An Improved Rule for While Loops
in Deductive Program Verification

Bernhard Beckert! Steffen Schlager? Peter H. Schmitt?

LUniversitat Koblenz-Landau

2Universitat Karlsruhe

ICFEM 2005, Manchester

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

1/18

Outline

© Preliminaries & Definitions
@ Program logic: Dynamic Logic for JAvA
@ Programs frames: Modifier Sets
@ State transitions: Updates

© (Improved) Invariant Rule
© An Invariant Rule for Total Correctness

@ An Invariant Rule for JavaCard

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 2/18

Program Logic — Dynamic Logic for JAVA

Syntax
@ Basis: typed first-order logic
@ Modal operators [p] and (p) for each sequential JAVA program p

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 3/18

Program Logic — Dynamic Logic for JAVA

Syntax
@ Basis: typed first-order logic
@ Modal operators [p] and (p) for each sequential JAVA program p

Semantics
@ Semantics of p is a partial function
@ Modal operators say something about the final state of p

@ [p]¢: If p terminates, then in its final state ¢ holds
(partial correctness)
@ (p)¢: p terminates and in its final state ¢ holds
(total correctness)

@) — [p]¢ the same as Hoare triple {¢} p {¢}

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 3/18

Signature

Signature

@ Signature X contains rigid and non-rigid function symbols.
Rigid functions are e.g. +,—,0,1, ...
Non-rigid functions are used to model program variables and arrays
that are modified by programs, e.g. program variables, arrays, etc.
@ A location is a non-rigid ground term that can be modified by a
program, e.g. a[0] = 5;

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 4/18

Modifier Sets

@ Specify locations that might be changed by a program

Definition (Modifier Set)
Let

o fJ a non-rigid function symbol, and
° t{,...,t{;j terms (j > 1).
Then, the set

{ Frtt . tm) o, Fe . th))

of pairs is a modifier set.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 5/18

Modifier Sets

@ Specify locations that might be changed by a program

Definition (Modifier Set)

Let
o g/ be a Dynamic Logic formula,
o fJ a non-rigid function symbol, and
° t{,...,t{;j terms (j > 1).

Then, the set

{{gh, FH - ta))oos (5 PR (et))

of pairs is a modifier set.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

5/18

Example

Example
i=0; j=0;

while (i<length(a)) {
a[i]=0;
i=i+1;

}

| Modifier sets for the loop

correct: {(true, i), (true,j), (0 < x < length(a), a[x])}

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 6 /18

Example

Example
i=0; j=0;

while (i<length(a)) {
a[i]=0;
i=i+1;

}

| Modifier sets for the loop

correct: {(true, i), (true,j), (0 < x < length(a), a[x])}
not correct: | {(0 < x < length(a), a[x])}

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 6 /18

State Updates

@ Classical DL: state changes represented by substitutions

Example
(1=0,)6 < ¢ J

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 7 /18

State Updates

o Classical DL: state changes represented by substitutions

Example

(i=0;)¢ < o}

@ Aliasing in object-oriented languages causes case distinctions

Example

of] =0 — =l # ol - { Coe ;0 1]

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

7/18

State Updates

o Classical DL: state changes represented by substitutions

Example

(i=0;)¢ < o}

@ Aliasing in object-oriented languages causes case distinctions

Example

ol =0 — =)l 2 al] - { Coe ;0 1

@ Case distinction not always necessary

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

7/18

State Updates

o Classical DL: state changes represented by substitutions

Example
(i=0;)¢ < ¢ J

@ Aliasing in object-oriented languages causes case distinctions

Example

ol =0 — =)l 2 al] - { Coe ;0 1

@ Case distinction not always necessary

o ldea: collect updates and do not apply until program has disappeared

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 7 /18

State Updates

o Classical DL: state changes represented by substitutions
Example
(i=0;)¢ < ¢ J

@ Aliasing in object-oriented languages causes case distinctions

Example

ol =0 — =)l 2 al] - { Coe ;0 1

@ Case distinction not always necessary

o ldea: collect updates and do not apply until program has disappeared

@ Allows simplification before application, updates sometimes cancel
out previous ones

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 7 /18

State Updates

Definition (Syntax of Updates)

For all non-rigid ground terms /, and all terms v, if ¢ is a formula, then
{l :=v}¢ is a formula as well. The expressions {/ := v} are called
updates.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 8 /18

State Updates

Definition (Syntax of Updates)

For all non-rigid ground terms /, and all terms v, if ¢ is a formula, then
{l :=v}¢ is a formula as well. The expressions {/ := v} are called
updates.

Definition (Semantics of Updates)
s E{l:= v} iff s |= ¢ where

s’ coincides with s except for the interpretation of /, which
in s’ has the same value as v in s.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 8 /18

Quantified Updates

Definition (Syntax of Quantified Updates)
Let
o {f(t1,...,ty) := v} be an update and
e g a DL formula

Then {g, f(t1,...,tn) := v}¢ is a DL formula as well.
The expression {g, f(t1,...,t,) := v} is called quantified update.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 9 /18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

r=Ulnv, A InvAet [a]lnv InvA—et [(]o
I U[while (¢) {a}f]op, A

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 10 / 18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

r'=Ulnv, A InvAet [a]lnv InvA—et [(]o
I U[while (¢) {a}f]op, A

@ /nv holds in the beginning

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

10 / 18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

F=Ulnv, A InvA€F [a]lnv Inv A —e = [B]o
I U[while (¢) {a}f]op, A

@ /nv holds in the beginning

@ /nvis in fact an invariant of the loop body

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

10 / 18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

r=Ulnv, A InvAet [a]lnv InvA—et [(]o
I U[while (¢) {a}f]op, A

@ /nv holds in the beginning
@ Invis in fact an invariant of the loop body

@ /nv implies the postcondition if loop terminates

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

10 / 18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

r'=Ulnv, A InvAet [a]lnv InvA—et [(]o
I U[while (¢) {a}f]op, A

@ /nv holds in the beginning
@ Invis in fact an invariant of the loop body

@ Inv implies the postcondition if loop terminates

o Context I', A, U must be omitted in 2nd and 3rd premiss

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 10 / 18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

r=Ulnv, A InvAet [a]lnv InvA—et [(]o
I U[while (¢) {a}f]op, A

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context I', A, U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 10 / 18

Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

r=Ulnv, A InvAet [a]lnv InvA—et [(]o
I U[while (¢) {a}f]op, A

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context I', A, U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant /nv

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 10 / 18

Example

Example
Precondition: —a = null
int i=0;
while (i<length(a)) {
a[i]=0;
i=i+1;

}
Postcondition: Vx : int.(0 < x < length(a) — a[x] = 0)
Loop Invariant:

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 11 /18

Example

Example
Precondition: —a = null
int 1=0;
while (i<length(a)) {
a[i]=0;
i=i+1;

}
Postcondition: Vx : int.(0 < x < length(a) — a[x] = 0)
Loop Invariant: i < length(a) AVx : int.(0 < x < i — a[x] =0)

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 11 /18

Example

Example
Precondition: —a = null
int 1=0;
while (i<length(a)) {
a[i]=0;
i=i+1;

}
Postcondition: Vx : int.(0 < x < length(a) — a[x] = 0)
Loop Invariant: i < length(a) AVx : int.(0 < x < i — a[x] =0)
A —a = null

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 11 /18

Example

Example
Precondition: —a = null A ¢y,
int i=0;
while (i<length(a)) {
a[i]=0;
i=i+1;

}
Postcondition: Vx : int.(0 < x < length(a) — a[x] = 0) A ¢n,
Loop Invariant: i < length(a) AVx : int.(0 < x < i — a[x] =0)
A —a = null

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 11 /18

Example

Example
Precondition: —a = null A ¢y,
int i=0;
while (i<length(a)) {
a[i]=0;
i=i+1;

}

Postcondition: Vx : int.(0 < x < length(a) — a[x] = 0) A ¢n,
Loop Invariant: i < length(a) AVx : int.(0 < x < i — a[x] =0)
A —a = null \¢

Inv

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005

11 /18

Improved Invariant Rule — Motivation

We would like to have a rule that allows keeping as much context as
possible!

It is sound to keep parts of context that are not modified by the loop.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 12 /18

How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 13 /18

How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

2

f[i] =0Aa[j] =0, a[i] >0 F[a[i]++]a[i] >0
——— —— ——

v
context invariant loop body invariant

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 13 /18

How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example
==—8 A aj] =0, a[i/] >0 + [a[i]++;]a[i] >0
= ~- 7 S—— Y—
context invariant loop body invariant

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 13 /18

How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example
==—8 A aj] =0, a[i/] >0 + [a[i]++;]a[i] >0
= ~- 7 N S—— Y—
context invariant loop body invariant

Anonymous updates wipe out context information about locations that are

modified

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 13 /18

How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

o= 1 alj] = 0.

a[i] > 0 F [a[i]*++:] a[i] > 0
context

invariant loop body invariant

Anonymous updates wipe out context information about locations that are

modified

Example

alil =0Aa[j] =0,{a[i] := c}a[i] > 0F {a[i] := c}[a[i]++;]a[i]] > 0

Beckert, Schlager, Schmitt (Universitat Kobl

An Improved Rule for While Loops

ICFEM 2005 13 /18

Improved Invariant Rule

Definition (Improved Invariant Rule)

'=Ulnv, A

[, UV(Inv A €) EUV[]lnv, A
[, UV(Inv A =€) F UV[w]g, A
I+ U[while (¢) {a}w]p, A

where V is an anonymous update w.r.t. to a correct modifier set for the
loop body a.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 14 / 18

Improved Invariant Rule

Definition (Improved Invariant Rule)

'=Ulnv, A

T, UV(Inv A €) = UV[a]lnv, A

[, UV(Inv A =€) E UV[w]d, A

I+ U[while (¢) {a}w]p, A
where V is an anonymous update w.r.t. to a correct modifier set for the
loop body a.

Advantages of this rule
o Context can be kept as far as possible
o Modifier set optional
@ Usually loops modify only few locations

o Separating aspects of which locations change (modifier set) and how
they change (invariant)

v

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 14 / 18

A Version for Total Correctness

@ Induction proofs guarantee total correctness

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

@ Induction proofs guarantee total correctness

@ Invariant rule only considers partial correctness

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

@ Induction proofs guarantee total correctness
@ Invariant rule only considers partial correctness

@ Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

@ Idea: Proof that some integer term v (called variant) decreases with
each loop iteration
@ More precisely:

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

@ Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

@ More precisely:

» v >0 in the beginning

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

@ Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

@ More precisely:

» v >0 in the beginning

> v strictly decreases with each execution of the loop body

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

@ Idea: Proof that some integer term v (called variant) decreases with
each loop iteration
@ More precisely:
» v >0 in the beginning
> v strictly decreases with each execution of the loop body
» If v > 0 then v > 0 after each execution of the loop body

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 15 / 18

A Version for Total Correctness

@ Induction proofs guarantee total correctness
@ Invariant rule only considers partial correctness

@ Idea: Proof that some integer term v (called variant) decreases with
each loop iteration
@ More precisely:
» v >0 in the beginning
> v strictly decreases with each execution of the loop body
» If v > 0 then v > 0 after each execution of the loop body
@ Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
ng > ny > np > --- because every non-empty subset has a minimal
element (namely O in this particular case).

Beckert, Schlager, Schmitt (Universitat Kob! ICFEM 2005 15 / 18

Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Fr'=U(linvav >0), A

C, UV(InvAeAv > 0)FUV{V = viH{a)(InvAv > 0Av < V), A
[, UV(Inv A =€) - UV (w)é, A
I+ U(while (€) {a}w)op, A

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 16 / 18

Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Fr'=U(linvav >0), A

C, UV(InvAeAv > 0)FUV{V = viH{a)(InvAv > 0Av < V), A
[, UV(Inv A =€) - UV (w)é, A
I+ U(while (€) {a}w)op, A

@ /nv holds in the beginning and v is non-negativ

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 16 / 18

Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Fr'=U(linvav >0), A

C, UV(InvAeAv > 0)FUV{V = viH{a)(InvAv > 0Av < V), A
[, UV(Inv A =€) - UV (w)é, A
I+ U(while (€) {a}w)op, A

@ Inv holds in the beginning and v is non-negativ

@ /nvis in fact an invariant of the loop body, v stricly decreases, and
the property “v is non-negativ” is preserved

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 16 / 18

Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Fr'=U(linvav >0), A

C, UV(InvAeAv > 0)FUV{V = viH{a)(InvAv > 0Av < V), A
[, UV(Inv A =€) - UV (w)é, A
I+ U(while (€) {a}w)op, A

@ Inv holds in the beginning and v is non-negativ

@ /nvis in fact an invariant of the loop body, v stricly decreases, and
the property “v is non-negativ” is preserved

@ /nv implies the postcondition if loop terminates

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 16 / 18

Problems with JavaCard

@ JavaCard is a real programming language with features that make
verification more difficult.

@ Invariant rule not sound for loops causing abrupt termination.

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 17 / 18

Problems with JavaCard

@ JavaCard is a real programming language with features that make
verification more difficult.

@ Invariant rule not sound for loops causing abrupt termination.

Example

i=0F U[while (true) {break;}]i=1

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 17 / 18

Problems with JavaCard

@ JavaCard is a real programming language with features that make
verification more difficult.

@ Invariant rule not sound for loops causing abrupt termination.

Example
i =0F Utrue

i=0F U[while (true) {break;}]i=1

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 17 / 18

Problems with JavaCard

@ JavaCard is a real programming language with features that make
verification more difficult.

@ Invariant rule not sound for loops causing abrupt termination.
Example

i =0k Utrue
i =0, UV(true A true) - UV [break;|true

i=0F U[while (true) {break;}]i=1

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 17 / 18

Problems with JavaCard

@ JavaCard is a real programming language with features that make
verification more difficult.

@ Invariant rule not sound for loops causing abrupt termination.

Example
i =0F Utrue
i =0, UV(true A true) - UV [break;|true
i =0, UV(true A ~true) FUV[]i =1
i=0F U[while (true) {break;}]i=1
Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 17 / 18

Solution

Definition (Improved Invariant Rule for JavaCard)

I=Ulnv, A

I, UV(InvAe) FUV[allnv, A

[, UV(Inv A €) UV [A]continuelnv, A

F, Z/IV(Inv/\ 6) F UV<OZ>abrupt/y,not,continuetrue _’ UV[waw]gb, A
r, UV(Inv A =€) E UV [rw]o, A

[+ U[r while (€) {a} w]op, A

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 18 / 18

Solution

Definition (Improved Invariant Rule for JavaCard)

r=Ulnv, A

I, UV(Inv A €) E UV a]lnv, A

I, Z/{V(II’IV/\ 6) F Z/{V[a]continuelnv7 A

F, Z/IV(Inv/\ 6) F UV<04>abrupt/ymot,continue true — Z/lV[waw]d), A
T, UV(Inv A =€) E UV [rw]d, A

I+ U[r while (€) {a} w]d, A

In KeY we have no additional modalities [|continues {) abruptly,not_continue.
rather the loop body « is transformed (see example).

Beckert, Schlager, Schmitt (Universitat Kobl An Improved Rule for While Loops ICFEM 2005 18 / 18

	Outline
	Main Talk
	Preliminaries & Definitions
	Program logic: Dynamic Logic for Java
	Programs frames: Modifier Sets
	State transitions: Updates

	(Improved) Invariant Rule
	An Invariant Rule for Total Correctness
	An Invariant Rule for JavaCard

