Introduction to Dynamic Logics

Andreas Roth, Richard Bubel

November 15, 2006

Introduction to Dynamic Logics November 15, 2006 1 /50

Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))

Propositional Variables P = {p;|i € N}

Introduction to Dynamic Logics November 15, 2006 2 /50

Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))
Propositional Variables P = {p;|i € N}
Connectives O = {true,false,&, |, !, -> <>}

Introduction to Dynamic Logics November 15, 2006 2 /50

Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))
Propositional Variables P = {p;|i € N}
Connectives O = {true,false,&, |, !, -> <>}

Definition (Propositional Formulas Fory)

@ Truth constants ‘true’, ‘false’ and variables P are formulas

Introduction to Dynamic Logics November 15, 2006 2 /50

Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))

Propositional Variables P = {p;|i € N}
Connectives O = {true,false,&, |, !, -> <>}

Definition (Propositional Formulas Fory)

@ Truth constants ‘true’, ‘false’ and variables P are formulas
@ If G and H are formulas then
'G, (G&H), (GIH), (G->H), (G<->H)

are also formulas

Introduction to Dynamic Logics November 15, 2006 2 /50

Syntax of Propositional Logic

Definition (Signature ¥ = (P, O))
Propositional Variables P = {p;|i € N}
Connectives O = {true,false,&, |, !, -> <>}

Definition (Propositional Formulas Fory)

@ Truth constants ‘true’, ‘false’ and variables P are formulas
@ If G and H are formulas then
'G, (G&H), (GIH), (G->H), (G<->H)

are also formulas

@ There are no other formulas

Introduction to Dynamic Logics November 15, 2006 2 /50

Semantic Notions

Given the functions
e | . P — {true, false} and

@ its continuation val; : Fory — {true, false}

Introduction to Dynamic Logics November 15, 2006 3 /50

Semantic Notions

Given the functions

e | . P — {true, false} and

@ its continuation val; : Fory — {true, false}
Let G € Forgz, N c Foréz

e | is a model for G iff val;(G) = true (write: | = G)
A formula that has a model is satisfable

Introduction to Dynamic Logics November 15, 2006 3 /50

Semantic Notions

Given the functions
e | . P — {true, false} and
@ its continuation val; : Fory — {true, false}
Let G € Forgz, N c Foréz
e | is a model for G iff val;(G) = true (write: | = G)
A formula that has a model is satisfable
@ G follows from I (I' = G) iff for all interpretations /:
I = H for all H €T then also | = G

Introduction to Dynamic Logics November 15, 2006 3 /50

Semantic Notions

Given the functions
e | . P — {true, false} and
@ its continuation val; : Fory — {true, false}

Let G € Forgz, N c Foréz

e | is a model for G iff val;(G) = true (write: | = G)
A formula that has a model is satisfable

@ G follows from I (I' = G) iff for all interpretations /:
I = H for all H €T then also | = G

@ If any interpretation is a model of G, i.e
0 =G (short: | G)

then G is called valid

Introduction to Dynamic Logics November 15, 2006 3 /50

Propositional Logic Example

p&(('p) | q)

@ Satisfiable?

Introduction to Dynamic Logics November 15, 2006 4 /50

Propositional Logic Example

p&(('p) | q)

@ Satisfiable? Yes

Introduction to Dynamic Logics November 15, 2006 4 /50

Propositional Logic Example

p&(('p) | q)

@ Satisfiable? Yes
@ Model?

Introduction to Dynamic Logics November 15, 2006 4 /50

Propositional Logic Example

p&((tp) 1 q)

@ Satisfiable? Yes
@ Model? I(p) = true, I(q) = true

Introduction to Dynamic Logics November 15, 2006 4 /50

Propositional Logic Example

p&((tp) 1 q)

@ Satisfiable? Yes
@ Model? I(p) = true, I(q) = true

p&(('p) I q) F qlr

Does this hold?

Introduction to Dynamic Logics November 15, 2006 4 /50

Propositional Logic Example

p&(('p) | q)

@ Satisfiable? Yes
@ Model? I(p) = true, I(q) = true

p&(('p) I q) F qlr

Does this hold? Yes Why?

Introduction to Dynamic Logics November 15, 2006

Reasoning by Syntactic Transformation

Establish ' = G by purely syntactic transformations of I' and G

(Logic) Calculus: a set of transformation rules R defining

relation - C 2Fo0 x Fory such that T = G iffT - G

E C + Completeness E DO F Soundness

Sequent Calculus based on notion of sequent

wlu"'7¢m ==> ¢17~~~7¢n
—_——— —_——
Antecedent Succedent

has same semantics as

(¢1&&¢m) -> (¢1| |¢n)
{wlv"'vwm} ': ¢1||¢n

Introduction to Dynamic Logics November 15, 2006 5

/50

Notation for Sequents

¢17"'7¢m ==> ¢17"'7¢n

Consider antecedent/succedent as sets of formulas, may be empty

Use schematic variables I', A that match sets of formulas

[== A

Matches any sequent with an occurrence of ¢ in succedent
Call ¢ main formula and I side formulas of sequent

Any sequent of the form I, ¢ ==> A, ¢ is valid: axiom

Introduction to Dynamic Logics November 15, 2006 6 / 50

Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
7\

I'i==>A - I, ==>A,
' ==>A
—_——

Conclusion

RULE NAME

Introduction to Dynamic Logics November 15, 2006

Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
I'i==>A - I, ==>A,
RULE NAME
==>A
———
Conclusion
Sound rule (essential) E (M==>A1&--- &l ==>A,)->(I==>A)

Introduction to Dynamic Logics November 15, 2006 7 /50

Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
'y ==> A1 e Iy ==> Ar
NAM
RULE E T —= A
—_———
Conclusion
Sound rule (essential) E (M==>A1&--- &l ==>A,)->(I==>A)
Complete rule (desirable) E (M==>A)->(T1==>A1& - - - &[,==>A,)

Introduction to Dynamic Logics November 15, 2006 7 /50

Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

Premisses
I'i==>A - I, ==>A,
NAM
RULE E T —= A
—_———
Conclusion
Sound rule (essential) E (M==>A1&--- &l ==>A,)->(I==>A)
Complete rule (desirable) E (M==>A)->(T1==>A1& - - - &[,==>A,)

Admissible to have no premisses (iff conclusion is valid, eg axiom)

Introduction to Dynamic Logics November 15, 2006 7 /50

Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,

@ find rule R whose conclusion matches S

Introduction to Dynamic Logics November 15, 2006

Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,
@ find rule R whose conclusion matches S

@ instantiate R such that conclusion identical to S

Introduction to Dynamic Logics November 15, 2006

Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,
@ find rule R whose conclusion matches S
@ instantiate R such that conclusion identical to S

@ recursively find proofs for resulting premisses S1, ..., Sr

Introduction to Dynamic Logics November 15, 2006 8 / 50

Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,
@ find rule R whose conclusion matches S
@ instantiate R such that conclusion identical to S
@ recursively find proofs for resulting premisses S1, ..., Sr

@ tree structure with goal as root

Introduction to Dynamic Logics November 15, 2006 8 / 50

Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,

e ¢ ¢ ¢ ¢

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S
recursively find proofs for resulting premisses S1, ..., Sr
tree structure with goal as root

close proof branch when rule without premise encountered

Introduction to Dynamic Logics November 15, 2006 8 / 50

Sequent Calculus Proofs

Goal to prove: S = ¢Y1,...,0m==>¢1,..., 0,
@ find rule R whose conclusion matches S

@ instantiate R such that conclusion identical to S

(]

recursively find proofs for resulting premisses S1, ..., Sr

tree structure with goal as root

close proof branch when rule without premise encountered

= KeY — Prover

Goal-directed proof search
In KeY tool proof displayed as
JAVA Swing tree

D suateay: Appied 15 e, osed 1 goal 3 500 0 emaimng

Introduction to Dynamic Logics

November 15, 2006

8 /50

Rules of Propositional Sequent Calculus

main ‘ left side (antecedent) ‘ right side (succedent)
M==>AA NA==>A

not - = - —
A== A == 1A A

Introduction to Dynamic Logics November 15, 2006 9 / 50

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
== AA MA==>A
not _— =
A== A == 1AA
4| LAB==>A [==> AA [==>B,A
an rALB ==> A [==> A%B,A

Introduction to Dynamic Logics November 15, 2006 9 / 50

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
== AA MA==>A

not _— -
A== A == 1A A

4| LAB==>A [==> AA [==>B,A

an rALB ==> A [==> A%B,A

r A==>A [,B==>A [==> A B,A

© LAIB == A [==> AIB,A

Introduction to Dynamic Logics

November 15, 2006

9/

50

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
== AA MA==A

not e E s —— —_—
A== A [==>1AA

g | LAB==>A [==>AA T ==>B,A

an rALB ==> A [==> A%B,A

r A==>A T,B==>A [==> A B A

© LAIB = A == A|B,A

. [==> AA TB==>A [A==>BA

'mp [A—>B == A [==> A->B,A

Introduction to Dynamic Logics

November 15, 2006

9/

50

Rules of Propositional Sequent Calculus

main | left side (antecedent) right side (succedent)
[==>AA MA==>A
not e E s —— —_—
1A ==> A M==>1AA
g | LAB==A [==>AA [==>BA
an rALB ==> A [==> A%B,A
i A==>A [B==>A [==> A B,A
© LAIB == A [==> AIB,A
. [==>AA IB==>A MA==>BA
'mp [A—>B == A [==> A->B,A
MM T A=A A T T true A
FALSE

,false ==> A

Introduction to Dynamic Logics November 15, 2006 9 / 50

Justification of Rules

Compute rules by applying semantics definition of connectives

Introduction to Dynamic Logics November 15, 2006 10 / 50

Justification of Rules

Compute rules by applying semantics definition of connectives

[==>AB,A

[==>AA [==>BA

AND_RIGHT [==> A&B,A

Introduction to Dynamic Logics November 15, 2006 10 / 50

Justification of Rules

Compute rules by applying semantics definition of connectives

[==>AB,A

[==>AA [==>BA
[==> A%B,A

AND_RIGHT

Follows directly from semantics of sequents

r->(AzB)|1 A
iff
->AIA and T[->B|A

Introduction to Dynamic Logics November 15, 2006 10 / 50

A Simple Proof

I ==> (A&(A->B))->B, A

Introduction to Dynamic Logics November 15, 2006 11 / 50

A Simple Proof

I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A

Introduction to Dynamic Logics November 15, 2006 11 / 50

A Simple Proof

[A (A->B) ==> B, A
I, (A&(A->B)) ==> B, A
I ==> (A&(A->B))->B, A

Introduction to Dynamic Logics November 15, 2006 11 / 50

A Simple Proof

MA==>BAA A B ==>BA
A (A->B) ==> B, A
I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A

Introduction to Dynamic Logics November 15, 2006 11 / 50

A Simple Proof

* *
A==>BAA A B==>B,A
A (A->B) ==> B, A
I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A

Introduction to Dynamic Logics November 15, 2006 11 / 50

A Simple Proof

* *
A==>BAA A B==>B,A
A (A->B) ==> B, A
I, (A%(A->B)) ==> B, A
I ==> (A&(A->B))->B, A

A proof is closed, if all its branches are closed.

Introduction to Dynamic Logics November 15, 2006 11 / 50

Propositional Logic is insufficient

Introduction to Dynamic Logics November 15, 2006 12 / 50

Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY

Introduction to Dynamic Logics November 15, 2006 12 / 50

Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY
B PAT 1S A PERSON

Introduction to Dynamic Logics November 15, 2006 12 / 50

Propositional Logic is insufficient

A
B
?

ALL PERSONS ARE HAPPY
PAT IS A PERSON
PAT 1S HAPPY

Introduction to Dynamic Logics

November 15, 2006 12 / 50

Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY
B PAT 1S A PERSON
? PAT 1S HAPPY

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

Introduction to Dynamic Logics

November 15, 2006

Propositional Logic is insufficient

A ALL PERSONS ARE HAPPY
B PAT 1S A PERSON
? PAT 1S HAPPY

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

= First-Order Logic (FOL)

Introduction to Dynamic Logics

November 15, 2006

Signature of First-Order Logic

Definition (Signature)
Y=(7T,V,P,F,a,0,0UQU{=})

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7,V,P,F,a,0,0 U QU{=})
Type Symbols 7 ={z,...,z}, r > 1, partial order <

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7T,V,P,F,a,0,0UQU{=})

Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7T,V,P,F,a,0,0UQU{=})

Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}
Predicate Symbols P = {p; | i € N}

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7T,V,P,F,a,0,0UQU{=})

Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}
Predicate Symbols P = {p; | i € N}
Function Symbols F ={f?|ie N,z T}

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7,V,P,F,a,0,0 U QU{=})
Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}
Predicate Symbols P = {p; | i € N}

Function Symbols F ={f?|ie N,z T}
for g € PUF let a(q) € N arity and o(q) € 79 signature of g

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7,V,P,F,a,0,0 U QU{=})
Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}
Predicate Symbols P = {p; | i € N}
Function Symbols F ={f?|ie N,z T}
for g € PUF let a(q) € N arity and o(q) € 79 signature of g

Connectives O = {true, false, &, |,!,-> <>}

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7,V,P,F,a,0,0 U QU{=})
Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}

Predicate Symbols P = {p; | i € N}

Function Symbols F ={f?|ie N,z T}

for g € PUF let a(q) € N arity and o(q) € 79 signature of g
Connectives O = {true, false, &, |,!,-> <>}
Quantifiers Q = {\forall, \exists}

Introduction to Dynamic Logics November 15, 2006 13 / 50

Signature of First-Order Logic

Definition (Signature)
Y=(7,V,P,F,a,0,0 U QU{=})
Type Symbols 7 ={z,...,z}, r > 1, partial order <
Variables V={x|ieN}
Predicate Symbols P = {p; | i € N}

Function Symbols F ={f?|ie N,z T}
for g € PUF let a(q) € N arity and o(q) € 79 signature of g

Connectives O = {true, false, &, |,!,-> <>}
Quantifiers Q = {\forall, \exists}
Equality symbol =

Introduction to Dynamic Logics November 15, 2006 13 / 50

First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Introduction to Dynamic Logics November 15, 2006 14 / 50

First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any}
Weapon < Any, Word < Any

Introduction to Dynamic Logics November 15, 2006 14 / 50

First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any}
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)

Introduction to Dynamic Logics

November 15, 2006 14 / 50

First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any}
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V°®°" stoneVeaPor hlockheadVord}

Introduction to Dynamic Logics

November 15, 2006 14 / 50

Terms of First-Order Logic

Definition (Terms)
The set of terms Termy is inductively defined as

@ Variable x € V is term

Introduction to Dynamic Logics

November 15, 2006

15 / 50

Terms of First-Order Logic

Definition (Terms)
The set of terms Termy is inductively defined as
@ Variable x € V is term
o Iff2eF, o(f)=(z1,...,z) and t; term of type z/ < zi or t; € V
for 1 <i<r, then f#(t1,...,t,) is term of type z
When r = 0 call it constant

Introduction to Dynamic Logics November 15, 2006 15 / 50

Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For™ is inductively defined as

o If peP, o(p)=(zi,...,z) and t; term of type z/ < z;j or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula

Use brackets and usual precedence rules to avoid syntactic ambiguity

Introduction to Dynamic Logics November 15, 2006 16 / 50

Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For® is inductively defined as
o If peP, o(p)=(zi,...,z) and t; term of type z/ < z;j or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula
o If t1, to are terms of same type or variable, then t; =t is a
first-order formula

Use brackets and usual precedence rules to avoid syntactic ambiguity

November 15, 2006 16 / 50

Introduction to Dynamic Logics

Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For® is inductively defined as
o If peP, o(p)=(zi,...,z) and t; term of type z/ < z;j or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula
o If t1, to are terms of same type or variable, then t; =t is a
first-order formula
@ Truth constants, connectives as in propositional logic

Use brackets and usual precedence rules to avoid syntactic ambiguity

Introduction to Dynamic Logics November 15, 2006 16 / 50

Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For® is inductively defined as

o If pe P, o(p) =(z1,...,2z) and t; term of type z] < z; or t; € V for
1<i<r, then p(ty,...,t/) is a first-order formula

o If t1, to are terms of same type or variable, then t; =t is a
first-order formula

@ Truth constants, connectives as in propositional logic

o IfxeV, ze T, ¢ a first-order formula with no occurrence of x : 2/,
and all occurrences of x in ¢ are in symbols with type signature
z < 7' for the argument where x appears, then \forall z x; ¢,
\exists z x; ¢ are first-order formulas; x declared of type z and
scope ¢

Use brackets and usual precedence rules to avoid syntactic ambiguity

Introduction to Dynamic Logics November 15, 2006 16 / 50

First-Order Syntax Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)

Functions F = {stick"V°®°" stoneVeaPor hlockheadVord}

Introduction to Dynamic Logics

November 15, 2006 17 / 50

First-Order Syntax Example

Sticks and stones may break your bones, but words will never hurt

Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)

Functions F = {stick"V°®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) &
\forall Word y; 'hurts(y)

Introduction to Dynamic Logics

November 15, 2006 17 / 50

Semantics of First-Order Logic

Definition (Interpretation)
An interpretation D = (U, I) consists of

@ U is the non-empty universe
For each type z there is a subuniverse U* such that U* C U? if
z=<Z

Introduction to Dynamic Logics November 15, 2006 18 / 50

Semantics of First-Order Logic

Definition (Interpretation)
An interpretation D = (U, I) consists of

@ U is the non-empty universe
For each type z there is a subuniverse U* such that U* C U? if
z=<Z

o If o(p) = (z1,...,2), then p! C U x --- x U*

Introduction to Dynamic Logics November 15, 2006 18 / 50

Semantics of First-Order Logic

Definition (Interpretation)
An interpretation D = (U, I) consists of

@ U is the non-empty universe
For each type z there is a subuniverse U* such that U* C U? if

z=<Z7
o If o(p) = (z1,...,2), then p! C U x --- x U*
o If o(f?) = (z1,...,2), then fl : U% x ... x U — U?

Introduction to Dynamic Logics November 15, 2006 18 / 50

Semantics of First-Order Logic

Definition (Interpretation)

An interpretation D = (U, I) consists of

@ U is the non-empty universe ,
For each type z there is a subuniverse U* such that U* C U~* if
z=<Z7

o If o(p) = (z1,...,2), then p' C UA x --- x U*

o If o(f?) = (z1,...,2), then fl : U x ... x U — U?

Definition (Variable Assignment)

A variable assignment is a function 3 :V — U

Updated variable assignment: for d € U let ﬂ}‘,’(x) = {

Introduction to Dynamic Logics November 15, 2006 18 / 50

Semantics of First-Order Logic, Cont'd

o xP8 = B(x)
o Let o(f?) = (z1,...,2), then
(F2(tr, ..., t.)PP = Fl((t)P5, ..., (t,)PPF)

o Let o(p) = (z1,...,2), then s o /
valp g(p(t1, ..., t;)) = { Z;’; c<>€c:11e)rwis’e')T ep
(Assume that 5(t;) € U% when t; € V — well-defined:)

o valp g(\forall z x; ¢) =

true for all u € U : valp gu(¢) = true
{ false otherwise

\exists similar than \forall, = identity on U

Introduction to Dynamic Logics November 15, 2006 19 / 50

First-Order Semantic Notions

Satisfiability, truth, and validity
D,B = ¢ iff valpg(¢) = true (¢ is satisfiable)

D k¢ iff forall 3:D,BE¢ (¢istruein D)
E¢ iff foralD: DE¢ (¢ is valid)

A formula containing only declared variables is closed
Closed formulas that are satisfiable are also true: only one notion
For closed formulas, type of variable assignment well-defined

From now on only closed formulas are considered.

Introduction to Dynamic Logics November 15, 2006

20 / 50

First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}
\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)
Satisfiable? Valid?

Introduction to Dynamic Logics November 15, 2006 21 / 50

First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)
Satisfiable? Valid? Model

yWearon — feowel}, UWerd = {rosebud}, U = UWerd y (yWeapon
I(hurts) = {(towel) }
I(stick) = I(stone) = towel, I(blockhead) = rosebud

Introduction to Dynamic Logics November 15, 2006 21 / 50

First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)

How to express that there are at least two different weapons?

Introduction to Dynamic Logics

November 15, 2006 21 / 50

First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt
Types 7T = {Weapon, Word, Any }
Weapon < Any, Word < Any
Predicates P = {hurts}, o(hurts) = (Any)
Functions F = {stick"V®°" stoneVeaPor hlockheadVord}

\forall Weapon x; hurts(x) & \forall Word y; 'hurts(y)

How to express that there are at least two different weapons?

\exists Weapon x,y; (!x = y)

Introduction to Dynamic Logics

November 15, 2006 21 / 50

Sequent Calculus for FOL

o {t/t'}¢ is result of replacing each occurrence of t in ¢ with t/
o tZ any variable free term of type 2/ < z
@ c” new constant of type z (occurs not in current proof branch)

@ Equations can be reversed by commutativity

Introduction to Dynamic Logics November 15, 2006

Sequent Calculus for FOL

‘ left side, antecedent ‘ right side, succedent
Al [\forall z x; ¢, {x/t* }¢ ==> A I==>{x/c*}o,A
M \forall z x; ¢ ==> A [==> \forall z x; ¢, A

o {t/t'}¢ is result of replacing each occurrence of t in ¢ with t/
o tZ any variable free term of type 2/ < z
@ c” new constant of type z (occurs not in current proof branch)

@ Equations can be reversed by commutativity

Introduction to Dynamic Logics November 15, 2006 22/

Sequent Calculus for FOL

left side, antecedent right side, succedent
Al [\forall z x; ¢, {x/t* }¢ ==> A I==>{x/c*}o,A
M \forall z x; ¢ ==> A [==> \forall z x; ¢, A
o M {x/c?}p ==> A r==> {x/tzl}QS, \exists z
I, \exists z x; ¢ ==> A [==> \exists z x; ¢,
o {t/t'}¢ is result of replacing each occurrence of t in ¢ with t/
o tZ any variable free term of type 2/ < z
@ c” new constant of type z (occurs not in current proof branch)
@ Equations can be reversed by commutativity

Introduction to Dynamic Logics November 15, 2006 22 / 50

Sequent Calculus for FOL

left side, antecedent

right side, succedent

all

ex

€q

e © ¢ ¢

I \forall z x; ¢, {X/tz/}gb => A

I==>{x/c*}o,A

M \forall z x; ¢ ==> A

M {x/c?} ==> A
I \exists z x; ¢ ==> A

r7 t1 = to, {tl/tZ}w ==> {tl/t2}¢’A

[==> \forall z x; ¢, A

[==> {x/t?'}¢, \exists z
[==> \exists z x; ¢,

r’ t1 = t2,¢ ==> ¢,A

==>t=tA

{t/t'}¢ is result of replacing each occurrence of t in ¢ with t/

tZ' any variable free term of type 2/ < z

¢? new constant of type z (occurs not in current proof branch)

Equations can be reversed by commutativity

Introduction to Dynamic Logics

November 15, 2006 22 / 50

Some Predefined Symbols in KeY Logic

Types
int, boolean, classes of the Java context of the proof obligation

Predicates on int
> <, >=, <=

Functions and Constants
‘+'1 ‘_'1 ‘/,Y ‘%,Y ‘O,Y ‘1,1 .
‘TRUE’, '‘FALSE’

Introduction to Dynamic Logics November 15, 2006

23 / 50

Taclets - The rule description language of KeY

if (seq) find (Fopt &) replacewith(Fopy &)
add(F seq)...; ...; ...
heuristics(name™)

Introduction to Dynamic Logics November 15, 2006 24 / 50

Taclets - The rule description language of KeY

if (seq) find (Fopt &) replacewith(Fopy &)

add(F seq)...; ...; ...
heuristics(name™)
SYNTAX
find sequent (max. one formula), formula or term
if additional condition
replacewith replaces the find part (Fop¢ depends on find)
add adds the sequent to the antecedent or succedent

; start new subgoal
heuristics adds the taclet to the enumerated heuristics

Introduction to Dynamic Logics November 15, 2006 24 / 50

The and-right rule as taclet

TEXTBOOK
r= A A r- B, A)
rF ANB A (and — right)

Introduction to Dynamic Logics November 15, 2006 25 / 50

The and-right rule as taclet

TEXTBOOK

r= A A r- B, A)
rF ANB A (and — right)

TACLET

\find(- A A B)
\replacewith (- A);
\replacewith (- B)

\rulesets(simplify)

Introduction to Dynamic Logics November 15, 2006

First-Order Formula in KeY Syntax

\sorts { // types are called ’sorts’
person; // one declaration per line, end with ’;’
}
\functions { // ResultType FctSymbol(ParType, ..,ParType)
int age(person); // ’int’ predefined type
}
\predicates { // PredSymbol(ParType, ..,ParType)
parent (person,person) ;
}
\problem { // Goal formula, // ’>=’ predef.
\forall person son; \forall person father; (
parent (father,son) -> age(father) >= age(son))

Introduction to Dynamic Logics November 15, 2006

26 / 50

Another Example

Types T ={z}
Predicates P = {p}, o(p) = (z,z)
Functions F = {}

exists z x; \exists z y; p(x,y) & \forall z x; ! p(x,x)) —>
y y
\exists z x; \exists z y; (!x = y)

Intuitive Meaning? Satisfiable? Valid?

Demo

demol .key

Introduction to Dynamic Logics

November 15, 2006 27 / 50

Example: JML to FOL

Library clients Person

+duration: |nteger

i

Student Professor

‘matnr: | nteger <<query>> getInstitute(): String

+set Name(nane: Str i ng)

Types?

Introduction to amic Logics vember 15, 2006

Example: JML to FOL

Library clients Person

* [+duration: Integer

Student Professor

+matnr: | nteger r<<query>> getInstitute(): String

+set Name(nane: Str i ng)

Types? Library, Person, Student, Professor (+ some predefined)
Functions?

Introduction to Dynamic Logics November 15, 2006 28 / 50

Example: JML to FOL

Library clients Person

* [+duration: Integer

Student Professor

+matnr: | nteger r<<query>> getInstitute(): String

+set Name(nane: Str i ng)

Types? Library, Person, Student, Professor (+ some predefined)
Functions?
Attributes int Person.duration, int Student.matnr
Queries String Professor.getInstitute

incl. some predefined

Introduction to Dynamic Logics November 15, 2006 28 / 50

Example: JML to FOL

Library clients Person

* [+duration: Integer

i

Student Professor

tmatnr: | nteger <<query>> getInstitute(): String

+set Name(nane: Str i ng)

Meaning?

public class Student{
/*@ public invariant (\forall Student s;
s.matnr=—matnr; s=—this);0x/

Introduction to Dynamic Logics November 15, 2006 28 / 50

Example: JML to FOL

Library clients Person

* [+duration: Integer

i

Student Professor

tmatnr: | nteger <<query>> getInstitute(): String

+set Name(nane: Str i ng)

A student is uniquely identified by his/her student id (matnr)

public class Student{

/+*@ public invariant (\forall Student s;
s.matnr=—matnr; s=—this);0x/

}

in FOL?

Introduction to Dynamic Logics November 15, 2006 28 / 50

Example: JML to FOL

Library clients Person

* [+duration: Integer

i

Student Professor

tmatnr: | nteger <<query>> getInstitute(): String

+set Name(nane: Str i ng)

A student is uniquely identified by his/her student id (matnr)

public class Student{

/+*@ public invariant (\forall Student s;
s.matnr=—matnr; s=—this);0x/

}

in FOL:
\forall Student pl;\forall Student p2;
pl.matnr = p2.matnr -> pl = p2

Introduction to Dynamic Logics November 15, 2006 28 / 50

Do we really need another kind of logics?

“There is a tradition in logic, carried over into computer science,
to think of pure first order logic as a universal language.
In fact first order language is about as useful in verification as a
Turing machine is in software engineering:
CUTE TO WATCH BUT NOT VERY USEFUL."
V. Pratt

Introduction to Dynamic Logics November 15, 2006 29 / 50

State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Introduction to Dynamic Logics

November 15, 2006 30 / 50

State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing x = 3 results in D such that D Ex =3
Executing x = 4 results in D such that D j=x =3

Introduction to Dynamic Logics November 15, 2006

30 / 50

State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing x = 3 results in D such that D Ex =3
Executing x = 4 results in D such that D j=x =3

Need a logic to capture state before/after program execution

Introduction to Dynamic Logics November 15, 2006

30 / 50

Dynamic Logic (Simple Version) Signature

Definition (Signature)

Y = (Tv V’,P’f’,PV’a’O-’n()aO U QU {iv <>? [] })

Type Symbols 7 = {int,boolean}
Logical Variables V= {y;|i€ N}
Predicate Symbols P = {>,>=,<, <=}
Function Symbols F = {+,— %,0,1,...}
Program Variables PV = {x; | i € N}
Signature of functions/predicates as usual

Introduction to Dynamic Logics November 15, 2006

4

31 / 50

Dynamic Logic (Simple Version) Signature

Definition (Signature)
L = (Tv V’,P’f’,PV’O"O-’ nOa OuQu {iv <>? [] })

Type Symbols 7 = {int,boolean}
Logical Variables V= {y;|i€ N}
Predicate Symbols P = {>,>=,<, <=}
Function Symbols F = {+,— %,0,1,...}
Program Variables PV = {x; | i € N}
Signature of functions/predicates as usual
Atomic Programs [lj:
Assignments x =t with x € PV, t term of type int w/o logical
variables

4

Introduction to Dynamic Logics November 15, 2006 31 /50

Dynamic Logic (Simple Version) Signature

Definition (Signature)

Y = (Tv V’,P’f’,PV’a’O-’n()aO U QU {iv <>? [] })

Type Symbols 7 = {int,boolean}
Logical Variables V= {y;|i€ N}
Predicate Symbols P = {>,>=,<, <=}
Function Symbols F = {+,— %,0,1,...}
Program Variables PV = {x; | i € N}
Signature of functions/predicates as usual
Atomic Programs [lj:

Assignments x =t with x € PV, t term of type int w/o logical
variables
Modal Connectives \(-\)- “diamond”, \ [-\]- “box"
First argument program, second argument formula

4

Introduction to Dynamic Logics November 15, 2006 31 /50

Dynamic Logic (Simple Version) Programs

Programs [1

o If 7 is an atomic program, then 7; is a program

Introduction to Dynamic Logics November 15, 2006 32 /50

Dynamic Logic (Simple Version) Programs

Programs [1
o If 7 is an atomic program, then 7; is a program

o If a and ~ are programs, then oy is a program

Introduction to Dynamic Logics November 15, 2006 32 /50

Dynamic Logic (Simple Version) Programs

Programs [1
o If 7 is an atomic program, then 7; is a program
o If a and ~ are programs, then oy is a program

o If b is a variable-free term of type boolean, o and y programs, then

if (b) {a} else {v};

is a program

Introduction to Dynamic Logics November 15, 2006 32 /50

Dynamic Logic (Simple Version) Programs

Programs [1
o If 7 is an atomic program, then 7; is a program
o If a and ~ are programs, then oy is a program

o If b is a variable-free term of type boolean, o and y programs, then

if (b) {a} else {v};
is a program

o If b is a variable-free term of type boolean, o a program, then
while (b) {a};

is a program

Introduction to Dynamic Logics November 15, 2006 32 /50

Dynamic Logic Syntax Example

An admissible DL program a:

i =0;

r=0;

while (i<n) {
i=i+1;
r=r+i ;

i

r=r—+r—n;

What does v compute?

Introduction to Dynamic Logics

November 15, 2006

33/ 50

Dynamic Logic (Simple Version) Terms

Terms

Defined as in FOL using also PV, but:
Rigid versus Flexible

@ rigid symbols, same interpretation in all execution states
Needed, for example, to hold initial value of program variable
Logical variables and predefined functions/predicates are rigid

@ non-rigid (or flexible) terms, interpretation depends on state
Needed to capture state change after program execution
Program variables are flexible

A term containing at least one flexible symbol is flexible, otherwise rigid

Introduction to Dynamic Logics November 15, 2006

34 / 50

Dynamic Logic (Simple Version) Formulas

Dynamic Logic Formulas (DL Formulas)

@ Each FOL formula is a DL formula
DL formulas closed under FOL operators and connectives, but
Program variables are never bound in quantifiers
o If a is a program and ¢ a DL formula then
\(a\)¢ is a DL formula
\[a\] ¢ is a DL-Formula

Programs contain no logical variables
Modalities can be arbitrarily nested

Introduction to Dynamic Logics November 15, 2006

35 / 50

Dynamic Logic Syntax Example

\forall int y; ((\(x = 1;\)x = y) <> (\x = 1+ 1:\)x = y)) Syntax ?

Introduction to Dynamic Logics November 15, 2006 36 / 50

Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

Introduction to Dynamic Logics November 15, 2006 36 / 50

Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\[x = 1;\] (x = 1)) Syntax ?

Introduction to Dynamic Logics November 15, 2006 36 / 50

Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\x = 1;\] (x = 1)) bad
@ x cannot be logical variable, because it occurs in program

@ x cannot be program variable, because it is quantified

Introduction to Dynamic Logics November 15, 2006 36 / 50

Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\x = 1;\] (x = 1)) bad
@ x cannot be logical variable, because it occurs in program

@ x cannot be program variable, because it is quantified

\(x = 1;\) (\[while (true) {}\] false) Syntax ?

Introduction to Dynamic Logics

November 15, 2006 36 / 50

Dynamic Logic Syntax Example

\forall int y;((\(x = 1;\)x =y) <> (\(x = 1% 1;\)x = y)) ok

\exists int x; (\x = 1;\] (x = 1)) bad
@ x cannot be logical variable, because it occurs in program

@ x cannot be program variable, because it is quantified

\(x = 1;\) (\[while (true) {}\] false) ok

@ Program formulas can appear nested

Introduction to Dynamic Logics

November 15, 2006 36 / 50

Dynamic Logic Semantics

Definition (Kripke structure)
A Kripke structure K = (S, p) where
@ s=(U,l) € S is a State/Interpretation and
e p:M—(5—15) p(a), p(v) an admissible relation

Each state is first-order interpretation

Introduction to Dynamic Logics November 15, 2006 37 / 50

Dynamic Logic Semantics (Cont'd)

Definition (Program Formulas)

o 5,8 = \@\)6 iff p(a)(s), B = ¢ and p(a)(s) defined

« terminates and ¢ is true in the final state after execution

Introduction to Dynamic Logics November 15, 2006 38 / 50

Dynamic Logic Semantics (Cont'd)

Definition (Program Formulas)

o 5,8 = \@\)6 iff p(a)(s), B = ¢ and p(a)(s) defined

« terminates and ¢ is true in the final state after execution

o 5,08 = \a\| ¢ iff p(a)(s),B = ¢ whenever p(a)(s) defined
If o terminates then ¢ is true in the final state after
execution

Introduction to Dynamic Logics November 15, 2006 38 / 50

Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3

Introduction to Dynamic Logics November 15, 2006 39 / 50

Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3

°s 06k \a\l¢

« partially correct (with respect to ¢) in s, 3

Introduction to Dynamic Logics November 15, 2006 39 / 50

Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3

°s 06k \a\l¢

« partially correct (with respect to ¢) in s, 3

o Duality \(a\)¢ iff '\[a\]!¢

Exercise: justify this with semantic definitions

Introduction to Dynamic Logics November 15, 2006 39 / 50

Program Correctness

° 5,0k \a\)¢

« totally correct (with respect to ¢) in s, 3

°s 06k \a\l¢

« partially correct (with respect to ¢) in s, 3
o Duality \(a\)¢ iff '\[a\]!¢

Exercise: justify this with semantic definitions
o Implication if \(a\)¢ then \[&\]¢

Introduction to Dynamic Logics November 15, 2006 39 / 50

Semantics of Sequents

Validity of DL sequents compatible validity FOL sequents
" ==> A is valid iff it is true in all states s

Introduction to Dynamic Logics November 15, 2006 40 / 50

Semantics of Sequents

Validity of DL sequents compatible validity FOL sequents
" ==> A is valid iff it is true in all states s

How to restrict validity to set of initial states 7 C S 7

© Design closed FOL formula Init with
s = Init iff seJ
© Use sequent I Init ==> A

Later: simple method for specifying initial value of program variables

Introduction to Dynamic Logics

November 15, 2006 40 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

s1 = \(@\a (ok),

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

¢!

st = @a (ok), s = \vVa?

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

¢!

s1 = \(@\)a (ok), s1 = \(vVa (—)

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

st \a\a (ok), s \(y\a (—)

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

sl):\< \)a (ok), s1 = \(vVa (—)

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

s1 = \(a@\)a (ok), s1 = \(vVa (—)
ss =\yVa(—), sE\N\a’

]

Introduction to Dynamic Logics November 15, 2006 41 / 50

Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

s1 = \(a@\)a (ok), s1 = \(vVa (—)
ss E\vVa (—), s = \v\a (ok)

]

Introduction to Dynamic Logics November 15, 2006

Dynamic Logic Semantics: States, Updates

@ States s = (U, /) have all the same universe U
May assume p(«) works on interpretations /

Define I,8 = ¢ as s, 8 = ¢, where s = (U,)

Introduction to Dynamic Logics November 15, 2006 42 / 50

Dynamic Logic Semantics: States, Updates

@ States s = (U, /) have all the same universe U
May assume p(«) works on interpretations /
Define I,8 = ¢ as s, 8 = ¢, where s = (U,)
@ Program variables are flexible
Consider program variables as flexible constants in s with value /(x)

Introduction to Dynamic Logics November 15, 2006 42

/50

Dynamic Logic Semantics: States, Updates

@ States s = (U, /) have all the same universe U
May assume p(«) works on interpretations /
Define I,8 = ¢ as s, 8 = ¢, where s = (U,)
@ Program variables are flexible
Consider program variables as flexible constants in s with value /(x)

State update (cf. updated variable assignment) of / at x with d € U

dy_) 1(x) x#y
ly(X)_{d X=y

Introduction to Dynamic Logics November 15, 2006 42 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

Introduction to Dynamic Logics November 15, 2006 43 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tﬁe):vi[;ei TRUE

Introduction to Dynamic Logics November 15, 2006 43 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tﬁe):vi[;ei TRUE

o p(a)() = p(7v)(p(a)(1)), if p(a)(I) defined, undefined otherwise

Introduction to Dynamic Logics November 15, 2006 43 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that

Introduction to Dynamic Logics November 15, 2006 43 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that
o I, Bl=b=TRUEfor 0<j<n

Introduction to Dynamic Logics November 15, 2006 43 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that

o [, 3= b= TRUE for 0 < j < n
o p(a)(li)=liz1for0<j<n

Introduction to Dynamic Logics November 15, 2006 43 / 50

Operational Semantics of Programs

State transformation p defines semantics of programs
Same p for all programs, so not part of s; given 3

o p(x = w)(1) = 1t

o p(if (b) {a} else {7};)(/) = { ZE?))((II)) (I)’tge):vi[;ei TRUE

o p(ay)() = p(7)(p(a)(1)), if p(a)(/) defined, undefined otherwise
o p(while (b) {a};)(/) = I iff there are | = ly,..., I, = I’ such that

o [;,Eb=TRUEfor0<j<n
o p(a)(li)=liz1for0<j<n
e I,,0 E b=FALSE undefined otherwise

Introduction to Dynamic Logics November 15, 2006 43 / 50

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL Y =>\a\] ¢

Introduction to Dynamic Logics November 15, 2006 44 / 50

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL Y =>\a\] ¢

Valid formulas

\x= 1\ (x=1)

Introduction to Dynamic Logics November 15, 2006 44 / 50

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL ¥ > \a\]¢
Valid formulas
\x=1;\](x=1) \[while (true) {x = x;};\] false

Introduction to Dynamic Logics November 15, 2006 44 / 50

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL ¥ > \a\]¢
Valid formulas
\x=1;\](x=1) \[while (true) {x = x;};] false

Validity depends on «, v
\forall int y; ((\a\)x = y) <> (\7\)x = y)) meaning ?

Introduction to Dynamic Logics November 15, 2006 44 / 50

Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{¢} a{o}

If o is started in a state satisfying v and terminates, then its final state
satisfies ¢

In DL ¥ > \a\]¢
Valid formulas
\x=1;\](x=1) \[while (true) {x = x;};] false

Validity depends on «, v

\forall int y;((\@\)x = y) <-> (\1\)x = y)) @,y equiv. relative to x

Introduction to Dynamic Logics November 15, 2006 44 / 50

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Introduction to Dynamic Logics November 15, 2006 45 / 50

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Introduction to Dynamic Logics

November 15, 2006 45 / 50

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

&g, \Er\le

where £ one single admissible program statement

Introduction to Dynamic Logics November 15, 2006 45 / 50

Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

&g, \Er\le

where £ one single admissible program statement

Rules execute symbolically the first active statement
Proof corresponds to symbolic program execution

Introduction to Dynamic Logics November 15, 2006 45 / 50

Dynamic Logic Calculus

M ==> (@) (\7\¢),8
M ==>\ar\)¢,A

CONCATENATE

Introduction to Dynamic Logics November 15, 2006 46 / 50

Dynamic Logic Calculus

M ==>\a\) (\v\)¢).A
M ==>\(ay\)¢,A

o b =TRUE ==> \(a\)¢, A [, b = FALSE ==> \(7\)¢, A
[==> \(if (b) {a} else {7};\)¢, A

CONCATENATE

Introduction to Dynamic Logics November 15, 2006 46 / 50

Dynamic Logic Calculus

M ==>\a\) (\v\)¢).A
M ==>\(ay\)¢,A

- I, b = TRUE ==> \(a\)¢, A I, b =FALSE ==> \(v\)¢, A
[==> \(if (b) {a} else {7};\)¢, A

CONCATENATE

I, b=FALSE==>¢, A T, b= TRUE==>\(a\)\(while (b) {a};\)¢,A

UNWIND [==> \(while (b) {a};\)¢,A

Introduction to Dynamic Logics November 15, 2006 46 / 50

Assignment Rule Using Updates

M==>{x:=1t}p,A
M==>\x=1t\)¢,8

Avoids renaming of program variables

But: rules dealing with programs need to account for updates

ASSIGN

Introduction to Dynamic Logics November 15, 2006 47 / 50

Assignment Rule Using Updates

M==>{x:=1t}p,A
M==>\x=1t\)¢,8

Avoids renaming of program variables

But: rules dealing with programs need to account for updates

ASSIGN

Solution: rules work on first active statement after prefix, followed by
postfix (remaining code)

Explicit concatenation rule not longer needed

Introduction to Dynamic Logics

November 15, 2006 47 / 50

Assignment Rule Using Updates

M==>{x:=1t}p,A
M==>\x=1t\)¢,8

Avoids renaming of program variables

But: rules dealing with programs need to account for updates

ASSIGN

Solution: rules work on first active statement after prefix, followed by
postfix (remaining code)
Explicit concatenation rule not longer needed

General form of conclusion in rule for symbolic execution

F==> (7 § w)¢A

~
~

- t ~<
- | =

Prefix Active statement Postfix

Introduction to Dynamic Logics November 15, 2006 47 / 50

Explicit State Updates

Updates record state change

Introduction to Dynamic Logics November 15, 2006 48 / 50

Explicit State Updates

Updates record state change

Syntax

If v is program variable, t, t'terms, and ¢ any DL formula, then
{v := t}¢ is DL formula and {v := t}t’ is term

Introduction to Dynamic Logics November 15, 2006

48 / 50

Explicit State Updates

Updates record state change

Syntax
If v is program variable, t, t'terms, and ¢ any DL formula, then
{v := t}¢ is DL formula and {v := t}t’ is term

Semantics

1LB={v=trp iff I B¢

Semantics identical to assignment

Updates work as “lazy” assignments

Introduction to Dynamic Logics November 15, 2006

48 / 50

Computing Effect of Updates

Update followed by program variable
{x=tly ~ y
{x=t}x ~ t

Introduction to Dynamic Logics November 15, 2006 49 / 50

Computing Effect of Updates

Update followed by program variable
{x=tly ~ y
{x=t}x ~ t

Update followed by complex term
{x =t} (t1,...,ty) ~ fF({x:=t}y,...,{x:=t}t,)

Introduction to Dynamic Logics November 15, 2006 49 / 50

Computing Effect of Updates

Update followed by program variable

{x=tly ~ y

{x=t}kx ~ t

Update followed by complex term

{x =t} (t1,...,ty) ~ fF({x:=t}y,...,{x:=t}t,)

Update followed by first-order formula
{x = t}(o&) ~ {x=trp&{x:=t}y
{x:=t}(\forall z y;¢) ~ \forall z y;({x:=t}¢p) etc.

Introduction to Dynamic Logics November 15, 2006 49 / 50

Computing Effect of Updates

Update followed by program variable
{x=tly ~ y
{x=t}x ~ t

Update followed by complex term
{x =t} (t1,...,ty) ~ fF({x:=t}y,...,{x:=t}t,)
Update followed by first-order formula

{x = t}(o&) ~ {x:=trp & {x =t}
{x:=t}(\forall z y;¢) ~ \forall z y;({x:=t}¢p) etc.

Update followed by program formula

{x = t3(\\)g) ~ {x:= tH(\(a\)¢)

Update computation delayed until o symbolically executed

Introduction to Dynamic Logics November 15, 2006 49 / 50

Example Proof

\programVariables {

int 1i;

int j;
}
\problem {

\forall int x; \forall int y;

(i=x & j=y ->
\<{int h = i; i = j; j = h;}\> (i=y & j=x))

}

Intuitive Meaning? Satisfiable? Valid?

Demo

dlIntro/exchange.key

Introduction to Dynamic Logics November 15, 2006 50 / 50

