Verification of Modifies Clauses in
Dynamic Logic with Non-rigid Functions

Christian Engel', Andreas Roth?, Peter H. Schmitt!, and Benjamin Weif}!

1 Institute for Theoretical Computer Science
University of Karlsruhe, D-76128 Karlsruhe, Germany
{engelc,pschmitt,bweiss}@ira.uka.de
2 SAP Research CEC Darmstadt, D-64283 Darmstadt, Germany

Abstract. For modular verification of object-oriented programs, it is
necessary to constrain what may be changed by a method in addition to
how it is changed. Doing so with the classical means of pre- and post-
conditions is cumbersome, and even impossible if the program context is
not entirely known. Therefore, specifications make use of an additional
construct, known as a “frame property” or “modifies clause”, which lists
the memory locations that can at most be modified. Deductively verify-
ing the correctness of such modifies clauses is difficult because the focus
is on those locations which are not mentioned in the modifies clause. We
present a novel approach to encode the correctness of modifies clauses
as compact and readable proof obligations in dynamic logic. These proof
obligations can be discharged efficiently with existing dynamic logic cal-
culi, such as the one implemented in the KeY verification system. Addi-
tionally, we describe how a variant of our technique can be used for the
verification of loops.

1 Introduction

The classical ingredients of the design by contract paradigm, pre- and postcon-
ditions and class invariants, are well known, [19]. Less well known but equally
essential for concise specification and efficient reasoning is information on what
does not change during program execution. In different specification languages
this goes by different names, such as modifies clause or modifier set, assignable
clause [16], frame property [8], or change information [7]. In Morgan’s book [20]
change information is even part of the basic definition in its theory of programs.

Once specifications include such modifies clauses, we need to verify their cor-
rectness, i.e., prove that a program indeed does not change any location outside
the specified scope. The straightforward approach that inspects every single lo-
cation of the program contradicts the intention behind using modifies clauses
in the first place; it produces huge proof obligations, and it is non-modular in
the sense that even changes in completely unrelated parts of the program can
lead to changes in the proof obligation. We present a novel approach for veri-
fying modifies clauses in the framework of dynamic logic [13,5] without these
disadvantages. Additionally, we show how this approach can be used for the

verification of loops. A first version of the results of this paper is contained in
[22].

The approach has been fully implemented in the program verification system
KeY [4,1] and successfully tested on a number of examples. KeY is a theorem
prover for dynamic logic which allows the deductive verification of sequential
Java programs with respect to specifications written e.g. in the Java Modeling
Language, JML [16]. KeY features both powerful automation and support for
interactive proving.

Related work A large number of related techniques and tools for checking mod-
ifies clauses have been proposed. The ChAsE tool [11] performs a lightweight
syntactical analysis, which is efficient but unsound. Spoto and Poll [26] de-
scribe a sound technique based on abstract interpretation. Another static analy-
sis method, which involves building and analysing a graph-based representation
of the relevant parts of the heap, is proposed by Salcianu and Rinard [27] and
made more modular by Barnett et al [3].

Techniques for the verification of modifies clauses are also employed by other
tools for object-oriented program verification. ESC/Java2 [12] creates for ev-
ery assignment in a method a separate predicate logic verification condition.
These verification conditions express that the assignment does not affect other
locations than those in the method’s modifies clause. This is a more restrictive
interpretation of modifies clauses than ours, as temporary modifications to other
locations are not tolerated, even though such modifications are not observable
for clients. In the Boogie verifier [2], modifies clauses are translated into post-
conditions which use quantification over field names to express that all locations
except those in the modifies clause have not been changed. Krakatoa [18] avoids
the need for such quantifications in its proof obligations by first overapproximat-
ing the fields which are potentially affected in a pre-processing step, and then
only including these fields in the generated postcondition.

Our technique is unique in that it expresses modifies clause correctness di-
rectly as a formula on the source code level. This formula can be used as the
input of a program logic theorem prover. In contrast, ESC/Java2, Boogie and
Krakatoa all handle modifies clause correctness on the level of intermediate rep-
resentations, generate predicate logic verification conditions from there on, and
only then invoke a theorem prover. Our approach is advantageous particularly
in cases where automatic proving fails, since the familiarity of the source code
eases interactive verification. To our knowledge none of the other approaches
employs modifies clauses for loop verification in a comparable way.

Running example Throughout this paper we use the Java method foo given in
Fig. 1 for illustration. This example has been introduced in [26]. It demonstrates
that due to possible aliasing, checking the correctness of modifies clauses is non-
trivial, even for a simple program comprising just a short sequence of assignments
like this one. In particular, while a modifies clause consisting of this.next,
b.next.next and this.i may at first seem correct for foo, it is not: if this
and b refer to the same object, a forbidden modification to b.next.next.next

(which in this case is the same as this.next.next.next) occurs in line 6. A
correct modifies clause is contained in Fig. 1 as a comment in JML syntax.

— Java + JML

1 class MyClass {

2 MyClass next;

3 int i;

4 //@ assignable next, b.next.next, b.next.next.next, ij;
5 void foo(MyClass b) {
6 next = b.next.next;
7 b.next.next = b;

8 i++;

9 }

10 }

Java + JML —

Fig. 1. The example method and modifies clause used throughout the paper.

Outline Sect. 2 reviews quickly the needed background information on dynamic
logic. Sect. 3 introduces our formalism for representing modifies clauses. Many
program logics use some concept of a state transformer; this role is played in our
approach by updates explained in Sect. 4. The core contributions of this paper
are Def. 11 and Theorem 1 in Sect. 5. Sect. 6 contains a patient walkthrough
of the verification of our running example. The application of the approach to
invariant based loop verification is discussed in Sect. 7, and conclusions in Sect. 8
round off the presentation. App. A contains the proof of the main theorem, and
App. B sketches how object creation can be handled in our setting.

2 Dynamic Logic with Non-rigid Functions

First-order dynamic logic (DL) extends first-order predicate logic by a modal-
ity [p] for every program p of some imperative programming language: for any
formula 1, the formula [p]y expresses that if p terminates in a state s, then s
satisfies ¢. A Hoare triple {p}p{¢} [14] can thus be expressed as ¢ — [p|¥.
Unlike Hoare logic, dynamic logic is closed under the standard logical operators
as well as the modal operators [p].

The semantic domain of DL formulas are Kripke structures. A Kripke struc-
ture is a pair (S, p), where S is the set of all possible program states and p is a
function associating with each program p a transition relation p(p) C S? such
that (s1,s2) € p(p) iff executing p in s; leads to s2. The states themselves are
first-order structures which all share the same universe U. Given a state s and
a variable assignment (3, the evaluation of terms to values (i.e., elements of U)
by a function vals g and the validity of first-order formulas s, 3 = ¢ is defined

in the standard way. The semantics of the modal operators [p] is defined as

s, [l iff s BEY forall s with (s,s") € p(p)

A DL formula ¢ is called valid if s, 8 |= ¢ for all states s of every Kripke structure
and all variable assignments .

We model program memory as mon-rigid function symbols, i.e., symbols
whose interpretation may vary between states. Local program variables are rep-
resented as non-rigid constant symbols, and object attributes as unary non-rigid
function symbols, whose argument is the object for which the attribute is to be
accessed. Similarly, array slots are modelled as a single binary non-rigid function
symbol, whose arguments are the array object itself and the index into the array.
Non-rigid function symbols representing program memory are more specifically
called location function symbols to distinguish them from other non-rigid sym-
bols (e.g., symbols modelling query methods). In contrast to non-rigid symbols
in general, rigid symbols (e.g., arithmetic operators) are interpreted in the same
way in all states.

Compared with an explicit modelling of stack and heap, using non-rigid sym-
bols achieves a higher level of abstraction, which improves readability and helps
with handling aliasing [5]. It excludes pointer arithmetic, though. We do not
impose further assumptions on the programming language here, except that its
programs can be modelled in the described way based on Kripke structures and
non-rigid symbols. A detailed description of dynamic logic with non-rigid sym-
bols for a minimalist object-oriented language is contained in [5]; a full-grown
version for Java programs is defined in [4, Chapt. 3] and implemented in the
KeY tool. We conclude this section with an example for a formula in the latter:

self.i =i — [self.foo(b);|self.i =i +1

Here, self and b are local program variables, and 4’ is a rigid constant symbol.
Instead of the usual predicate logic notation i(self), this term is written as
self.i in order to resemble the equivalent Java expression. Overall, the formula
expresses that our example method foo from Fig. 1 increments the attribute i
of the receiver object by one.

3 Modifies Clauses

In this section, we formally define the concepts of (memory) locations and mod-
ifies clauses in the context of dynamic logic as described in Sect. 2.

Definition 1 (Locations). A location is a tuple (f,v), where f is a location
function symbol with arity n, and where v (with v := v1,...,v,) are values.

Locations are the units of state change. An example location in the program
of Fig. 1 is (i,0), where o € U is some Java object. Given a state s, the value
stored in (i,0) is s(i)(o). Locations are special in that they consist both of
a syntactical symbol f and semantical elements ©. A completely syntactical
description of locations is possible using location descriptors, which form the
elements of modifies clauses.

Definition 2 (Modifies clauses). A location descriptor is a construct

for 3 5 f(1)
where T (with T := x1,...,zy) are logical variables (bound in ¢,t), ¢ is a
formula, f is a location function symbol with arity n, and t (with t :=t1,...,t,)

are terms. Location descriptors must not contain free logical variables. A modifies
clause is a finite set of location descriptors.

A location descriptor of the form for; true; f(¢) can be abbreviated as f(%). The
following modifies clause corresponds to the assignable comment in Fig. 1:

{self.next, b.next.next, b.next.next.next, self.i} (1)

As a second example, the location descriptor (for z; 0 < x < a.length; alz])
describes all slots of the array object referenced by the program variable a.

Definition 3 (Semantics of modifies clauses). A location descriptor ld :=
(for z; ; f(t)) is evaluated to a set of locations:

vals g(ld) = U{(f’ vals g (t))}

where the union * is over all 3 for which there exist values v such that 3 =
B2 and s,8" = ¢. For a modifies clause mod, its evaluation is defined as

vals g(mod) = Uld6mod vals g(ld).

Here and throughout the paper, we take some liberty regarding the notation of
tuples (such as t) and single elements (for which vals g is actually defined). We
trust that this does not cause any ambiguity. As usual, 32 denotes the variable
assignment which is identical to 8 except that 82(Z) = 0. An example for the
above definition is vals g({self .next}) = {(next, vals g(self))}.

We now define what it means for a program (such as a method) to respect
a modifies clause: all heap locations which after executing the program hold a
different value than before must be mentioned in the modifies clause.

Definition 4 (Respecting modifies clauses). A program p respects a modi-
fies clause mod under the precondition ¢ iff for all Kripke structures (S, p) and
for all pairs of states (Spre, Spost) € p(p), all variable assignments (3, all location
function symbols f not representing local program variables, and all value tuples
U (with U :=vy,...,v,, wheren is the arity of f) the following implication holds:

81)7‘67 ﬁ): 2 and Spre(f)(@) 7é Spost(f)(f))
together imply
(f,0) € vals,,, sg(mod)
We do not impose restrictions on modifications of local variables, because these

are invisible to the caller of a method. Note that modifies clauses are always
evaluated in spr, i.e., the pre-state before program execution.

Besides constraining the locations which may be modified by a program,
modifies clauses can also be used to describe the locations on which something
depends. We now define a class of non-rigid symbols which have the same in-
terpretation in all states where the locations of a modifies clause have the same
values.

Definition 5 (Location dependent symbols, [9,10]). A location depen-
dent predicate symbol is a non-rigid predicate symbol parametrised by a mod-
ifies clause, denoted as P[mod], such that for every Kripke structure (S, p), for
every two states s,s' € S, and for every variable assignment 3 the following
implication is true:

vals,g(mod) = valy g(mod)

and

for all (f,7) € vals g(mod) : s(f)(®) = s'(f)(v)
together imply
s(P[mod]) = s'(P[mod))

For such symbols, it is useful to allow a special modifies clause denoted as *,
which stands for the whole heap. Its semantics is the same as that of the set
made up by location descriptors (for T; true; f(Z)) for every location function
symbol f which is not a local program variable; unlike this set, it does not require
knowing the entire program context in advance. Location dependent predicate
symbols have a variety of uses. For example, reachability between objects can
be encoded using a symbol reach[mod], where mod describes the fields which
may occur in the reference chain. More importantly here, they are central to our
approach for reasoning about modifies clause satisfaction, which is described in
Sect. 5.

4 State Updates

Besides location dependent predicate symbols, the second major ingredient to
our approach for verifying modifies clauses is an extension to dynamic logic called
updates [24], which can be seen as a generalisation of syntactic substitutions.

Definition 6 (Updates). An update u is a construct of one of the following
two forms:

— u= (forz; p; f(t) :=t), where T (with T := x1,...,Tm) are logical variables
(bound in @,t,t'), f is a location function symbol with arity n, and t (with
t:=t1,...,t,) and t' are terms; or

— u = (uy | uz), where uy; and uy are updates.
For every update u, term t, formula ¥, {u}t is a term and {u}v is a formula.

Intuitively, an update of the first kind changes the interpretation of the function
symbol f for the arguments described by # to the value of ¢, for all assignments of

values to the variables T which satisfy ¢. An update of the form for; true; f(t) :=
t' can be abbreviated as f(f) := . An update wu; | us intuitively means parallel
execution of u; and ws. In a term {u}t or a formula {u}p, the subterm ¢ and
the subformula ¢ are evaluated in the post-state of the update u. A more formal
definition of update semantics follows, which builds on the concept of locations
introduced in Def. 1 to first define semantic updates, and then an evaluation of
(syntactic) updates to such semantic updates.

Definition 7 (Semantic updates). A semantic update is a set of pairs (I,v),
where 1 is a location and v a value, such that for no l the set contains (I,v1) and
(I,v2) where v1 # vo. A semantic update U can be seen as a function on states,
where for each state s the output state U(s) is partially defined by

- v if ((f,0),v)eU
UBITCTSE LA
s(f)(v) otherwise
for all location function symbols f and values v (with v := vy,...,v,, where n
is the arity of f).

Note that nothing is defined about the post-update interpretation of non-rigid
symbols which are not location function symbols. In particular, the interpreta-
tion of location dependent predicate symbols may be affected in an unknown
way, except for the restriction imposed in Def. 5.

Definition 8 (Semantics of updates). An update u is evaluated to a semantic
update:

— Ifu=(for z; p; f(t) :=1):
vals g(u) == wm(U{((f, valsz (1)), vals g (t')})

where the union * is over all 3 for which there exist values U such that
B = BY and s,0' = @. The function win ensures that every location is
mapped to at most one value. This is achieved by imposing a well-ordering
on the set of values, and choosing the smallest tuple v in case a clash occurs
(for details refer to [24]).
— Ifu= (| uw):
vals g(u) := (U UU2) \ C

where Uy := vals g(u1), Uz := vals g(uz), and where
C:={((f,v),v) eUs | ((f,v),v") € Us for some v' # v}

The semantics of a term {u}t is defined as vals g({u}t) := vals g(t), where
s’ is the state resulting form applying u to s, i.e., s = wvalsg(u)(s). For a

formula {u}, (s,8) E {uly is defined to hold iff (s',3) E ¢, where again
s = wals g(u)(s).

The similarity between location descriptors and updates is not coincidental;
every modifies clause has a canonical representation as an update, called an
anonymising update for the modifies clause.

Definition 9 (Anonymising updates). An anonymising update for a loca-
tion descriptor ld := (for T; ¢; f(t)) is an update

V(id) = (for 5 @5 f(7) := J'(D)

where [’ is a fresh rigid function symbol with the same arity as f. An anonymis-
ing update for a modifies clause mod = {ldy,...,ldy} is an update V(mod) :=
V(ldi) |-+ | V(ld) (in an arbitrary order).

Note that anonymising updates are not unique, and specific to a particular sit-
uation during proof construction, as the function symbols f’ must be “fresh” in
the sense of Skolem constants. An anonymising update assigns unknown values
to all locations described by the modifies clause. It can be used, for example,
to reason about a method call using a method contract: if the method respects
the modifies clause of the contract, then an anonymising update for the modifies
clause provides a worst case approximation of the method’s behaviour (similar to
the havoc statements in ESC/Java and Boogie). The following is an anonymising
update for the modifies clause (1) of our running example:

self .next := next’(self) | b.next.next := next’(b.next)

| b.next.next.next := next'(b.next.next) | self.i:=i'(self)

5 Verification of Modifies Clauses

Proving that a method implementation respects a modifies clause according to
Def. 4 is difficult because the focus is on those locations which are not men-
tioned in the modifies clause: for all those, we have to show that they are not
modified by a call to the method. A straightforward encoding into proof obliga-
tions where all these locations are listed explicitly is possible, but undesirable: it
would negate the original motivation for introducing modifies clauses, which was
precisely to avoid having to reason about these locations explicitly. Furthermore
the approach would be non-modular, as even a slight extension of the program
context would change the proof obligation.

In the following we present a different approach, which produces compact
and readable proof obligations that remain unchanged if the program context
is extended. The basic idea is to construct a formula 1) whose interpretation
depends exactly on the heap locations not contained in the modifies clause.
If the validity of this ¢ in the pre-state of the considered method implies its
validity in the corresponding post-state, then we know that the method respects
the modifies clause. That is, our proof obligation to be verified mechanically
then is simply:

¥ — [pl (2)

How can we construct such a formula ? Simply using the “complement” of
the modifies clause as parametrisation of a location dependent predicate symbol
(Def. 5) is not an option, because this would again negate the advantages of using
modifies clauses in the first place. However, we can combine a predicate symbol
P[*] depending on the whole heap with an anonymising update V := V(mod) to
get:
¥ = {V}P[¥

This choice of ¥ has the desired property: since the anonymising update sets all
locations in the modifies clause to unknown but fixed values, differences in the
interpretation of these locations do not affect the interpretation of the occurrence
of the predicate symbol.

Before we can formalise this approach in Def. 11, we have to solve one more
problem: since the second occurrence of ¥ in (2) is in the scope of the modal
operator [p], the anonymising update V has a different effect here than in the first
occurrence of 1, as it is wrongly evaluated in the post-state of p. For our proof
obligation to be correct, we need to make the interpretation of the anonymising
update state independent. This is achieved with the transformation pre defined
below.

Definition 10 (pre transformation). Let id := for z; ¢; f(t) be a location
descriptor. We define the transformation pre as follows:

pre(ld) = for z; q(z); f(9(z))

where q is a fresh rigid predicate symbol, and g (with § :== ¢1,...,gn, where n
is the arity of f) are fresh rigid function symbols. For a modifies clause mod,
we define pre(mod) = {pre(ld) | ld € mod}. The formula DefPre(mod) can be
used to axiomatise the symbols q and g:

DefPre(mod) :i= \{Vz.((a(z) < ¢) A§(7) = F) | (for 7 ; f(]) € mod}

Definition 11 (RespectsModifies proof obligation). For a modifies clause
mod, a formula ¢, and a program p, the formula RespectsModifies(p, mod,) is
defined as follows:

RespectsModifies(p, mod,) :== ¢ A DefPre A {VP"}P[x| — [p]{ V"™ }P|¥]

where VP™ := V(mod?"™), mod®"™ := pre(mod), DefPre := DefPre(mod), and
where P[] is a fresh location dependent predicate symbol.

Theorem 1. For any modifies clause mod, any formula ¢, and any program
p, the formula RespectsModifies(p, mod,) is valid iff p respects mod under the
precondition .

A proof of Theorem 1, which states that the formula RespectsModifies cap-
tures exactly the desired property (established in Def. 4), is given in App. A. The
validity of RespectsModifies formulas can be proven in a largely automated fash-
ion with dynamic logic calculi such as the ones defined in [5] and [4, Chapt. 3].
In Sect. 6 we sketch such a proof for our running example.

6 Example

Instantiating RespectsModifies (Def. 11) for the running example (Fig. 1) yields:
@ A DefPre A {VP"°}P[*] — [self.foo(b) ;][{VF"°} P[] (3)

with: DefPre = (91 =self Ago =b.next A g3 = b.next.next)
VP¢ = (g1 .next := next’(g1) | g2 .next := next’(g2)
| g3.next := next'(g3) | g1 -1 := i’(gl))

where self and b are local program variables, and where g1, g2, g3, next’, i’ are
rigid function symbols. The formula ¢ may contain preconditions and class in-
variants, stating for example that the occurring variables and fields do not con-
tain the value null. However, these conditions are not relevant for us in the
following walkthrough of the proof, as we ignore exceptional behaviour and fo-
cus only on the normal execution path of foo.

We go about proving the validity of (3) by iteratively rewriting the formula
until we arrive at something which is obviously valid, in the style of a sequent
calculus (for details on the calculus see [4, Chapt. 3]). The critical part of (3) is
the modal operator [self.foo(b);], which we handle by rules whose effect can
be understood as symbolic execution: the program is traversed in a forward man-
ner, using logical symbols instead of concrete values for the memory locations.
Symbolic execution first unfolds the call to foo by inserting the method’s body,
and then tackles the assignments by converting them into updates, leading to
the formula:

@ A DefPre A {VP™} Plx] — {u Hug Hus H{V"™ } P[] (4)

with: u; = (self.next := b.next.next)
us = (b.next.next :=b)
uz = (self.i:=self.i+1)
We now transform the update sequence {ug }{uz}{us}{V*™} into a normal

form by applying update rewriting rules [24,23]. The first step is to combine
{u1}{us} into a single update {uj2}:

{ua H{us}
~ {uy | ({u1}(b.next)).next := {u1}b}
~ {ug | (if (({u1}b) = self)then(b.next.next)else({u1}b)) .next := b}
~~ {uy | (if (b = self)then(b.next.next)else(b)) .next := b}

u12

Basically, the sequential execution {u; }{us} is converted into a parallel execution
{uy | uh}, where v} is the result of applying the substitution expressed by wu4

10

to ug. Applying this substitution proceeds by recursively shifting {u;} from a
term to its subterms, thereby replacing the term’s operator if it is affected by
the update. As an exception, the top-level operator of the left hand side of us is
never affected, because it specifies the symbol to be updated by uo, and not a
value. While it is obvious that {u;} cannot affect b, it is not possible to determine
syntactically whether {u;} affects b.next: this depends on whether b and self
are aliased or not. Therefore, a syntactical case distinction in the form of an
if-then-else term is introduced.
Based on the same principles, we can merge {u1s}{us} into {uj93}:

{urzaH{us} ~ {u12 | {uiz}tself).i = {ui2}(self.i + 1)}
~ {uyg | self.i:= ({uia}(self.i)) + {uia}l}
~ {uge | self.i:= ({uia}self).i+ 1}
~ {uge | self.i:=self.i+ 1}

U123

Since {u12} cannot affect {us} at all, {u123} is equal to {u12 | us}. For the same
reason, the result of combining {u23}{V?™} is simply {u123 | VP }:

{urs VP~ {uazs | VP

Now, there is no modal operator or update left which separates DefPre and
VPre. This allows us to use the equations in DefPre to rewrite g; to self, go
to b.next, and g3 to b.next.next in VP™. After these rewriting steps, the left
hand sides of the atomic updates in w123 all occur in VP™ as well. This means
that the effect of u1a3 is completely overridden by VP™ (because the rightermost
update “wins” in case of a clash, Def. 8), and we can safely get rid of uja3:

{uros [V}~ VP
Overall, we have now transformed (4) into:
© A DefPre A {VP"} P[x] — {VP"} P[%] (5)

Since (5) is obviously valid, we have successfully finished our proof of (3). The im-
plementation in the KeY tool performs the described steps automatically within
a few seconds.

As the example shows, verifying RespectsModifies amounts to proving that
the following two updates are equivalent with respect to P[]: (1) the anonymis-
ing update VP™ on the left side of the implication, and (2) an update {u}{V?™}
resulting from symbolic execution of p on the right side of the implication. In
this example and many other cases, the update rewriting rules are strong enough
to make this equivalence show as syntactical equality of the updates. If this is
not the case, the problem of proving update equivalence can be reduced to the
problem of proving a first-order formula: for showing the equivalence of V?™ and
{u}{V?™} with respect to P[«], it is sufficient to show the validity of formulas

VE{VP Y f(Z) = {ul{VP"} ()

11

for all function symbols f not representing local program variables which occur
as the top-level operator on the left hand side in one of the involved updates.
The updates occurring in these formulas can always be transformed away.

7 Modifies Clauses for Loops

Besides constraining the locations which may be modified by a method, another
useful application of modifies clauses—and thus of our technique for ensuring
their correctness—lies in the verification of loops with the help of invariants.
The classical loop invariant rule in dynamic logic with updates looks as follows
(using sequent calculus notation):

I' = {u}lnv, A
Inv, e = [p|Inv
Inv, —e = [w]|¢

I' = {u}[while(e) p; w|y), A

The first premise of this rule expresses that the invariant Inv holds before the
loop, the second that it is preserved by the loop body p, and the third that if it
holds after the loop, then the remaining program w establishes the postcondition
1. Together, the validity of these three premises implies the validity of the rule’s
conclusion, namely that after executing the loop and subsequently w, the post-
condition v is satisfied. The initial states in which the loop is to be considered
are described by the sets of formulas I" and A, and by the update u.

This rule has the disadvantage that the second and third premise do not
contain the context information encoded in I, A and u. The reason is that we
cannot assume that this information still holds at the beginning of an arbitrary
iteration of the loop, since it may have been invalidated by the previous itera-
tions. This makes it necessary to put all information from the context that is
preserved by the loop (and that is needed for further reasoning) into the loop
invariant, which is very inconvenient. To overcome this deficiency, an improved
loop invariant rule making use of modifies clauses has been proposed in [6]:

I' = {u}lnv, A
I = {u}{V}(InvAe— plinv), A
I = {u}{V}InvA—-e— W), A

I' = {u}[while(e) p; w|¢), A

A modifies clause mod for the loop is specified in addition to a loop invariant,
and an anonymising update V := V(mod) is used to selectively “erase” only the
necessary parts of the context. Since I', A and u are kept, it is now sufficient to
encode in the invariant only properties concerning locations which are part of
the modifies clause. However, this rule assumes that the given modifies clause is
respected by the loop; it is unsound if this is not the case. Our technique allows

12

to extend it so that this assumption is proven:

I' = {u}lnv, A
I' = {u}(DefPre —
{V}(Inv Ae A{VP"}P[*, 0] — [p](Inv A {VP"°}P[*,7]))), A
I' = {u}H{V}({Inv A —e — [w]p), A
I' = {u}[while(e) p; w]yh, A

The changed second premise states that in addition to Inv, the loop body also
preserves {VP"¢} P[x, ¥]. As local variables © declared in the part of the program
before the loop can be changed by the loop and these changes are visible in the
program w, those local variables can consequently be part of the modifies clause.
This also necessitates that we adjust our notion of the correctness of modifies
clauses (see Def. 4) accordingly, and use the location dependent predicate P[x, 7]
which in addition to the heap also depends on the relevant local variables v.

One particularity of this invariant rule is that we show that {VP"¢}P[x, 7] is
preserved by p if p is executed in a state in which we assumed that no other lo-
cations than the ones contained in mod have changed (which is what we actually
want to prove by showing the preservation of {VP"¢}P[x, 1]).

On a first glance this might look like circular reasoning. This is, however, not
the case which can be motivated by the following inductive argument: Before
the first loop iteration no location was yet changed (by the loop) which trivially
entails the induction hypothesis that in this state mod is a correct modifies
clause for the preceding loop iterations. This forms our induction basis which
does not need to be proven explicitly. In the second premise we do the induction
step by proving: If, before an arbitrary iteration of the loop, mod is a correct
modifies clause for all the preceding iterations (this assumption is expressed by
the anonymising update V) then mod will also be a correct modifies clause for
the next iteration (expressed by the preservation of {VP"¢}P[x, 7]). Together with
the induction basis this obviously implies that mod is a correct modifies clause
for the entire loop.

Fig. 2 shows a Java loop which is specified by a loop invariant and a modifies
clause (modifies clauses for loops are not currently part of JML, but they are
supported by KeY). Since the DataBase object d cannot be changed by the loop
according to its specification, the invariant merely needs to constrain the values
of locations that can change, namely those of the local variables i and result.
In other approaches, where no modifies clauses are used for loops, it is necessary
to also encode in the invariant every property of d which can, for instance, affect
the result of the call to processQuery.

8 Conclusions

We have presented an approach for the verification of modifies clauses in the
framework of dynamic logic. In contrast to a straightforward encoding of modifies
clause correctness into a dynamic logic formula, where all locations not in the

13

— Java + JML

DataBase d = readDataBase();
int i = 0;
Object result = null;
//@ loop_invariant result == null && i >= 0;
//@ assignable result, ij;
while(i < ¢){
result = processQuery(i++, d);
if(result != null) return result;

O © 00Uk WN -

[t

Java + JML —

Fig. 2. A loop annotated with an invariant and a modifies clause.

modifies clause have to be considered explicitly, our approach leads to proof
obligations that are compact in size and remain the same if the program context
is changed or extended, which is important for making the verification modular.
We have proven that our encoding expresses the desired property (App. A), and
presented a useful variation for invariant based loop verification.

Our encoding is based on two extensions to classical dynamic logic, namely
updates (in particular anonymising updates) and location dependent symbols.
Both of these concepts have been developed independently of our technique [5,
24,9,10] and are useful for a variety of other purposes, e.g. for the verification
of depends clauses [10].

The technique has been implemented as a part of the KeY tool, where the
target language of the verification is Java, and where modifies clauses are e.g.
expressed in JML. The implementation has been successfully applied to a number
of examples, such as a Java Card implementation of the Mondex case study [25],
for which all modifies clauses have been proven®. The degree of automation for
these proofs was high.

For fully modular specification and verification, modifies clauses must sup-
port some form of data abstraction, such as data groups [17], ownership [21] or
dynamic frames [15]. As an important line of future work, we intend to extend
our approach with a data abstraction mechanism, based on our concept of lo-
cation dependent symbols. We expect this extension to be mostly orthogonal to
the results presented in this paper.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4(1):32-54, 2005.

3 Source code, specifications and proofs for this case study can be found here:
http://il2www.ira.uka.de/ engelc/mondex/mondex-mod.tgz

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In 4th International
Symposium on Formal Methods for Components and Objects (FMCO 2005), LNCS
4111, pages 364-387. Springer, 2006.

. M. Barnett, M. Fahndrich, D. Garbervetsky, and F. Logozzo. Annotations for

(more) precise points-to analysis. In International Workshop on Aliasing, Con-
finement and Ownership in Object-Oriented Programming (IWACO), 2007.

. B. Beckert, R. Héhnle, and P. H. Schmitt, editors. Verification of Object-Oriented

Software: The KeY Approach. LNCS 4334. Springer, 2007.

. B. Beckert and A. Platzer. Dynamic logic with non-rigid functions: A basis for

object-oriented program verification. In 3rd International Joint Conference on
Automated Reasoning (IJCAR 2006), LNCS 4130, pages 266—280. Springer, 2006.

. B. Beckert, S. Schlager, and P. H. Schmitt. An improved rule for while loops

in deductive program verification. In 7th International Conference on Formal
Engineering Methods (ICFEM 2005), LNCS 3785, pages 315-329. Springer, 2005.

. B. Beckert and P. H. Schmitt. Program verification using change information. In

1st International Conference on Software Engineering and Formal Methods (SEFM
2003), pages 91-99. IEEE Press, 2003.

. A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure

specifications. IEEE Transactions on Software Engineering, 21(10):785-798, 1995.

. R. Bubel. Formal Verification of Recursive Predicates. PhD thesis, University of

Karlsruhe, 2007.

R. Bubel, R. Héhnle, and P. H. Schmitt. Specification predicates with explicit de-
pendency information. In 5th International Verification Workshop (VERIFY’08),
volume 372 of CEUR Workshop Proceedings, pages 28-43. CEUR-WS.org, 2008.
N. Catano and M. Huisman. ChAsE: A static checker for JML’s assignable clause.
In 4th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2008), LNCS 2575, pages 26—40. Springer, 2002.

D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Interna-
tional Workshop on Construction and Analysis of Safe, Secure and Interoperable
Smart devices (CASSIS 2004), LNCS 3362, pages 108-128. Springer, 2005.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, 1969.

I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In 14th International Symposium on Formal Methods (FM
2006), LNCS 4085, pages 268—283. Springer, 2006.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes,
31(3):1-38, 2006.

K. R. M. Leino. Data groups: Specifying the modification of extended state. In
18th ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’98), pages 144-153. ACM Press, 1998.

C. Marché and C. Paulin-Mohring. Reasoning about Java programs with aliasing
and frame conditions. In 18th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2005), LNCS 3603, pages 179-194. Springer, 2005.
B. Meyer. Applying ‘Design by Contract’. Computer, 25(10):40-51, 1992.

C. Morgan. Programming from specifications. Prentice-Hall, 1990.

P. Miller. Modular Specification and Verification of Object-Oriented Programs.
LNCS 2262. Springer, 2002.

15

22. A. Roth. Specification and Verification of Object-Oriented Software Components.
PhD thesis, University of Karlsruhe, 2006.

23. P. Riimmer. Proving and disproving in dynamic logic for Java. Licentiate Thesis
2006—26L, Chalmers University of Technology, 2006.

24. P. Rimmer. Sequential, parallel, and quantified updates of first-order structures.
In 13th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR 2006), LNCS 4246, pages 422-436. Springer, 2006.

25. P. H. Schmitt and I. Tonin. Verifying the Mondex case study. In 5th IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFM 2007),
pages 47-56. IEEE Press, 2007.

26. F. Spoto and E. Poll. Static analysis for JML’s assignable clauses. In 10th Int.
Workshop on Foundations of Object-Oriented Languages (FOOL-10), 2003.

27. A.D. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs.
In 6th International Conference on Verification, Model Checking and Abstract In-
terpretation (VMCAI 2005), LNCS 3385, pages 199-215. Springer, 2005.

A Proof of Soundness and Completeness

Let mod be a modifies clause, ¢ a formula, p a program, and let mod?", VP,
DefPre, P[«] be chosen as in Def. 11. Before we start to prove Theorem 1, we
need some helper lemmas. The correctness of these lemmas is rather obvious, so
we refrain from giving a formal proof for them.

Lemma 1. For all states s and all variable assignments 8 with s, 3 |E DefPre:
valg g(mod?"™) = wal, g(mod).

This lemma is a direct consequence of Def. 10: DefPre is chosen so that it links
mod?™ and mod.

Lemma 2. For all locations I, all s,8: 1 € vals g(mod?™®) iff there is a v € U
with (I,v) € vals g(VP™).

This lemma follows directly from Defs. 3, 8 and 9: the anonymising update for
mod?" affects exactly the locations in mod?™.

Lemma 3. Let (S, p) be a Kripke structure. Then for all s1,s9 € S and all 3:
vals, g(VP™®) = vals, s(VF™).

Lemma 3 holds since VP™ contains only rigid symbols, with the exception of
the top level symbols on its left-hand sides (which are not evaluated). Thus its
evaluation is not state dependent.

Proof (of Theorem 1). We first show that if p respects the modifies clause mod,
this implies the validity of RespectsModifies(p, mod,), and then that conversely
an incorrect modifies clause makes the formula invalid.

Let (S, p) be an arbitrary Kripke structure and let Sy, Spost be states such
that (Spre, Spost) € p(p) and such that

Spre = @ A DefPre A {VP"} P[]

16

(for all other states spre, RespectsModifies(p, mod, @) is trivially true).
We now assume that p respects mod under the precondition . Then for all
(f,v) with
SpTe(f)(/D) 7é Spost(f)(@)

(f,v) € wals,,, g(mod) holds. We also know that, according to Lemma 1, since
Spre = DefPre also (f,v) € vals,,, g(modP™) holds.
Due to Lemma 3 we know that:

vals,,. s(V'") = vals,,, (V")
This implies that for every location (f,7) where f is not a program variable

Ualspmﬂ (Vpre)(spre)(f)(@) = ’Ualspostvﬁ (Vpre)(spre)(f)(@)
= vals,,,.3 (VP™) (8post) (f) (0) (6)

The explanation for equation (6) is: if

Spre(f)(ﬁ) = Spost(f)(rl_})

then equation (6) holds trivially irrespective of the form of VP7e. If

Spre(f)(0) 7 Spost (f)(0)

then, because p respects mod under the precondition ¢ and because of Lemma 2,
there is a v € U with ((f,v),v) € vals,,, s(VP"¢) and

Vs, 5(VP") (8pre) () (V) = v
= vals,,., 5 (V") (8post) (f) (V)

From this we get that

Ualsm,ﬁ(vpre)(spm)(f) = vals,.,.p (V) (8post) (f)

holds for every location function symbol f that is not a local program variable
and every variable assignment (5. Together with sp.e = {VP"¢}P[+] this entails
that spese = {VP"°} P[] making RespectsModifies(p, mod, ¢) valid.

We now assume that mod is not respected by p under the precondition .
Then, there is a location (h,?) where h is not a local program variable with
Spre(N)(0) # Spost(h)(0) and (h,v) ¢ wal,, g(mod) and consequently (due to
Lemma 1) (h,0) ¢ vals, . g(mod?™). Together with Lemmas 2 and 3 this entails

valsp're)ﬂ (Vpre)(spre)(h) (v) = Spm(h) (0)
vals,,...s(V"") (Spost) (h) (D) = Spost (1) (V)

which implies

Ualsm BOVP) (spre) (h) # UalsposL BVP) (8post) (h)

17

It is thus “admissible” for the predicate symbol P[«] to be interpreted differently
in the two states wal,, g(VP")(Spre) and wvals,,,, 3(VP"¢)(Spost). We can now
choose a Kripke structure with states s, sp,s such that s,..(f) = spre(f),
/

spre(q) = SPT‘E(q)7 s;ost(f) = SPOSt(f) and S;ost(q) = SPUSt(Q) for all function
symbols f and all predicate symbols ¢ with ¢ # P[*]. In addition we require

that

vals, ., s(VP")(spre) | Pl#] (7)
vals,, . s(VP") (Spost) # Plx] (8)
Obviously (s}, 8pest) € p(p) and (due to (7)) s,,.. = @ A DefPre A {VP™}Plx]

pre’ °post

holds. Together with (8) we get:
st .o ¥ @ A DefPre N {VP"} P[] — [p]{VP"°} P[]

pre

B Treatment of Instance Creation

In this appendix we elaborate on how object creation can be taken into account
by modifies clauses and how this can be handled by our approach.

Like many other dynamic logics, and modal logics in general, our dynamic
logic operates under the constant domain semantics, which means that all states
in a Kripke structure have the same universe U. The implications this carries
for the modeling of object creation are that all objects that can ever be created
by a program have to exist in every program state.

For indicating whether objects are created (in the sense of the programming
language) and which objects are to be created next, we make use of implicit
fields and object repositories. An object repository Repc contains all instances
of (exact) type C existing in U that are already or will be created. Rep¢c is
accessed via the function symbol getc which is interpreted as a bijective function

vals g(getc) : N — Repc

Implicit fields behave like normal fields but are not user declared. We augment
objects with the implicit boolean instance field <created> and classes with the
implicit static field <nextToCreate> where

vals g(x. <created>) = TRUE

iff the object val, g(x) is created in s, and where C. <nextToCreate> denotes
the smallest non-negative index such that the object

vals g(getc(C. <nextToCreate>))

is not yet created in s. If a new instance of type C'is created, then the repository
object getc(C. <nextToCreate>) is taken for this purpose and the attribute
C. <nextToCreate> is afterwards increased by 1.

18

The predicate P[+] depends, the way we defined it, also on implicit fields
and “normal” instance fields of objects that are not created in the pre-state of
a program p. When specifying a modifies clause for a program p which creates
new objects, we thus have to make the necessary locations of <created> and
<nextToCreate> part of the modifies clause.

This is, however, a contrast to a more common semantics of modifies clauses
that permits object creation and initialisation of fields of newly-created objects,
without having to specify this in modifies clauses explicitly. Fortunately, this
semantics can be adopted by our approach easily, by using a location dependent
predicate P[+'] depending (i) only on those locations that exist already in the
pre-state of p and (ii) not on <nextToCreate> locations. The equivalence of two
updates {u1}, {us} with respect to P[*'] can be shown by proving the validity
of the formula

Vz.(9[Z] — {ur} f(Z) = {u2} f(2))

for all function symbols f which occur as the top-level operator on the left
hand side in {uq} or {us} (where f is neither a local program variable nor a
<nextToCreate> attribute). We define 9[z1,...,z,] as

/\ x;. <created> = true
%
ie{l,...,n},
x; has object type

Thus ¥[Z] indicates that all reference type arguments of each function symbol

f occuring as the top-level operator on the left hand side in {u1} or {us} are
already created.

19

