Introduction to Dynamic Logics

Andreas Roth, Richard Bubel

November 15, 2006

Propositional Variables $\mathcal{P} = \{p_i | i \in \mathbf{N}\}$

Propositional Variables $\mathcal{P} = \{p_i | i \in \mathbf{N}\}$

Connectives

 $\mathcal{O} = \{\texttt{true}, \texttt{false}, \texttt{\&}, |, !, ->, <->\}$

Propositional Variables $\mathcal{P} = \{p_i | i \in \mathbf{N}\}$

Connectives

$$\mathcal{O} = \{\texttt{true}, \texttt{false}, \&, |, !, ->, <->$$

Definition (Propositional Formulas For_0^{Σ})

 \bullet Truth constants 'true', 'false' and variables ${\cal P}$ are formulas

Propositional Variables $\mathcal{P} = \{p_i | i \in \mathbf{N}\}$

Connectives $\mathcal{O} = \{\texttt{tru}\}$

$$\mathcal{O} = \{\texttt{true}, \texttt{false}, \&, |, !, ->, <->\}$$

Definition (Propositional Formulas For_0^{Σ})

- \bullet Truth constants 'true', 'false' and variables ${\cal P}$ are formulas
- If G and H are formulas then

$$!G, (G\&H), (G|H), (G \rightarrow H), (G \rightarrow H)$$

are also formulas

Propositional Variables $\mathcal{P} = \{p_i | i \in \mathbf{N}\}$

Connectives $\mathcal{O} = \{\texttt{true}, \texttt{false}, \&, |, !, ->, <->\}$

Definition (Propositional Formulas For_0^{Σ})

- \bullet Truth constants 'true', 'false' and variables ${\cal P}$ are formulas
- If G and H are formulas then

$$! G, (G\&H), (G | H), (G ->H), (G <->H)$$

are also formulas

There are no other formulas

Semantic Notions

Given the functions

- $I: \mathcal{P} \rightarrow \{ \textit{true}, \textit{false} \}$ and
- its continuation $\textit{val}_I:\textit{For}_0^\Sigma \rightarrow \{\textit{true},\textit{false}\}$

Semantic Notions

Given the functions

- $I: \mathcal{P} \rightarrow \{ true, false \}$ and
- its continuation $val_I : For_0^{\Sigma} \rightarrow \{true, false\}$

Let $G \in \mathit{For}_0^\Sigma$, $\Gamma \subset \mathit{For}_0^\Sigma$

• *I* is a **model** for *G* iff $val_I(G) = true$ (write: $I \models G$) A formula that has a model is **satisfable** Given the functions

- $I: \mathcal{P} \rightarrow \{ \textit{true}, \textit{false} \}$ and
- its continuation $val_I : For_0^{\Sigma} \rightarrow \{true, false\}$

Let $G \in \mathit{For}_0^\Sigma$, $\Gamma \subset \mathit{For}_0^\Sigma$

- *I* is a **model** for *G* iff $val_I(G) = true$ (write: $I \models G$) A formula that has a model is **satisfable**
- G follows from Γ (Γ ⊨ G) iff for all interpretations I:
 I ⊨ H for all H ∈ Γ then also I ⊨ G

Given the functions

- $I: \mathcal{P} \rightarrow \{ \textit{true}, \textit{false} \}$ and
- its continuation $val_I : For_0^{\Sigma} \rightarrow \{true, false\}$

Let $G \in \mathit{For}_0^\Sigma$, $\Gamma \subset \mathit{For}_0^\Sigma$

- *I* is a **model** for *G* iff $val_I(G) = true$ (write: $I \models G$) A formula that has a model is **satisfable**
- G follows from Γ (Γ ⊨ G) iff for all interpretations I:
 I ⊨ H for all H ∈ Γ then also I ⊨ G
- If any interpretation is a model of G, i.e

$$\emptyset \models G \quad (\text{short} : \models G)$$

then G is called valid

p & ((!p) | q)

• Satisfiable?

p & ((!p) | q)

• Satisfiable? Yes

p & ((!p) | q)

- Satisfiable? Yes
- Model?

p & ((!p) | q)

- Satisfiable? Yes
- Model? I(p) = true, I(q) = true

$$p \& ((!p) \mid q)$$

- Satisfiable? Yes
- Model? I(p) = true, I(q) = true

$$p \& ((!p) | q) \models q | r$$

Does this hold?

$$p \& ((!p) \mid q)$$

- Satisfiable? Yes
- Model? I(p) = true, I(q) = true

$$p \& ((!p) | q) \models q | r$$

Does this hold? Yes Why?

Reasoning by Syntactic Transformation

Establish $\Gamma \models G$ by purely syntactic transformations of Γ and G(Logic) Calculus: a set of transformation rules \mathcal{R} defining relation $\vdash \subseteq 2^{For_0^{\Sigma}} \times For_0^{\Sigma}$ such that $\Gamma \models G$ iff $\Gamma \vdash G$ $\models \subseteq \vdash$ Completeness $\models \supseteq \vdash$ Soundness

Sequent Calculus based on notion of sequent

has same semantics as

$$\psi_1,\ldots,\psi_m \implies \phi_1,\ldots,\phi_n$$

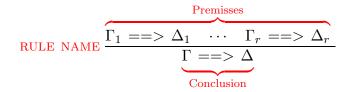
Consider antecedent/succedent as sets of formulas, may be empty

Use schematic variables Γ , Δ that match sets of formulas

$$\Gamma \implies \Delta, \phi$$

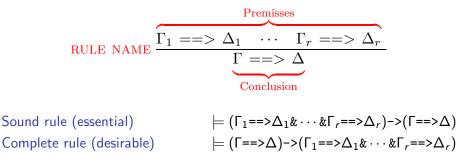
Matches any sequent with an occurrence of ϕ in succedent Call ϕ main formula and Γ side formulas of sequent

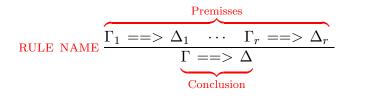
Any sequent of the form $\Gamma, \phi \implies \Delta, \phi$ is valid: **axiom**



RULE NAME
$$\frac{\Gamma_1 = > \Delta_1 \cdots \Gamma_r = > \Delta_r}{\Gamma_1 = > \Delta}$$
Conclusion

Sound rule (essential) $\models (\Gamma_1 = >\Delta_1 \& \cdots \& \Gamma_r = >\Delta_r) - > (\Gamma = >\Delta)$





Sound rule (essential) $\models (\Gamma_1 ==> \Delta_1 \& \cdots \& \Gamma_r ==> \Delta_r) -> (\Gamma ==> \Delta)$ Complete rule (desirable) $\models (\Gamma ==> \Delta) -> (\Gamma_1 ==> \Delta_1 \& \cdots \& \Gamma_r ==> \Delta_r)$

Admissible to have no premisses (iff conclusion is valid, eg axiom)

Goal to prove: $\mathcal{S} = -\psi_1, \dots, \psi_m \Longrightarrow \phi_1, \dots, \phi_n$

 $\bullet~$ find rule ${\mathcal R}$ whose conclusion matches ${\mathcal S}$

Goal to prove: $\mathcal{S} = -\psi_1, \dots, \psi_m = \Rightarrow \phi_1, \dots, \phi_n$

- $\bullet~$ find rule ${\cal R}$ whose conclusion matches ${\cal S}$
- $\bullet\,$ instantiate ${\cal R}$ such that conclusion identical to ${\cal S}\,$

Goal to prove: $\mathcal{S} = -\psi_1, \dots, \psi_m \Longrightarrow \phi_1, \dots, \phi_n$

- $\bullet~$ find rule ${\cal R}$ whose conclusion matches ${\cal S}$
- $\bullet\,$ instantiate ${\cal R}$ such that conclusion identical to ${\cal S}\,$
- recursively find proofs for resulting premisses S_1, \ldots, S_r

Goal to prove: $\mathcal{S} = -\psi_1, \dots, \psi_m \Longrightarrow \phi_1, \dots, \phi_n$

- $\bullet~$ find rule ${\cal R}$ whose conclusion matches ${\cal S}$
- $\bullet\,$ instantiate ${\cal R}$ such that conclusion identical to ${\cal S}\,$
- recursively find proofs for resulting premisses $\mathcal{S}_1, \ldots, \mathcal{S}_r$
- tree structure with goal as root

Goal to prove: $\mathcal{S} = -\psi_1, \dots, \psi_m \Longrightarrow \phi_1, \dots, \phi_n$

- find rule \mathcal{R} whose conclusion matches \mathcal{S}
- $\bullet\,$ instantiate ${\cal R}$ such that conclusion identical to ${\cal S}\,$
- recursively find proofs for resulting premisses S_1, \ldots, S_r
- tree structure with goal as root
- close proof branch when rule without premise encountered

Goal to prove: $\mathcal{S} = -\psi_1, \dots, \psi_m \Longrightarrow \phi_1, \dots, \phi_n$

- find rule \mathcal{R} whose conclusion matches \mathcal{S}
- $\bullet\,$ instantiate ${\cal R}$ such that conclusion identical to ${\cal S}\,$
- recursively find proofs for resulting premisses S_1, \ldots, S_r
- tree structure with goal as root
- close proof branch when rule without premise encountered

Goal-directed proof search In KeY tool proof displayed as JAVA Swing tree

main	left side (antecedent)	right side (succedent)
not	$\Gamma \implies A, \Delta$	$\Gamma, A \Longrightarrow \Delta$
	$\overline{\Gamma, !A} \implies \Delta$	$\overline{\Gamma} => !A, \Delta$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \implies A, \Delta}{\Gamma, !A \implies \Delta}$	$\frac{\Gamma, A \Longrightarrow \Delta}{\Gamma \Longrightarrow !A, \Delta}$
and	$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A\&B \implies \Delta}$	$\frac{\Gamma \implies A, \Delta \Gamma \implies B, \Delta}{\Gamma \implies A\&B, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \implies A, \Delta}{\Gamma, !A \implies \Delta}$	$\frac{\Gamma, A \Longrightarrow \Delta}{\Gamma \Longrightarrow !A, \Delta}$
and	$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A\&B \implies \Delta}$	$\frac{\Gamma \implies A, \Delta \Gamma \implies B, \Delta}{\Gamma \implies A\&B, \Delta}$
or	$\frac{\Gamma, A \Longrightarrow \Delta \Gamma, B \Longrightarrow \Delta}{\Gamma, A \mid B \Longrightarrow \Delta}$	$\frac{\Gamma \implies A, B, \Delta}{\Gamma \implies A \mid B, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \implies A, \Delta}{\Gamma, !A \implies \Delta}$	$\frac{\Gamma, A \Longrightarrow \Delta}{\Gamma \Longrightarrow !A, \Delta}$
and	$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A\&B \implies \Delta}$	$\frac{\Gamma \implies A, \Delta \Gamma \implies B, \Delta}{\Gamma \implies A\&B, \Delta}$
or	$\frac{\Gamma, A \Longrightarrow \Delta \Gamma, B \Longrightarrow \Delta}{\Gamma, A \mid B \Longrightarrow \Delta}$	$\frac{\Gamma \implies A, B, \Delta}{\Gamma \implies A \mid B, \Delta}$
imp	$\frac{\Gamma \implies A, \Delta \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta}$	$\frac{\Gamma, A \Longrightarrow B, \Delta}{\Gamma \Longrightarrow A \dashrightarrow B, \Delta}$

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \implies A, \Delta}{\Gamma, !A \implies \Delta}$	$\frac{\Gamma, A \Longrightarrow \Delta}{\Gamma \Longrightarrow !A, \Delta}$
and	$\frac{\Gamma, A, B \implies \Delta}{\Gamma, A\&B \implies \Delta}$	$\frac{\Gamma \implies A, \Delta \Gamma \implies B, \Delta}{\Gamma \implies A\&B, \Delta}$
or	$\frac{\Gamma, A \Longrightarrow \Delta \Gamma, B \Longrightarrow \Delta}{\Gamma, A \mid B \Longrightarrow \Delta}$	$\frac{\Gamma \implies A, B, \Delta}{\Gamma \implies A \mid B, \Delta}$
imp	$\frac{\Gamma \implies A, \Delta \Gamma, B \implies \Delta}{\Gamma, A \rightarrow B \implies \Delta}$	$\frac{\Gamma, A \Longrightarrow B, \Delta}{\Gamma \Longrightarrow A \longrightarrow B, \Delta}$
	AXIOM $\overline{\Gamma, A \implies A, \Delta}$	TRUE $\overline{\Gamma} => true, \Delta$
FALSE $\overline{\Gamma, \texttt{false} \implies \Delta}$		

Justification of Rules

Compute rules by applying semantics definition of connectives

Justification of Rules

Compute rules by applying semantics definition of connectives

$$\begin{array}{l} \text{OR}_{\text{RIGHT}} \frac{\Gamma \implies A, B, \Delta}{\Gamma \implies A \mid B, \Delta} \\ \text{AND}_{\text{RIGHT}} \frac{\Gamma \implies A, \Delta \quad \Gamma \implies B, \Delta}{\Gamma \implies A \& B, \Delta} \end{array}$$

Justification of Rules

Compute rules by applying semantics definition of connectives

$$\begin{array}{l} \text{OR_RIGHT} \; \frac{\Gamma \mathrel{==>} A, B, \Delta}{\Gamma \mathrel{==>} A | B, \Delta} \\ \text{AND_RIGHT} \; \frac{\Gamma \mathrel{==>} A, \Delta \; \Gamma \mathrel{==>} B, \Delta}{\Gamma \mathrel{==>} A \& B, \Delta} \end{array}$$

Follows directly from semantics of sequents

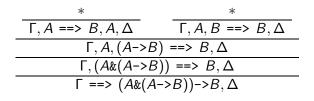
$$\Gamma \rightarrow (A\&B) | \Delta$$
iff
$$\Gamma \rightarrow A | \Delta \text{ and } \Gamma \rightarrow B | \Delta$$

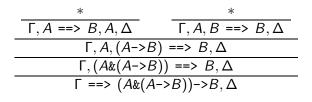
$\Gamma ==> (A\&(A \rightarrow B)) \rightarrow B, \Delta$

$\frac{\Gamma, (A\&(A \rightarrow B)) ==> B, \Delta}{\Gamma ==> (A\&(A \rightarrow B)) \rightarrow B, \Delta}$

$$\begin{array}{c} \Gamma, A, (A \rightarrow B) \implies B, \Delta \\ \hline \Gamma, (A\&(A \rightarrow B)) \implies B, \Delta \\ \hline \Gamma \implies (A\&(A \rightarrow B)) \rightarrow B, \Delta \end{array}$$







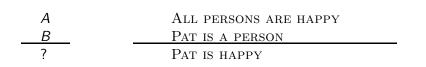
A proof is **closed**, if all its branches are closed.

Α

ALL PERSONS ARE HAPPY

A B

All persons are happy Pat is a person



Α	All persons are happy
B	PAT IS A PERSON
?	Pat is happy

Propositional logic lacks possibility to talk about individuals In particular, need to model objects, attributes, associations, etc.

A	All persons are happy
B	Pat is a person
?	Pat is happy

Propositional logic lacks possibility to talk about individuals In particular, need to model objects, attributes, associations, etc.

 \Rightarrow First-Order Logic (FOL)

Signature of First-Order Logic

Definition (Signature)

 $\boldsymbol{\Sigma} = \left(\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \boldsymbol{\alpha}, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \} \right)$

 $\boldsymbol{\Sigma} = \left(\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \boldsymbol{\alpha}, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \} \right)$

 $\mathsf{Type Symbols} \quad \mathcal{T} = \{z_1, \dots, z_r\}, \ r \geq 1, \ \mathsf{partial order} \ \prec$

$$\begin{split} \boldsymbol{\Sigma} &= (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \}) \\ \text{Type Symbols} \quad \mathcal{T} &= \{ z_1, \dots, z_r \}, \ r \geq 1, \text{ partial order } \prec \\ \text{Variables} \quad \mathcal{V} &= \{ x_i \mid i \in \boldsymbol{N} \} \end{split}$$

$$\begin{split} \Sigma &= (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \}) \\ \text{Type Symbols} \quad \mathcal{T} &= \{ z_1, \dots, z_r \}, \ r \geq 1, \text{ partial order } \prec \\ \text{Variables} \quad \mathcal{V} &= \{ x_i \mid i \in \mathbf{N} \} \\ \text{Predicate Symbols} \quad \mathcal{P} &= \{ p_i \mid i \in \mathbf{N} \} \end{split}$$

$$\begin{split} \boldsymbol{\Sigma} &= (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \}) \\ \text{Type Symbols} \quad \mathcal{T} &= \{ z_1, \dots, z_r \}, \ r \geq 1, \text{ partial order } \prec \\ \text{Variables} \quad \mathcal{V} &= \{ x_i \mid i \in \mathbf{N} \} \\ \text{Predicate Symbols} \quad \mathcal{P} &= \{ p_i \mid i \in \mathbf{N} \} \\ \text{Function Symbols} \quad \mathcal{F} &= \{ f_i^z \mid i \in \mathbf{N}, \ z \in \mathcal{T} \} \end{split}$$

$$\begin{split} \Sigma &= (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \}) \\ \text{Type Symbols} \quad \mathcal{T} &= \{ z_1, \dots, z_r \}, \ r \geq 1, \text{ partial order } \prec \\ \text{Variables} \quad \mathcal{V} &= \{ x_i \mid i \in \mathbf{N} \} \\ \text{Predicate Symbols} \quad \mathcal{P} &= \{ p_i \mid i \in \mathbf{N} \} \\ \text{Function Symbols} \quad \mathcal{F} &= \{ f_i^z \mid i \in \mathbf{N}, \ z \in \mathcal{T} \} \\ \text{for } q \in \mathcal{P} \cup \mathcal{F} \text{ let } \alpha(q) \in \mathbf{N} \text{ arity and } \sigma(q) \in \mathcal{T}^{\alpha(q)} \text{ signature of } q \end{split}$$

$$\begin{split} \Sigma &= (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \}) \\ \text{Type Symbols} \quad \mathcal{T} &= \{ z_1, \dots, z_r \}, \ r \geq 1, \text{ partial order } \prec \\ \text{Variables} \quad \mathcal{V} &= \{ x_i \mid i \in \mathbf{N} \} \\ \text{Predicate Symbols} \quad \mathcal{P} &= \{ p_i \mid i \in \mathbf{N} \} \\ \text{Function Symbols} \quad \mathcal{F} &= \{ f_i^z \mid i \in \mathbf{N}, z \in \mathcal{T} \} \\ \text{for } q \in \mathcal{P} \cup \mathcal{F} \text{ let } \alpha(q) \in \mathbf{N} \text{ arity and } \sigma(q) \in \mathcal{T}^{\alpha(q)} \text{ signature of } q \\ \text{Connectives} \quad \mathcal{O} &= \{ \text{true}, \texttt{false}, \&, |, !, ->, <-> \} \end{split}$$

$$\begin{split} \Sigma &= (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \}) \\ \text{Type Symbols} \quad \mathcal{T} = \{ z_1, \dots, z_r \}, \ r \geq 1, \text{ partial order } \prec \\ \text{Variables} \quad \mathcal{V} = \{ z_i \mid i \in \mathbf{N} \} \\ \text{Predicate Symbols} \quad \mathcal{P} = \{ p_i \mid i \in \mathbf{N} \} \\ \text{Function Symbols} \quad \mathcal{F} = \{ f_i^z \mid i \in \mathbf{N}, z \in \mathcal{T} \} \\ \text{for } q \in \mathcal{P} \cup \mathcal{F} \text{ let } \alpha(q) \in \mathbf{N} \text{ arity and } \sigma(q) \in \mathcal{T}^{\alpha(q)} \text{ signature of } q \\ \\ \text{Connectives} \quad \mathcal{O} = \{ \text{true}, \text{false}, \&, |, !, ->, <-> \} \\ \\ \text{Quantifiers} \quad \mathcal{Q} = \{ \backslash \text{forall}, \backslash \text{exists} \} \end{split}$$

 $\Sigma = (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha, \sigma, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq \})$ Type Symbols $\mathcal{T} = \{z_1, \ldots, z_r\}, r \geq 1$, partial order \prec Variables $\mathcal{V} = \{x_i \mid i \in \mathbf{N}\}$ Predicate Symbols $\mathcal{P} = \{p_i \mid i \in \mathbb{N}\}$ Function Symbols $\mathcal{F} = \{f_i^z \mid i \in \mathbb{N}, z \in \mathcal{T}\}$ for $q \in \mathcal{P} \cup \mathcal{F}$ let $\alpha(q) \in \mathbf{N}$ arity and $\sigma(q) \in \mathcal{T}^{\alpha(q)}$ signature of qConnectives $\mathcal{O} = \{ \texttt{true}, \texttt{false}, \&, |, !, ->, <-> \}$ Quantifiers $Q = \{ \text{forall}, \text{exists} \}$ ÷ Equality symbol

Types $\mathcal{T} = \{ Weapon, Word, Any \}$ Weapon \prec Any, Word \prec Any

Types $\mathcal{T} = \{ \text{Weapon}, \text{Word}, \text{Any} \}$ Weapon \prec Any, Word \prec Any **Predicates** $\mathcal{P} = \{ \text{hurts} \}, \sigma(\text{hurts}) = \langle \text{Any} \rangle$

 $\begin{array}{ll} \textbf{Types} & \mathcal{T} = \{ \text{Weapon}, \text{Word}, \text{Any} \} \\ & \text{Weapon} \prec \text{Any}, \text{ Word} \prec \text{Any} \end{array} \\ \textbf{Predicates} & \mathcal{P} = \{ \text{hurts} \}, \ \sigma(\text{hurts}) = \langle \text{Any} \rangle \\ \textbf{Functions} & \mathcal{F} = \{ \text{stick}^{\text{Weapon}}, \text{stone}^{\text{Weapon}}, \text{blockhead}^{\text{Word}} \} \end{array}$

Definition (Terms)

The set of terms Term_Σ is inductively defined as

• Variable $x \in \mathcal{V}$ is term

Definition (Terms)

The set of terms $Term_{\Sigma}$ is inductively defined as

• Variable $x \in \mathcal{V}$ is term

• If $f^z \in \mathcal{F}$, $\sigma(f) = \langle z_1, \ldots, z_r \rangle$ and t_i term of type $z'_i \prec z_i$ or $t_i \in \mathcal{V}$ for $1 \le i \le r$, then $f^z(t_1, \ldots, t_r)$ is term of type zWhen r = 0 call it **constant**

Formulas of First-Order Logic

Definition (First-Order Formulas)

The set of first-order formulas For^{Σ} is inductively defined as

• If $p \in \mathcal{P}$, $\sigma(p) = \langle z_1, \ldots, z_r \rangle$ and t_i term of type $z'_i \prec z_i$ or $t_i \in \mathcal{V}$ for $1 \leq i \leq r$, then $p(t_1, \ldots, t_r)$ is a first-order formula

Definition (First-Order Formulas)

The set of first-order formulas For^{Σ} is inductively defined as

- If $p \in \mathcal{P}$, $\sigma(p) = \langle z_1, \ldots, z_r \rangle$ and t_i term of type $z'_i \prec z_i$ or $t_i \in \mathcal{V}$ for $1 \leq i \leq r$, then $p(t_1, \ldots, t_r)$ is a first-order formula
- If t_1 , t_2 are terms of same type or variable, then $t_1 \doteq t_2$ is a first-order formula

Definition (First-Order Formulas)

The set of first-order formulas For^{Σ} is inductively defined as

- If $p \in \mathcal{P}$, $\sigma(p) = \langle z_1, \ldots, z_r \rangle$ and t_i term of type $z'_i \prec z_i$ or $t_i \in \mathcal{V}$ for $1 \leq i \leq r$, then $p(t_1, \ldots, t_r)$ is a first-order formula
- If t_1 , t_2 are terms of same type or variable, then $t_1 \doteq t_2$ is a first-order formula
- Truth constants, connectives as in propositional logic

Definition (First-Order Formulas)

The set of first-order formulas For^{Σ} is inductively defined as

- If $p \in \mathcal{P}$, $\sigma(p) = \langle z_1, \ldots, z_r \rangle$ and t_i term of type $z'_i \prec z_i$ or $t_i \in \mathcal{V}$ for $1 \leq i \leq r$, then $p(t_1, \ldots, t_r)$ is a first-order formula
- If t_1 , t_2 are terms of same type or variable, then $t_1 \doteq t_2$ is a first-order formula
- Truth constants, connectives as in propositional logic
- If $x \in \mathcal{V}$, $z \in \mathcal{T}$, ϕ a first-order formula with no occurrence of x : z', and all occurrences of x in ϕ are in symbols with type signature $z \prec z'$ for the argument where x appears, then \forall $z x; \phi$, \exists $z x; \phi$ are first-order formulas; x **declared** of type z and **scope** ϕ

Types $\mathcal{T} = \{ Weapon, Word, Any \}$
Weapon \prec Any, Word \prec AnyPredicates $\mathcal{P} = \{ hurts \}, \sigma(hurts) = \langle Any \rangle$ Functions $\mathcal{F} = \{ stick^{Weapon}, stone^{Weapon}, blockhead^{Word} \}$

Types $\mathcal{T} = \{ \text{Weapon, Word, Any} \}$
Weapon \prec Any, Word \prec AnyPredicates $\mathcal{P} = \{ \text{hurts} \}, \sigma(\text{hurts}) = \langle \text{Any} \rangle$ Functions $\mathcal{F} = \{ \text{stick}^{\text{Weapon}}, \text{stone}^{\text{Weapon}}, \text{blockhead}^{\text{Word}} \}$ \forall Weapon x; hurts(x) & &

 $\int y; !hurts(y)$

Semantics of First-Order Logic

Definition (Interpretation)

An interpretation $\mathcal{D} = (U, I)$ consists of

• U is the non-empty **universe** For each type z there is a subuniverse U^z such that $U^z \subseteq U^{z'}$ if $z \prec z'$

Semantics of First-Order Logic

Definition (Interpretation)

An interpretation $\mathcal{D} = (U, I)$ consists of

• U is the non-empty **universe** For each type z there is a subuniverse U^z such that $U^z \subseteq U^{z'}$ if $z \prec z'$

• If
$$\sigma(p) = \langle z_1, \ldots, z_r \rangle$$
, then $p' \subseteq U^{z_1} \times \cdots \times U^{z_r}$

Semantics of First-Order Logic

Definition (Interpretation)

An *interpretation* $\mathcal{D} = (U, I)$ consists of

- U is the non-empty **universe** For each type z there is a subuniverse U^z such that $U^z \subseteq U^{z'}$ if $z \prec z'$
- If $\sigma(p) = \langle z_1, \ldots, z_r \rangle$, then $p' \subseteq U^{z_1} \times \cdots \times U^{z_r}$
- If $\sigma(f^z) = \langle z_1, \ldots, z_r \rangle$, then $f^I : U^{z_1} \times \cdots \times U^{z_r} \to U^z$

Semantics of First-Order Logic

Definition (Interpretation)

An *interpretation* $\mathcal{D} = (U, I)$ consists of

• U is the non-empty **universe** For each type z there is a subuniverse U^z such that $U^z \subseteq U^{z'}$ if $z \prec z'$

• If
$$\sigma(p) = \langle z_1, \dots, z_r \rangle$$
, then $p^I \subseteq U^{z_1} \times \dots \times U^{z_r}$

• If
$$\sigma(f^z) = \langle z_1, \dots, z_r \rangle$$
, then $f^I : U^{z_1} \times \dots \times U^{z_r} \to U^z$

Definition (Variable Assignment)

A variable assignment is a function $\beta:\mathcal{V}
ightarrow U$

Updated variable assignment: for $d \in U$ let $\beta_y^d(x) = \begin{cases} \beta(x) & x \neq y \\ d & x = y \end{cases}$

Semantics of First-Order Logic, Cont'd

•
$$x^{\mathcal{D},\beta} = \beta(x)$$

• Let $\sigma(f^z) = \langle z_1, \dots, z_r \rangle$, then
 $(f^z(t_1, \dots, t_r))^{\mathcal{D},\beta} = f^I((t_1)^{\mathcal{D},\beta}, \dots, (t_r)^{\mathcal{D},\beta})$
• Let $\sigma(p) = \langle z_1, \dots, z_r \rangle$, then
 $val_{\mathcal{D},\beta}(p(t_1, \dots, t_r)) = \begin{cases} true & \langle (t_1)^{\mathcal{D},\beta}, \dots, (t_r)^{\mathcal{D},\beta} \rangle \in p^I \\ false & otherwise \end{cases}$
(Assume that $\beta(t_i) \in U^{z_i}$ when $t_i \in \mathcal{V}$ — well-defined:)
• $val_{\mathcal{D},\beta}(\backslash \text{forall } z \ x; \phi) = \begin{cases} true & \text{for all } u \in U^z : val_{\mathcal{D},\beta_x}^u(\phi) = true \\ false & otherwise \end{cases}$

\exists similar than \forall, \doteq identity on U

Satisfiability, truth, and validity

$$\mathcal{D}, \beta \models \phi \quad \text{iff} \quad val_{\mathcal{D},\beta}(\phi) = true \qquad (\phi \text{ is satisfiable})$$

- $\mathcal{D} \models \phi \text{ iff for all } \beta : \mathcal{D}, \beta \models \phi \quad (\phi \text{ is true in } \mathcal{D})$
 - $\models \phi$ iff for all \mathcal{D} : $\mathcal{D} \models \phi$ (ϕ is valid)

A formula containing only declared variables is **closed** Closed formulas that are satisfiable are also true: only one notion For closed formulas, type of variable assignment well-defined

From now on only *closed* formulas are considered.

Types $\mathcal{T} = \{ \text{Weapon}, \text{Word}, \text{Any} \}$
Weapon $\prec \text{Any}, \text{Word} \prec \text{Any}$ Predicates $\mathcal{P} = \{ \text{hurts} \}, \sigma(\text{hurts}) = \langle \text{Any} \rangle$ Functions $\mathcal{F} = \{ \text{stick}^{\text{Weapon}}, \text{stone}^{\text{Weapon}}, \text{blockhead}^{\text{Word}} \}$
\forall Weapon x; hurts(x) & \forall Word y; ! hurts(y)Satisfiable?Valid?

Types $\mathcal{T} = \{ \text{Weapon, Word, Any} \}$
Weapon \prec Any, Word \prec AnyPredicates $\mathcal{P} = \{ \text{hurts} \}, \sigma(\text{hurts}) = \langle \text{Any} \rangle$ Functions $\mathcal{F} = \{ \text{stick}^{\text{Weapon}}, \text{stone}^{\text{Weapon}}, \text{blockhead}^{\text{Word}} \}$
\forall Weapon x; hurts(x) & \forall Word y; ! hurts(y)

Satisfiable? Valid? Model

 $U^{\text{Weapon}} = \{ \textit{towel} \}, \ U^{\text{Word}} = \{ \textit{rosebud} \}, \ U = U^{\text{Word}} \cup U^{\text{Weapon}}$ $I(\text{hurts}) = \{ \langle \textit{towel} \rangle \}$ $I(\text{stick}) = I(\text{stone}) = \textit{towel}, \ I(\text{blockhead}) = \textit{rosebud}$

Types $\mathcal{T} = \{ \text{Weapon}, \text{Word}, \text{Any} \}$
Weapon $\prec \text{Any}, \text{Word} \prec \text{Any}$ Predicates $\mathcal{P} = \{ \text{hurts} \}, \sigma(\text{hurts}) = \langle \text{Any} \rangle$ Functions $\mathcal{F} = \{ \text{stick}^{\text{Weapon}}, \text{stone}^{\text{Weapon}}, \text{blockhead}^{\text{Word}} \}$
\forall Weapon x; hurts(x) & \forall Word y; ! hurts(y)

How to express that there are at least two different weapons?

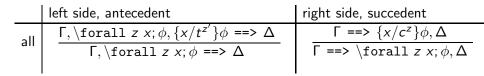
Types $\mathcal{T} = \{ \text{Weapon, Word, Any} \}$
Weapon \prec Any, Word \prec AnyPredicates $\mathcal{P} = \{ \text{hurts} \}, \sigma(\text{hurts}) = \langle \text{Any} \rangle$ Functions $\mathcal{F} = \{ \text{stick}^{\text{Weapon}}, \text{stone}^{\text{Weapon}}, \text{blockhead}^{\text{Word}} \}$
\forall Weapon x; hurts(x) & \forall Word y; ! hurts(y)

How to express that there are at least two different weapons?

\exists Weapon $x, y; (!x \doteq y)$

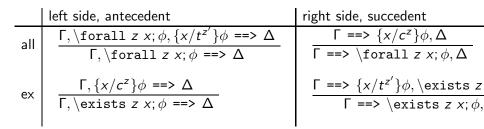
- $\{t/t'\}\phi$ is result of replacing each occurrence of t in ϕ with t'
- $t^{z'}$ any variable free term of type $z' \prec z$
- c^z new constant of type z (occurs not in current proof branch)
- Equations can be reversed by commutativity

Sequent Calculus for FOL



- $\{t/t'\}\phi$ is result of replacing each occurrence of t in ϕ with t'
- $t^{z'}$ any variable free term of type $z' \prec z$
- c^z new constant of type z (occurs not in current proof branch)
- Equations can be reversed by commutativity

Sequent Calculus for FOL



- $\{t/t'\}\phi$ is result of replacing each occurrence of t in ϕ with t'
- $t^{z'}$ any variable free term of type $z' \prec z$
- c^z new constant of type z (occurs not in current proof branch)
- Equations can be reversed by commutativity

Sequent Calculus for FOL

- {t/t'}φ is result of replacing each occurrence of t in φ with t'
 t^{z'} any variable free term of type z' ≺ z
- c^z new constant of type z (occurs not in current proof branch)
- Equations can be reversed by commutativity

Some Predefined Symbols in KeY Logic

Types

int, boolean, classes of the Java context of the proof obligation

Predicates on int

>, <, >=, <=

Functions and Constants

'+', '-', '/', '%', '0', '1', ... 'TRUE', 'FALSE'

$$\begin{array}{ll} \text{if } (\textit{seq}) & \text{find } (\vdash_{\texttt{opt}} \Phi) & \text{replacewith} (\vdash_{\texttt{opt}} \Phi') \\ & \text{add} (\vdash \textit{seq}) ...; ...; ... \\ & \text{heuristics} (\textit{name}^+) \end{array}$$

$$\begin{array}{ll} \text{if } (\textit{seq}) & \text{find } (\vdash_{\texttt{opt}} \Phi) & \text{replacewith} (\vdash_{\texttt{opt}} \Phi') \\ & \text{add} (\vdash \textit{seq}) ...; ...; ... \\ & \text{heuristics} (\textit{name}^+) \end{array}$$

Syntax

find	sequent (max. one formula), formula or term
if	additional condition
replacewith	replaces the find part (\vdash_{opt} depends on find)
add	adds the sequent to the antecedent or succedent
;	start new subgoal
heuristics	adds the taclet to the enumerated heuristics

The and-right rule as taclet

$$\frac{\Gamma \in \mathsf{TEXTBOOK}}{\Gamma \vdash A, \Delta} \quad \frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \quad (\mathsf{and} - \mathsf{right})$$

The and-right rule as taclet

$$\frac{\Gamma \in \mathsf{TEXTBOOK}}{\Gamma \vdash A, \Delta} \quad \frac{\Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} \quad (\mathsf{and} - \mathsf{right})$$

TACLET

\find(⊢ A ∧ B)
 \replacewith (⊢ A);
 \replacewith (⊢ B)
 \rulesets(simplify)

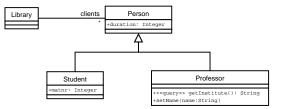
```
\sorts { // types are called 'sorts'
  person; // one declaration per line, end with ';'
}
\functions { // ResultType FctSymbol(ParType,..,ParType)
   int age(person); // 'int' predefined type
}
\predicates { // PredSymbol(ParType,..,ParType)
  parent(person,person);
}
\problem { // Goal formula, // '>=' predef.
 \forall person son; \forall person father; (
     parent(father,son) -> age(father) >= age(son))
}
```

Another Example

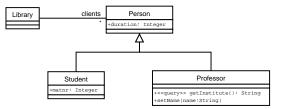
Types $T = \{z\}$ Predicates $\mathcal{P} = \{p\}, \ \sigma(p) = \langle z, z \rangle$ Functions $\mathcal{F} = \{\}$ (\exists z x; \exists z y; $p(x, y) \& \text{forall } z x; ! p(x, x)) \rightarrow \text{exists } z x; \text{exists } z y; (!x \doteq y)$

Intuitive Meaning? Satisfiable? Valid?

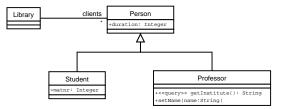
demo1.key



Types?

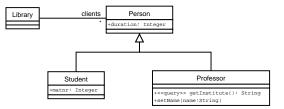


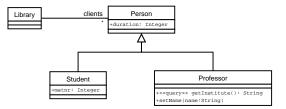
Types?Library, Person, Student, Professor (+ some predefined)Functions?



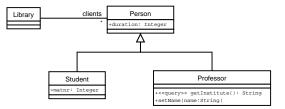
Types?Library, Person, Student, Professor (+ some predefined)Functions?

Attributes int Person.duration, int Student.matnr Queries String Professor.getInstitute incl. some predefined





A student is uniquely identified by his/her student id (matnr) public class Student{ /*@ public invariant (\forall Student s; s.matnr=matnr; s==this);@*/ ... } in FOL?



"There is a tradition in logic, carried over into computer science, to think of pure first order logic as a universal language. In fact first order language is about as useful in verification as a Turing machine is in software engineering:

CUTE TO WATCH BUT NOT VERY USEFUL."

V. Pratt

(Closed) FOL formula is either true or false wrt interpretation \mathcal{D} Consider $\mathcal{D} = (U, I)$ to be static part of **snapshot**, ie **state**

Let x be program (local) variable or attribute Execution of program p may change state, ie value of x

(Closed) FOL formula is either true or false wrt interpretation \mathcal{D} Consider $\mathcal{D} = (U, I)$ to be static part of **snapshot**, ie **state**

Let x be program (local) variable or attribute Execution of program p may change state, ie value of x

Example

Executing x = 3 results in \mathcal{D} such that $\mathcal{D} \models x \doteq 3$ Executing x = 4 results in \mathcal{D} such that $\mathcal{D} \not\models x \doteq 3$ (Closed) FOL formula is either true or false wrt interpretation \mathcal{D} Consider $\mathcal{D} = (U, I)$ to be static part of **snapshot**, ie **state**

Let x be program (local) variable or attribute Execution of program p may change state, ie value of x

Example

Executing x = 3 results in \mathcal{D} such that $\mathcal{D} \models x \doteq 3$ Executing x = 4 results in \mathcal{D} such that $\mathcal{D} \not\models x \doteq 3$

Need a logic to capture state before/after program execution

Dynamic Logic (Simple Version) Signature

Definition (Signature)

 $\boldsymbol{\Sigma} = (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \mathcal{P}\mathcal{V}, \alpha, \sigma, \boldsymbol{\Pi}_{\boldsymbol{0}}, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq, \langle \cdot \rangle \cdot, [\cdot] \cdot \})$

Type Symbols $\mathcal{T} = \{ \texttt{int}, \texttt{boolean} \}$ Logical Variables $\mathcal{V} = \{ y_i \mid i \in N \}$ Predicate Symbols $\mathcal{P} = \{ >, >=, <, <= \}$ Function Symbols $\mathcal{F} = \{ +, -, *, 0, 1, \ldots \}$ Program Variables $\mathcal{PV} = \{ \texttt{x}_i \mid i \in N \}$ Signature of functions/predicates as usual

Definition (Signature)

 $\boldsymbol{\Sigma} = (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \mathcal{PV}, \alpha, \sigma, \boldsymbol{\Pi_0}, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq, \langle \cdot \rangle \cdot, [\cdot] \cdot \})$

Type Symbols $\mathcal{T} = \{ \texttt{int}, \texttt{boolean} \}$ Logical Variables $\mathcal{V} = \{ y_i \mid i \in \mathbb{N} \}$ Predicate Symbols $\mathcal{P} = \{ >, > =, <, < = \}$ Function Symbols $\mathcal{F} = \{ +, -, *, 0, 1, \ldots \}$ Program Variables $\mathcal{PV} = \{ \mathbf{x}_i \mid i \in \mathbb{N} \}$ Signature of functions/predicates as usualAtomic Programs Π_0 :

Assignments x = t with $x \in \mathcal{PV}$, t term of type int w/o logical variables

Definition (Signature)

 $\boldsymbol{\Sigma} = (\mathcal{T}, \mathcal{V}, \mathcal{P}, \mathcal{F}, \mathcal{P}\mathcal{V}, \alpha, \sigma, \boldsymbol{\Pi_0}, \mathcal{O} \cup \mathcal{Q} \cup \{ \doteq, \langle \cdot \rangle \cdot, [\cdot] \cdot \})$

Type Symbols $\mathcal{T} = \{ \texttt{int}, \texttt{boolean} \}$ Logical Variables $\mathcal{V} = \{ y_i \mid i \in N \}$ Predicate Symbols $\mathcal{P} = \{ >, > =, <, < = \}$ Function Symbols $\mathcal{F} = \{ +, -, *, 0, 1, \ldots \}$ Program Variables $\mathcal{PV} = \{ \mathbf{x}_i \mid i \in N \}$ Signature of functions/predicates as usualAtomic Programs Π_0 :

Assignments x = t with $x \in \mathcal{PV}$, t term of type int w/o logical variables

Modal Connectives $\langle \langle \cdot \rangle \rangle$ "diamond", $\langle [\cdot \rangle] \cdot$ "box"

First argument program, second argument formula

Programs ⊓

• If π is an atomic program, then π ; is a program

Programs ⊓

- If π is an atomic program, then π ; is a program
- If α and γ are programs, then $\alpha\gamma$ is a program

Programs ⊓

- If π is an atomic program, then π ; is a program
- If α and γ are programs, then $\alpha\gamma$ is a program
- If b is a variable-free term of type boolean, α and γ programs, then

if (b)
$$\{\alpha\}$$
 else $\{\gamma\}$;

is a program

Programs ⊓

- If π is an atomic program, then π ; is a program
- $\bullet~{\rm If}~\alpha$ and γ are programs, then $\alpha\gamma$ is a program
- If b is a variable-free term of type boolean, α and γ programs, then

if (b)
$$\{\alpha\}$$
 else $\{\gamma\}$;

is a program

• If b is a variable-free term of type boolean, α a program, then

while (b)
$$\{\alpha\}$$
;

is a program

An admissible DL program α :

What does α compute?

Dynamic Logic (Simple Version) Terms

Terms

Defined as in FOL using also \mathcal{PV} , but: **Rigid versus Flexible**

- **rigid** symbols, same interpretation in **all** execution states Needed, for example, to hold initial value of program variable Logical variables and predefined functions/predicates are rigid
- **non-rigid** (or **flexible**) terms, interpretation depends on state Needed to capture state change after program execution Program variables are flexible

A term containing at least one flexible symbol is flexible, otherwise rigid

Dynamic Logic (Simple Version) Formulas

Dynamic Logic Formulas (DL Formulas)

- Each FOL formula is a DL formula DL formulas closed under FOL operators and connectives, **but** Program variables are never bound in quantifiers
- If α is a program and ϕ a DL formula then $\langle \alpha \rangle \phi$ is a DL formula $\langle \alpha \rangle \phi$ is a DL-Formula

Programs contain no logical variables Modalities can be arbitrarily nested

$\label{eq:constraint} $$ forall int $y; ((|x = 1; |x \doteq y) <-> (|x = 1 + 1; |x \doteq y) $$ Syntax ?$

$$\label{eq:started} $$ \int forall int y; ((\langle x = 1; \rangle x \doteq y) <-> (\langle x = 1*1; \rangle x \doteq y)) $$ ok$$

$$\begin{aligned} & (\langle x = 1; \rangle x \doteq y) <-> (\langle x = 1 * 1; \rangle x \doteq y) \\ & (\langle x = 1; \rangle x \doteq y) \\ & (\langle x = 1; \rangle x \doteq y) \end{aligned}$$
ok

$$\text{ forall int } y; ((\langle x = 1; \rangle x \doteq y) < -> (\langle x = 1 * 1; \rangle x \doteq y))$$

\exists int x; (\[x = 1;\] (x
$$\doteq$$
 1))

- x cannot be logical variable, because it occurs in program
- x cannot be program variable, because it is quantified

bad

$$\label{eq:alpha} \end{tabular} $$ (x = 1; (x = 1)) $$ bad$$

- x cannot be **logical variable**, because it occurs in program
- x cannot be program variable, because it is quantified

$$(x = 1;) ((while (true) {}) false)$$
 Syntax ?

$$\label{eq:constraint} $$ \int forall int y; ((\langle x = 1; \rangle x \doteq y) < -> (\langle x = 1*1; \rangle x \doteq y)) $$ ok$$

$$\label{eq:alpha} \end{tabular} $$ (x = 1; (x = 1)) $$ bad$$

- x cannot be **logical variable**, because it occurs in program
- x cannot be program variable, because it is quantified

$$(x = 1;) ((while (true) {}) false)$$

Program formulas can appear nested

ok

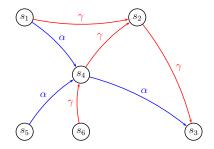
Dynamic Logic Semantics

Definition (Kripke structure)

A Kripke structure $K = (S, \rho)$ where

- $s = (U, I) \in S$ is a **State/Interpretation** and
- $ho:\Pi
 ightarrow(S
 ightarrow S)$ $ho(lpha),\
 ho(\gamma)$ an admissible relation

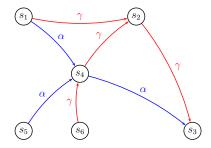
Each state is first-order interpretation



Dynamic Logic Semantics (Cont'd)

Definition (Program Formulas)

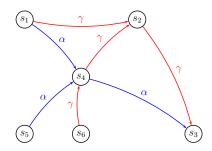
- $s, \beta \models \langle \langle \alpha \rangle \rangle \phi$ iff $\rho(\alpha)(s), \beta \models \phi$ and $\rho(\alpha)(s)$ defined
 - $\alpha~$ terminates and ϕ is true in the final state after execution



Dynamic Logic Semantics (Cont'd)

Definition (Program Formulas)

- $s, \beta \models \langle \langle \alpha \rangle \rangle \phi$ iff $\rho(\alpha)(s), \beta \models \phi$ and $\rho(\alpha)(s)$ defined
 - $\alpha \;$ terminates and ϕ is true in the final state after execution
- s, β ⊨ \[α\] φ iff ρ(α)(s), β ⊨ φ whenever ρ(α)(s) defined
 If α terminates then φ is true in the final state after
 execution



• $\mathbf{s}, \beta \models \langle\!\langle \alpha \rangle\!\rangle \phi$

 α totally correct (with respect to ϕ) in s, β

- $s, \beta \models \langle \! \langle \alpha \rangle \! \rangle \phi$ α totally correct (with respect to ϕ) in s, β
- $s, \beta \models \langle [\alpha \rangle] \phi$ α partially correct (with respect to ϕ) in s, β

- $s, \beta \models \langle \! \langle \alpha \rangle \! \rangle \phi$ α totally correct (with respect to ϕ) in s, β
- $s, \beta \models \langle [\alpha \rangle] \phi$ α partially correct (with respect to ϕ) in s, β
- Duality $\langle \alpha \rangle \phi$ iff $! \langle \alpha \rangle | \phi$ Exercise: justify this with semantic definitions

- $s, \beta \models \langle \langle \alpha \rangle \rangle \phi$ α totally correct (with respect to ϕ) in s, β
- $s, \beta \models \langle [\alpha \rangle] \phi$ α partially correct (with respect to ϕ) in s, β
- Duality $\langle \alpha \rangle \phi$ iff $! \langle \alpha \rangle | \phi$ Exercise: justify this with semantic definitions
- Implication if $\langle \alpha \rangle \phi$ then $\langle \alpha \rangle \phi$

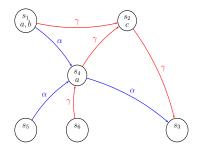
Validity of DL sequents compatible validity FOL sequents $\Gamma => \Delta$ is valid iff it is true in all states s Validity of DL sequents compatible validity FOL sequents $\Gamma \implies \Delta$ is **valid** iff it is true in **all states** *s*

How to restrict validity to set of **initial states** $\mathcal{J} \subseteq S$?

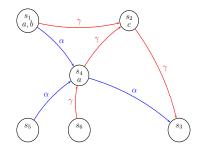
- Design closed FOL formula Init with $s \models \text{Init}$ iff $s \in \mathcal{J}$
- **2** Use sequent Γ , Init ==> Δ

Later: simple method for specifying initial value of program variables

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$

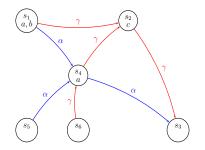


Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



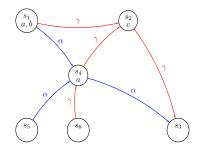
 $s_1 \models \langle\!\langle \alpha \rangle\!\rangle a$?

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



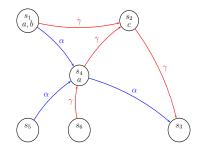
 $s_1 \models \langle \langle \alpha \rangle \rangle a \text{ (ok)},$

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



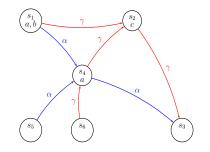
 $s_1 \models \langle\!\langle \alpha \rangle\!\rangle a \ (ok), \qquad s_1 \models \langle\!\langle \gamma \rangle\!\rangle a \ ?$

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



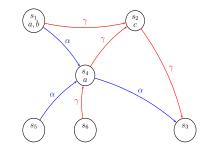
 $s_1 \models \langle\!\langle \alpha \rangle\!\rangle a \text{ (ok), } s_1 \models \langle\!\langle \gamma \rangle\!\rangle a \text{ (--)}$

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



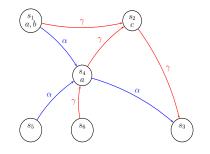
 $s_1 \models \langle\!\langle \alpha \rangle\!\rangle a \text{ (ok)}, \qquad s_1 \models \langle\!\langle \gamma \rangle\!\rangle a \text{ (--)}$ $s_5 \models \langle\!\langle \gamma \rangle\!\rangle a ?$

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



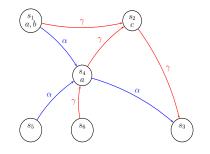
 $\begin{array}{ll} s_1 \models \langle\!\langle \alpha \rangle\!\rangle \texttt{a (ok)}, & s_1 \models \langle\!\langle \gamma \rangle\!\rangle \texttt{a (-)} \\ s_5 \models \langle\!\langle \gamma \rangle\!\rangle \texttt{a (-)}, \end{array}$

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



 $\begin{array}{ll} s_1 \models \langle\!\langle \alpha \rangle\!\rangle a \ (\text{ok}), & s_1 \models \langle\!\langle \gamma \rangle\!\rangle a \ (--) \\ s_5 \models \langle\!\langle \gamma \rangle\!\rangle a \ (--), & s_5 \models \langle\!\langle \gamma \rangle\!\rangle a \ ? \end{array}$

Predicate symbols (prop. vars.) $\mathcal{P} = \{a, b, c\}$



 $\begin{array}{ll} s_1 \models \langle\!\langle \alpha \rangle\!\rangle \texttt{a (ok)}, & s_1 \models \langle\!\langle \gamma \rangle\!\rangle \texttt{a (-)} \\ s_5 \models \langle\!\langle \gamma \rangle\!\rangle \texttt{a (-)}, & s_5 \models \langle\!\langle \gamma \rangle\!\rangle \texttt{a (ok)} \end{array}$

Dynamic Logic Semantics: States, Updates

 States s = (U, I) have all the same universe U May assume ρ(α) works on interpretations I Define I, β ⊨ φ as s, β ⊨ φ, where s = (U, I)

Dynamic Logic Semantics: States, Updates

- States s = (U, I) have all the same universe U May assume ρ(α) works on interpretations I Define I, β ⊨ φ as s, β ⊨ φ, where s = (U, I)
- Program variables are flexible
 Consider program variables as flexible constants in s with value I(x)

Dynamic Logic Semantics: States, Updates

- States s = (U, I) have all the same universe U May assume ρ(α) works on interpretations I Define I, β ⊨ φ as s, β ⊨ φ, where s = (U, I)
- Program variables are flexible
 Consider program variables as flexible constants in s with value I(x)

State update (cf. updated variable assignment) of I at x with $d \in U$

$$I_{y}^{d}(\mathbf{x}) = \left\{ egin{array}{cc} I(\mathbf{x}) & \mathbf{x}
eq \mathbf{y} \\ d & \mathbf{x} = \mathbf{y} \end{array}
ight.$$

•
$$\rho(x = t;)(I) = I_x^{t^{I,\beta}}$$

•
$$\rho(\mathbf{x} = \mathbf{t};)(I) = I_{\mathbf{x}}^{t^{I},\beta}$$

• $\rho(\text{if}(\mathbf{b}) \{\alpha\} \text{ else } \{\gamma\};)(I) = \begin{cases} \rho(\alpha)(I) & I, \beta \models b \doteq \text{TRUE} \\ \rho(\gamma)(I) & \text{otherwise} \end{cases}$

•
$$\rho(\mathbf{x} = \mathbf{t};)(I) = I_{\mathbf{x}}^{t^{I,\beta}}$$

• $\rho(\text{if}(\mathbf{b}) \{\alpha\} \text{ else } \{\gamma\};)(I) = \begin{cases} \rho(\alpha)(I) & I, \beta \models b \doteq \text{TRUE} \\ \rho(\gamma)(I) & \text{otherwise} \end{cases}$

• $\rho(\alpha\gamma)(I) = \rho(\gamma)(\rho(\alpha)(I))$, if $\rho(\alpha)(I)$ defined, undefined otherwise

•
$$\rho(\mathbf{x} = \mathbf{t};)(I) = I_{\mathbf{x}}^{t^{I,\beta}}$$

• $\rho(\text{if}(\mathbf{b}) \{\alpha\} \text{ else } \{\gamma\};)(I) = \begin{cases} \rho(\alpha)(I) & I, \beta \models b \doteq \text{TRUE} \\ \rho(\gamma)(I) & \text{otherwise} \end{cases}$

• $\rho(\alpha\gamma)(I) = \rho(\gamma)(\rho(\alpha)(I))$, if $\rho(\alpha)(I)$ defined, undefined otherwise

• $\rho(\text{while } (\mathbf{b}) \ \{\alpha\};)(I) = I' \text{ iff there are } I = I_0, \dots, I_n = I' \text{ such that}$

•
$$\rho(\mathbf{x} = \mathbf{t};)(I) = I_{\mathbf{x}}^{t^{I,\beta}}$$

• $\rho(\text{if}(\mathbf{b}) \{\alpha\} \text{ else } \{\gamma\};)(I) = \begin{cases} \rho(\alpha)(I) & I, \beta \models b \doteq \text{TRUE} \\ \rho(\gamma)(I) & \text{otherwise} \end{cases}$

• $\rho(\alpha\gamma)(I) = \rho(\gamma)(\rho(\alpha)(I))$, if $\rho(\alpha)(I)$ defined, undefined otherwise

• $\rho(\text{while } (\mathbf{b}) \{\alpha\};)(I) = I' \text{ iff there are } I = I_0, \dots, I_n = I' \text{ such that}$

•
$$I_j, \beta \models b \doteq \text{TRUE for } 0 \le j < n$$

•
$$\rho(\mathbf{x} = \mathbf{t};)(I) = I_{\mathbf{x}}^{t^{I,\beta}}$$

• $\rho(\text{if}(\mathbf{b}) \{\alpha\} \text{ else } \{\gamma\};)(I) = \begin{cases} \rho(\alpha)(I) & I, \beta \models b \doteq \text{TRUE} \\ \rho(\gamma)(I) & \text{otherwise} \end{cases}$

- $\rho(\alpha\gamma)(I) = \rho(\gamma)(\rho(\alpha)(I))$, if $\rho(\alpha)(I)$ defined, undefined otherwise
- $\rho(\text{while } (\mathbf{b}) \ \{\alpha\};)(I) = I' \text{ iff there are } I = I_0, \dots, I_n = I' \text{ such that}$

•
$$I_j, \beta \models b \doteq \text{TRUE for } 0 \leq j < n$$

•
$$\rho(\alpha)(I_j) = I_{j+1}$$
 for $0 \leq j < n$

•
$$\rho(\mathbf{x} = \mathbf{t};)(I) = I_{\mathbf{x}}^{t^{I,\beta}}$$

• $\rho(\text{if}(\mathbf{b}) \{\alpha\} \text{ else } \{\gamma\};)(I) = \begin{cases} \rho(\alpha)(I) & I, \beta \models b \doteq \text{TRUE} \\ \rho(\gamma)(I) & \text{otherwise} \end{cases}$

- $\rho(\alpha\gamma)(I) = \rho(\gamma)(\rho(\alpha)(I))$, if $\rho(\alpha)(I)$ defined, undefined otherwise
- $\rho(\text{while } (\mathbf{b}) \ \{\alpha\};)(I) = I' \text{ iff there are } I = I_0, \dots, I_n = I' \text{ such that}$

•
$$I_j, \beta \models b \doteq \text{TRUE for } 0 \leq j < n$$

•
$$\rho(\alpha)(I_j) = I_{j+1}$$
 for $0 \le j < n$

•
$$I_n, \beta \models b \doteq \text{FALSE}$$

undefined otherwise

 $\{\psi\} \mathrel{\alpha} \{\phi\}$

If α is started in a state satisfying ψ and terminates, then its final state satisfies ϕ In DL $\psi \rightarrow \langle \alpha \rangle \phi$

 $\{\psi\} \mathrel{\alpha} \{\phi\}$

 $\psi \rightarrow \alpha \phi$

If α is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL Valid formulas

 $[x = 1;](x \doteq 1)$

 $\{\psi\} \mathrel{\alpha} \{\phi\}$

If α is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL $\psi \rightarrow \langle [\alpha \rangle] \phi$ Valid formulas

 $\{\psi\} \mathrel{\alpha} \{\phi\}$

If α is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

In DL $\psi \rightarrow \langle [\alpha \setminus] \phi$ Valid formulas $\langle [x = 1; \setminus] (x \doteq 1)$ $\langle while (true) \{x = x; \}; \setminus]$ false Validity depends on α, γ

 $\texttt{forall int } y; ((\langle \alpha \rangle x \doteq y) <-> (\langle \gamma \rangle x \doteq y))$

meaning?

 $\{\psi\} \mathrel{\alpha} \{\phi\}$

If α is started in a state satisfying ψ and terminates, then its final state satisfies ϕ

 $\begin{array}{ll} \text{In DL} & \psi \rightarrow \langle \alpha \rangle] \phi \\ \text{Valid formulas} \\ \langle x = 1; \rangle] (x \doteq 1) & \langle \text{while (true) } \{x = x; \}; \rangle] \text{ false} \end{array}$

Validity depends on α , γ

 $(|\langle \alpha \rangle x \doteq y) <-> (|\langle \gamma \rangle x \doteq y)) \quad \alpha, \gamma \text{ equiv. relative to } x \\$

Idea: follow natural program control flow

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

 $\langle \langle \xi \gamma \rangle \rangle \phi, \qquad \langle [\xi \gamma \rangle] \phi$

where ξ one **single** admissible program statement

Idea: follow natural program control flow

Sound and complete rule for conclusions with main formulas:

 $\langle \langle \xi \gamma \rangle \rangle \phi, \qquad \langle [\xi \gamma \rangle] \phi$

where ξ one **single** admissible program statement

Rules **execute symbolically** the first active statement Proof corresponds to symbolic program execution

$$CONCATENATE \frac{\Gamma \implies \langle\!\langle \alpha \rangle \rangle (\langle\!\langle \gamma \rangle\!\rangle \phi), \Delta}{\Gamma \implies \langle\!\langle \alpha \gamma \rangle\!\rangle \phi, \Delta}$$

$$\begin{array}{l} \text{CONCATENATE} \frac{\Gamma \implies \langle\!\langle \alpha \rangle \rangle \left(\langle\!\langle \gamma \rangle \rangle \phi \right), \Delta}{\Gamma \implies \langle\!\langle \alpha \gamma \rangle \rangle \phi, \Delta} \\ \text{IF} \frac{\Gamma, b \doteq \text{TRUE} \implies \langle\!\langle \alpha \rangle \rangle \phi, \Delta \qquad \Gamma, b \doteq \text{FALSE} \implies \langle\!\langle \gamma \rangle \rangle \phi, \Delta}{\Gamma \implies \langle\!\langle \text{if (b) } \{\alpha\} \text{ else } \{\gamma\}; \rangle\!\rangle \phi, \Delta} \end{array}$$

$$\begin{array}{l} \text{CONCATENATE} \; \frac{\Gamma \mathrel{==>} \backslash\!\!\langle \alpha \backslash \rangle \left(\backslash\!\langle \gamma \backslash \rangle \phi \right), \Delta}{\Gamma \mathrel{==>} \backslash\!\langle \alpha \gamma \backslash \rangle \phi, \Delta} \\ \text{IF} \; \frac{\Gamma, b \doteq \text{TRUE} \mathrel{==>} \backslash\!\langle \alpha \backslash \rangle \phi, \Delta \qquad \Gamma, b \doteq \text{FALSE} \mathrel{==>} \backslash\!\langle \gamma \backslash \rangle \phi, \Delta}{\Gamma \mathrel{==>} \backslash\!\langle \text{if (b) } \{\alpha\} \text{ else } \{\gamma\}; \backslash \rangle \phi, \Delta} \\ \text{UNWIND} \; \frac{\Gamma, b \doteq \text{FALSE} \mathrel{==>} \phi, \Delta \qquad \Gamma, b \doteq \text{TRUE} \mathrel{==>} \backslash\!\langle \alpha \backslash \rangle \backslash\!\langle \text{while (b) } \{\alpha\}; \backslash \rangle \phi, \Delta}{\Gamma \mathrel{==>} \backslash\!\langle \text{while (b) } \{\alpha\}; \backslash \rangle \phi, \Delta} \end{array}$$

Assignment Rule Using Updates

$$\text{ASSIGN} \frac{\Gamma \implies \{x := t\}\phi, \Delta}{\Gamma \implies \langle x = t; \rangle \phi, \Delta}$$

Avoids renaming of program variables But: rules dealing with programs need to account for updates

Assignment Rule Using Updates

$$\text{ASSIGN} \frac{\Gamma \implies \{x := t\}\phi, \Delta}{\Gamma \implies \langle x = t; \rangle \phi, \Delta}$$

Avoids renaming of program variables But: rules dealing with programs need to account for updates

Solution: rules work on first active statement after prefix, followed by postfix (remaining code)

Explicit concatenation rule not longer needed

Assignment Rule Using Updates

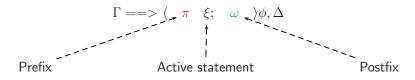
$$\text{ASSIGN} \frac{\Gamma \implies \{x := t\}\phi, \Delta}{\Gamma \implies \langle x = t; \rangle \phi, \Delta}$$

Avoids renaming of program variables But: rules dealing with programs need to account for updates

Solution: rules work on **first active statement** after **prefix**, followed by **postfix** (remaining code)

Explicit concatenation rule not longer needed

General form of conclusion in rule for symbolic execution



Updates record state change

Updates record state change

Syntax

If v is program variable, t, t' terms, and ϕ any DL formula, then $\{v := t\}\phi$ is DL formula and $\{v := t\}t'$ is term

Updates record state change

Syntax

If v is program variable, t, t' terms, and ϕ any DL formula, then $\{v := t\}\phi$ is DL formula and $\{v := t\}t'$ is term

Semantics

$$\begin{split} I,\beta \models \{ \mathtt{v} := t \} \phi & \text{iff} \quad I_{\mathtt{v}}^{t^{I,\beta}},\beta \models \phi \\ \text{Semantics identical to assignment} \end{split}$$

Updates work as "lazy" assignments

 $\{ \mathbf{x} := t \} \mathbf{y} \quad \rightsquigarrow \quad \mathbf{y} \\ \{ \mathbf{x} := t \} \mathbf{x} \quad \rightsquigarrow \quad t$

Update followed by complex term

 $\{\mathbf{x} := t\}f(t_1, \ldots, t_n) \quad \rightsquigarrow \quad f(\{\mathbf{x} := t\}t_1, \ldots, \{\mathbf{x} := t\}t_n)$

 $\{ \mathbf{x} := t \} \mathbf{y} \quad \rightsquigarrow \quad \mathbf{y} \\ \{ \mathbf{x} := t \} \mathbf{x} \quad \rightsquigarrow \quad t$

Update followed by complex term

 $\{\mathbf{x} := t\}f(t_1, \ldots, t_n) \quad \rightsquigarrow \quad f(\{\mathbf{x} := t\}t_1, \ldots, \{\mathbf{x} := t\}t_n)$

Update followed by **first-order formula** ${x := t}(\phi \& \psi) \qquad \rightsquigarrow \quad {x := t}\phi \& {x := t}\psi$ ${x := t}(\langle forall \ z \ y; \phi) \quad \rightsquigarrow \quad \langle forall \ z \ y; (\{x := t\}\phi) \quad etc.$

 $\{ \mathbf{x} := t \} \mathbf{y} \quad \rightsquigarrow \quad \mathbf{y} \\ \{ \mathbf{x} := t \} \mathbf{x} \quad \rightsquigarrow \quad t$

Update followed by complex term

 $\{\mathbf{x} := t\}f(t_1, \ldots, t_n) \quad \rightsquigarrow \quad f(\{\mathbf{x} := t\}t_1, \ldots, \{\mathbf{x} := t\}t_n)$

Update followed by **first-order formula** ${x := t}(\phi \& \psi) \qquad \rightsquigarrow \quad {x := t}\phi \& {x := t}\psi$ ${x := t}(\langle forall \ z \ y; \phi) \quad \rightsquigarrow \quad \langle forall \ z \ y; (\{x := t\}\phi) \quad etc.$

Update followed by program formula $\{\mathbf{x} := t\}(\langle \langle \alpha \rangle \rangle \phi) \quad \rightsquigarrow \quad \{\mathbf{x} := t\}(\langle \langle \alpha \rangle \rangle \phi)$ Update computation delayed until α symbolically executed

Intuitive Meaning? Satisfiable? Valid?

Demo

dlIntro/exchange.key