
Introduction to Dynamic Logics

Andreas Roth, Richard Bubel

November 15, 2006

logo

Introduction to Dynamic Logics November 15, 2006 1 / 50



Syntax of Propositional Logic

Definition (Signature Σ = (P,O))

Propositional Variables P = {pi |i ∈ IN}

logo

Introduction to Dynamic Logics November 15, 2006 2 / 50



Syntax of Propositional Logic

Definition (Signature Σ = (P,O))

Propositional Variables P = {pi |i ∈ IN}

Connectives O = {true, false, &, |, !, ->, <->}

logo

Introduction to Dynamic Logics November 15, 2006 2 / 50



Syntax of Propositional Logic

Definition (Signature Σ = (P,O))

Propositional Variables P = {pi |i ∈ IN}

Connectives O = {true, false, &, |, !, ->, <->}

Definition (Propositional Formulas ForΣ
0 )

Truth constants ‘true’, ‘false’ and variables P are formulas

logo

Introduction to Dynamic Logics November 15, 2006 2 / 50



Syntax of Propositional Logic

Definition (Signature Σ = (P,O))

Propositional Variables P = {pi |i ∈ IN}

Connectives O = {true, false, &, |, !, ->, <->}

Definition (Propositional Formulas ForΣ
0 )

Truth constants ‘true’, ‘false’ and variables P are formulas

If G and H are formulas then

!G , (G&H), (G|H), (G->H), (G<->H)

are also formulas

logo

Introduction to Dynamic Logics November 15, 2006 2 / 50



Syntax of Propositional Logic

Definition (Signature Σ = (P,O))

Propositional Variables P = {pi |i ∈ IN}

Connectives O = {true, false, &, |, !, ->, <->}

Definition (Propositional Formulas ForΣ
0 )

Truth constants ‘true’, ‘false’ and variables P are formulas

If G and H are formulas then

!G , (G&H), (G|H), (G->H), (G<->H)

are also formulas

There are no other formulas

logo

Introduction to Dynamic Logics November 15, 2006 2 / 50



Semantic Notions

Given the functions

I : P → {true, false} and

its continuation valI : ForΣ
0 → {true, false}

logo

Introduction to Dynamic Logics November 15, 2006 3 / 50



Semantic Notions

Given the functions

I : P → {true, false} and

its continuation valI : ForΣ
0 → {true, false}

Let G ∈ ForΣ
0 , Γ ⊂ ForΣ

0

I is a model for G iff valI (G ) = true (write: I |= G )
A formula that has a model is satisfable

logo

Introduction to Dynamic Logics November 15, 2006 3 / 50



Semantic Notions

Given the functions

I : P → {true, false} and

its continuation valI : ForΣ
0 → {true, false}

Let G ∈ ForΣ
0 , Γ ⊂ ForΣ

0

I is a model for G iff valI (G ) = true (write: I |= G )
A formula that has a model is satisfable

G follows from Γ (Γ |= G ) iff for all interpretations I :

I |= H for all H ∈ Γ then also I |= G

logo

Introduction to Dynamic Logics November 15, 2006 3 / 50



Semantic Notions

Given the functions

I : P → {true, false} and

its continuation valI : ForΣ
0 → {true, false}

Let G ∈ ForΣ
0 , Γ ⊂ ForΣ

0

I is a model for G iff valI (G ) = true (write: I |= G )
A formula that has a model is satisfable

G follows from Γ (Γ |= G ) iff for all interpretations I :

I |= H for all H ∈ Γ then also I |= G

If any interpretation is a model of G , i.e

∅ |= G (short : |= G )

then G is called valid

logo

Introduction to Dynamic Logics November 15, 2006 3 / 50



Propositional Logic Example

p & ((!p) | q)

Satisfiable?

logo

Introduction to Dynamic Logics November 15, 2006 4 / 50



Propositional Logic Example

p & ((!p) | q)

Satisfiable? Yes

logo

Introduction to Dynamic Logics November 15, 2006 4 / 50



Propositional Logic Example

p & ((!p) | q)

Satisfiable? Yes

Model?

logo

Introduction to Dynamic Logics November 15, 2006 4 / 50



Propositional Logic Example

p & ((!p) | q)

Satisfiable? Yes

Model? I (p) = true, I (q) = true

logo

Introduction to Dynamic Logics November 15, 2006 4 / 50



Propositional Logic Example

p & ((!p) | q)

Satisfiable? Yes

Model? I (p) = true, I (q) = true

p & ((!p) | q) |= q|r

Does this hold?

logo

Introduction to Dynamic Logics November 15, 2006 4 / 50



Propositional Logic Example

p & ((!p) | q)

Satisfiable? Yes

Model? I (p) = true, I (q) = true

p & ((!p) | q) |= q|r

Does this hold? Yes Why?

logo

Introduction to Dynamic Logics November 15, 2006 4 / 50



Reasoning by Syntactic Transformation

Establish Γ |= G by purely syntactic transformations of Γ and G

(Logic) Calculus: a set of transformation rules R defining

relation ⊢ ⊆ 2ForΣ
0 × ForΣ

0 such that Γ |= G iff Γ ⊢ G

|= ⊆ ⊢ Completeness |= ⊇ ⊢ Soundness

Sequent Calculus based on notion of sequent

ψ1, . . . , ψm
︸ ︷︷ ︸

Antecedent

==> φ1, . . . , φn
︸ ︷︷ ︸

Succedent

has same semantics as

(ψ1& · · · &ψm) -> (φ1| · · · |φn)
{ψ1, . . . , ψm} |= φ1| · · · |φn

logo

Introduction to Dynamic Logics November 15, 2006 5 / 50



Notation for Sequents

ψ1, . . . , ψm ==> φ1, . . . , φn

Consider antecedent/succedent as sets of formulas, may be empty

Use schematic variables Γ, ∆ that match sets of formulas

Γ ==> ∆, φ

Matches any sequent with an occurrence of φ in succedent
Call φ main formula and Γ side formulas of sequent

Any sequent of the form Γ, φ ==> ∆, φ is valid: axiom

logo

Introduction to Dynamic Logics November 15, 2006 6 / 50



Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

logo

Introduction to Dynamic Logics November 15, 2006 7 / 50



Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

Sound rule (essential) |= (Γ1==>∆1& · · · &Γr==>∆r )->(Γ==>∆)

logo

Introduction to Dynamic Logics November 15, 2006 7 / 50



Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

Sound rule (essential) |= (Γ1==>∆1& · · · &Γr==>∆r )->(Γ==>∆)

Complete rule (desirable) |= (Γ==>∆)->(Γ1==>∆1& · · · &Γr==>∆r )

logo

Introduction to Dynamic Logics November 15, 2006 7 / 50



Sequent Calculus Rules

Basic idea write syntactic transformation pattern for sequents that
mimicks semantics of connectives as closely as possible

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

Sound rule (essential) |= (Γ1==>∆1& · · · &Γr==>∆r )->(Γ==>∆)

Complete rule (desirable) |= (Γ==>∆)->(Γ1==>∆1& · · · &Γr==>∆r )

Admissible to have no premisses (iff conclusion is valid, eg axiom)

logo

Introduction to Dynamic Logics November 15, 2006 7 / 50



Sequent Calculus Proofs

Goal to prove: S = ψ1, . . . , ψm ==> φ1, . . . , φn

find rule R whose conclusion matches S

logo

Introduction to Dynamic Logics November 15, 2006 8 / 50



Sequent Calculus Proofs

Goal to prove: S = ψ1, . . . , ψm ==> φ1, . . . , φn

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S

logo

Introduction to Dynamic Logics November 15, 2006 8 / 50



Sequent Calculus Proofs

Goal to prove: S = ψ1, . . . , ψm ==> φ1, . . . , φn

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S

recursively find proofs for resulting premisses S1, . . . , Sr

logo

Introduction to Dynamic Logics November 15, 2006 8 / 50



Sequent Calculus Proofs

Goal to prove: S = ψ1, . . . , ψm ==> φ1, . . . , φn

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S

recursively find proofs for resulting premisses S1, . . . , Sr

tree structure with goal as root

logo

Introduction to Dynamic Logics November 15, 2006 8 / 50



Sequent Calculus Proofs

Goal to prove: S = ψ1, . . . , ψm ==> φ1, . . . , φn

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S

recursively find proofs for resulting premisses S1, . . . , Sr

tree structure with goal as root

close proof branch when rule without premise encountered

logo

Introduction to Dynamic Logics November 15, 2006 8 / 50



Sequent Calculus Proofs

Goal to prove: S = ψ1, . . . , ψm ==> φ1, . . . , φn

find rule R whose conclusion matches S

instantiate R such that conclusion identical to S

recursively find proofs for resulting premisses S1, . . . , Sr

tree structure with goal as root

close proof branch when rule without premise encountered

Goal-directed proof search
In KeY tool proof displayed as

Java Swing tree

logo

Introduction to Dynamic Logics November 15, 2006 8 / 50



Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ ==> A,∆

Γ, !A ==> ∆

Γ,A ==> ∆

Γ ==> !A,∆

logo

Introduction to Dynamic Logics November 15, 2006 9 / 50



Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ ==> A,∆

Γ, !A ==> ∆

Γ,A ==> ∆

Γ ==> !A,∆

and
Γ,A,B ==> ∆

Γ,A&B ==> ∆

Γ ==> A,∆ Γ ==> B ,∆

Γ ==> A&B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 9 / 50



Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ ==> A,∆

Γ, !A ==> ∆

Γ,A ==> ∆

Γ ==> !A,∆

and
Γ,A,B ==> ∆

Γ,A&B ==> ∆

Γ ==> A,∆ Γ ==> B ,∆

Γ ==> A&B ,∆

or
Γ,A ==> ∆ Γ,B ==> ∆

Γ,A|B ==> ∆

Γ ==> A,B ,∆

Γ ==> A|B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 9 / 50



Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ ==> A,∆

Γ, !A ==> ∆

Γ,A ==> ∆

Γ ==> !A,∆

and
Γ,A,B ==> ∆

Γ,A&B ==> ∆

Γ ==> A,∆ Γ ==> B ,∆

Γ ==> A&B ,∆

or
Γ,A ==> ∆ Γ,B ==> ∆

Γ,A|B ==> ∆

Γ ==> A,B ,∆

Γ ==> A|B ,∆

imp
Γ ==> A,∆ Γ,B ==> ∆

Γ,A->B ==> ∆

Γ,A ==> B ,∆

Γ ==> A->B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 9 / 50



Rules of Propositional Sequent Calculus

main left side (antecedent) right side (succedent)

not
Γ ==> A,∆

Γ, !A ==> ∆

Γ,A ==> ∆

Γ ==> !A,∆

and
Γ,A,B ==> ∆

Γ,A&B ==> ∆

Γ ==> A,∆ Γ ==> B ,∆

Γ ==> A&B ,∆

or
Γ,A ==> ∆ Γ,B ==> ∆

Γ,A|B ==> ∆

Γ ==> A,B ,∆

Γ ==> A|B ,∆

imp
Γ ==> A,∆ Γ,B ==> ∆

Γ,A->B ==> ∆

Γ,A ==> B ,∆

Γ ==> A->B ,∆

axiom
Γ,A ==> A,∆

true
Γ ==> true,∆

false
Γ, false ==> ∆

logo

Introduction to Dynamic Logics November 15, 2006 9 / 50



Justification of Rules

Compute rules by applying semantics definition of connectives

logo

Introduction to Dynamic Logics November 15, 2006 10 / 50



Justification of Rules

Compute rules by applying semantics definition of connectives

or right
Γ ==> A,B ,∆

Γ ==> A|B ,∆

and right
Γ ==> A,∆ Γ ==> B ,∆

Γ ==> A&B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 10 / 50



Justification of Rules

Compute rules by applying semantics definition of connectives

or right
Γ ==> A,B ,∆

Γ ==> A|B ,∆

and right
Γ ==> A,∆ Γ ==> B ,∆

Γ ==> A&B ,∆

Follows directly from semantics of sequents

Γ->(A&B)|∆

iff

Γ->A|∆ and Γ->B|∆

logo

Introduction to Dynamic Logics November 15, 2006 10 / 50



A Simple Proof

Γ ==> (A&(A->B))->B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 11 / 50



A Simple Proof

Γ, (A&(A->B)) ==> B ,∆

Γ ==> (A&(A->B))->B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 11 / 50



A Simple Proof

Γ,A, (A->B) ==> B ,∆

Γ, (A&(A->B)) ==> B ,∆

Γ ==> (A&(A->B))->B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 11 / 50



A Simple Proof

Γ,A ==> B ,A,∆ Γ,A,B ==> B ,∆

Γ,A, (A->B) ==> B ,∆

Γ, (A&(A->B)) ==> B ,∆

Γ ==> (A&(A->B))->B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 11 / 50



A Simple Proof

∗
Γ,A ==> B ,A,∆

∗
Γ,A,B ==> B ,∆

Γ,A, (A->B) ==> B ,∆

Γ, (A&(A->B)) ==> B ,∆

Γ ==> (A&(A->B))->B ,∆

logo

Introduction to Dynamic Logics November 15, 2006 11 / 50



A Simple Proof

∗
Γ,A ==> B ,A,∆

∗
Γ,A,B ==> B ,∆

Γ,A, (A->B) ==> B ,∆

Γ, (A&(A->B)) ==> B ,∆

Γ ==> (A&(A->B))->B ,∆

A proof is closed, if all its branches are closed.

logo

Introduction to Dynamic Logics November 15, 2006 11 / 50



Propositional Logic is insufficient

logo

Introduction to Dynamic Logics November 15, 2006 12 / 50



Propositional Logic is insufficient

A All persons are happy

logo

Introduction to Dynamic Logics November 15, 2006 12 / 50



Propositional Logic is insufficient

A

B

All persons are happy

Pat is a person

logo

Introduction to Dynamic Logics November 15, 2006 12 / 50



Propositional Logic is insufficient

A

B

?

All persons are happy

Pat is a person

Pat is happy

logo

Introduction to Dynamic Logics November 15, 2006 12 / 50



Propositional Logic is insufficient

A

B

?

All persons are happy

Pat is a person

Pat is happy

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

logo

Introduction to Dynamic Logics November 15, 2006 12 / 50



Propositional Logic is insufficient

A

B

?

All persons are happy

Pat is a person

Pat is happy

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

⇒ First-Order Logic (FOL)

logo

Introduction to Dynamic Logics November 15, 2006 12 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

Predicate Symbols P = {pi | i ∈ IN}

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

Predicate Symbols P = {pi | i ∈ IN}

Function Symbols F = {f z
i | i ∈ IN, z ∈ T }

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

Predicate Symbols P = {pi | i ∈ IN}

Function Symbols F = {f z
i | i ∈ IN, z ∈ T }

for q ∈ P ∪ F let α(q) ∈ IN arity and σ(q) ∈ T α(q) signature of q

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

Predicate Symbols P = {pi | i ∈ IN}

Function Symbols F = {f z
i | i ∈ IN, z ∈ T }

for q ∈ P ∪ F let α(q) ∈ IN arity and σ(q) ∈ T α(q) signature of q

Connectives O = {true, false, &, |, !, ->, <->}

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

Predicate Symbols P = {pi | i ∈ IN}

Function Symbols F = {f z
i | i ∈ IN, z ∈ T }

for q ∈ P ∪ F let α(q) ∈ IN arity and σ(q) ∈ T α(q) signature of q

Connectives O = {true, false, &, |, !, ->, <->}

Quantifiers Q = {\forall, \exists}

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



Signature of First-Order Logic

Definition (Signature)

Σ = (T ,V,P,F , α, σ,O ∪Q ∪ {
.
=})

Type Symbols T = {z1, . . . , zr}, r ≥ 1, partial order ≺

Variables V = {xi | i ∈ IN}

Predicate Symbols P = {pi | i ∈ IN}

Function Symbols F = {f z
i | i ∈ IN, z ∈ T }

for q ∈ P ∪ F let α(q) ∈ IN arity and σ(q) ∈ T α(q) signature of q

Connectives O = {true, false, &, |, !, ->, <->}

Quantifiers Q = {\forall, \exists}

Equality symbol
.
=

logo

Introduction to Dynamic Logics November 15, 2006 13 / 50



First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

logo

Introduction to Dynamic Logics November 15, 2006 14 / 50



First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

logo

Introduction to Dynamic Logics November 15, 2006 14 / 50



First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

logo

Introduction to Dynamic Logics November 15, 2006 14 / 50



First-Order Signature Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

logo

Introduction to Dynamic Logics November 15, 2006 14 / 50



Terms of First-Order Logic

Definition (Terms)

The set of terms TermΣ is inductively defined as

Variable x ∈ V is term

logo

Introduction to Dynamic Logics November 15, 2006 15 / 50



Terms of First-Order Logic

Definition (Terms)

The set of terms TermΣ is inductively defined as

Variable x ∈ V is term

If f z ∈ F , σ(f ) = 〈z1, . . . , zr 〉 and ti term of type z ′i ≺ zi or ti ∈ V
for 1 ≤ i ≤ r , then f z(t1, . . . , tr ) is term of type z

When r = 0 call it constant

logo

Introduction to Dynamic Logics November 15, 2006 15 / 50



Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas ForΣ is inductively defined as

If p ∈ P, σ(p) = 〈z1, . . . , zr 〉 and ti term of type z ′i ≺ zi or ti ∈ V for
1 ≤ i ≤ r , then p(t1, . . . , tr ) is a first-order formula

Use brackets and usual precedence rules to avoid syntactic ambiguity
logo

Introduction to Dynamic Logics November 15, 2006 16 / 50



Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas ForΣ is inductively defined as

If p ∈ P, σ(p) = 〈z1, . . . , zr 〉 and ti term of type z ′i ≺ zi or ti ∈ V for
1 ≤ i ≤ r , then p(t1, . . . , tr ) is a first-order formula

If t1, t2 are terms of same type or variable, then t1
.
= t2 is a

first-order formula

Use brackets and usual precedence rules to avoid syntactic ambiguity
logo

Introduction to Dynamic Logics November 15, 2006 16 / 50



Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas ForΣ is inductively defined as

If p ∈ P, σ(p) = 〈z1, . . . , zr 〉 and ti term of type z ′i ≺ zi or ti ∈ V for
1 ≤ i ≤ r , then p(t1, . . . , tr ) is a first-order formula

If t1, t2 are terms of same type or variable, then t1
.
= t2 is a

first-order formula

Truth constants, connectives as in propositional logic

Use brackets and usual precedence rules to avoid syntactic ambiguity
logo

Introduction to Dynamic Logics November 15, 2006 16 / 50



Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas ForΣ is inductively defined as

If p ∈ P, σ(p) = 〈z1, . . . , zr 〉 and ti term of type z ′i ≺ zi or ti ∈ V for
1 ≤ i ≤ r , then p(t1, . . . , tr ) is a first-order formula

If t1, t2 are terms of same type or variable, then t1
.
= t2 is a

first-order formula

Truth constants, connectives as in propositional logic

If x ∈ V, z ∈ T , φ a first-order formula with no occurrence of x : z ′,
and all occurrences of x in φ are in symbols with type signature
z ≺ z ′ for the argument where x appears, then \forall z x ;φ,
\exists z x ;φ are first-order formulas; x declared of type z and
scope φ

Use brackets and usual precedence rules to avoid syntactic ambiguity
logo

Introduction to Dynamic Logics November 15, 2006 16 / 50



First-Order Syntax Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

logo

Introduction to Dynamic Logics November 15, 2006 17 / 50



First-Order Syntax Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

\forall Weapon x ; hurts(x) &

\forall Word y ; !hurts(y)

logo

Introduction to Dynamic Logics November 15, 2006 17 / 50



Semantics of First-Order Logic

Definition (Interpretation)

An interpretation D = (U, I ) consists of

U is the non-empty universe
For each type z there is a subuniverse Uz such that Uz ⊆ Uz ′ if
z ≺ z ′

logo

Introduction to Dynamic Logics November 15, 2006 18 / 50



Semantics of First-Order Logic

Definition (Interpretation)

An interpretation D = (U, I ) consists of

U is the non-empty universe
For each type z there is a subuniverse Uz such that Uz ⊆ Uz ′ if
z ≺ z ′

If σ(p) = 〈z1, . . . , zr 〉, then pI ⊆ Uz1 × · · · × Uzr

logo

Introduction to Dynamic Logics November 15, 2006 18 / 50



Semantics of First-Order Logic

Definition (Interpretation)

An interpretation D = (U, I ) consists of

U is the non-empty universe
For each type z there is a subuniverse Uz such that Uz ⊆ Uz ′ if
z ≺ z ′

If σ(p) = 〈z1, . . . , zr 〉, then pI ⊆ Uz1 × · · · × Uzr

If σ(f z) = 〈z1, . . . , zr 〉, then f I : Uz1 × · · · × Uzr → Uz

logo

Introduction to Dynamic Logics November 15, 2006 18 / 50



Semantics of First-Order Logic

Definition (Interpretation)

An interpretation D = (U, I ) consists of

U is the non-empty universe
For each type z there is a subuniverse Uz such that Uz ⊆ Uz ′ if
z ≺ z ′

If σ(p) = 〈z1, . . . , zr 〉, then pI ⊆ Uz1 × · · · × Uzr

If σ(f z) = 〈z1, . . . , zr 〉, then f I : Uz1 × · · · × Uzr → Uz

Definition (Variable Assignment)

A variable assignment is a function β : V → U

Updated variable assignment: for d ∈ U let βd
y (x) =

{
β(x) x 6= y

d x = y

logo

Introduction to Dynamic Logics November 15, 2006 18 / 50



Semantics of First-Order Logic, Cont’d

xD,β = β(x)

Let σ(f z) = 〈z1, . . . , zr 〉, then
(f z(t1, . . . , tr ))

D,β = f I ((t1)
D,β, . . . , (tr )

D,β)

Let σ(p) = 〈z1, . . . , zr 〉, then

valD,β(p(t1, . . . , tr )) =

{
true 〈(t1)

D,β, . . . , (tr )
D,β〉 ∈ pI

false otherwise
(Assume that β(ti ) ∈ Uzi when ti ∈ V — well-defined:)

valD,β(\forall z x ;φ) =
{

true for all u ∈ Uz : valD,βu
x
(φ) = true

false otherwise

\exists similar than \forall,
.
= identity on U

logo

Introduction to Dynamic Logics November 15, 2006 19 / 50



First-Order Semantic Notions

Satisfiability, truth, and validity
D, β |= φ iff valD,β(φ) = true (φ is satisfiable)

D |= φ iff for all β : D, β |= φ (φ is true in D)

|= φ iff for all D : D |= φ (φ is valid)

A formula containing only declared variables is closed
Closed formulas that are satisfiable are also true: only one notion
For closed formulas, type of variable assignment well-defined

From now on only closed formulas are considered.

logo

Introduction to Dynamic Logics November 15, 2006 20 / 50



First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

\forall Weapon x ;hurts(x) & \forall Word y ; !hurts(y)

Satisfiable? Valid?

logo

Introduction to Dynamic Logics November 15, 2006 21 / 50



First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

\forall Weapon x ;hurts(x) & \forall Word y ; !hurts(y)

Satisfiable? Valid? Model

UWeapon = {towel}, UWord = {rosebud}, U = UWord ∪ UWeapon

I (hurts) = {〈towel〉}

I (stick) = I (stone) = towel , I (blockhead) = rosebud

logo

Introduction to Dynamic Logics November 15, 2006 21 / 50



First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

\forall Weapon x ;hurts(x) & \forall Word y ; !hurts(y)

How to express that there are at least two different weapons?

logo

Introduction to Dynamic Logics November 15, 2006 21 / 50



First-Order Logic Example

Sticks and stones may break your bones, but words will never hurt

Types T = {Weapon,Word,Any}

Weapon ≺ Any, Word ≺ Any

Predicates P = {hurts}, σ(hurts) = 〈Any〉

Functions F = {stickWeapon, stoneWeapon,blockheadWord}

\forall Weapon x ;hurts(x) & \forall Word y ; !hurts(y)

How to express that there are at least two different weapons?

\exists Weapon x , y ; (!x
.
= y)

logo

Introduction to Dynamic Logics November 15, 2006 21 / 50



Sequent Calculus for FOL

{t/t ′}φ is result of replacing each occurrence of t in φ with t ′

tz ′ any variable free term of type z ′ ≺ z

cz new constant of type z (occurs not in current proof branch)

Equations can be reversed by commutativity

logo

Introduction to Dynamic Logics November 15, 2006 22 / 50



Sequent Calculus for FOL

left side, antecedent right side, succedent

all
Γ, \forall z x ;φ, {x/tz ′}φ ==> ∆

Γ, \forall z x ;φ ==> ∆

Γ ==> {x/cz}φ,∆
Γ ==> \forall z x ;φ,∆

{t/t ′}φ is result of replacing each occurrence of t in φ with t ′

tz ′ any variable free term of type z ′ ≺ z

cz new constant of type z (occurs not in current proof branch)

Equations can be reversed by commutativity

logo

Introduction to Dynamic Logics November 15, 2006 22 / 50



Sequent Calculus for FOL

left side, antecedent right side, succedent

all
Γ, \forall z x ;φ, {x/tz ′}φ ==> ∆

Γ, \forall z x ;φ ==> ∆

Γ ==> {x/cz}φ,∆
Γ ==> \forall z x ;φ,∆

ex
Γ, {x/cz}φ ==> ∆

Γ, \exists z x ;φ ==> ∆

Γ ==> {x/tz ′}φ, \exists z

Γ ==> \exists z x ;φ,

{t/t ′}φ is result of replacing each occurrence of t in φ with t ′

tz ′ any variable free term of type z ′ ≺ z

cz new constant of type z (occurs not in current proof branch)

Equations can be reversed by commutativity

logo

Introduction to Dynamic Logics November 15, 2006 22 / 50



Sequent Calculus for FOL

left side, antecedent right side, succedent

all
Γ, \forall z x ;φ, {x/tz ′}φ ==> ∆

Γ, \forall z x ;φ ==> ∆

Γ ==> {x/cz}φ,∆
Γ ==> \forall z x ;φ,∆

ex
Γ, {x/cz}φ ==> ∆

Γ, \exists z x ;φ ==> ∆

Γ ==> {x/tz ′}φ, \exists z

Γ ==> \exists z x ;φ,

eq
Γ, t1

.
= t2, {t1/t2}ψ ==> {t1/t2}φ,∆

Γ, t1
.
= t2, ψ ==> φ,∆ Γ ==> t

.
= t,∆

{t/t ′}φ is result of replacing each occurrence of t in φ with t ′

tz ′ any variable free term of type z ′ ≺ z

cz new constant of type z (occurs not in current proof branch)

Equations can be reversed by commutativity

logo

Introduction to Dynamic Logics November 15, 2006 22 / 50



Some Predefined Symbols in KeY Logic

Types
int, boolean, classes of the Java context of the proof obligation

Predicates on int

>, <, >=, <=

Functions and Constants
‘+’, ‘-’, ‘/’, ‘%’, ‘0’, ‘1’, . . .
‘TRUE’, ‘FALSE’

logo

Introduction to Dynamic Logics November 15, 2006 23 / 50



Taclets - The rule description language of KeY

if (seq) find (⊢opt Φ) replacewith(⊢opt Φ
′)

add(⊢ seq)...; ...; ...
heuristics(name+)

logo

Introduction to Dynamic Logics November 15, 2006 24 / 50



Taclets - The rule description language of KeY

if (seq) find (⊢opt Φ) replacewith(⊢opt Φ
′)

add(⊢ seq)...; ...; ...
heuristics(name+)

Syntax

find sequent (max. one formula), formula or term
if additional condition
replacewith replaces the find part (⊢opt depends on find)
add adds the sequent to the antecedent or succedent
; start new subgoal
heuristics adds the taclet to the enumerated heuristics

logo

Introduction to Dynamic Logics November 15, 2006 24 / 50



The and-right rule as taclet

Textbook

Γ ⊢ A, ∆ Γ ⊢ B , ∆

Γ ⊢ A ∧ B , ∆
(and − right)

logo

Introduction to Dynamic Logics November 15, 2006 25 / 50



The and-right rule as taclet

Textbook

Γ ⊢ A, ∆ Γ ⊢ B , ∆

Γ ⊢ A ∧ B , ∆
(and − right)

Taclet

\find( ⊢ A ∧ B )

\replacewith ( ⊢ A );

\replacewith ( ⊢ B )

\rulesets(simplify)

logo

Introduction to Dynamic Logics November 15, 2006 25 / 50



First-Order Formula in KeY Syntax

\sorts { // types are called ’sorts’

person; // one declaration per line, end with ’;’

}

\functions { // ResultType FctSymbol(ParType,..,ParType)

int age(person); // ’int’ predefined type

}

\predicates { // PredSymbol(ParType,..,ParType)

parent(person,person);

}

\problem { // Goal formula, // ’>=’ predef.

\forall person son; \forall person father; (

parent(father,son) -> age(father) >= age(son))

}

logo

Introduction to Dynamic Logics November 15, 2006 26 / 50



Another Example

Types T = {z}
Predicates P = {p}, σ(p) = 〈z , z〉
Functions F = {}

(\exists z x ; \exists z y ; p(x , y) & \forall z x ; !p(x , x)) ->

\exists z x ; \exists z y ; (!x
.
= y)

Intuitive Meaning? Satisfiable? Valid?

Demo

demo1.key

logo

Introduction to Dynamic Logics November 15, 2006 27 / 50



Example: JML to FOL

Person

+duration: Integer

Student

+matnr: Integer

Professor

+<<query>> getInstitute(): String

+setName(name:String)

Library clients
*

Types?

logo

Introduction to Dynamic Logics November 15, 2006 28 / 50



Example: JML to FOL

Person

+duration: Integer

Student

+matnr: Integer

Professor

+<<query>> getInstitute(): String

+setName(name:String)

Library clients
*

Types? Library, Person, Student, Professor (+ some predefined)
Functions?

logo

Introduction to Dynamic Logics November 15, 2006 28 / 50



Example: JML to FOL

Person

+duration: Integer

Student

+matnr: Integer

Professor

+<<query>> getInstitute(): String

+setName(name:String)

Library clients
*

Types? Library, Person, Student, Professor (+ some predefined)
Functions?

Attributes int Person.duration, int Student.matnr

Queries String Professor.getInstitute

incl. some predefined

logo

Introduction to Dynamic Logics November 15, 2006 28 / 50



Example: JML to FOL

Person

+duration: Integer

Student

+matnr: Integer

Professor

+<<query>> getInstitute(): String

+setName(name:String)

Library clients
*

Meaning?

p u b l i c c l a s s S tudent{
/∗@ pu b l i c i n v a r i a n t (\ f o r a l l S tudent s ;

s . matnr==matnr ; s==t h i s ) ;@∗/ . .
}

logo

Introduction to Dynamic Logics November 15, 2006 28 / 50



Example: JML to FOL

Person

+duration: Integer

Student

+matnr: Integer

Professor

+<<query>> getInstitute(): String

+setName(name:String)

Library clients
*

A student is uniquely identified by his/her student id (matnr)

p u b l i c c l a s s S tudent{
/∗@ pu b l i c i n v a r i a n t (\ f o r a l l S tudent s ;

s . matnr==matnr ; s==t h i s ) ;@∗/ . .
}

in FOL?

logo

Introduction to Dynamic Logics November 15, 2006 28 / 50



Example: JML to FOL

Person

+duration: Integer

Student

+matnr: Integer

Professor

+<<query>> getInstitute(): String

+setName(name:String)

Library clients
*

A student is uniquely identified by his/her student id (matnr)

p u b l i c c l a s s S tudent{
/∗@ pu b l i c i n v a r i a n t (\ f o r a l l S tudent s ;

s . matnr==matnr ; s==t h i s ) ;@∗/ . .
}

in FOL:
\forall Student p1;\forall Student p2;

(p1.matnr = p2.matnr -> p1 = p2)logo

Introduction to Dynamic Logics November 15, 2006 28 / 50



Do we really need another kind of logics?

“There is a tradition in logic, carried over into computer science,

to think of pure first order logic as a universal language.

In fact first order language is about as useful in verification as a

Turing machine is in software engineering:

cute to watch but not very useful.”

V. Pratt

logo

Introduction to Dynamic Logics November 15, 2006 29 / 50



State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I ) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

logo

Introduction to Dynamic Logics November 15, 2006 30 / 50



State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I ) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing x = 3 results in D such that D |= x

.
= 3

Executing x = 4 results in D such that D 6|= x
.
= 3

logo

Introduction to Dynamic Logics November 15, 2006 30 / 50



State Dependency of Formula Evaluation

(Closed) FOL formula is either true or false wrt interpretation D
Consider D = (U, I ) to be static part of snapshot, ie state

Let x be program (local) variable or attribute
Execution of program p may change state, ie value of x

Example
Executing x = 3 results in D such that D |= x

.
= 3

Executing x = 4 results in D such that D 6|= x
.
= 3

Need a logic to capture state before/after program execution

logo

Introduction to Dynamic Logics November 15, 2006 30 / 50



Dynamic Logic (Simple Version) Signature

Definition (Signature)

Σ = (T ,V,P,F ,PV , α, σ,Π0,O ∪Q ∪ {
.
=, 〈·〉·, [·] ·})

Type Symbols T = {int, boolean}
Logical Variables V = {yi | i ∈ IN}
Predicate Symbols P = {>,>=, <,<=}
Function Symbols F = {+,−, ∗, 0, 1, . . .}
Program Variables PV = {xi | i ∈ IN}
Signature of functions/predicates as usual

logo

Introduction to Dynamic Logics November 15, 2006 31 / 50



Dynamic Logic (Simple Version) Signature

Definition (Signature)

Σ = (T ,V,P,F ,PV , α, σ,Π0,O ∪Q ∪ {
.
=, 〈·〉·, [·] ·})

Type Symbols T = {int, boolean}
Logical Variables V = {yi | i ∈ IN}
Predicate Symbols P = {>,>=, <,<=}
Function Symbols F = {+,−, ∗, 0, 1, . . .}
Program Variables PV = {xi | i ∈ IN}
Signature of functions/predicates as usual
Atomic Programs Π0:

Assignments x =t with x ∈ PV , t term of type int w/o logical
variables

logo

Introduction to Dynamic Logics November 15, 2006 31 / 50



Dynamic Logic (Simple Version) Signature

Definition (Signature)

Σ = (T ,V,P,F ,PV , α, σ,Π0,O ∪Q ∪ {
.
=, 〈·〉·, [·] ·})

Type Symbols T = {int, boolean}
Logical Variables V = {yi | i ∈ IN}
Predicate Symbols P = {>,>=, <,<=}
Function Symbols F = {+,−, ∗, 0, 1, . . .}
Program Variables PV = {xi | i ∈ IN}
Signature of functions/predicates as usual
Atomic Programs Π0:

Assignments x =t with x ∈ PV , t term of type int w/o logical
variables
Modal Connectives \〈·\〉· “diamond”, \ [·\] · “box”
First argument program, second argument formula

logo

Introduction to Dynamic Logics November 15, 2006 31 / 50



Dynamic Logic (Simple Version) Programs

Programs Π

If π is an atomic program, then π; is a program

logo

Introduction to Dynamic Logics November 15, 2006 32 / 50



Dynamic Logic (Simple Version) Programs

Programs Π

If π is an atomic program, then π; is a program

If α and γ are programs, then αγ is a program

logo

Introduction to Dynamic Logics November 15, 2006 32 / 50



Dynamic Logic (Simple Version) Programs

Programs Π

If π is an atomic program, then π; is a program

If α and γ are programs, then αγ is a program

If b is a variable-free term of type boolean, α and γ programs, then

i f ( b ) {α} e l s e {γ } ;

is a program

logo

Introduction to Dynamic Logics November 15, 2006 32 / 50



Dynamic Logic (Simple Version) Programs

Programs Π

If π is an atomic program, then π; is a program

If α and γ are programs, then αγ is a program

If b is a variable-free term of type boolean, α and γ programs, then

i f ( b ) {α} e l s e {γ } ;

is a program

If b is a variable-free term of type boolean, α a program, then

whi le ( b ) {α} ;

is a program

logo

Introduction to Dynamic Logics November 15, 2006 32 / 50



Dynamic Logic Syntax Example

An admissible DL program α:

i =0;
r =0;
whi le ( i<n ) {

i=i +1;
r=r+i ;

} ;
r=r+r−n ;

What does α compute?

logo

Introduction to Dynamic Logics November 15, 2006 33 / 50



Dynamic Logic (Simple Version) Terms

Terms
Defined as in FOL using also PV , but:
Rigid versus Flexible

rigid symbols, same interpretation in all execution states
Needed, for example, to hold initial value of program variable
Logical variables and predefined functions/predicates are rigid

non-rigid (or flexible) terms, interpretation depends on state
Needed to capture state change after program execution
Program variables are flexible

A term containing at least one flexible symbol is flexible, otherwise rigid

logo

Introduction to Dynamic Logics November 15, 2006 34 / 50



Dynamic Logic (Simple Version) Formulas

Dynamic Logic Formulas (DL Formulas)

Each FOL formula is a DL formula
DL formulas closed under FOL operators and connectives, but
Program variables are never bound in quantifiers

If α is a program and φ a DL formula then
\〈α\〉φ is a DL formula
\[α\]φ is a DL-Formula

Programs contain no logical variables
Modalities can be arbitrarily nested

logo

Introduction to Dynamic Logics November 15, 2006 35 / 50



Dynamic Logic Syntax Example

\forall int y ; ((\〈x = 1;\〉x
.
= y) <-> (\〈x = 1 ∗ 1;\〉x

.
= y)) Syntax ?

logo

Introduction to Dynamic Logics November 15, 2006 36 / 50



Dynamic Logic Syntax Example

\forall int y ; ((\〈x = 1;\〉x
.
= y) <-> (\〈x = 1 ∗ 1;\〉x

.
= y)) ok

logo

Introduction to Dynamic Logics November 15, 2006 36 / 50



Dynamic Logic Syntax Example

\forall int y ; ((\〈x = 1;\〉x
.
= y) <-> (\〈x = 1 ∗ 1;\〉x

.
= y)) ok

\exists int x; (\[x = 1;\] (x
.
= 1)) Syntax ?

logo

Introduction to Dynamic Logics November 15, 2006 36 / 50



Dynamic Logic Syntax Example

\forall int y ; ((\〈x = 1;\〉x
.
= y) <-> (\〈x = 1 ∗ 1;\〉x

.
= y)) ok

\exists int x; (\[x = 1;\] (x
.
= 1)) bad

x cannot be logical variable, because it occurs in program

x cannot be program variable, because it is quantified

logo

Introduction to Dynamic Logics November 15, 2006 36 / 50



Dynamic Logic Syntax Example

\forall int y ; ((\〈x = 1;\〉x
.
= y) <-> (\〈x = 1 ∗ 1;\〉x

.
= y)) ok

\exists int x; (\[x = 1;\] (x
.
= 1)) bad

x cannot be logical variable, because it occurs in program

x cannot be program variable, because it is quantified

\〈x = 1;\〉 (\[while (true) {}\] false) Syntax ?

logo

Introduction to Dynamic Logics November 15, 2006 36 / 50



Dynamic Logic Syntax Example

\forall int y ; ((\〈x = 1;\〉x
.
= y) <-> (\〈x = 1 ∗ 1;\〉x

.
= y)) ok

\exists int x; (\[x = 1;\] (x
.
= 1)) bad

x cannot be logical variable, because it occurs in program

x cannot be program variable, because it is quantified

\〈x = 1;\〉 (\[while (true) {}\] false) ok

Program formulas can appear nested

logo

Introduction to Dynamic Logics November 15, 2006 36 / 50



Dynamic Logic Semantics

Definition (Kripke structure)

A Kripke structure K = (S , ρ) where

s = (U, I ) ∈ S is a State/Interpretation and

ρ : Π → (S → S) ρ(α), ρ(γ) an admissible relation

Each state is first-order interpretation
a

a

s1 s2

s4

s5 s6 s3

γ

α γ

γ

α
γ

α

a
logo

Introduction to Dynamic Logics November 15, 2006 37 / 50



Dynamic Logic Semantics (Cont’d)

Definition (Program Formulas)

s, β |= \〈α\〉φ iff ρ(α)(s), β |= φ and ρ(α)(s) defined
α terminates and φ is true in the final state after execution

a

a

s1 s2

s4

s5 s6 s3

γ

α γ

γ

α
γ

α

a
logo

Introduction to Dynamic Logics November 15, 2006 38 / 50



Dynamic Logic Semantics (Cont’d)

Definition (Program Formulas)

s, β |= \〈α\〉φ iff ρ(α)(s), β |= φ and ρ(α)(s) defined
α terminates and φ is true in the final state after execution

s, β |= \[α\]φ iff ρ(α)(s), β |= φ whenever ρ(α)(s) defined
If α terminates then φ is true in the final state after

execution

a

a

s1 s2

s4

s5 s6 s3

γ

α γ

γ

α
γ

α

a
logo

Introduction to Dynamic Logics November 15, 2006 38 / 50



Program Correctness

s, β |= \〈α\〉φ
α totally correct (with respect to φ) in s, β

logo

Introduction to Dynamic Logics November 15, 2006 39 / 50



Program Correctness

s, β |= \〈α\〉φ
α totally correct (with respect to φ) in s, β

s, β |= \[α\]φ
α partially correct (with respect to φ) in s, β

logo

Introduction to Dynamic Logics November 15, 2006 39 / 50



Program Correctness

s, β |= \〈α\〉φ
α totally correct (with respect to φ) in s, β

s, β |= \[α\]φ
α partially correct (with respect to φ) in s, β

Duality \〈α\〉φ iff !\[α\] !φ
Exercise: justify this with semantic definitions

logo

Introduction to Dynamic Logics November 15, 2006 39 / 50



Program Correctness

s, β |= \〈α\〉φ
α totally correct (with respect to φ) in s, β

s, β |= \[α\]φ
α partially correct (with respect to φ) in s, β

Duality \〈α\〉φ iff !\[α\] !φ
Exercise: justify this with semantic definitions

Implication if \〈α\〉φ then \[α\]φ

logo

Introduction to Dynamic Logics November 15, 2006 39 / 50



Semantics of Sequents

Validity of DL sequents compatible validity FOL sequents
Γ ==> ∆ is valid iff it is true in all states s

logo

Introduction to Dynamic Logics November 15, 2006 40 / 50



Semantics of Sequents

Validity of DL sequents compatible validity FOL sequents
Γ ==> ∆ is valid iff it is true in all states s

How to restrict validity to set of initial states J ⊆ S ?

1 Design closed FOL formula Init with
s |= Init iff s ∈ J

2 Use sequent Γ, Init ==> ∆

Later: simple method for specifying initial value of program variables

logo

Introduction to Dynamic Logics November 15, 2006 40 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a ?

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok),

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok), s1 |= \〈γ\〉a ?

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok), s1 |= \〈γ\〉a (—)

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok), s1 |= \〈γ\〉a (—)

s5 |= \〈γ\〉a ?

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok), s1 |= \〈γ\〉a (—)

s5 |= \〈γ\〉a (—),

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok), s1 |= \〈γ\〉a (—)

s5 |= \〈γ\〉a (—), s5 |= \[γ\] a ?

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics Example

Predicate symbols (prop. vars.) P = {a, b, c}

a

a

s1

a, b
s2

c

s4

a

s5 s6 s3

γ

α γ

γ

α
γ

α

a

s1 |= \〈α\〉a (ok), s1 |= \〈γ\〉a (—)

s5 |= \〈γ\〉a (—), s5 |= \[γ\] a (ok)

logo

Introduction to Dynamic Logics November 15, 2006 41 / 50



Dynamic Logic Semantics: States, Updates

States s = (U, I ) have all the same universe U

May assume ρ(α) works on interpretations I

Define I , β |= φ as s, β |= φ, where s = (U, I )

logo

Introduction to Dynamic Logics November 15, 2006 42 / 50



Dynamic Logic Semantics: States, Updates

States s = (U, I ) have all the same universe U

May assume ρ(α) works on interpretations I

Define I , β |= φ as s, β |= φ, where s = (U, I )

Program variables are flexible
Consider program variables as flexible constants in s with value I (x)

logo

Introduction to Dynamic Logics November 15, 2006 42 / 50



Dynamic Logic Semantics: States, Updates

States s = (U, I ) have all the same universe U

May assume ρ(α) works on interpretations I

Define I , β |= φ as s, β |= φ, where s = (U, I )

Program variables are flexible
Consider program variables as flexible constants in s with value I (x)

State update (cf. updated variable assignment) of I at x with d ∈ U

I d
y (x) =

{
I (x) x 6= y

d x = y

logo

Introduction to Dynamic Logics November 15, 2006 42 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

ρ(if (b) {α} else {γ};)(I ) =

{
ρ(α)(I ) I , β |= b

.
= TRUE

ρ(γ)(I ) otherwise

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

ρ(if (b) {α} else {γ};)(I ) =

{
ρ(α)(I ) I , β |= b

.
= TRUE

ρ(γ)(I ) otherwise

ρ(αγ)(I ) = ρ(γ)(ρ(α)(I )), if ρ(α)(I ) defined, undefined otherwise

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

ρ(if (b) {α} else {γ};)(I ) =

{
ρ(α)(I ) I , β |= b

.
= TRUE

ρ(γ)(I ) otherwise

ρ(αγ)(I ) = ρ(γ)(ρ(α)(I )), if ρ(α)(I ) defined, undefined otherwise

ρ(while (b) {α};)(I ) = I ′ iff there are I = I0, . . . , In = I ′ such that

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

ρ(if (b) {α} else {γ};)(I ) =

{
ρ(α)(I ) I , β |= b

.
= TRUE

ρ(γ)(I ) otherwise

ρ(αγ)(I ) = ρ(γ)(ρ(α)(I )), if ρ(α)(I ) defined, undefined otherwise

ρ(while (b) {α};)(I ) = I ′ iff there are I = I0, . . . , In = I ′ such that

Ij , β |= b
.
= TRUE for 0 ≤ j < n

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

ρ(if (b) {α} else {γ};)(I ) =

{
ρ(α)(I ) I , β |= b

.
= TRUE

ρ(γ)(I ) otherwise

ρ(αγ)(I ) = ρ(γ)(ρ(α)(I )), if ρ(α)(I ) defined, undefined otherwise

ρ(while (b) {α};)(I ) = I ′ iff there are I = I0, . . . , In = I ′ such that

Ij , β |= b
.
= TRUE for 0 ≤ j < n

ρ(α)(Ij ) = Ij+1 for 0 ≤ j < n

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Operational Semantics of Programs

State transformation ρ defines semantics of programs
Same ρ for all programs, so not part of s; given β

ρ(x = t;)(I ) = I t I ,β

x

ρ(if (b) {α} else {γ};)(I ) =

{
ρ(α)(I ) I , β |= b

.
= TRUE

ρ(γ)(I ) otherwise

ρ(αγ)(I ) = ρ(γ)(ρ(α)(I )), if ρ(α)(I ) defined, undefined otherwise

ρ(while (b) {α};)(I ) = I ′ iff there are I = I0, . . . , In = I ′ such that

Ij , β |= b
.
= TRUE for 0 ≤ j < n

ρ(α)(Ij ) = Ij+1 for 0 ≤ j < n

In, β |= b
.
= FALSE undefined otherwise

logo

Introduction to Dynamic Logics November 15, 2006 43 / 50



Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} α {φ}

If α is started in a state satisfying ψ and terminates, then its final state
satisfies φ
In DL ψ -> \[α\] φ

logo

Introduction to Dynamic Logics November 15, 2006 44 / 50



Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} α {φ}

If α is started in a state satisfying ψ and terminates, then its final state
satisfies φ
In DL ψ -> \[α\] φ
Valid formulas
\[x = 1;\] (x

.
= 1)

logo

Introduction to Dynamic Logics November 15, 2006 44 / 50



Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} α {φ}

If α is started in a state satisfying ψ and terminates, then its final state
satisfies φ
In DL ψ -> \[α\] φ
Valid formulas
\[x = 1;\] (x

.
= 1) \[while (true) {x = x;}; \] false

logo

Introduction to Dynamic Logics November 15, 2006 44 / 50



Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} α {φ}

If α is started in a state satisfying ψ and terminates, then its final state
satisfies φ
In DL ψ -> \[α\] φ
Valid formulas
\[x = 1;\] (x

.
= 1) \[while (true) {x = x;}; \] false

Validity depends on α, γ

\forall int y ; ((\〈α\〉x
.
= y) <-> (\〈γ\〉x

.
= y)) meaning ?

logo

Introduction to Dynamic Logics November 15, 2006 44 / 50



Dynamic Logic Examples

Partial correctness assertion (Hoare formula)

{ψ} α {φ}

If α is started in a state satisfying ψ and terminates, then its final state
satisfies φ
In DL ψ -> \[α\] φ
Valid formulas
\[x = 1;\] (x

.
= 1) \[while (true) {x = x;}; \] false

Validity depends on α, γ

\forall int y ; ((\〈α\〉x
.
= y) <-> (\〈γ\〉x

.
= y)) α,γ equiv. relative to x

logo

Introduction to Dynamic Logics November 15, 2006 44 / 50



Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

logo

Introduction to Dynamic Logics November 15, 2006 45 / 50



Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

logo

Introduction to Dynamic Logics November 15, 2006 45 / 50



Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

\〈ξγ\〉φ, \[ξγ\]φ

where ξ one single admissible program statement

logo

Introduction to Dynamic Logics November 15, 2006 45 / 50



Proof by Symbolic Program Execution

Need to have rules for program formulas: but which?
What corresponds to top-level connective in sequential program?

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

\〈ξγ\〉φ, \[ξγ\]φ

where ξ one single admissible program statement

Rules execute symbolically the first active statement
Proof corresponds to symbolic program execution

logo

Introduction to Dynamic Logics November 15, 2006 45 / 50



Dynamic Logic Calculus

concatenate
Γ ==> \〈α\〉 (\〈γ\〉φ) , ∆

Γ ==> \〈αγ\〉φ, ∆

logo

Introduction to Dynamic Logics November 15, 2006 46 / 50



Dynamic Logic Calculus

concatenate
Γ ==> \〈α\〉 (\〈γ\〉φ) , ∆

Γ ==> \〈αγ\〉φ, ∆

if
Γ, b

.
= TRUE ==> \〈α\〉φ, ∆ Γ, b

.
= FALSE ==> \〈γ\〉φ, ∆

Γ ==> \〈if (b) {α} else {γ}; \〉φ, ∆

logo

Introduction to Dynamic Logics November 15, 2006 46 / 50



Dynamic Logic Calculus

concatenate
Γ ==> \〈α\〉 (\〈γ\〉φ) , ∆

Γ ==> \〈αγ\〉φ, ∆

if
Γ, b

.
= TRUE ==> \〈α\〉φ, ∆ Γ, b

.
= FALSE ==> \〈γ\〉φ, ∆

Γ ==> \〈if (b) {α} else {γ}; \〉φ, ∆

unwind
Γ, b

.
= FALSE==>φ,∆ Γ, b

.
= TRUE==>\〈α\〉\〈while (b) {α}; \〉φ, ∆

Γ ==> \〈while (b) {α}; \〉φ, ∆

logo

Introduction to Dynamic Logics November 15, 2006 46 / 50



Assignment Rule Using Updates

assign
Γ ==> {x := t}φ,∆

Γ ==> \〈x = t;\〉φ, ∆

Avoids renaming of program variables
But: rules dealing with programs need to account for updates

logo

Introduction to Dynamic Logics November 15, 2006 47 / 50



Assignment Rule Using Updates

assign
Γ ==> {x := t}φ,∆

Γ ==> \〈x = t;\〉φ, ∆

Avoids renaming of program variables
But: rules dealing with programs need to account for updates

Solution: rules work on first active statement after prefix, followed by
postfix (remaining code)
Explicit concatenation rule not longer needed

logo

Introduction to Dynamic Logics November 15, 2006 47 / 50



Assignment Rule Using Updates

assign
Γ ==> {x := t}φ,∆

Γ ==> \〈x = t;\〉φ, ∆

Avoids renaming of program variables
But: rules dealing with programs need to account for updates

Solution: rules work on first active statement after prefix, followed by
postfix (remaining code)
Explicit concatenation rule not longer needed

General form of conclusion in rule for symbolic execution

Γ ==> 〈 π ξ; ω 〉φ, ∆

Prefix Active statement Postfix

logo

Introduction to Dynamic Logics November 15, 2006 47 / 50



Explicit State Updates

Updates record state change

logo

Introduction to Dynamic Logics November 15, 2006 48 / 50



Explicit State Updates

Updates record state change

Syntax
If v is program variable, t, t ′terms, and φ any DL formula, then
{v := t}φ is DL formula and {v := t}t ′ is term

logo

Introduction to Dynamic Logics November 15, 2006 48 / 50



Explicit State Updates

Updates record state change

Syntax
If v is program variable, t, t ′terms, and φ any DL formula, then
{v := t}φ is DL formula and {v := t}t ′ is term

Semantics
I , β |= {v := t}φ iff I t I ,β

v , β |= φ
Semantics identical to assignment

Updates work as “lazy” assignments

logo

Introduction to Dynamic Logics November 15, 2006 48 / 50



Computing Effect of Updates

Update followed by program variable
{x := t}y ; y

{x := t}x ; t

logo

Introduction to Dynamic Logics November 15, 2006 49 / 50



Computing Effect of Updates

Update followed by program variable
{x := t}y ; y

{x := t}x ; t

Update followed by complex term
{x := t}f (t1, . . . , tn) ; f ({x := t}t1, . . . , {x := t}tn)

logo

Introduction to Dynamic Logics November 15, 2006 49 / 50



Computing Effect of Updates

Update followed by program variable
{x := t}y ; y

{x := t}x ; t

Update followed by complex term
{x := t}f (t1, . . . , tn) ; f ({x := t}t1, . . . , {x := t}tn)

Update followed by first-order formula
{x := t}(φ&ψ) ; {x := t}φ & {x := t}ψ
{x := t}(\forall z y ;φ) ; \forall z y ; ({x := t}φ) etc.

logo

Introduction to Dynamic Logics November 15, 2006 49 / 50



Computing Effect of Updates

Update followed by program variable
{x := t}y ; y

{x := t}x ; t

Update followed by complex term
{x := t}f (t1, . . . , tn) ; f ({x := t}t1, . . . , {x := t}tn)

Update followed by first-order formula
{x := t}(φ&ψ) ; {x := t}φ & {x := t}ψ
{x := t}(\forall z y ;φ) ; \forall z y ; ({x := t}φ) etc.

Update followed by program formula
{x := t}(\〈α\〉φ) ; {x := t}(\〈α\〉φ)

Update computation delayed until α symbolically executed

logo

Introduction to Dynamic Logics November 15, 2006 49 / 50



Example Proof

\programVariables {

int i;

int j;

}

\problem {

\forall int x; \forall int y;

( i=x & j=y ->

\<{int h = i; i = j; j = h;}\> (i=y & j=x) )

}

Intuitive Meaning? Satisfiable? Valid?

Demo

dlIntro/exchange.keylogo

Introduction to Dynamic Logics November 15, 2006 50 / 50


