Introduction to JavaCard Dynamic Logic

Andreas Roth, Richard Bubel, Christian Engel

November 22, 2006

Introduction to JavaCard Dynamic Logic November 22, 2006 1/13

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?

Introduction to JavaCard Dynamic Logic November 22, 2006 2/13

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?
@ Abrupt termination

Introduction to JavaCard Dynamic Logic November 22, 2006 2/13

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?
@ Abrupt termination
o Exceptions (try — catch — finally)

Introduction to JavaCard Dynamic Logic November 22, 2006 2/13

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?
@ Abrupt termination

o Exceptions (try — catch — finally)
@ Local jumps return, break, continue

Introduction to JavaCard Dynamic Logic November 22, 2006

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?
@ Abrupt termination

o Exceptions (try — catch — finally)
@ Local jumps return, break, continue

o Aliasing
Different navigation expressions may be same object reference

| = o.age =1 -> (u.age = 2;)0.age = u.age ?

Depends on whether [=0 =u

Introduction to JavaCard Dynamic Logic November 22, 2006 2/13

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?
@ Abrupt termination

o Exceptions (try — catch — finally)
@ Local jumps return, break, continue

o Aliasing
Different navigation expressions may be same object reference

| = o.age =1 -> (u.age = 2;)0.age = u.age ?

Depends on whether [=0 =u
@ Method calls, blocks

Introduction to JavaCard Dynamic Logic November 22, 2006 2/13

Some Java Features

@ Assignments, complex expressions with side effects
int 1 = 0; if ((i=2) >= 2) {i++;} // value of i?
@ Abrupt termination

o Exceptions (try — catch — finally)
@ Local jumps return, break, continue

o Aliasing
Different navigation expressions may be same object reference
| = o.age =1 -> (u.age = 2;)0.age = u.age ?
Depends on whether [=0 =u
@ Method calls, blocks

Solution within KeY to be discussed in detail

Introduction to JavaCard Dynamic Logic November 22, 2006

More Java Features

Addressed in KeY

@ Java’s rules for localisation of attributes and
method implementations (polymorphism, dynamic binding)

Introduction to JavaCard Dynamic Logic November 22, 2006 3/13

More Java Features

Addressed in KeY

@ Java's rules for localisation of attributes and
method implementations (polymorphism, dynamic binding)
Scope (class/instance)
Context (static/runtime)
Visibility
super

<

¢ € ¢

Introduction to JavaCard Dynamic Logic November 22, 2006 3/13

More Java Features

Addressed in KeY

@ Java's rules for localisation of attributes and
method implementations (polymorphism, dynamic binding)
Scope (class/instance)
Context (static/runtime)
o Visibility
@ super

¢ €

Solution: use information from semantic analysis of compiler
(branch proof if implementation not uniquely determined)

Introduction to JavaCard Dynamic Logic November 22, 2006 3/13

More Java Features

Addressed in KeY

@ Java's rules for localisation of attributes and
method implementations (polymorphism, dynamic binding)
Scope (class/instance)
Context (static/runtime)
o Visibility
@ super

¢ €

Solution: use information from semantic analysis of compiler
(branch proof if implementation not uniquely determined)

@ Run time errors (null pointer exceptions)
Functions that model attributes are partially defined

Introduction to JavaCard Dynamic Logic November 22, 2006 3/13

More Java Features

Addressed in KeY

@ Java's rules for localisation of attributes and
method implementations (polymorphism, dynamic binding)
Scope (class/instance)
Context (static/runtime)
o Visibility
@ super

¢ €

Solution: use information from semantic analysis of compiler
(branch proof if implementation not uniquely determined)
@ Run time errors (null pointer exceptions)
Functions that model attributes are partially defined
Solution: optional rule set enforces proof of !(o = null)
(whenever object reference o accessed)

Introduction to JavaCard Dynamic Logic November 22, 2006 3/13

More Java Features

@ Java Card data types
boolean, char, String
int, byte, long (cyclic!)
Arrays
Solution: optional rule sets N/int, rules for built-ins

Introduction to JavaCard Dynamic Logic November 22, 2006 4/13

More Java Features

@ Java Card data types

boolean, char, String

int, byte, long (cyclic!)

Arrays

Solution: optional rule sets N/int, rules for built-ins
@ Java Card transaction mechanism (atomic execution)

“Roll back” uncompleted transactions (“rip out”)
Solution: new modality [a]¢ “¢ holds throughout execution of o

Introduction to JavaCard Dynamic Logic November 22, 2006 4/13

More Java Features

@ Java Card data types
boolean, char, String
int, byte, long (cyclic!)
Arrays
Solution: optional rule sets N/int, rules for built-ins

@ Java Card transaction mechanism (atomic execution)
“Roll back” uncompleted transactions (“rip out”)
Solution: new modality [a]¢ “¢ holds throughout execution of o

@ Object creation and initialisation
Trick to keep same universe U in all states:
all objects exist anytime, use attributes o.created, o.initialized

Introduction to JavaCard Dynamic Logic November 22, 2006 4/13

More Java Features

@ Java Card data types

boolean, char, String

int, byte, long (cyclic!)

Arrays

Solution: optional rule sets N/int, rules for built-ins
@ Java Card transaction mechanism (atomic execution)

“Roll back” uncompleted transactions (“rip out”)
Solution: new modality [a]¢ “¢ holds throughout execution of o

@ Object creation and initialisation
Trick to keep same universe U in all states:
all objects exist anytime, use attributes o.created, o.initialized

@ Formal specification of Java Card API

Introduction to JavaCard Dynamic Logic November 22, 2006 4/13

Side Effects and Complex Expressions

int i = 0; if ((i=2) >= 2) {i++;} // value of i?

JAVA expressions can assign values (assignment operators)
FOL/DL terms have no side effects

Introduction to JavaCard Dynamic Logic November 22, 2006 5/13

Side Effects and Complex Expressions

int i = 0; if ((i=2) >= 2) {i++;} // value of i?

JAVA expressions can assign values (assignment operators)
FOL/DL terms have no side effects

Decomposition of complex terms following symbolic execution as defined
for expressions JAVA language specification
Local program transformations

M= (ry =t x=y;w)o,A
ITERATED-ASSIGNMENT
N==>(rx=y=t,wepA

t simple

Introduction to JavaCard Dynamic Logic

November 22, 2006 5/13

Side Effects and Complex Expressions

int i = 0; if ((i=2) >= 2) {i++;} // value of i?

JAVA expressions can assign values (assignment operators)
FOL/DL terms have no side effects

Decomposition of complex terms following symbolic execution as defined
for expressions JAVA language specification
Local program transformations

(= (ry=t x=y w)d.A

ITERATED-ASSIGNMENT
N==>(rx=y=t,wepA

t simple

Temporary program variables ‘_var<n>' store intermediate results

[==> (7 boolean Vpew; Vnew= b; if (Vpew) {a}; w)o, A

[==> (1 if (b) {a}; w)¢, A
where b complex

IF-EVAL

Introduction to JavaCard Dynamic Logic November 22, 2006 5/13

Side Effects and Complex Expressions, Cont'd

Applying rule to statement including guard with side effect is
incorrect

Restrict applicability of IF-THEN and other rules with guards:
Guard expression needs to be simple (ie, side effect-free)

pogprrp 2P = TRUE ==> (1 a; w)¢, A T, b =FALSE ==> (1 w)¢, A
M ==>(mif (b) {a}; w)¢,A

where b simple

Demo

javaDL/complex.key

Introduction to JavaCard Dynamic Logic

November 22, 2006 6 /13

Abrupt Termination

Redirection of control flow via return, break, continue, exceptions

(m try {€a} catch(e) {7} finally {e}; w)¢

Introduction to JavaCard Dynamic Logic November 22, 2006 7/13

Abrupt Termination

Redirection of control flow via return, break, continue, exceptions

(m try {€a} catch(e) {7} finally {e}; w)¢

Solution: rules work on first active statement, try part of prefix

Introduction to JavaCard Dynamic Logic November 22, 2006 7/13

Abrupt Termination

Redirection of control flow via return, break, continue, exceptions

(m try {€a} catch(e) {7} finally {e}; w)¢

Solution: rules work on first active statement, try part of prefix

TRY-THROW (exc simple)

7 if (exc instanceOf Exception) {
[== try {e = exc; v} finally {e} o, A
} else {e€ throw exc}; w
[==> (7 try {throw exc; a} catch(e) {7} finally {e}; w)¢p, A

Introduction to JavaCard Dynamic Logic November 22, 2006 7/13

Aliasing

Naive alias resolution causes proof split (on o = u) at each access

[==> o.age =1 -> (u.age = 2;)o.age = u.age, A

Introduction to JavaCard Dynamic Logic November 22, 2006 8 /13

Aliasing

Naive alias resolution causes proof split (on o = u) at each access
[==> o.age =1 -> (u.age = 2;)o.age = u.age, A
Unnecessary in many cases!
[==> o.age =1 -> (u.age = 2; o.age = 2;)o.age = u.age, A

[==> o.age =1 -> (u.age = 2;)u.age =2, A

Introduction to JavaCard Dynamic Logic November 22, 2006 8 /13

Aliasing

Naive alias resolution causes proof split (on o = u) at each access
[==> o.age =1 -> (u.age = 2;)o.age = u.age, A
Unnecessary in many cases!
[==> o.age =1 -> (u.age = 2; o.age = 2;)o.age = u.age, A
[==> o.age =1 -> (u.age = 2;)u.age =2, A
Updates avoid such proof splits:

@ Delayed state computation until clear what actually required

@ Simplification of updates

Introduction to JavaCard Dynamic Logic November 22, 2006

Updates for JAva

Let /loc be either one of

@ program variable x

Introduction to JavaCard Dynamic Logic November 22, 2006

Updates for JAva

Let Joc be either one of
@ program variable x

@ attribute access o.attr (o has object type)

Introduction to JavaCard Dynamic Logic November 22, 2006 9/13

Updates for JAva

Let loc be either one of
@ program variable x
@ attribute access o.attr (o has object type)

@ array access a[i] (a has array type, not discussed here)

Introduction to JavaCard Dynamic Logic

November 22, 2006

9/13

Updates for JAva

Let loc be either one of
@ program variable x
@ attribute access o.attr (o has object type)

@ array access a[i] (a has array type, not discussed here)

[[==> {loc := valXm w)p, A
[==> (7 loc=val;, w)¢, A

where

@ Joc and val satisfy above restrictions
@ val is a side-effect free term,

@ {loc := val} is DL update (usage and semantics as in simple DL)

Introduction to JavaCard Dynamic Logic

November 22, 2006 9/13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

1,8 1.8 _ 1.8
(\if (t1 = t2) \then t \else &)/ = t, =5
e!'# otherwise

Introduction to JavaCard Dynamic Logic November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

if (t1 = t2 th t 1 ’ =

(\if (¢) \then t \else e) { e!'f otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=t}lua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

(t1 = £2) 1.5 t0 g7 =0
if (t1 = t2) \then t \el F =
(\i \then t \else) { e/'# otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=tlua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a

Example

{o.a:=o0}o.a.ab

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

(t1 = t2) 15 th? gt =’
if (t1 = t2) \then t \el o=
(\i \then t \else) { e/'# otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=tlua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a

Example

{o.a:=0}o.a.a.b ~ {o.a:=ol}o.a.a.b

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

(t1 = t2) 15 th? gt =’
if (t1 = t2) \then t \el o=
(\i \then t \else) { e/'# otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=tlua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a

Example

{o.a:=0}o.a.ab ~» ({o.a:=o0}o.a.a)b

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

if (t1 = t2 th t 1 ’ =

(\if (¢) \then t \else e) { e!'f otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=t}lua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a
Example

(\if (({o.a:=o0}o0.a) = 0)

{o.a:=o0}o.a.ab ~ \then o

\else ({o.a:=o0}o.a).a).b

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

if (t1 = t2 th t 1 ’ =

(\if (¢) \then t \else e) { e!'f otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=t}lua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a

Example
(\if (0 = o)
{o.a:=o0}o.a.ab ~ \then o
\else o.a).b

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Computing Effect of Updates: Attributes

Use conditional terms to delay splitting further

(t1 = t2) 15 th? gt =’
if (t1 = t2) \then t \el o=
(\i \then t \else) { e/'# otherwise
Computing update followed by attribute access

{o.a:=t}o.a ~ t

{c.a:=tlub ~ ({o.a:=t}u)b

{o.a:=tlua ~

\if (({o.a:=t}u)=o0) \then t \else ({o.a:=t}u).a

Example

{o.a:=0}o.a.ab ~ o.b

Introduction to JavaCard Dynamic Logic

November 22, 2006 10 / 13

Parallel Updates

Computing update followed by update
{/1 = rl}{/z = r2} = {{/1 = rl}, {{/1 = r1} l, /2 = {/1 = r1}r2}}

Results in parallel update

Introduction to JavaCard Dynamic Logic November 22, 2006 11 /13

Parallel Updates

Computing update followed by update

{/1 = rl}{/z = r2} = {{/1 = rl}, {{/1 = r1} l, /2 = {/1 = r1}r2}}
Results in parallel update

Syntax

{h:=wv, ..., In:= vy}

Introduction to JavaCard Dynamic Logic

November 22, 2006 11 /13

Parallel Updates

Computing update followed by update

{/1 = rl}{/2 = r2} = {{/1 = rl}, {{/1 = r1} l /2 = {/1 = r1}r2}}
Results in parallel update
Syntax
{h:=wv, ..., In:= vy}
Semantics

@ All /; and v; computed in old state

@ All updates done simultaneously

o If conflict /=1, vi # v; later update wins

Introduction to JavaCard Dynamic Logic November 22, 2006 11 /13

Method Call

Method call with actual parameters argy, ..., arg,

{argy == t1,...,argy = ty, 0:=to}(o.m(argy,...,arg,);)¢

Where method declaration is: void m(T1 p1,..., Tn pn)

Introduction to JavaCard Dynamic Logic November 22, 2006 12 /13

Method Call

Method call with actual parameters argy, ..., arg,
{argy == t1,...,argy = ty, 0:=to}(o.m(argy,...,arg,);)¢
Where method declaration is: void m(T1 p1,..., Tn pn)

What the rule method-call does:

@ (type conformance of arg; to T; guaranteed by JAVA compiler)

Introduction to JavaCard Dynamic Logic November 22, 2006 12 /13

Method Call

Method call with actual parameters argy, ..., arg,

{argy == t1,...,argy = ty, 0:=to}(o.m(argy,...,arg,);)¢
Where method declaration is: void m(T1 p1,..., Tn pn)

What the rule method-call does:
@ (type conformance of arg; to T; guaranteed by JAVA compiler)

@ for each formal parameter p; of m declare & initialize new local
variable 'T; p; = arg;;’

Introduction to JavaCard Dynamic Logic November 22, 2006

12 /13

Method Call

Method call with actual parameters argy, ..., arg,
{argy == t1,...,argy = ty, 0:=to}(o.m(argy,...,arg,);)¢
Where method declaration is: void m(T1 p1,..., Tn pn)

What the rule method-call does:
@ (type conformance of arg; to T; guaranteed by JAVA compiler)

@ for each formal parameter p; of m declare & initialize new local
variable 'T; p; = arg;;’

@ look up implementation class C of m split proof, if implementation
not determinable

Introduction to JavaCard Dynamic Logic November 22, 2006 12 /13

Method Call

Method call with actual parameters argy, ..., arg,

{argy == t1,...,argy = ty, 0:=to}(o.m(argy,...,arg,);)¢

Where method declaration is: void m(T1 p1,..., Tn pn)

What the rule method-call does:

@ (type conformance of arg; to T; guaranteed by JAVA compiler)
@ for each formal parameter p; of m declare & initialize new local
variable 'T; p; = arg;;’

@ look up implementation class C of m split proof, if implementation
not determinable

@ make concrete call o.C::m(ps,...,pn)

Introduction to JavaCard Dynamic Logic November 22, 2006 12 /13

Method Body Expand

After processing code that binds actual to formal parameters (symbolic
execution of 'T; p; = arg;;’)

[==> (7 method-frame(C(0)){ b} w)e, A

METHOD-BODY-EXPAND
[==> (ro.Cim(pi,...,pn); w)o,A

Introduction to JavaCard Dynamic Logic November 22, 2006 13 /13

Method Body Expand

After processing code that binds actual to formal parameters (symbolic
execution of 'T; p; = arg;;’)

[==> (7 method-frame(C(0)){ b} w)p,A
[==> (77 o.C::m(pl, ce ,pn); w>¢’ A

METHOD-BODY-EXPAND

Symbolic Execution

Introduction to JavaCard Dynamic Logic November 22, 2006 13 /13

Method Body Expand

After processing code that binds actual to formal parameters (symbolic
execution of 'T; p; = arg;;’)

[==> (7 method-frame(C(0)){ b} w)e, A

METHOD-BODY-EXPAND
[==> (ro.Cim(pi,...,pn); w)o,A

Symbolic Execution
Only static information available, proof splitting

Introduction to JavaCard Dynamic Logic November 22, 2006 13 /13

Method Body Expand

After processing code that binds actual to formal parameters (symbolic
execution of 'T; p; = arg;;’)

[==> (7 method-frame(C(0)){ b} w)p,A

METHOD-BODY-EXPAND
[==> (ro.Cim(pi,...,pn); w)o,A

Symbolic Execution
Only static information available, proof splitting
Runtime infrastructure required in calculus

Introduction to JavaCard Dynamic Logic November 22, 2006 13 /13

