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Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))

Propositional Variables P = {p;|i € N}
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Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))
Propositional Variables P = {p;|i € N}
Connectives O = {true,false,&, |, !, -> <>}

Definition (Propositional Formulas Fory)

@ Truth constants ‘true’, ‘false’ and variables P are formulas
@ If G and H are formulas then
'G, (G&H), (GIH), (G->H), (G<->H)

are also formulas

@ There are no other formulas
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Semantic Notions

Given the functions
e | . P — {true, false} and

@ its continuation val; : Fory — {true, false}
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Semantic Notions

Given the functions
e | . P — {true, false} and
@ its continuation val; : Fory — {true, false}

Let G € Forgz, N c Foréz

e | is a model for G iff val;(G) = true (write: | = G)
A formula that has a model is satisfable

@ G follows from I (I' = G) iff for all interpretations /:
I = H for all H €T then also | = G

@ If any interpretation is a model of G, i.e
0 =G (short: | G)

then G is called valid
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Propositional Logic Example

p&(('p) | q)

@ Satisfiable?
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Propositional Logic Example

p&(('p) | q)
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Propositional Logic Example

p&((tp) 1 q)

@ Satisfiable? Yes
@ Model? I(p) = true, I(q) = true
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Propositional Logic Example

p&((tp) 1 q)

@ Satisfiable? Yes
@ Model? I(p) = true, I(q) = true

p&(('p) I q) F qlr

Does this hold?
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Propositional Logic Example

p&(('p) | q)

@ Satisfiable? Yes
@ Model? I(p) = true, I(q) = true

p&(('p) I q) F qlr

Does this hold? Yes Why?
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Reasoning by Syntactic Transformation

Establish ' = G by purely syntactic transformations of I' and G

(Logic) Calculus: a set of transformation rules R defining

relation - C 2Fo0 x Fory such that T = G iffT - G

E C + Completeness E DO F Soundness

Sequent Calculus based on notion of sequent

wlu"'7¢m ==> ¢17~~~7¢n
—_——— —_——
Antecedent Succedent

has same semantics as

(¢1&&¢m) -> (¢1| |¢n)
{wlv"'vwm} ': ¢1||¢n
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Notation for Sequents

¢17"'7¢m ==> ¢17"'7¢n

Consider antecedent/succedent as sets of formulas, may be empty

Use schematic variables I', A that match sets of formulas

[ == A

Matches any sequent with an occurrence of ¢ in succedent
Call ¢ main formula and I side formulas of sequent

Any sequent of the form I, ¢ ==> A, ¢ is valid: axiom
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Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
7\

I'i==>A - I, ==>A,
' ==>A
—_——

Conclusion

RULE NAME
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Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
I'i==>A - I, ==>A,
RULE NAME
==>A
———
Conclusion
Sound rule (essential) E (M==>A1&--- &l ==>A,)->(I==>A)
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Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
I'i==>A - I, ==>A,
NAM
RULE E T —= A
—_———
Conclusion
Sound rule (essential) E (M==>A1&--- &l ==>A,)->(I==>A)
Complete rule (desirable) E (M==>A)->(T1==>A1& - - - &[ ,==>A,)

Admissible to have no premisses (iff conclusion is valid, eg axiom)
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Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,

@ find rule R whose conclusion matches S
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Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,

e ¢ ¢ ¢ ¢

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S
recursively find proofs for resulting premisses S1, ..., Sr
tree structure with goal as root

close proof branch when rule without premise encountered
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Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,
@ find rule R whose conclusion matches S

@ instantiate R such that conclusion identical to S

(]

recursively find proofs for resulting premisses S1, ..., Sr

tree structure with goal as root

close proof branch when rule without premise encountered

= KeY — Prover

Goal-directed proof search
In KeY tool proof displayed as
JAVA Swing tree

D suateay: Appied 15 e, osed 1 goal 3 500 0 emaimng

Introduction to Dynamic Logics

November 15, 2006
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Rules of Propositional Sequent Calculus

main ‘ left side (antecedent) ‘ right side (succedent)
M==>AA NA==>A

not - = - —
A== A == 1A A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
== AA MA==>A
not _— =
A== A == 1AA
4| LAB==>A [==> AA [ ==>B,A
an rALB ==> A [ ==> A%B,A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
== AA MA==>A

not _— -
A== A == 1A A

4| LAB==>A [==> AA [ ==>B,A

an rALB ==> A [ ==> A%B,A

r A==>A [,B==>A [ ==> A B,A

© LAIB == A [ ==> AIB,A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
== AA MA==A

not e E s —— —_—
A== A [ ==>1AA

g | LAB==>A [==>AA T ==>B,A

an rALB ==> A [ ==> A%B,A

r A==>A T,B==>A [==> A B A

© LAIB = A == A|B,A

. [==> AA TB==>A [A==>BA

'mp [A—>B == A [ ==> A->B,A
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Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
[==>AA MA==>A
not e E s —— —_—
1A ==> A M==>1AA
g | LAB==A [==>AA [ ==>BA
an rALB ==> A [ ==> A%B,A
i A==>A [B==>A [==> A B,A
© LAIB == A [ ==> AIB,A
. [==>AA IB==>A MA==>BA
'mp [A—>B == A [ ==> A->B,A
MM T A=A A T T true A
FALSE

,false ==> A
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Justification of Rules

Compute rules by applying semantics definition of connectives
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Justification of Rules

Compute rules by applying semantics definition of connectives

[==>AB,A

[==>AA [==>BA

AND_RIGHT [ ==> A&B,A
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Justification of Rules

Compute rules by applying semantics definition of connectives

[==>AB,A

[==>AA [==>BA
[ ==> A%B,A

AND_RIGHT

Follows directly from semantics of sequents

r->(AzB)|1 A
iff
->AIA and T[->B|A
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A Simple Proof

I ==> (A&(A->B))->B, A
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A Simple Proof

I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A
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A Simple Proof

[ A (A->B) ==> B, A
I, (A&(A->B)) ==> B, A
I ==> (A&(A->B))->B, A
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A Simple Proof

MA==>BAA A B ==>BA
A (A->B) ==> B, A
I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A
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A Simple Proof

* *
A==>BAA A B==>B,A
A (A->B) ==> B, A
I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A
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A Simple Proof

* *
A==>BAA A B==>B,A
A (A->B) ==> B, A
I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A

A proof is closed, if all its branches are closed.
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Propositional Logic is insufficient
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Propositional Logic is insufficient

A
B
?

ALL PERSONS ARE HAPPY
PAT IS A PERSON
PAT 1S HAPPY
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Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY
B PAT 1S A PERSON
? PAT 1S HAPPY

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.
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Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY
B PAT 1S A PERSON
? PAT 1S HAPPY

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

= First-Order Logic (FOL)
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Signature of First-Order Logic

Definition (Signature)
Y=(7T,V,P,F,a,0,0UQU{=})
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Signature of First-Order Logic

Definition (Signature)
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Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}

Predicate Symbols P = {p; | i € N}

Function Symbols F ={f?|ie N,z T}
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Signature of First-Order Logic

Definition (Signature)
Y=(7,V,P,F,a,0,0 U QU{=})
Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}
Predicate Symbols P = {p; | i € N}

Function Symbols F ={f?|ie N,z T}
for g € PUF let a(q) € N arity and o(q) € 79 signature of g

Connectives O = {true, false, &, |,!,-> <>}
Quantifiers Q = {\forall, \exists}
Equality symbol =
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First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt
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First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any}
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V°®°" stoneVeaPor hlockheadVord}
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Terms of First-Order Logic

Definition (Terms)
The set of terms Termy is inductively defined as

@ Variable x € V is term
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Terms of First-Order Logic

Definition (Terms)
The set of terms Termy is inductively defined as
@ Variable x € V is term
o Iff2eF, o(f)=(z1,...,z) and t; term of type z/ < zi or t; € V
for 1 <i<r, then f#(t1,...,t,) is term of type z
When r = 0 call it constant
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Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For™ is inductively defined as

o If peP, o(p)=(zi,...,z) and t; term of type z/ < z;j or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula

Use brackets and usual precedence rules to avoid syntactic ambiguity
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Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For® is inductively defined as
o If peP, o(p)=(zi,...,z) and t; term of type z/ < z;j or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula
o If t1, to are terms of same type or variable, then t; =t is a
first-order formula

Use brackets and usual precedence rules to avoid syntactic ambiguity
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Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For® is inductively defined as
o If peP, o(p)=(zi,...,z) and t; term of type z/ < z;j or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula
o If t1, to are terms of same type or variable, then t; =t is a
first-order formula
@ Truth constants, connectives as in propositional logic

Use brackets and usual precedence rules to avoid syntactic ambiguity
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Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For® is inductively defined as

o If pe P, o(p) =(z1,...,2z) and t; term of type z] < z; or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula

o If t1, to are terms of same type or variable, then t; =t is a
first-order formula

@ Truth constants, connectives as in propositional logic

o IfxeV, ze T, ¢ a first-order formula with no occurrence of x : 2/,
and all occurrences of x in ¢ are in symbols with type signature
z < 7' for the argument where x appears, then \forall z x; ¢,
\exists z x; ¢ are first-order formulas; x declared of type z and
scope ¢

Use brackets and usual precedence rules to avoid syntactic ambiguity
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First-Order Syntax Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)

Functions F = {stick"V°®°" stoneVeaPor hlockheadVord}
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First-Order Syntax Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)

Functions F = {stick"V°®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) &
\forall Word y; 'hurts(y)
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Semantics of First-Order Logic

Definition (Interpretation)
An interpretation D = (U, I) consists of

@ U is the non-empty universe
For each type z there is a subuniverse U* such that U* C U? if
z=<Z
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Semantics of First-Order Logic

Definition (Interpretation)
An interpretation D = (U, I) consists of

@ U is the non-empty universe
For each type z there is a subuniverse U* such that U* C U? if

z=<Z7
o If o(p) = (z1,...,2), then p! C U x --- x U*
o If o(f?) = (z1,...,2), then fl : U% x ... x U — U?
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Semantics of First-Order Logic

Definition (Interpretation)

An interpretation D = (U, I) consists of

@ U is the non-empty universe ,
For each type z there is a subuniverse U* such that U* C U~* if
z=<Z7

o If o(p) = (z1,...,2), then p' C UA x --- x U*

o If o(f?) = (z1,...,2), then fl : U x ... x U — U?

Definition (Variable Assignment)

A variable assignment is a function 3 :V — U

Updated variable assignment: for d € U let ﬂ}‘,’(x) = {
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Semantics of First-Order Logic, Cont'd

o xP8 = B(x)
o Let o(f?) = (z1,...,2), then
(F2(tr, ..., t.)PP = Fl((t)P5, ..., (t,)PPF)

o Let o(p) = (z1,...,2), then s o /
valp g(p(t1, ..., t;)) = { Z;’; c<>€c:11e)rwis’e' )T ep
(Assume that 5(t;) € U% when t; € V — well-defined:)

o valp g(\forall z x; ¢) =

true for all u € U : valp gu(¢) = true
{ false otherwise

\exists similar than \forall, = identity on U
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First-Order Semantic Notions

Satisfiability, truth, and validity
D,B = ¢ iff valpg(¢) = true (¢ is satisfiable)

D k¢ iff forall 3:D,BE¢ (¢istruein D)
E¢ iff foralD: DE¢ (¢ is valid)

A formula containing only declared variables is closed
Closed formulas that are satisfiable are also true: only one notion
For closed formulas, type of variable assignment well-defined

From now on only closed formulas are considered.

Introduction to Dynamic Logics November 15, 2006
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First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}
\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)
Satisfiable? Valid?
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First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)
Satisfiable? Valid? Model

yWearon — feowel}, UWerd = {rosebud}, U = UWerd y (yWeapon
I(hurts) = {(towel) }
I(stick) = I(stone) = towel, I(blockhead) = rosebud
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First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)

How to express that there are at least two different weapons?
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First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)

How to express that there are at least two different weapons?

\exists Weapon x,y; (!x = y)
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Sequent Calculus for FOL

o {t/t'}¢ is result of replacing each occurrence of t in ¢ with t/
o tZ any variable free term of type 2/ < z
@ c” new constant of type z (occurs not in current proof branch)

@ Equations can be reversed by commutativity
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Sequent Calculus for FOL

‘ left side, antecedent ‘ right side, succedent
Al [ \forall z x; ¢, {x/t* }¢ ==> A I==>{x/c*}o,A
M \forall z x; ¢ ==> A [ ==> \forall z x; ¢, A

o {t/t'}¢ is result of replacing each occurrence of t in ¢ with t/
o tZ any variable free term of type 2/ < z
@ c” new constant of type z (occurs not in current proof branch)

@ Equations can be reversed by commutativity
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Sequent Calculus for FOL

left side, antecedent right side, succedent
Al [ \forall z x; ¢, {x/t* }¢ ==> A I==>{x/c*}o,A
M \forall z x; ¢ ==> A [ ==> \forall z x; ¢, A
o M {x/c?}p ==> A r==> {x/tzl}QS, \exists z
I, \exists z x; ¢ ==> A [ ==> \exists z x; ¢,
o {t/t'}¢ is result of replacing each occurrence of t in ¢ with t/
o tZ any variable free term of type 2/ < z
@ c” new constant of type z (occurs not in current proof branch)
@ Equations can be reversed by commutativity
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Sequent Calculus for FOL

left side, antecedent

right side, succedent

all

ex

€q

e © ¢ ¢

I \forall z x; ¢, {X/tz/}gb => A

I==>{x/c*}o,A

M \forall z x; ¢ ==> A

M {x/c?} ==> A
I \exists z x; ¢ ==> A

r7 t1 = to, {tl/tZ}w ==> {tl/t2}¢’A

[ ==> \forall z x; ¢, A

[ ==> {x/t?'}¢, \exists z
[ ==> \exists z x; ¢,

r’ t1 = t2,¢ ==> ¢,A

==>t=tA

{t/t'}¢ is result of replacing each occurrence of t in ¢ with t/

tZ' any variable free term of type 2/ < z

¢? new constant of type z (occurs not in current proof branch)

Equations can be reversed by commutativity
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Some Predefined Symbols in KeY Logic

Types
int, boolean, classes of the Java context of the proof obligation

Predicates on int
> <, >=, <=

Functions and Constants
‘+'1 ‘_'1 ‘/,Y ‘%,Y ‘O,Y ‘1,1 .
‘TRUE’, '‘FALSE’

Introduction to Dynamic Logics November 15, 2006
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Taclets - The rule description language of KeY

if (seq) find (Fopt &) replacewith(Fopy &)
add(F seq)...; ...; ...
heuristics(name™)
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Taclets - The rule description language of KeY

if (seq) find (Fopt &) replacewith(Fopy &)

add(F seq)...; ...; ...
heuristics(name™)
SYNTAX
find sequent (max. one formula), formula or term
if additional condition
replacewith replaces the find part (Fop¢ depends on find)
add adds the sequent to the antecedent or succedent

; start new subgoal
heuristics adds the taclet to the enumerated heuristics
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The and-right rule as taclet

TEXTBOOK
r= A A r- B, A )
rF ANB A (and — right)
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The and-right rule as taclet

TEXTBOOK

r= A A r- B, A )
rF ANB A (and — right)

TACLET

\find( - A A B )
\replacewith ( - A );
\replacewith ( - B )

\rulesets(simplify)
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First-Order Formula in KeY Syntax

\sorts { // types are called ’sorts’
person; // one declaration per line, end with ’;’
}
\functions { // ResultType FctSymbol(ParType, ..,ParType)
int age(person); // ’int’ predefined type
}
\predicates { // PredSymbol(ParType, ..,ParType)
parent (person,person) ;
}
\problem { // Goal formula, // ’>=’ predef.
\forall person son; \forall person father; (
parent (father,son) -> age(father) >= age(son))
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Another Example

Types T ={z}
Predicates P = {p}, o(p) = (z,z)
Functions F = {}

exists z x; \exists z y; p(x,y) & \forall z x; ! p(x,x)) —>
y y
\exists z x; \exists z y; (!x = y)

Intuitive Meaning? Satisfiable? Valid?

Demo

demol .key

Introduction to Dynamic Logics
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Example: JML to FOL

Library clients Person

+duration: |nteger

i

Student Professor

‘matnr: | nteger <<query>> getInstitute(): String

+set Name( nane: Str i ng)

Types?
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Example: JML to FOL

Library clients Person

* [+duration: Integer

Student Professor

+matnr: | nteger r<<query>> getInstitute(): String

+set Name( nane: Str i ng)

Types? Library, Person, Student, Professor (+ some predefined)
Functions?
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Example: JML to FOL

Library clients Person

* [+duration: Integer

Student Professor

+matnr: | nteger r<<query>> getInstitute(): String

+set Name( nane: Str i ng)

Types? Library, Person, Student, Professor (+ some predefined)
Functions?
Attributes int Person.duration, int Student.matnr
Queries String Professor.getInstitute

incl. some predefined
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Example: JML to FOL

Library clients Person

* [+duration: Integer

i

Student Professor

tmatnr: | nteger <<query>> getInstitute(): String

+set Name( nane: Str i ng)

Meaning?

public class Student{
/*@ public invariant (\forall Student s;
s.matnr=—matnr; s=—this );0x/
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Example: JML to FOL

Library clients Person

* [+duration: Integer

i

Student Professor

tmatnr: | nteger <<query>> getInstitute(): String

+set Name( nane: Str i ng)

A student is uniquely identified by his/her student id (matnr)

public class Student{

/+*@ public invariant (\forall Student s;
s.matnr=—matnr; s=—this );0x/

}

in FOL?
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Example: JML to FOL

Library clients Person

* [+duration: Integer

i

Student Professor

tmatnr: | nteger <<query>> getInstitute(): String

+set Name( nane: Str i ng)

A student is uniquely identified by his/her student id (matnr)

public class Student{

/+*@ public invariant (\forall Student s;
s.matnr=—matnr; s=—this );0x/

}

in FOL:
\forall Student pl;\forall Student p2;
pl.matnr = p2.matnr -> pl = p2
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Do we really need another kind of logics?

“There is a tradition in logic, carried over into computer science,
to think of pure first order logic as a universal language.
In fact first order language is about as useful in verification as a
Turing machine is in software engineering:
CUTE TO WATCH BUT NOT VERY USEFUL."
V. Pratt

Introduction to Dynamic Logics November 15, 2006 29 / 50



State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x
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State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing x = 3 results in D such that D Ex =3
Executing x = 4 results in D such that D j=x =3
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State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing x = 3 results in D such that D Ex =3
Executing x = 4 results in D such that D j=x =3

Need a logic to capture state before/after program execution
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Dynamic Logic (Simple Version) Signature

Definition (Signature)

Y = (Tv V’,P’f’,PV’a’O-’n()aO U QU {iv <>? [] })

Type Symbols 7 = {int,boolean}
Logical Variables V= {y;|i€ N}
Predicate Symbols P = {>,>=,<, <=}
Function Symbols F = {+,— %,0,1,...}
Program Variables PV = {x; | i € N}
Signature of functions/predicates as usual

Introduction to Dynamic Logics November 15, 2006
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Dynamic Logic (Simple Version) Signature

Definition (Signature)
L = (Tv V’,P’f’,PV’O"O-’ nOa OuQu {iv <>? [] })

Type Symbols 7 = {int,boolean}
Logical Variables V= {y;|i€ N}
Predicate Symbols P = {>,>=,<, <=}
Function Symbols F = {+,— %,0,1,...}
Program Variables PV = {x; | i € N}
Signature of functions/predicates as usual
Atomic Programs [lj:
Assignments x =t with x € PV, t term of type int w/o logical
variables

4
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Dynamic Logic (Simple Version) Signature

Definition (Signature)

Y = (Tv V’,P’f’,PV’a’O-’n()aO U QU {iv <>? [] })

Type Symbols 7 = {int,boolean}
Logical Variables V= {y;|i€ N}
Predicate Symbols P = {>,>=,<, <=}
Function Symbols F = {+,— %,0,1,...}
Program Variables PV = {x; | i € N}
Signature of functions/predicates as usual
Atomic Programs [lj:

Assignments x =t with x € PV, t term of type int w/o logical
variables
Modal Connectives \(-\)- “diamond”, \ [-\]- “box"
First argument program, second argument formula

4
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Dynamic Logic (Simple Version) Programs

Programs [1

o If 7 is an atomic program, then 7; is a program
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Dynamic Logic (Simple Version) Programs

Programs [1
o If 7 is an atomic program, then 7; is a program

o If a and ~ are programs, then oy is a program
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Dynamic Logic (Simple Version) Programs

Programs [1
o If 7 is an atomic program, then 7; is a program
o If a and ~ are programs, then oy is a program

o If b is a variable-free term of type boolean, o and y programs, then

if (b) {a} else {v};

is a program
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Dynamic Logic (Simple Version) Programs

Programs [1
o If 7 is an atomic program, then 7; is a program
o If a and ~ are programs, then oy is a program

o If b is a variable-free term of type boolean, o and y programs, then

if (b) {a} else {v};
is a program

o If b is a variable-free term of type boolean, o a program, then
while (b) {a};

is a program
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Dynamic Logic Syntax Example

An admissible DL program a:

i =0;

r=0;

while (i<n) {
i=i+1;
r=r+i ;

i

r=r—+r—n;

What does v compute?

Introduction to Dynamic Logics
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Dynamic Logic (Simple Version) Terms

Terms

Defined as in FOL using also PV, but:
Rigid versus Flexible

@ rigid symbols, same interpretation in all execution states
Needed, for example, to hold initial value of program variable
Logical variables and predefined functions/predicates are rigid

@ non-rigid (or flexible) terms, interpretation depends on state
Needed to capture state change after program execution
Program variables are flexible

A term containing at least one flexible symbol is flexible, otherwise rigid

Introduction to Dynamic Logics November 15, 2006
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Dynamic Logic (Simple Version) Formulas

Dynamic Logic Formulas (DL Formulas)

@ Each FOL formula is a DL formula
DL formulas closed under FOL operators and connectives, but
Program variables are never bound in quantifiers
o If a is a program and ¢ a DL formula then
\(a\)¢ is a DL formula
\[a\] ¢ is a DL-Formula

Programs contain no logical variables
Modalities can be arbitrarily nested
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Dynamic Logic Syntax Example

\forall int y; ((\(x = 1;\)x = y) <> (\x = 1+ 1:\)x = y)) Syntax ?
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Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok
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Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\[x = 1;\] (x = 1)) Syntax ?
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Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\x = 1;\] (x = 1)) bad
@ x cannot be logical variable, because it occurs in program

@ x cannot be program variable, because it is quantified
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Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\x = 1;\] (x = 1)) bad
@ x cannot be logical variable, because it occurs in program

@ x cannot be program variable, because it is quantified

\(x = 1;\) (\[while (true) {}\] false) Syntax ?
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Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\x = 1;\] (x = 1)) bad
@ x cannot be logical variable, because it occurs in program

@ x cannot be program variable, because it is quantified

\(x = 1;\) (\[while (true) {}\] false) ok

@ Program formulas can appear nested

Introduction to Dynamic Logics
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Dynamic Logic Semantics

Definition (Kripke structure)
A Kripke structure K = (S, p) where
@ s=(U,l) € S is a State/Interpretation and
e p:M—(5—15) p(a), p(v) an admissible relation

Each state is first-order interpretation
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Dynamic Logic Semantics (Cont'd)

Definition (Program Formulas)

o 5,8 = \@\)6 iff p(a)(s), B = ¢ and p(a)(s) defined

« terminates and ¢ is true in the final state after execution
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Dynamic Logic Semantics (Cont'd)

Definition (Program Formulas)

o 5,8 = \@\)6 iff p(a)(s), B = ¢ and p(a)(s) defined

« terminates and ¢ is true in the final state after execution

o 5,08 = \a\| ¢ iff p(a)(s),B = ¢ whenever p(a)(s) defined
If o terminates then ¢ is true in the final state after
execution
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Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3
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Program Correctness
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« totally correct (with respect to ¢) in s, 3
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« partially correct (with respect to ¢) in s, 3
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Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3

°s 06k \a\l¢

« partially correct (with respect to ¢) in s, 3

o Duality \(a\)¢ iff '\[a\]!¢

Exercise: justify this with semantic definitions
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Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3

°s 06k \a\l¢

« partially correct (with respect to ¢) in s, 3
o Duality \(a\)¢ iff '\[a\]!¢

Exercise: justify this with semantic definitions
o Implication if \(a\)¢ then \[&\]¢

Introduction to Dynamic Logics November 15, 2006 39 / 50



Semantics of Sequents

Validity of DL sequents compatible validity FOL sequents
" ==> A is valid iff it is true in all states s
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Semantics of Sequents

Validity of DL sequents compatible validity FOL sequents
" ==> A is valid iff it is true in all states s

How to restrict validity to set of initial states 7 C S 7

© Design closed FOL formula Init with
s = Init iff  seJ
© Use sequent I Init ==> A

Later: simple method for specifying initial value of program variables

Introduction to Dynamic Logics
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

s1 = \(@\a (ok),
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

¢!

st = @a (ok), s = \vVa?
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

¢!

s1 = \(@\)a (ok), s1 = \(vVa (—)
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

st \a\a (ok), s \(y\a (—)
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

sl):\< \)a (ok), s1 = \(vVa (—)
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

s1 = \(a@\)a (ok), s1 = \(vVa (—)
ss =\yVa(—),  sE\N\a’

]
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Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

s1 = \(a@\)a (ok), s1 = \(vVa (—)
ss E\vVa (—), s = \v\a (ok)

]
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Dynamic Logic Semantics: States, Updates

@ States s = (U, /) have all the same universe U
May assume p(«) works on interpretations /

Define I,8 = ¢ as s, 8 = ¢, where s = (U, )
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Dynamic Logic Semantics: States, Updates

@ States s = (U, /) have all the same universe U
May assume p(«) works on interpretations /
Define I,8 = ¢ as s, 8 = ¢, where s = (U, )
@ Program variables are flexible
Consider program variables as flexible constants in s with value /(x)
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Dynamic Logic Semantics: States, Updates

@ States s = (U, /) have all the same universe U
May assume p(«) works on interpretations /
Define I,8 = ¢ as s, 8 = ¢, where s = (U, )
@ Program variables are flexible
Consider program variables as flexible constants in s with value /(x)

State update (cf. updated variable assignment) of / at x with d € U

dy_ ) 1(x) x#y
ly(X)_{d X=y
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Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t
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Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tﬁe):vi[;ei TRUE
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Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tﬁe):vi[;ei TRUE

o p(a)() = p(7v)(p(a)(1)), if p(a)(I) defined, undefined otherwise
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Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that
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Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that
o I, Bl=b=TRUEfor 0<j<n

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that

o [, 3= b= TRUE for 0 < j < n
o p(a)(li)=liz1for0<j<n
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Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that

o [;,Eb=TRUEfor0<j<n
o p(a)(li)=liz1for0<j<n
e I,,0 E b=FALSE undefined otherwise
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL Y =>\a\] ¢
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL Y =>\a\] ¢

Valid formulas

\x= 1\ (x=1)
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL ¥ > \a\]¢
Valid formulas
\x=1;\](x=1) \[while (true) {x = x;};\] false
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL ¥ > \a\]¢
Valid formulas
\x=1;\](x=1) \[while (true) {x = x;}; ] false

Validity depends on «, v
\forall int y; ((\a\)x = y) <> (\7\)x = y)) meaning ?
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Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL ¥ > \a\]¢
Valid formulas
\x=1;\](x=1) \[while (true) {x = x;}; ] false

Validity depends on «, v

\forall int y;((\@\)x = y) <-> (\1\)x = y)) @,y equiv. relative to x
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Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?
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Need to have rules for program formulas: but which?
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Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

&g, \Er\le

where £ one single admissible program statement
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Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

&g, \Er\le

where £ one single admissible program statement

Rules execute symbolically the first active statement
Proof corresponds to symbolic program execution
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Dynamic Logic Calculus

M ==> (@) (\7\¢),8
M ==>\ar\)¢,A

CONCATENATE
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Dynamic Logic Calculus

M ==>\a\) (\v\)¢).A
M ==>\(ay\)¢,A

o b =TRUE ==> \(a\)¢, A [, b = FALSE ==> \(7\)¢, A
[ ==> \(if (b) {a} else {7};\)¢, A

CONCATENATE
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Dynamic Logic Calculus

M ==>\a\) (\v\)¢).A
M ==>\(ay\)¢,A

- I, b = TRUE ==> \(a\)¢, A I, b =FALSE ==> \(v\)¢, A
[ ==> \(if (b) {a} else {7};\)¢, A

CONCATENATE

I, b=FALSE==>¢, A T, b= TRUE==>\(a\)\(while (b) {a};\)¢,A

UNWIND [ ==> \(while (b) {a};\)¢,A
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Assignment Rule Using Updates

M==>{x:=1t}p,A
M==>\x=1t\)¢,8

Avoids renaming of program variables

But: rules dealing with programs need to account for updates

ASSIGN
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Assignment Rule Using Updates

M==>{x:=1t}p,A
M==>\x=1t\)¢,8

Avoids renaming of program variables

But: rules dealing with programs need to account for updates

ASSIGN

Solution: rules work on first active statement after prefix, followed by
postfix (remaining code)

Explicit concatenation rule not longer needed
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Assignment Rule Using Updates

M==>{x:=1t}p,A
M==>\x=1t\)¢,8

Avoids renaming of program variables

But: rules dealing with programs need to account for updates

ASSIGN

Solution: rules work on first active statement after prefix, followed by
postfix (remaining code)
Explicit concatenation rule not longer needed

General form of conclusion in rule for symbolic execution

F==> (7 § w)¢A

~
~

- t ~<
- | =

Prefix Active statement Postfix
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Explicit State Updates

Updates record state change
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Explicit State Updates

Updates record state change

Syntax

If v is program variable, t, t'terms, and ¢ any DL formula, then
{v := t}¢ is DL formula and {v := t}t’ is term
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Explicit State Updates

Updates record state change

Syntax
If v is program variable, t, t'terms, and ¢ any DL formula, then
{v := t}¢ is DL formula and {v := t}t’ is term

Semantics

1LB={v=trp iff I B¢

Semantics identical to assignment

Updates work as “lazy” assignments
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Computing Effect of Updates

Update followed by program variable
{x=tly ~ y
{x=t}x ~ t
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Computing Effect of Updates

Update followed by program variable
{x=tly ~ y
{x=t}x ~ t

Update followed by complex term
{x =t} (t1,...,ty) ~ fF({x:=t}y,...,{x:=t}t,)
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Computing Effect of Updates

Update followed by program variable

{x=tly ~ y

{x=t}kx ~ t

Update followed by complex term

{x =t} (t1,...,ty) ~ fF({x:=t}y,...,{x:=t}t,)

Update followed by first-order formula
{x = t}(o&) ~ {x=trp&{x:=t}y
{x:=t}(\forall z y;¢) ~ \forall z y;({x:=t}¢p) etc.
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Computing Effect of Updates

Update followed by program variable
{x=tly ~ y
{x=t}x ~ t

Update followed by complex term
{x =t} (t1,...,ty) ~ fF({x:=t}y,...,{x:=t}t,)
Update followed by first-order formula

{x = t}(o&) ~ {x:=trp & {x =t}
{x:=t}(\forall z y;¢) ~ \forall z y;({x:=t}¢p) etc.

Update followed by program formula

{x = t3(\\)g) ~ {x:= tH(\(a\)¢)

Update computation delayed until o symbolically executed
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Example Proof

\programVariables {

int 1i;

int j;
}
\problem {

\forall int x; \forall int y;

(i=x & j=y ->
\<{int h = i; i = j; j = h;}\> (i=y & j=x) )

}

Intuitive Meaning? Satisfiable? Valid?

Demo

dlIntro/exchange.key
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