
An Improved Rule for While Loops
in Deductive Program Verification

Bernhard Beckert1 Steffen Schlager2 Peter H. Schmitt2

1Universität Koblenz-Landau

2Universität Karlsruhe

ICFEM 2005, Manchester

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 1 / 18



Outline

1 Preliminaries & Definitions
Program logic: Dynamic Logic for Java
Programs frames: Modifier Sets
State transitions: Updates

2 (Improved) Invariant Rule

3 An Invariant Rule for Total Correctness

4 An Invariant Rule for JavaCard

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 2 / 18



Program Logic – Dynamic Logic for Java

Syntax

Basis: typed first-order logic

Modal operators [p] and 〈p〉 for each sequential Java program p

Semantics

Semantics of p is a partial function

Modal operators say something about the final state of p

[p]φ: If p terminates, then in its final state φ holds
(partial correctness)

〈p〉φ: p terminates and in its final state φ holds
(total correctness)

ψ → [p]φ the same as Hoare triple {ψ} p {φ}

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 3 / 18



Program Logic – Dynamic Logic for Java

Syntax

Basis: typed first-order logic

Modal operators [p] and 〈p〉 for each sequential Java program p

Semantics

Semantics of p is a partial function

Modal operators say something about the final state of p

[p]φ: If p terminates, then in its final state φ holds
(partial correctness)

〈p〉φ: p terminates and in its final state φ holds
(total correctness)

ψ → [p]φ the same as Hoare triple {ψ} p {φ}

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 3 / 18



Signature

Signature

Signature Σ contains rigid and non-rigid function symbols.
I Rigid functions are e.g. +,−, 0, 1, . . .
I Non-rigid functions are used to model program variables and arrays

that are modified by programs, e.g. program variables, arrays, etc.

A location is a non-rigid ground term that can be modified by a
program, e.g. a[0] = 5;

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 4 / 18



Modifier Sets

Specify locations that might be changed by a program

Definition (Modifier Set)

Let

g j be a Dynamic Logic formula,

f j a non-rigid function symbol, and

t j
1, . . . , t

j
nj terms (j ≥ 1).

Then, the set

{

〈g1,

f 1(t1
1 . . . , t

1
n1

)

〉

, . . . ,

〈gk ,

f k(tk
1 . . . , t

k
nk

)

〉

}

of pairs is a modifier set.

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 5 / 18



Modifier Sets

Specify locations that might be changed by a program

Definition (Modifier Set)

Let

g j be a Dynamic Logic formula,

f j a non-rigid function symbol, and

t j
1, . . . , t

j
nj terms (j ≥ 1).

Then, the set

{ 〈g1, f 1(t1
1 . . . , t

1
n1

)〉, . . . , 〈gk , f k(tk
1 . . . , t

k
nk

)〉 }

of pairs is a modifier set.

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 5 / 18



Example

Example

i=0; j=0;

while ( i<length(a)) {
a[ i ]=0;
i=i+1;

}

Modifier sets for the loop

correct: {〈true, i〉, 〈true, j〉, 〈0 ≤ x < length(a), a[x ]〉}

not correct: {〈0 ≤ x < length(a), a[x ]〉}

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 6 / 18



Example

Example

i=0; j=0;

while ( i<length(a)) {
a[ i ]=0;
i=i+1;

}

Modifier sets for the loop

correct: {〈true, i〉, 〈true, j〉, 〈0 ≤ x < length(a), a[x ]〉}
not correct: {〈0 ≤ x < length(a), a[x ]〉}

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 6 / 18



State Updates

Classical DL: state changes represented by substitutions

Example

〈i=0; 〉φ↔ φ0
i

Aliasing in object-oriented languages causes case distinctions

Example

a[i]
.
= 0 → 〈a[j]=1;〉a[i] 6 .= a[j] 

{
Case 1: i

.
= j

Case 2: i 6 .= j

Case distinction not always necessary

Idea: collect updates and do not apply until program has disappeared

Allows simplification before application, updates sometimes cancel
out previous ones

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 7 / 18



State Updates

Classical DL: state changes represented by substitutions

Example

〈i=0; 〉φ↔ φ0
i

Aliasing in object-oriented languages causes case distinctions

Example

a[i]
.
= 0 → 〈a[j]=1;〉a[i] 6 .= a[j] 

{
Case 1: i

.
= j

Case 2: i 6 .= j

Case distinction not always necessary

Idea: collect updates and do not apply until program has disappeared

Allows simplification before application, updates sometimes cancel
out previous ones

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 7 / 18



State Updates

Classical DL: state changes represented by substitutions

Example

〈i=0; 〉φ↔ φ0
i

Aliasing in object-oriented languages causes case distinctions

Example

a[i]
.
= 0 → 〈a[j]=1;〉a[i] 6 .= a[j] 

{
Case 1: i

.
= j

Case 2: i 6 .= j

Case distinction not always necessary

Idea: collect updates and do not apply until program has disappeared

Allows simplification before application, updates sometimes cancel
out previous ones

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 7 / 18



State Updates

Classical DL: state changes represented by substitutions

Example

〈i=0; 〉φ↔ φ0
i

Aliasing in object-oriented languages causes case distinctions

Example

a[i]
.
= 0 → 〈a[j]=1;〉a[i] 6 .= a[j] 

{
Case 1: i

.
= j

Case 2: i 6 .= j

Case distinction not always necessary

Idea: collect updates and do not apply until program has disappeared

Allows simplification before application, updates sometimes cancel
out previous ones

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 7 / 18



State Updates

Classical DL: state changes represented by substitutions

Example

〈i=0; 〉φ↔ φ0
i

Aliasing in object-oriented languages causes case distinctions

Example

a[i]
.
= 0 → 〈a[j]=1;〉a[i] 6 .= a[j] 

{
Case 1: i

.
= j

Case 2: i 6 .= j

Case distinction not always necessary

Idea: collect updates and do not apply until program has disappeared

Allows simplification before application, updates sometimes cancel
out previous ones

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 7 / 18



State Updates

Definition (Syntax of Updates)

For all non-rigid ground terms l , and all terms v , if φ is a formula, then
{l := v}φ is a formula as well. The expressions {l := v} are called
updates.

Definition (Semantics of Updates)

s |= {l := v}φ iff s ′ |= φ where
s ′ coincides with s except for the interpretation of l , which
in s ′ has the same value as v in s.

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 8 / 18



State Updates

Definition (Syntax of Updates)

For all non-rigid ground terms l , and all terms v , if φ is a formula, then
{l := v}φ is a formula as well. The expressions {l := v} are called
updates.

Definition (Semantics of Updates)

s |= {l := v}φ iff s ′ |= φ where
s ′ coincides with s except for the interpretation of l , which
in s ′ has the same value as v in s.

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 8 / 18



Quantified Updates

Definition (Syntax of Quantified Updates)

Let

{f (t1, . . . , tn) := v} be an update and

g a DL formula

Then {g , f (t1, . . . , tn) := v}φ is a DL formula as well.
The expression {g , f (t1, . . . , tn) := v} is called quantified update.

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 9 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Invariant Rule for DL

Sequent Calculus Loop Invariant Rule

Γ ` U Inv, ∆ Inv ∧ ε ` [α]Inv Inv ∧ ¬ε ` [β]φ

Γ ` U [while (ε) {α}β]φ, ∆

Inv holds in the beginning

Inv is in fact an invariant of the loop body

Inv implies the postcondition if loop terminates

Context Γ,∆,U must be omitted in 2nd and 3rd premiss

Context contains (parts of) precondition of the operation and global
system invariant

Required context information must be added to invariant Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 10 / 18



Example

Example

Precondition: ¬a
.
= null

∧ φInv

int i=0;
while ( i<length(a)) {

a[ i ]=0;
i=i+1;

}

Postcondition: ∀x : int.(0 ≤ x ≤ length(a) → a[x ]
.
= 0)

∧ φInv

Loop Invariant:

i ≤ length(a) ∧ ∀x : int.(0 ≤ x < i → a[x ]
.
= 0)

∧ ¬a
.
= null ∧φ′

Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 11 / 18



Example

Example

Precondition: ¬a
.
= null

∧ φInv

int i=0;
while ( i<length(a)) {

a[ i ]=0;
i=i+1;

}

Postcondition: ∀x : int.(0 ≤ x ≤ length(a) → a[x ]
.
= 0)

∧ φInv

Loop Invariant: i ≤ length(a) ∧ ∀x : int.(0 ≤ x < i → a[x ]
.
= 0)

∧ ¬a
.
= null ∧φ′

Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 11 / 18



Example

Example

Precondition: ¬a
.
= null

∧ φInv

int i=0;
while ( i<length(a)) {

a[ i ]=0;
i=i+1;

}

Postcondition: ∀x : int.(0 ≤ x ≤ length(a) → a[x ]
.
= 0)

∧ φInv

Loop Invariant: i ≤ length(a) ∧ ∀x : int.(0 ≤ x < i → a[x ]
.
= 0)

∧ ¬a
.
= null

∧φ′
Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 11 / 18



Example

Example

Precondition: ¬a
.
= null ∧ φInv

int i=0;
while ( i<length(a)) {

a[ i ]=0;
i=i+1;

}

Postcondition: ∀x : int.(0 ≤ x ≤ length(a) → a[x ]
.
= 0) ∧ φInv

Loop Invariant: i ≤ length(a) ∧ ∀x : int.(0 ≤ x < i → a[x ]
.
= 0)

∧ ¬a
.
= null

∧φ′
Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 11 / 18



Example

Example

Precondition: ¬a
.
= null ∧ φInv

int i=0;
while ( i<length(a)) {

a[ i ]=0;
i=i+1;

}

Postcondition: ∀x : int.(0 ≤ x ≤ length(a) → a[x ]
.
= 0) ∧ φInv

Loop Invariant: i ≤ length(a) ∧ ∀x : int.(0 ≤ x < i → a[x ]
.
= 0)

∧ ¬a
.
= null ∧φ′

Inv

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 11 / 18



Improved Invariant Rule – Motivation

We would like to have a rule that allows keeping as much context as
possible!
It is sound to keep parts of context that are not modified by the loop.

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 12 / 18



How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0︸ ︷︷ ︸

context

, a[i ] ≥ 0︸ ︷︷ ︸
invariant

`

[ a[i ]++;︸ ︷︷ ︸
loop body

] a[i ] ≥ 0︸ ︷︷ ︸
invariant

Anonymous updates wipe out context information about locations that are
modified

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0, {a[i ] := c}a[i ] ≥ 0 ` {a[i ] := c}[a[i ]++; ]a[i ] ≥ 0

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 13 / 18



How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0︸ ︷︷ ︸

context

, a[i ] ≥ 0︸ ︷︷ ︸
invariant

` [ a[i ]++;︸ ︷︷ ︸
loop body

] a[i ] ≥ 0︸ ︷︷ ︸
invariant

Anonymous updates wipe out context information about locations that are
modified

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0, {a[i ] := c}a[i ] ≥ 0 ` {a[i ] := c}[a[i ]++; ]a[i ] ≥ 0

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 13 / 18



How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0︸ ︷︷ ︸

context

, a[i ] ≥ 0︸ ︷︷ ︸
invariant

` [ a[i ]++;︸ ︷︷ ︸
loop body

] a[i ] ≥ 0︸ ︷︷ ︸
invariant

Anonymous updates wipe out context information about locations that are
modified

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0, {a[i ] := c}a[i ] ≥ 0 ` {a[i ] := c}[a[i ]++; ]a[i ] ≥ 0

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 13 / 18



How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0︸ ︷︷ ︸

context

, a[i ] ≥ 0︸ ︷︷ ︸
invariant

` [ a[i ]++;︸ ︷︷ ︸
loop body

] a[i ] ≥ 0︸ ︷︷ ︸
invariant

Anonymous updates wipe out context information about locations that are
modified

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0, {a[i ] := c}a[i ] ≥ 0 ` {a[i ] := c}[a[i ]++; ]a[i ] ≥ 0

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 13 / 18



How keeping unmodified Context?

Simply deleting affected formulas not possible for object-oriented
languages due to aliasing!

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0︸ ︷︷ ︸

context

, a[i ] ≥ 0︸ ︷︷ ︸
invariant

` [ a[i ]++;︸ ︷︷ ︸
loop body

] a[i ] ≥ 0︸ ︷︷ ︸
invariant

Anonymous updates wipe out context information about locations that are
modified

Example

a[i ]
.
= 0 ∧ a[j ]

.
= 0, {a[i ] := c}a[i ] ≥ 0 ` {a[i ] := c}[a[i ]++; ]a[i ] ≥ 0

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 13 / 18



Improved Invariant Rule

Definition (Improved Invariant Rule)

Γ ` U Inv, ∆
Γ, UV(Inv ∧ ε) ` UV[α]Inv, ∆
Γ, UV(Inv ∧ ¬ε) ` UV[ω]φ, ∆

Γ ` U [while (ε) {α}ω]φ, ∆

where V is an anonymous update w.r.t. to a correct modifier set for the
loop body α.

Advantages of this rule

Context can be kept as far as possible

Modifier set optional

Usually loops modify only few locations

Separating aspects of which locations change (modifier set) and how
they change (invariant)

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 14 / 18



Improved Invariant Rule

Definition (Improved Invariant Rule)

Γ ` U Inv, ∆
Γ, UV(Inv ∧ ε) ` UV[α]Inv, ∆
Γ, UV(Inv ∧ ¬ε) ` UV[ω]φ, ∆

Γ ` U [while (ε) {α}ω]φ, ∆

where V is an anonymous update w.r.t. to a correct modifier set for the
loop body α.

Advantages of this rule

Context can be kept as far as possible

Modifier set optional

Usually loops modify only few locations

Separating aspects of which locations change (modifier set) and how
they change (invariant)

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 14 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:

I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:

I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:

I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:

I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:
I v ≥ 0 in the beginning

I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:
I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body

I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:
I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



A Version for Total Correctness

Induction proofs guarantee total correctness

Invariant rule only considers partial correctness

Idea: Proof that some integer term v (called variant) decreases with
each loop iteration

More precisely:
I v ≥ 0 in the beginning
I v strictly decreases with each execution of the loop body
I If v ≥ 0 then v ≥ 0 after each execution of the loop body

Termination follows from the well-foundedness of the natural
numbers N, i.e. there is no infinite descending chain
n0 > n1 > n2 > · · · because every non-empty subset has a minimal
element (namely 0 in this particular case).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 15 / 18



Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Γ ` U(Inv ∧ v ≥ 0), ∆
Γ, UV(Inv ∧ ε ∧ v ≥ 0) ` UV{v ′ := v}〈α〉(Inv ∧ v ≥ 0 ∧ v < v ′), ∆
Γ, UV(Inv ∧ ¬ε) ` UV〈ω〉φ, ∆

Γ ` U〈while (ε) {α}ω〉φ, ∆

Inv holds in the beginning and v is non-negativ

Inv is in fact an invariant of the loop body, v stricly decreases, and
the property “v is non-negativ” is preserved

Inv implies the postcondition if loop terminates

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 16 / 18



Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Γ ` U(Inv ∧ v ≥ 0), ∆
Γ, UV(Inv ∧ ε ∧ v ≥ 0) ` UV{v ′ := v}〈α〉(Inv ∧ v ≥ 0 ∧ v < v ′), ∆
Γ, UV(Inv ∧ ¬ε) ` UV〈ω〉φ, ∆

Γ ` U〈while (ε) {α}ω〉φ, ∆

Inv holds in the beginning and v is non-negativ

Inv is in fact an invariant of the loop body, v stricly decreases, and
the property “v is non-negativ” is preserved

Inv implies the postcondition if loop terminates

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 16 / 18



Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Γ ` U(Inv ∧ v ≥ 0), ∆
Γ, UV(Inv ∧ ε ∧ v ≥ 0) ` UV{v ′ := v}〈α〉(Inv ∧ v ≥ 0 ∧ v < v ′), ∆
Γ, UV(Inv ∧ ¬ε) ` UV〈ω〉φ, ∆

Γ ` U〈while (ε) {α}ω〉φ, ∆

Inv holds in the beginning and v is non-negativ

Inv is in fact an invariant of the loop body, v stricly decreases, and
the property “v is non-negativ” is preserved

Inv implies the postcondition if loop terminates

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 16 / 18



Improved Invariant Rule with Termination

Improved Invariant Rule with Termination

Γ ` U(Inv ∧ v ≥ 0), ∆
Γ, UV(Inv ∧ ε ∧ v ≥ 0) ` UV{v ′ := v}〈α〉(Inv ∧ v ≥ 0 ∧ v < v ′), ∆
Γ, UV(Inv ∧ ¬ε) ` UV〈ω〉φ, ∆

Γ ` U〈while (ε) {α}ω〉φ, ∆

Inv holds in the beginning and v is non-negativ

Inv is in fact an invariant of the loop body, v stricly decreases, and
the property “v is non-negativ” is preserved

Inv implies the postcondition if loop terminates

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 16 / 18



Problems with JavaCard

JavaCard is a real programming language with features that make
verification more difficult.

Invariant rule not sound for loops causing abrupt termination.

Example

i = 0 ` Utrue
i = 0, UV(true ∧ true) ` UV[break;]true
i = 0, UV(true ∧ ¬true) ` UV[]i = 1

i = 0 ` U [while (true) {break;}]i = 1

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 17 / 18



Problems with JavaCard

JavaCard is a real programming language with features that make
verification more difficult.

Invariant rule not sound for loops causing abrupt termination.

Example

i = 0 ` Utrue
i = 0, UV(true ∧ true) ` UV[break;]true
i = 0, UV(true ∧ ¬true) ` UV[]i = 1

i = 0 ` U [while (true) {break;}]i = 1

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 17 / 18



Problems with JavaCard

JavaCard is a real programming language with features that make
verification more difficult.

Invariant rule not sound for loops causing abrupt termination.

Example

i = 0 ` Utrue

i = 0, UV(true ∧ true) ` UV[break;]true
i = 0, UV(true ∧ ¬true) ` UV[]i = 1

i = 0 ` U [while (true) {break;}]i = 1

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 17 / 18



Problems with JavaCard

JavaCard is a real programming language with features that make
verification more difficult.

Invariant rule not sound for loops causing abrupt termination.

Example

i = 0 ` Utrue
i = 0, UV(true ∧ true) ` UV[break;]true

i = 0, UV(true ∧ ¬true) ` UV[]i = 1

i = 0 ` U [while (true) {break;}]i = 1

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 17 / 18



Problems with JavaCard

JavaCard is a real programming language with features that make
verification more difficult.

Invariant rule not sound for loops causing abrupt termination.

Example

i = 0 ` Utrue
i = 0, UV(true ∧ true) ` UV[break;]true
i = 0, UV(true ∧ ¬true) ` UV[]i = 1

i = 0 ` U [while (true) {break;}]i = 1

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 17 / 18



Solution

Definition (Improved Invariant Rule for JavaCard)

Γ ` U Inv, ∆
Γ, UV(Inv ∧ ε) ` UV[α]Inv, ∆
Γ, UV(Inv ∧ ε) ` UV[α]continue Inv, ∆
Γ, UV(Inv ∧ ε) ` UV〈α〉abruptly ,not continuetrue → UV[παω]φ, ∆
Γ, UV(Inv ∧ ¬ε) ` UV[πω]φ, ∆

Γ ` U [π while (ε) {α} ω]φ, ∆

In KeY we have no additional modalities [ ]continue , 〈 〉abruptly ,not continue ,
rather the loop body α is transformed (see example).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 18 / 18



Solution

Definition (Improved Invariant Rule for JavaCard)

Γ ` U Inv, ∆
Γ, UV(Inv ∧ ε) ` UV[α]Inv, ∆
Γ, UV(Inv ∧ ε) ` UV[α]continue Inv, ∆
Γ, UV(Inv ∧ ε) ` UV〈α〉abruptly ,not continuetrue → UV[παω]φ, ∆
Γ, UV(Inv ∧ ¬ε) ` UV[πω]φ, ∆

Γ ` U [π while (ε) {α} ω]φ, ∆

In KeY we have no additional modalities [ ]continue , 〈 〉abruptly ,not continue ,
rather the loop body α is transformed (see example).

Beckert, Schlager, Schmitt ( Universität Koblenz-Landau, Universität Karlsruhe)An Improved Rule for While Loops ICFEM 2005 18 / 18


	Outline
	Main Talk
	Preliminaries & Definitions
	Program logic: Dynamic Logic for Java
	Programs frames: Modifier Sets
	State transitions: Updates

	(Improved) Invariant Rule
	An Invariant Rule for Total Correctness
	An Invariant Rule for JavaCard


