPark language - see Annex M), either
the package initialization or the entire package implementation may be hidden from the spark
Examiner.

A variable can only be updated by the sequence of statements of a package initidization if its
declaration occurs immediately within the declarative region of the package and it is not an externa
variable. In a package initialization, user-defined subprograms cannot be called and no variable
declared immediately within another package can be read or updated.

Refinements

Every abstract own variable of a package shall be the subject of exactly one refinement clause of a
refinement definition of the package (i.e. a refinement definition which occurs in the package body,
before its declarative part).

+ refinement_definition ::=
--# own refinement_clause { & refinement_clause } ;
+ refinement_clause ::=
subject is constituent_list
+ subject ::= direct_name
constituent_list ::= mode constituent { , mode constituent }
+ constituent ::= [ package_name . ] direct_name

+

The constituents of the clauses of a refinement definition of a package shall together comprise

the set of al names of variables whose declarations occur immediately within the declarative
region of the package, but which are not own variables of the package, together with

the set of al own variables of packages whose declarations occur immediately within the body
of the package, and

the set of all own variables of private children of the package and their public descendants;
such own variables must be denoted in the refinement definition using a full hierarchic prefix,
ie starting with the name of the appropriate root library package.

No name shall appear more than once in a refinement definition.
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If and only if a subprogram declaration in a package specification has a global definition containing
one or more abstract own variables of the package, then the body of the subprogram, which occursin
the package body, shall also have a global definition, called a refinement of the original one.

A refinement G' of a global definition G, which does not contain any global modes, shall be

reducibleto G by replacing all constituents of refinement clauses by the subjects of those clauses and
removing any duplicates that result.

A refinement G' of a globa definition G, which does include global modes, shall be reducible to G
by replacing all constituents of refinement clauses by the subjects of those clauses, and setting the
mode of each subject asfollows.

1 For each subject whose constituents appear in G with two or more different modes, the mode
of the subject is set to in out.

2 For each subject whose constituents appear in G’ only with mode out but which heve at least
one congtituent absent from G’, the mode of the subject isset to in out.

3 For each subject in G which is not an externa variable but which has constituents which are
externa variables and which appear in G’, the global mode of the subject is set to in out.

4  Otherwise the mode of the subject is set to the (common) mode of its constituentsin G'.

For a procedure subprogram whose declaration includes a dependency relation, a refinement of a
global definition shall be accompanied by a dependency relation, again called a refinement of the
original one. A refinement D' of a dependency relation D shal be reducible to D by the successive
application of the five following operations. (In this description, the set of congituents of a
refinement of anown variable Vi is denoted by C(Vi)).

1 Foreachexport E of D' inturn, if E isa constituent of a refinement of an own variable Vi then
for every constituent Win C(Vi) which is not an export of D', a dependency clause with export
W and import Wis added to D".

2 If Eisacondgituent which is an externa variable of mode out whose subject is not an externa
variable, then E is added as an import.

3 Foreachimport | in D’ where | is a refinement constituent which is an external variable of
mode in whose subject is not an externa variable, add a new dependency clauseto D' showing
that | isderived from 1.

4  All dependency clauses whose exports belong to the same set of congtituents C(Vi) are
combined into a single clause, whose export is Vi and whose imports are al the imports of the
original clauses.

5 Wherever the imports of a clause include members of a set of congtituents C(Vi), these are
removed and replaced by Vi.
7.3 Private Types and Private Extensions

sPARK and Ada private type declarations differ in that a private type declaration in spARk cannot have
adiscriminant part.

*  private_type_declaration ::=
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type defining identifier is [tagged] [ limited ] private ;
*  private_extension_declaration ::=
type defining_identifier is new ancestor_subtype_indication with private ;

731 Private Operations
In sParK attributes of a private type are not allowed unless the corresponding full type declaration is
visible.

7.4 Deferred Constants
sPARK does not permit a deferred constant declaration to be completed by apragma Import.

7.6 User-Defined Assignment and Finalization

sPARK does not have controlled types and hence there are no user-defined initiaization, assignment or
finalization operations. The package Ada.Finalization is not predefined in spARK.
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package Real Nunbers is
type Real is digits 6;
end Real Nunbers;

wi t h Real Nunbers;

--# inherit Real Nunbers;

package RandomNunbers

--# own Seed,;

--# initializes Seed;

is
procedure Random( X : out Real Nunmbers. Real );
--# global in out Seed;
--# derives X, Seed from Seed;

end RandomNunbers;

package body RandomNunmbers is
subtype Pos_31 is Integer range 0 .. 2**30 - 1,
Seed : Pos_31;

procedure Randonm( X : out Real Numbers. Real )
is
--# hide Random
. i mpl erent ati on of Random
end Random

begin
Seed := 2**15 - 1;
end RandomNunbers;

wi t h Real Nunbers,
RandomNunber s,
SPARK_I1 O,
use type Real Nunmbers. Real ;
--# inherit Real Nunbers,
--# RandomNumnber s,
--# SPARK_| G,
--# mai n_program
procedure Main
--# global in out RandomNunbers. Seed, SPARK | O Fil e_Sys;
--# derives RandomNumbers. Seed, SPARK | O Fil e_Sys
--# from*, RandomNumbers. Seed;
is
X : Real Number s. Real ;
begin
RandomNunber s. Random( X) ;
SPARK_| O. Put _I nt eger ( SPARK_| O. St andar d_Qut put,
Integer(X * 10.0), 0, 10);
end Mai n;

Figure2: Anillustration of the specification of SPARK packages.
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The following example uses external variables and refinement to describe and implement a complex
input/output device. The device hasinterna dtate that records the last value sent to it. Its behaviour
when value is written is as follows:

if value = last value sent then
do nothing
else
store value in last value
write value to out register
busy wait until ack received at status port.

The abstract specification of the deviceis.

package Devi ce
--# own State; -- representsall registers, portsand values
--#initializes State;
is
procedure Wite (X : in Integer);
--# global in out State;
--# derives State from State, X
end Devi ce;

And its body:
package body Device
--# own State is a dX, - - dtatevariable constituent
--# in St at usPort, -- external variableconstituent
--# out Register; - - external variable constituent
is
adX : Integer := 0; -- onlycomponentthat needsor permits initialization
StatusPort : Integer;
for StatusPort’ Address use ......... ;
Regi ster : Integer;

for Register’ Address use ..........

procedure WiteReg (X : in Integer)
--# gl obal out Register;
--# derives Register fromX;
is
begin
Regi ster := X
end WiteReg;
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procedure ReadAck (OK : out Bool ean)
--# global in StatusPort;
--# derives OK from StatusPort;

is
Rawval ue : | nteger;

begin
Rawval ue : = StatusPort; -- onlyassignmentisallowed here
K : = Rawal ue = 16#FFFF_FFFF#; -- ackvalue

end ReadAck;

procedure Wite (X : in Integer)
--# global in out AdX;

--# out Register;
--# in St at usPort ;
--# derives A dX,
--# Regi ster fromdad dX, X &
--# null fromStatusPort; -- seeSection6.1.2
is
OK : Bool ean;
begin
if X /= AdX then
adX := X;
WiteReg (X);
| oop

ReadAck (OK);
exit when CK;
end | oop;
end if;
end Wite;
end Devi ce;

Figure 3: Anillustration of the use of external variables
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8 VISIBILITY RULES

8.3 Visibility
In sPARK a user-defined subprogram shall not overload any other subprogram; however, an inherited

root subprogram may be overridden. To prevent unintenional overloading, a subprogram declaration
may not have the same name as a potentialy inheritable subprogram unless it successfully overrides

it

The associations between declarations and occurrences of identifiers and the places where particular
identifiers can occur are governed by the scope and visibility rules of Ada, with the following
additional restrictions:

1

In subprogram implementations and subprogram cals, the occurrences of variable and formal
parameter names shall be consistent with the global definitions and dependency relations of
the subprograms (as prescribed in Section 6.1.2 and Section 6.3).

In a package (or main program), the occurrences of identifiers that denote entities declared
outside the package (or main program) shal be subject to the rules of inheritance given in
Section 7.1.1.

In a package initidization, no variables shall be read or updated other than those declared
immediately within that package (see Section 7.2).

At a place where a declaration of an entity is directly visible, its denotation shall not have a

prefix, unless the entity is inherited there and is not a package, in which case it shall be
denoted as a selected component of the package in which it is declared.

An identifier cannot be redeclared a a place where a declaration of it is already directly
visible, unless

the new place of declaration isin a subprogram and the visible declaration is a variable
declaration or a parameter specification that occurs outside that subprogram, or

the new place of declaration is in a package and the visible declaration occurs outside
that package, or

the new declaration is a component declaration in arecord type definition.

An identifier cannot be redeclared at a place where it denotes a package inherited by the
closest surrounding package or main program.

Neither the identifier Standard nor any identifier which is predefined in the package Standard
shall be redeclared.

8.4 Use Clauses

In sPark use (package) dauses are not alowed, and use type clauses are subject to certain
restrictions.

use_type_clause ::= use type subtype_mark {, subtype_mark } ;
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A usetype clause may appear only in a context clause (Section 10.1.2) or in an embedded package
declaration (Section 3.11).

The type determined by a subtype mark of a use type clause shal not be alimited private type.

A subtype mark shall not appear in ause type clauseif al primitive operators of the associated type
are dready directly visible within the scope of the use type clause.

The type determined by a subtype mark of a use type clause in an embedded package declaration
shall be atype declared in the associated package.

Renaming Declar ations

In sPARK, the only renaming declarations are those for subprograms and (child) packages.

*  renaming_declaration ::=
package_renaming_declaration
| subprogram_renaming_declaration

Object renaming declarations

sPARK does not have object renaming declarations.

Exception renaming declarations
sPARK does hot have exception renaming declarations.

Package renaming declarations

In sPARK, package renaming declarations are used strictly for renaming child packages with their
origina names (devoid of ancestor-name prefixes), at places where those packages are not directly
visible.

*  package_renaming_declaration ::=
package defining_program_unit_name
renames parent_unit_name . package_direct_name ;

A package renaming declaration shall occur only immediately within the declarative part of a
package or main program that inherits the renamed package.

Within the scope of the renaming declaration, the renamed package shall be denoted only by its new
name.
Subprogram renaming declarations

In sPARK, subprogram renaming declarations are used strictly for renaming subprograms (including
operators but not enumeration literals), declared immediatedly within packages, with their original
names (devoid of package-name prefixes), at places where the subprograms are not directly visible.

A renaming declaration can only apply to a subprogram declared in a package P if either
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the renaming declaration occurs in an embedded package declaration which declares P, or

the renaming declaration occurs immediately within the declarative part of a package or main
program which inherits P, or

3 therenaming declaration applies to an operator and occurs immediately within the visible part
or private part of a package which inherits P.

Where a renaming declaration applies, the renamed operator or subprogram can only be denoted by
its new name. In arenaming declaration of a subprogram, the formal part (and type mark in the case
of afunction) of the subprogram specification shall be the same as those of the renamed subprogram.

As a consequence of the prohibition of selectors as operator symbols (see Section 4.1.3), operators
resulting from explicit type declarations must be renamed when they are inherited, unless made
visible via a use type clause.

*  subprogram_renaming_declaration ::=

function defining_operator_symbol formal_part return subtype_mark
renames package_name . operator_symbol ;
| function_specification
renames package_name . function_direct_name ;
| procedure_specification
renames package_name . procedure_direct_name ;

Generic renaming declarations
SPARK does not have generic renaming declarations.

The Context of Overload Resolution

Subprograms, enumeration literals, character literals and string literals have unique neanings in

sPARK: by the rules of the language they cannot be overloaded. With their parameters, the
significance of operators and basic operationsis aso completely determined.



9

SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd
(excluding RavenSPARK)

TASKS

Tasks and multi-tasking constructs are not allowed.

Reference SPARK 95
Issue 4.7
Page 64



10

10.1

1011

10.1.2

SPARK 95 Reference SPARK 95
SPARK 95 - The SPADE Ada 95 Kernd Issue4.7
(excluding RavenSPARK) Page 65

PROGRAM STRUCTURE AND COMPILATION ISSUES
Separ ate Compilation

Compilation Units - Library Units
spPARK and Ada compilation units differ in the following respects. In sPARK
1 A subprogram declaration or body is not alibrary item.

2 Themain program is distinct from a subprogram body (in the syntax) and is alibrary unit. It is
distinguished by the presence of a mai n_pr ogr am annotation. It has an inherit clause, and

the rules of inheritance apply to its body (see Section 7.1.1)

3 Owing to the presence of an optional inherit clause, private package declarations are expressed

differently in the syntax.
4  Thereare no library unit renaming declarations.

compilation ::= { compilation_unit }
compilation_unit ::=
context_clause library_item | context_clause subunit
* library_item ::= library_unit_declaration | library_unit_body
*  library_unit_declaration ::=
package_declaration | private_package_declaration | main_program
*  library_unit_body ::= package_body
parent_unit_name ::= name
+ main_program ::=
[ inherit_clause ]
main_program_annotation
subprogram_body
+ main_program_annotation ::=
--# main_program ;

All the imported global variables of the main program shall be initialized own variables (see Section

7.1.4) of packages inherited by the main program.

Context Clauses - With Clauses

In sPaRK a context clause contains with clauses and use type clauses only, and no use (package)

clauses. All units named in awith clause must be packages.
context_clause ::= { context_item }

*  context_item ::= with_clause | use_type_clause
*  with_clause ::= with library_package_name {, library_package_name } ;
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A package name cannot appear (directly) more than once in the with clauses of a given context
clause.

A public descendant of a package P shall not be mentioned in a with clause of the body of P or any
of its subunits.

Each subtype mark appearing in the use type clause(s) of a given context clause shal determine a
different type.

Subunits of Compilation Units

In sPAaRK, abody stub for a procedure or function may require an appropriate annotation (see Section
6.3). Note that no such annotation occurs in the proper body of the corresponding subunit.

*  body_stub ::= subprogram_body_stub | package_body_stub
*  subprogram_body_stub ::=
procedure_specification [ procedure_annotation ] is separate ;
| function_specification [ function_annotation ] is separate ;
*  package_body_stub ::=
| package body defining_identifier is separate ;
subunit ::= separate (parent_unit_name ) proper_body

Program Execution

Elaboration Control
The rules of spArRk make the pragmas Elaborate and Elaborate All unnecessary.

However, as in Ada, pragma Elaborate Body may be required in a spark package specification to
make the package require a body.
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11 EXCEPTIONS
Exceptions are not supported by sPARK.
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GENERIC UNITS

Generic units are not alowed in seark other than the instantiation of the predefined generic
Unchecked Conversion.

Generic Declar ations
Generic declarations are not allowed in sPARK.

Generic Bodies
Generic bodies are not dlowed in sPARK.

Generic | nstantiation

Generic ingtantiation of the predefined generic function Unchecked Conversion is permitted in
sPARK. No other predefined generics are recognised in SPARK so the only permitted instantiation is
instantiation of a generic function.

* generic_instantiation ::= function defining_designator is

new generic_function_name [ generic_actual_part ]
generic_actual_part ::= ( generic_association {, generic_association } )
generic_association ::= [generic_formal_parameter_selector_name => ]
explicit_generic_actual_parameter
explicit_generic_actual_parameter ::= subtype_mark
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REPRESENTATION ISSUES

Representation Items

Representation clauses may appear in sPARK texts. The spark Examiner checks their syntax, which
must conform to the syntax rules given in Chapter 13 of the Ada LRM, but it ignores their semantics.
A warning message to this effect is given whenever the spark Examiner encounters a representation
clause.

Operational and Representation Attributes
sPARK does not support the operational attribute External_Tag.

The Package System

The Ada predefined library unit System is not automatically predefined in spARk (see Annex A), nor
are any of its descendants.

However, the spark version of package System, including the implementation defined values that
relate to the target Ada compilation system, may be specified via the target configuration file. The

SPARK version of package System that may be specified in this way is defined below:

package Systemi s
type Address is private;

Storage_Unit : constant := integer_val ue;
Word_Si ze : constant := integer_val ue;

Max_l nt : constant
M n_lnt : constant

i nt eger _val ue;
i nt eger _val ue;

Max_Bi nary_Mdul us : constant := integer_val ue;

Max_Base_Digits : constant := integer_val ue;
Max_Digits : constant := integer_val ue;

Fine_Delta : constant := real _val ue;
Max_Mantissa : constant := integer_val ue;

subtype Any_Priority is Integer range integer_range;
subtype Priority is Any_Priority range integer_range;
subtype Interrupt_Priority is Any_Priority range integer_range;

end System
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Machine Code I nsertions
Code statements are permitted in spArK, within a code insertion, as described in Section 6.3.

Unchecked Type Conversions

SPARK recognises the predefined generic function Unchecked_Conversion and permits instances of

this. SPARK checks the static semantics of the instantiation but does not perform any of the dynamic
semantic checks relating to the size and alignment of the actual subtypes used in the instantiation.

Storage M anagement
The package Ada.Finaization is not predefined in spARk and there are no user-defined storage poals.

Streams
The package Ada.Streams is not predefinedin spark and there are no stream types.
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ANNEX A PREDEFINED LANGUAGE ENVIRONMENT

Al

In spark, the only predefined packages are Standard, Ada, AdaCharacters and
Ada.Characters.Latin_1.

The mgjority of the library units predefined in Ada95, including Ada.Direct_10, Ada.Sequentia |10,
AdaText |0, AdaUnchecked Deallocation and System, use features not supported by spark and are
not considered to be predefined. This allows the user to supply a specification of such packages,
containing only sPark features. Conversdly, it also facilitates the declaration of a package which
inherits a genuine Ada predefined library unit but has a visible part compatible with the rules of
sPark. All references to the Ada predefined library unit must then occur within hidden parts,
representation clauses, or code statements of the private part or the body of the declared package.

Packages Standard and System in Ada95 each include implementationdefined vaues in their
specifications. It is possible to define via the target configuration file the spark version of these
packages that includes the actual values as specified by the target Ada compilation system. Indeed
package System in sPark becomes a predefined package if it is defined in this way (see section 13.7).
The Package Standard

In sPARK the view of package Standard differs from that described in Annex A.1 of the AdaLRM in
that it does not include the following declarations:

1 thetypeWide Character;
2 the package ASCII;

3 thetypeWide String;

4 any predefined exceptions.

The following Identifiers are predefined in spark’s view of package Standard:
1 thetypesInteger and Long_Integer, and subtypes Natural and Positive;

the types Float and Long_Float;

the type Duration;

the type Boolean;

the type Character;

6 thetype String.

The full definition of the predefined integer and floating point types that correspond to the target Ada
compilation system, including the values of the implementation- defined congtraints, (e.g. the range
for type Integer) may be specified in a reduced version of package Standard via the target
configuration file, for example:

g b~ W N
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package Standard is

type Integer is range integer-range;

type Short_Short_Integer is range integer-range;
type Short _Integer is range integer-range;

type Long_l nteger is range integer-range;

type Long_Long_Integer is range integer-range;

type Short_Float is digits integer-value range real -range;
type Float is digits integer-val ue range real -range;

type Long_Float is digits integer-value range real-range;

type Long_Long_Float is digits integer-value range real -range;

end St andard;
If the predefined types are not specified in this way, their constraints are undefined in sPARK.

Note that the existence of the Short_ and Long_ forms of Integer and Float is implementation
dependent, and may not be supported by a particular compiler, so these types should only be used if
specified in the spAark definition of package Standard in the target configuration file.

The type Duration is declared as a fixed-point type, but values for its attributes such as *First, ‘ Last,
and ‘Delta are not provided, since these are implementation defined and not specifiable via the target
configuration file.

The Package Ada
The package Adais predefined in spark asin Adads.

Character Handling

The Package Characters
The package Ada.Charactersis predefined in spARk asin Adads.

The Package Characters.Handling
The package Ada.Characters.Handling is not predefined in sPARK.

The Package Characters.Latin_1
The package Ada.Characters.Latin_1 is predefined in sPark asin Adadb.

String Handling
The package Ada.Stringsis not predefined in sPARK.

TheNumerics Package
The package Ada.Numericsis not predefined in SPARK.
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Input-Output

The spaRK language has no predefined packages for input-output, since the standard Ada input-output
packages contain features not supported by seark. The Ada95 predefined input-output packages
AdaSequentid 10, AdaDirect IO, AdaStorage 10, AdaText 10, AdaWide Text 10,
Ada.Streams.Stream |0 and Ada.lO_Exceptions are thus not predefined in SPARK.

However, the spark Examiner provides a package Spark 10 which defines operations for file
manipulatiion and input-output of the predefined types Character, String, Integer and Float. |If
required, facilities for input-output of new integer and floating point types, fixed point types and
enumeration types may be provided by the user, based on procedures in Spark 10, whose
specification and body are supplied in machine-readable form with the seark Examiner. For further
details, consult the spaArRk Examiner User Manual.

The Package Command_Line
The package Ada.Command_Lineis not predefined in sPARK.
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ANNEX B INTERFACE TO OTHER LANGUAGES

B.1 Interfacing Pragmas
A pragma Import may only occur in two places:
1 Immediately after a subprogram declaration (in a package specification or in a
declarative part).
2 Immediately after avariable declaration.
In both cases, the entity named in the pragma must be the one whose declaration the pragma
immediately follows.

B.2 The Package I nterfaces
The package Interfacesis not predefined in sPARK, nor are any of its descendants.
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ANNEX C SYSTEMS PROGRAMMING

C1

C.2

C.3

C32

C.7

C71

C7.2

Accessto Machine Operations

Code insertions and calls to intrinsic subprograms are supported in sPARK (See section 6.3 for code
insertions and annex B.1 for pragma Import).

Required Representation Support
Representation clauses may appear in spPARK texts. See section 13 for the restrictions in their usage.

Interrupt Support

The Package Interrupts
The package Ada.lnterrupts is not predefined in sPARK.

Task Identification and Attributes

The Package Task_|dentification
The package Ada Task_Identification is not predefined in sPARK.

The Package Task_Attributes
The package Ada.Task_Attributesis not predefined in SPARK .
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ANNEX D REAL-TIME SYSTEMS

As seaRK does not support tasking, this Annex is not part of the sPArk language.
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ANNEX E  DISTRIBUTED SYSTEMS
The features of this Annex are outside the scope of the spark language.
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ANNEX F INFORMATION SYSTEMS
The features of this Annex are outside the scope of the spark language.
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ANNEX G NUMERICS
The features of this Annex are outside the scope of the spark language.
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ANNEX H SAFETY AND SECURITY

Although clearly of interest to sPARk users, the features of this Annex are outside the scope of the
SPARK language itsalf.
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ANNEX J OBSOLESCENT FEATURES

With the exception of package ASCI|I, the obsolescent features described in Annex J of the Ada LRM
are not supported by sPARK.

In line with the Ada95 AARM A5.3 (72.f), obsolescent Ada 83 floating point attributes are now
alowedin sPARK 95 asimplementationdefined attributes (see Annex K).
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Annex K

The following attributes are allowed in sPARK:

SPARK 95

Language-defined Attributes

SAdjacent

SAft

SBase

SCeiling
X'Component_Size
SCompose
SCopy_Sign
SDelta

SDenorm

SDigits

SEXxponent

A'First(N)

A'First (for array types)
SFirst (for scalar types)
SHFoor

SFore

SFraction

A'Last(N)

A'Last (for array types)
SLast (for scdar types)
SLeading_Part

A'Length(N)

A'Length

SMachine

SMachine_Emax

SMachine_ Emin
SMachine_Mantissa
SMachine_Overflows

SPARK 95 - The SPADE Ada 95 Kernd
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SMachine_Radix
SMachine_Rounds
SMax
SMin
SModel
SModel_Emin

SModel_Epsilon
SModel_Mantissa
SModel_Small

S Modulus
SPos
SPred
A'Range(N)
A'Range  (for array types)
SRange (for scaar types)
SRemainder

SRounding

SSafe First

SSafe Last

SScaling

SSigned Zeros

SSize (for subtypes)

X'Size (for objects)

SSmall (for fixed-point types)
SSucc

STruncation
SUnbiased_Rounding

Sval

XVvadid
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As noted in Annex J, the following attributes are allowed in sPARk 95 mode in accordance with the
Ada95 AARM A5.3 (72.f):

S Emax

S Epsilon

SlLarge

S Mantissa

S Safe Emax

S Safe Large

S Safe_Small

S Smdl (for floating point types)
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ANNEX L LANGUAGE-DEFINED PRAGMAS

Except for pragmas Elaborate Body (see Section 10.2.1), and Import (see Annex B.1), the spARK
Examiner issues warning messages when it encounters pragmas, but otherwise it ignores them.
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ANNEX M TOOL -DEPENDENT FEATURES

M.1

M.2

Thisannex describes features that are not part of the core sparRk language but are associated with
SPARK language tools. Further details may be found in the relevant tool user manuas.

Thehidedirective

The sParRk Examiner supports a feature which permits certain parts of a program text to be hidden
from it. The Examiner reports that the text has been hidden, but otherwise ignores any text in the

hidden part.
The parts of a program text that may be hidden are;

1 A subprogram implementation (see Section 6.3). This permits program development by
successive refinement.

2 The exception handler part of a subprogram implementation. In this case the hide directive
must immediately follow the reserved word exception.

3 The private part of a package specification. This makes it possible to implement abstract data
typesin terms of concrete types not supported by spark, such as access types.

4 A package implementation (see Section 7.1).

5 A package initidization (see Section 7.1).
Hidden text is introduced by a hide directive, which takes the form
--# hide program_unit_name

The program unit name is the name of the subprogram or package whose details are to be hidden.
All text after the hide directive, up to an end immediately followed by the same program unit name,
isignored by the sparRk Examiner.

Additional reserved words

In addition to those listed in Section 2.9, the identifiers below are reserved for use by the spark proof
tools. The use of these identifiersin a sParRk program must be avoided if generation of verification
conditions (including those for the absence of run-time errors) is required.

are_interchangeable finish may_be_deduced requires
as first may_be_deduced_from
assume for_all may_be_replaced_by
for_some save
sequence
nonfirst set
nonlast sqr
goal not_in start
strict_subset_of
const subset_of

odd succ
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div pending update
pred
proof var
element last where

Alsoin this category are al identifiers which start with the characters “fld_" or “upf_”.

Extensions to annotations

Other annotations besides those in the core language (see Section 2.11) may be accepted by the sParRk
Examiner in order to support related spARK language tools. Similarly, extensions to the form of the
core language annotations may be supported by the Examiner.
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Collected Syntax of SPARK

Rules marked with an asterisk (*) are variants of rules of standard Ada and those marked with a plus
(+) are additional rules.

21
2.3
24

24.1

24.2

2.5

2.6

2.7

character ::= graphic_character | format_effector | other_control_function
graphic_character ::= identifier_letter | digit | space_character | special_character

identifier ::= identifier_letter { [underline] letter_or_digit }
letter_or_digit ::= identifier_letter | digit

numeric_literal ::= decimal_literal | based_literal

decimal_literal ::= numeral [.numeral] [exponent]
numeral ::= digit { [underline] digit }
exponent ::= E[+] numeral | E - numeral

based_literal ::= base # based_numeral # [exponent]

base ::= numeral

based_numeral ::= extended_digit { [underline] extended_digit }
extended_digit ::=digit | A|B|C|D|E|F

character_literal ::="graphic_character'

string_literal ::= "{ string_element }"
string_element ::= " | non_quotation_mark_graphic_character

comment ::= -{ non_end_of _line _character }
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2.8

321

pragma ::=
pragma identifier [ ( pragma_argument_association
{, pragma_argument_association } )] ;
pragma_argument_association ::=
[ pragma_argument_identifier => ] name
| [ pragma_argument_identifier => ] expression

basic_declaration ::=
type_declaration | subtype_declaration
|  object_declaration | number_declaration
defining_identifier ::= identifier

type_declaration ::=
full_type_declaration |
private_type_declaration |
private_extension_declaration

full_type_declaration ::= type defining_identifier is type_definition ;

type_definition ::=

enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
|  record_type_definition | modular_type_definition

|  record_type_extension

+ record_type_extension ::= new type_mark with record_definition ;

3.2.2

331

332

3.4

subtype_declaration ::=

subtype defining_identifier is subtype_indication ;
subtype_indication ::= subtype_mark [ constraint ]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint
scalar_constraint ::= range_constraint
composite_constraint ::= index_constraint

object_declaration ::=
defining_identifier_list : [ constant ] subtype_mark [ := expression ] ;
defining_identifier_list ::= defining_identifier { , defining_identifier }

number_declaration ::= defining_identifier_list : constant := static_expression ;
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35

351

354

3.5.6

3.5.7

359

3.6

3.6.1

range_constraint ::= range static_range
range ::=range_ attribute_reference
| simple_expression .. simple_expression

enumeration_type_definition ::=
(' enumeration_literal_specification {, enumeration_literal_specification } )
enumeration_literal_specification ::= defining_identifier

integer_type_definition ::= signed_integer_type_definition
signed_integer_type_definition ::=

range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_simple_expression

real_type_definition ::=
floating_point_definition | fixed_point_definition

floating_point_definition ::=

digits static_simple_expression [ real_range_specification ]
real_range_specification::=

range static_simple_expression .. static_simple_expression

fixed_point_definition ::= ordinary_fixed_point_definition
ordinary_fixed_point_definition ::=
delta static_simple_expression real_range_specification

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition
unconstrained_array_definition ::=
array ( index_subtype_definition { , index_subtype_definition } ) of
component_definition
index_subtype_definition ::= subtype_mark range <>
constrained_array_definition ::=
array ( discrete_subtype_definition {, discrete_subtype_definition } ) of
component_ definition
discrete_subtype_definition ::= discrete_subtype_mark
component_definition ::= subtype_mark
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index_constraint ::= ( discrete_subtype_mark { , discrete_subtype_mark })
discrete_range ::= discrete_subtype_indication | static_range

record_type_definition ::= [tagged] record_definition
record_definition ::=

record

component_list

end record | null record
component_list ::= component_item { component_item } | null
component_item ::= component_declaration
component_declaration ::=

defining_identifier_list : component_definition ;

discrete_choice_list ::= discrete_choice {| discrete_choice }
discrete_choice ::= static_simple_expression | discrete_range

declarative_part ::=

{ renaming_declaration }

{ declarative_item | embedded_package_declaration

| external_subprogram_declaration }

declarative_item ::= basic_declarative_item | body | generic_function_instatiation
basic_declarative_item ::= basic_declaration | representation_clause
embedded_package_declaration ::=

package_declaration

{ renaming_declaration | use_type_clause }
external_subprogram_declaration ::=

subprogram_declaration

pragma Import ( pragma_argument_association, pragma_argument_association

{, pragma_argument_association } );

body ::= proper_body | body_stub
proper_body ::= subprogram_body | package_body
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name ::= direct_name
| indexed_component | selected_component
| attribute_reference | function_call
direct_name ::= identifier
prefix ::= name

indexed_component ::= prefix (expression { , expression })

selected_component ::= prefix . selector_name
selector_name ::= identifier

attribute_reference ::= prefix'attribute_designator

attribute_designator ::= identifier [(expression [, expression])] | Delta | Digits
range_attribute_reference ::= prefix'range_attribute_designator
range_attribute_designator ::= Range [(static_expression)]

record_ aggregate ::= positional_record_aggregate | named_record_aggregate
positional_record_aggregate ::= ( expression { , expression } )
named_record_aggregate ::=

( record_component_association {, record_component_association } )
record_component_association ::= component_selector_name => expression

extension_aggregate ::= (ancestor_part with record_component_association_list) |
(ancestor_part with null record)
ancestor_part ::= expression
record_component_association_list ::=
named_record_component_association |
positional_record_component_association
positional_record_component_association ::= expression { , expression }
named_record_component_association ::=
record_component_association { , record_component_association }
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4.3.3
array_aggregate ::= positional_array_aggregate | named_array_aggregate
* positional_array_aggregate ::=
(aggregate_item , aggregate_item {, aggregate_item })
| (aggregate_item {, aggregate_item } , others => aggregate_item )
* named_array_aggregate ::=
(‘array_component_association { , array_component_association }
[, others =>aggregate_item])
| (others => aggregate_item)
* array_component_association ::= discrete_choice_list => aggregate_item
+ aggregate_item ::= expression | array_aggregate

4.4
expression ::=
relation { and relation} | relation { and then relation }
|  relation{ or relation } | relation { or else relation }
|  relation { xor relation }
relation ::=
simple_expression [ relational_operator simple_expression ]|
|  simple_expression [not] in range
|  simple_expression [ not] in subtype_mark
simple_expression ::=
[ unary_adding_operator ] term { binary_adding_operator term }
term ::= factor { multiplying_operator factor }
factor ::= primary [** primary] | abs primary | not primary
* primary ::=
numeric_literal | character_literal | string_literal
|  name | type_conversion
|  qualified_expression | (expression)
4.5
*
relational_operator ::==|/=| <| <=|>|>=
binary_adding_operator ::=+ |- | &
unary_adding_operator ::= + | -
multiplying_operator ::= *| /| mod | rem
*
4.6

* type_conversion ::= subtype_mark (expression)

4.7
qualified_expression ::=
subtype_mark'(expression) | subtype_mark'aggregate
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sequence_of_statements ::= statement { statement }
statement ::=

simple_statement | compound_statement
simple_statement ::= null_statement

| assignment_statement | procedure_call_statement

|  exit_statement | return_statement

compound_statement ::=
if_statement | case_statement
| loop_statement
null_statement ::= null;

statement_identifier ::= direct_name

assignment_statement ::=
variable_name := expression;

if_statement ::=
if condition then
sequence_of_statements
{ elsif condition then
sequence_of_statements }
[ else
sequence_of_statements ]
end if;
condition ::= boolean_expression

case_statement ::=
case expression is
case_statement_alternative
{ case_statement_alternative }
[ when others => sequence_of_statements ]
end case;
case_statement_alternative ::=
when discrete_choice_list => sequence_of_statements
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5.5

loop_statement ::=
[loop_statement_identifier : ]
[ iteration_scheme ]
loop
sequence_of_statements
end loop [ loop_identifier ] ;
iteration_scheme ::= while condition | for loop_parameter_specification
loop_parameter_specification ::=
defining_identifier in [ reverse ] discrete_subtype_mark [ range range ]

exit_statement ::= exit [ simple_name ] [ when condition ] ;

subprogram_declaration ::=
procedure_specification ; procedure_annotation
|  function_specification ; function_annotation

procedure_specification ::=

procedure defining_identifier parameter_profile
function_specification ::=

function defining_designator parameter_and_result_profile
designator ::= identifier
defining_designator ::= defining_identifier
defining_program_unit_name ::= [ parent_unit_name . ] defining_identifier
operator_symbol ::= string_literal
defining_operator_symbol ::= operator_symbol
parameter_profile ::= [ formal_part ]
parameter_and_result_profile::= [ formal_part ] return subtype_mark
formal_part ::=

( parameter_specification { ; parameter_specification } )
parameter_specification ::=

defining_identifier_list : mode subtype_mark
mode ::=[in ]| in out | out
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6.1.1

+

6.1.2

+ + + + +

+

+ + + + +

procedure_annotation ::=
[ global_definition ]
[ dependency_relation ]

function_annotation ::=
[ global_definition ]

global_definition ::=
--# global global_mode global_variable_list ; { global_mode global_variable_list ; }
global_mode ::=in | in out | out
global_variable_list ::= global_variable {, global_variable }
global_variable ::= entire_variable
entire_variable ::= [ package_name . ] direct_name
dependency_relation ::=
--# derives [dependency_clause { & dependency_clause } [& null_dependency_clause]] ;
| --# derivesnull_dependency_clause ;
dependency_clause ::=
exported_variable_list from [ imported_variable_list ]
exported_variable_list ::= exported_variable { , exported_variable }
exported_variable ::= entire_variable
imported_variable_list ::=* | [*, ] imported_variable {, imported_variable }
imported_variable ::= entire_variable
null_dependency_clause ::= null from imported_variable {, imported_variable }

subprogram_body ::=
procedure_specification
[ procedure_annotation ]
is
subprogram_implementation
| function_specification
[ function_annotation ]
is
subprogram_implementation
subprogram_implementation ::=
declarative_part
begin
sequence_of_statements
end designator ;
| begin
code_insertion
end designator ;
code_insertion ::= code_statement { code_statement }
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procedure_call_statement ::=

procedure_name [ actual_parameter_part ] ;
function_call ::=

function_name [ actual_parameter_part ]
actual_parameter_part ::= ( parameter_association_list )

parameter_association_list ::=
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named_parameter_association_list | positional_parameter_association_list

named_parameter_association_list ::=

formal_parameter_selector_name => explicit_actual_parameter
{, formal_parameter_selector_name => explicit_actual_parameter }

positional_parameter_association_list ::=
explicit_actual_parameter { , explicit_actual_parameter }
explicit_actual_parameter ::= expression | variable_name

return_statement ::= return expression ;

package_declaration ::= [ inherit_clause | package_specification ;
private_package_declaration ::=
[ inherit_clause ] private package_specification ;
package_specification ::=
package defining_program_unit_name
package_annotation
is
visible_part
[ private
private_part ]
end [ parent_unit_name . ] identifier
visible_part ::=
{ renaming_declaration }
{ package_declarative_item }
private_part ::=
{ renaming_declaration }
{ package_declarative_item }
package_declarative_item ::=
basic_declarative_item | subprogram_declaration
| external_subprogram_declaration

inherit_clause ::=
--#inherit package_name { , package_name } ;
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package_annotation ::=
[ own_variable_clause [ initialization_specification ] ]

own_variable_clause ::= --# own own_variable_list ;
own_variable_list ::= mode own_variable { , mode own_variable }
own_variable ::= direct_name

initialization_specification ::=
--#initializes own_variable_list ;

package_body ::=
package body defining_program_unit_name
[ refinement_definition ]
is
package_implementation
end [ parent_unit_name . ] identifier ;
package_implementation ::=
declarative_part
[ begin
package_initialization ]

package_initialization ::=
sequence_of_statements

refinement_definition ::=

--# own refinement_clause { & refinement_clause } ;
refinement_clause ::=

subject is constituent_list
subject ::= direct_name
constituent_list ::= mode constituent { , mode constituent }
constituent ::= [ package_name . ] direct_name

private_type_declaration ::=

type defining_identifier is [tagged] [ limited ] private;
private_extension_declaration ::=

type defining_identifier is new ancestor_subtype_indication with private ;
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8.4
*
use_type_clause ::= use type subtype_mark {, subtype_mark } ;
8.5
* renaming_declaration ::=
package_renaming_declaration
|  subprogram_renaming_declaration
85.1-85.2
*
85.3
* package_renaming_declaration ::=
package defining_program_unit_name
renames parent_unit_name . package_direct_name ;
854
* subprogram_renaming_declaration ::=
function defining_operator_symbol formal_part return subtype_mark
renames package_name . operator_symbol ;
|  function_specification
renames package_name . function_direct_name ;
|  procedure_specification
renames package_name . procedure_direct_name ;
855
*
9.1
*
10.1.1
compilation ::= { compilation_unit }
compilation_unit ::=
context_clause library_item | context_clause subunit
* library_item ::= library_unit_declaration | library_unit_body
* library_unit_declaration ::=

package_declaration | private_package_declaration | main_program

* library_unit_body ::= package_body
parent_unit_name ::= name
+ main_program ::=
[ inherit_clause ]
main_program_annotation
subprogram_body
+ main_program_annotation ::=
--# main_program ;

10.1.2
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context_clause ::={ context_item }
* context_item ::= with_clause | use_type_clause

* with_clause ::= with library_package_name {, library_package_name } ;

10.1.3
* body_stub ::= subprogram_body_stub | package_body_stub
* subprogram_body_stub ::=
procedure_specification [ procedure_annotation ] is separate;
| function_specification [ function_annotation ] is separate;
* package_body_stub ::=
package body defining_identifier is separate;
subunit ::= separate ( parent_unit_name ) proper_body

111-122

*

12.3
* generic_instantiation ::= function defining_designator is
new generic_function_name [ generic_actual_part ]
generic_actual_part ::= ( generic_association {, generic_association } )
generic_association ::= [generic_formal_parameter_selector_name => ]
explicit_generic_actual_parameter
explicit_generic_actual_parameter ::= subtype_mark

124-7

13.1
* representation_clause ::=
attribute_definition_clause
|  enumeration_representation_clause
|  record_representation_clause
| at_clause
local_name ::= direct_name
| direct_name'attribute_designator
|  library_unit_name

133
* attribute_definition_clause ::= for local_name'attribute_designator use simple_expression;

134

enumeration_representation_clause ::=
for first_subtype_local_name use enumeration_aggregate ;

enumeration_aggregate ::= array_aggregate ;

135
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at_clause ::= for simple_name use at simple_expression ;
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1351
* record_representation_clause ::=
for first_subtype_local_name use
record [ mod_clause ]
{ component_clause }
end record,;
component_clause ::=
component_local_name at position range first_bit .. last_bit ;
* position ::= static_simple_expression
first_bit ::= static_simple_expression
last_bit ::= static_simple_expression
mod_clause ::= at mod simple_expression ;

13.8
code_statement ::= qualified_expression ;
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