
Predicate Abstraction in a

Program Logic Calculus

Benjamin Weiß

Institute for Theoretical Computer Science
University of Karlsruhe, D-76128 Karlsruhe, Germany

bweiss@ira.uka.de

Abstract. Predicate abstraction is a form of abstract interpretation
where the abstract domain is constructed from a finite set of predicates
over the variables of the program. This paper explores a way to integrate
predicate abstraction into a calculus for deductive program verification,
where it allows to infer loop invariants automatically that would other-
wise have to be given interactively. The approach has been implemented
as a part of the KeY verification system.

1 Introduction

Deductive verification of imperative programs typically requires hand-crafted
loop invariants, i.e., assertions about the program states which can possibly oc-
cur at the beginning of each iteration of a loop. Finding sufficiently strong loop
invariants can be difficult, and today this is often one of only a few human inter-
actions necessary in an otherwise heavily automated verification environment.

On the other hand, there are methods which can automatically determine loop
invariants. Leaving aside testing-based approaches like Daikon [9], such methods
are predominantly based on abstract interpretation [6], a theoretical framework
for static program analysis which can roughly be described as symbolic execution
of the program, using an abstract (i.e., approximative) domain for the variable
values, together with fixed-point iteration.

Predicate abstraction [11] is a variant of abstract interpretation where the
abstract domain is constructed from a finite set of predicates over the variables
of the program. Here, the symbolic execution is itself done in a precise fashion,
and the necessary approximation is performed in between by explicit abstrac-
tion steps, in which an automated theorem prover is used to determine a valid
boolean combination of the predicates. Compared with other forms of abstract
interpretation, a fundamental disadvantage of predicate abstraction is that it is
limited to finite abstract domains. On the other hand, an advantage is that its
abstract domain can be flexibly adapted by simply changing the set of predi-
cates. In the same vein, predicate abstraction can quite easily support complex,
quantified invariants [10]. It can be extended with an iterative refinement process
that automatically adapts the domain to the particular problem [5].

This paper presents an approach for integrating predicate abstraction into
a deductive program verification calculus. This allows to infer loop invariants

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 136–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Predicate Abstraction in a Program Logic Calculus 137

within this calculus, on demand and as an integral part of constructing the
overall correctness proof.

Outline. Sect. 2 gives an overview of relevant related work. Necessary background
on the underlying program logic and calculus is provided in Sect. 3. A high level
explanation of the approach follows in Sect. 4. In Sect. 5, new calculus rules are
introduced, and how these rules are to be used is described in Sect. 6. Sect. 7
gives details on the predicate abstraction scheme. The overall method is further
illustrated with the help of an example in Sect. 8, and practical experience with
an implementation is reported in Sect. 9. Finally, Sect. 10 contains conclusions
and future work.

2 Related Work

This paper draws much inspiration from Flanagan and Qadeer’s approach for
using predicate abstraction in program verification [10]. Both in their approach
and in ours, a set of predicates is associated with each loop in a program, and
used to abstract specifically at loop entry points. Quantified loop invariants are
supported by allowing the loop predicates to contain free variables which are
later quantified over. The main difference is that in our setting, the inference is
done within a logical calculus, the same that is used for the verification itself.
This also distinguishes our technique from the one used in the Boogie verifier
[2], where a separate abstract interpretation component is used to infer needed
loop invariants, leading to a duplication of knowledge between the verifier and
the abstract interpreter.

Several related approaches in striving for a closer integration between de-
ductive verification and static analysis based invariant inference exist. In the
“loop invariants on demand” technique [14], first-order verification conditions
are generated from programs, which include placeholder predicates for the loop
invariants. These are then passed to a first-order theorem prover. When an in-
variant is necessary for a sub-proof, the prover tries to infer it by repeatedly in-
voking an abstract interpreter with successively more precise abstract domains.
Still, the verification condition generator, theorem prover, and abstract inter-
preter, are all separate components. In [15], parts of the invariant generation
are moved inside the theorem prover, with the verification condition generation
remaining separated. In our approach, all three tasks—especially generation of
verification conditions and generation of invariants, which are closely related as
they both deal with programs—can be performed within one program logic the-
orem prover. Logical interpretation [19] goes the other way round by embedding
theorem proving techniques in an abstract interpretation framework.

The results presented in this paper are based on earlier work reported in [18].
Compared to [18], there are significant improvements: no unsoundness issues
remain; the integration of invariant inference into the calculus is more natural,
as proofs are no longer necessarily tree-shaped; and the transformation of state
updates into formulas is now lazy instead of eager, which improves performance.

138 B. Weiß

3 Program Logic

The verification framework used in this paper is dynamic logic with non-rigid
functions (DL) [4,3], a generalisation of Hoare logic [12]. DL extends first-order
logic by modal operators [p], where p can be any legal sequence of statements
in some programming language. Additionally, it features modal operators {u},
where u is a so-called update [17], representing a state change in a language-
independent, logical way. A core DL for a minimalist object-oriented language
is formally defined in [4], and a full-blown version for Java in [3].

Formulas are evaluated in program states, which are first-order structures. The
formula [p]ψ holds in a state if all states reachable by executing p in this state
satisfy ψ. Similarly, {u}ψ holds in a state if ψ holds in the state produced by the
update u. A formula is valid if it holds in all states. A typical program verification
task is to prove the validity of a formula ϕ → [p]ψ, which is equivalent to the
Hoare triple {ϕ}p{ψ}. Object attributes are represented as non-rigid function
symbols, i.e., symbols whose interpretation may be changed by programs.

The validity of DL formulas can be proven using a sequent calculus. A sequent
is a construct Γ � Δ, where Γ and Δ are finite sets of formulas, and whose
semantics is the same as that of

∧
Γ → ∨

Δ. A sequent calculus rule deduces
the validity of a sequent (the rule’s conclusion) from the validity of one or more
other sequents (the rule’s premises). In order to prove the validity of a sequent,
one constructs a proof tree: its root is the original sequent itself, and in each step,
it is extended by applying a rule to one of its leaves (called goals). Applying a rule
means matching its conclusion to the goal, and adding its premises as children
of the goal. If a proof goal is obviously valid (e.g., Γ � true), it is closed. If all
goals of a proof tree are closed, this means that the root sequent is valid as well.

Formulas with programs in them may be handled by rules which operate on
the active statement, i.e., the first basic command in the modal operator, and
stepwise shorten the program until only a first-order problem remains. Intu-
itively, this process can be understood as symbolic execution: the program is
“executed”, but with symbolic instead of concrete values for its variables. It is
similar to the verification condition generation in related verification approaches,
but differs in that it is intertwined with other forms of reasoning, in particular
first-order reasoning and arithmetic simplification, within the same calculus.

Such symbolic execution rules formalise the semantics of the underlying pro-
gramming language. In the following, we take a look at rules for the three el-
ementary programming constructs of assignments, conditional statements, and
loops, in a Java-like language. The basic assignment rule is

assign
Γ � {u; x := se}[ω]ψ, Δ
Γ � {u}[x = se; ω]ψ, Δ

where Γ and Δ are sets of formulas; u is an update; se is a “simple expression”,
i.e., an expression without side effects; ω is the rest of the program after the
assignment; and ψ is a formula. The rule simply transforms the program assign-
ment x = se; into an equivalent update x := se. The update u; x := se is the
sequential composition of the updates u and x := se. Parallel composition of

Predicate Abstraction in a Program Logic Calculus 139

updates is also possible; for example, (x := 1‖y := x) sets x to 1 and y to the
value of x simultaneously. Finally, the update language allows quantified updates
such as (for x; a[x] := 0), which sets all elements of the array a to 0 in parallel.

The assign rule reduces assignments to updates. In the course of symbolic
execution, a composite update accumulates in this way in front of the modal
operator. This update can be simplified aggressively using update rewriting rules
[17], which for simplicity we use as a monolithic rule simplifyUpdate here. Once
the program has been dealt with completely, the final update can be applied
to the postcondition as a substitution (also by simplifyUpdate). As an example,
consider the following unclosed proof tree (with the root at the bottom):

(simplifyUpdate)
(assign)

(simplifyUpdate)
(assign)
(assign)

� if (a .= b)then(2)else(1) .= 1
� {a.f := 1; b.f := 2}(a.f .= 1)
� {a.f := 1; }[b.f = 2;]a.f .= 1

� {a.f := 0; a.f := 1; }[b.f = 2;]a.f .= 1
� {a.f := 0}[a.f = 1; b.f = 2;]a.f .= 1
� [a.f = 0; a.f = 1; b.f = 2;]a.f .= 1

Terms like f(a), where f is a non-rigid function symbol, are written as a.f
in order to resemble the usual object attribute access notation. One after the
other, the three assignments are turned into updates. Since the first is overridden
by the second, it can be simplified away. Finally, the update is applied to the
postcondition a.f

.= 1 (expressing equality of a.f and 1). This last step creates a
syntactical case distinction on whether a and b refer to the same object. Delaying
and sometimes avoiding such aliasing related case distinctions is the primary
motivation for handling assignments via updates in this way.

Conditional statements are symbolically executed by branching the proof on
whether the guard is true or false, and loops by unwinding them:

ifElse

Γ, {u}se .= true � {u}[p ω]ψ, Δ (then branch)
Γ, {u}se .= false � {u}[q ω]ψ, Δ (else branch)

Γ � {u}[if(se) p else q ω]ψ, Δ

loopUnwind
Γ � {u}[if(e){p while(e) p} ω]ψ, Δ

Γ � {u}[while(e) p ω]ψ, Δ

Using loopUnwind is sufficient only for loops which terminate after a fixed, stati-
cally known number of iterations. General loops can be handled with loopInvari-
ant (both loop rules are shown in a simplified form which assumes that the loop
body does not terminate abruptly, e.g by throwing an exception):

loopInvariant

Γ � {u}Inv, Δ (initially valid)
Inv , se .= true � [p]Inv (preserved by body)
Inv , se .= false � [ω]ψ (use case)

Γ � {u}[while(se) p ω]ψ, Δ

Here, Inv is a loop invariant which has to be provided from the outside. The first
two branches ensure that Inv is indeed an invariant, i.e., that it holds both when
initially encountering the loop and after an arbitrary number of loop iterations.
In the third branch, symbolic execution continues behind the loop.

140 B. Weiß

4 Approach

A program logic calculus like the one introduced in the previous section bears
many similarities to abstract interpretation style program analysis; both use
symbolic execution to infer and check properties about programs. Unlike usual
abstract interpretations, the deductive approach can, at least in principle, han-
dle arbitrarily precise properties. This comes at the cost of sometimes needing
human interaction for proving the resulting first-order problems, and at the cost
of requiring manually specified loop invariants. This paper aims to address the
latter issue by integrating abstract interpretation concepts into the deductive
setting.

A difference between abstract interpretation and our calculus is in the treat-
ment of control flow splits: the calculus handles them by branching the proof tree,
where the created branches remain separated permanently. On the other hand,
abstract interpretations typically use a “merge” operator to combine properties
at junction points in the control flow graph. This corresponds to accumulat-
ing properties for every program point, instead of treating the execution paths
separately. For loops, the infinite number of paths makes such an accumulation
necessary; deductive verification “cheats” here by assuming to be given a loop
invariant, which already is an accumulated description of all paths through the
loop. We can overcome this difference rather straightforwardly by introducing a
rule into the calculus which merges several proof branches into one.

With this change, loops can be treated by applying loopUnwind and ifElse,
symbolically executing the body, and then merging the resulting sequent (where
the loop entry is again the active statement) with the previous such sequent. For
example, we might begin with a sequent i .= 0 � [while(i<j) ...]ψ. After one
iteration, we might arrive at i .= 0 ∨ i

.= 1 � [while(i<j) ...]ψ, reflecting the
fact that after this iteration, i has been incremented by one. Every such iteration
leads to a larger set of states possible for the loop entry point. In principle, we
only have to repeat this iterative process until this set of states stabilises, i.e.,
until it is a fixed point of the process: once this happens, it covers all states
which are possible for the loop entry on any execution path, or in other words,
its representation as a formula then is a loop invariant.

In the terminology of abstract interpretation, this would correspond to a com-
putation of the static semantics. Obviously, the infinite number of states means
that for most loops, such a computation would not terminate. To change this, we
need to introduce approximation. A form of approximation particularly suitable
in our context is that of predicate abstraction [11,10]: We assume that for each
loop we are given a finite set P of predicates (formulas). Then, the abstraction
of a formula for the entry point of this loop is a boolean combination of ele-
ments of P which is implied by the original formula. That is, the abstraction
retains the information from the formula which is expressible by the predicates
in P , and approximates away everything else. Since there are only finitely many
boolean combinations of the predicates, performing such an abstraction before
each unwinding step ensures convergence after a finite number of iterations. The
found invariant can then be used to apply loopInvariant.

Predicate Abstraction in a Program Logic Calculus 141

With predicate abstraction, the predicates P associated with a loop form the
building blocks for the invariants which can be found for that loop. Such pred-
icates can either be specified manually—which is easier than having to specify
whole, correct loop invariants—or be generated heuristically based on the par-
ticular program and specification to be verified.

5 Rules

In this section, we define new sequent calculus rules which extend a rule base
like the one sketched in Sect. 3 with predicate abstraction based loop invariant
inference as described in Sect. 4. The soundness proofs for these rules are omitted
here for space reasons. First is a rule for merging execution paths at junction
points in the control flow graph, called merge:

merge

∧
(Γ1 ∪ ¬Δ1) ∨ · · · ∨ ∧

(Γn ∪ ¬Δn) � ψ
Γ1 � ψ,Δ1 . . . Γn � ψ,Δn

This rule is unusual in that it has several conclusions, or in other words, in that it
is applied to several proof goals at once. To allow such rules means to generalise
the structure of proofs from trees to directed acyclic graphs (DAGs) which are
connected and rooted. Apart from that, merge is a rather simple rule operating
on the propositional logic level. A typical application (to be read, intuitively,
from bottom to top) is

(merge)
ϕ1 ∨ ϕ2 � [while(e) p]ψ

ϕ1 � [while(e) p]ψ ϕ2 � [while(e) p]ψ

The next rule is responsible for the predicate abstraction step:

predicateAbstraction
αP (

∧
(Γ ∪ ¬Δ)) � [while(e) p ω]ψ
Γ � [while(e) p ω]ψ,Δ

where P is the set of predicates associated with the loop while(e)p, and where
αP is a meta-operator which computes for any formula ϕ a predicate abstraction
using P . This means that αP (ϕ) is some boolean combination of the predicates
in P such that ϕ→ αP (ϕ) is valid. The details of computing αP (ϕ) depend on
the particular predicate abstraction scheme (Sect. 7); usually, this computation
itself requires first-order reasoning modulo several theories.

Both above rules operate on sequents without updates in front of the modal
operators containing the programs. Thus, we need a way to transform typical
sequents ϕ � {u}[p]ψ such that the update u is removed from a modality [p].
This can be achieved with the shiftUpdate rule:

shiftUpdate
{u′}Γ, Upd � [p]ψ, {u′}Δ

Γ � {u}[p]ψ, Δ
where:

– targets(u) is the set of all (non-rigid) function symbols f occurring as top
level operators of the left hand side of an elementary update (f(t̄) := t) in u

142 B. Weiß

– for each f ∈ targets(u): f ′ is a fresh rigid function symbol with the same
arity as f

– the update u′ is the parallel composition of the updates (for x̄; f(x̄) := f ′(x̄)
)

for all such pairs (f, f ′), where x̄ = x1, . . . , xn, n being the arity of f and f ′

– Upd =
∧

f∈targets(u) ∀ȳ; f(ȳ) .= {u′}{u}f(ȳ)

Intuitively, the update u′ substitutes for each updated function symbol f a fresh
symbol f ′ which represents the old, pre-update, instance of f . The formula Upd
links the old instances with the current ones. The following proof tree is an
example:

(simplifyUpdate)

(shiftUpdate)

f ′(a) .= 27,
∀y; y.f .= if (y .= b)then(42)else(f ′(y))

� [p]ψ
{for x;x.f := f ′(x)}a.f .= 27,

∀y; y.f .= {for x;x.f := f ′(x)}{b.f := 42}y.f
� [p]ψ

a.f
.= 27 � {b.f := 42}[p]ψ

Since the updates resulting from this application of shiftUpdate are attached to
formulas without modalities, they can be simplified away immediately, leading
to a sequent without updates at all. This example also shows the disadvantage
of using shiftUpdate, which is that it indirectly introduces quantifications and
case distinctions for the possible aliasing situations. Using updates, instead of
handling assignments in the style of shiftUpdate right away, allows to delay these
complications as long as possible.

Finally, we introduce an operation setBack, which is defined as “replace a
goal by one of its dominators in the proof graph”. This is not strictly expressible
as a sequent calculus rule, but it preserves the overall meaning of the proof: if
all goals are valid, then the root must be valid. It is useful for “cutting off”
proof branches which do not contribute to the loop invariant of the current loop.
Such irrelevant branches for example occur when the loop body may throw an
uncaught exception; the execution paths where this happens never return to
the loop entry, and thus do not affect the loop invariant. Another example is
the loop termination branch which is created when applying loopUnwind and
subsequently ifElse. Instead of considering these side branches in every iteration
of symbolic execution, they can be reverted to the loop entry with setBack. This
is exemplified by the proof graph below:

(loopUnwind, ifElse)
ϕ1 � [p; while(e) p]ψ (setBack)

ϕ � [while(e) p]ψ
ϕ2 � []ψ

ϕ � [while(e) p]ψ

Instead of continuing on the right branch, it is set back to the loop entry. Once
the loop body p has been symbolically executed on the left branch, merge can
be used to combine both branches.

Predicate Abstraction in a Program Logic Calculus 143

6 Proof Search Strategy

Sect. 4 has sketched the overall idea for how to apply the rules defined in Sect. 5.
In this section, we concretise this aspect by defining a corresponding proof search
strategy, i.e., an algorithm which automatically chooses the next rule to apply
to a given unclosed proof. Our strategy extends a strategy able to do regular
symbolic execution and first-order reasoning with the capability to infer a loop in-
variant whenever an invariant-less loop is encountered during proof construction.

The strategy is defined semi-formally in Fig. 1. The first three functions are
helpers for the main function chooseRuleApplication . This function returns a pair
of a goal node and a rule, with the meaning that the returned rule should be
applied to the returned goal. The presentation is a bit imprecise in this respect,
because in general there may of course be multiple ways to apply a single rule to
a particular goal. However, for the rules that matter here, the exact application
focus is either unique or it is explained in the paragraphs below. We assume
that the occurring sequents are of the form (Γ � {u}[p]ψ,Δ), where p is the
only program occurring in the sequent.

We consider a symbolic execution state, as captured by a node of the proof
graph, to be “in” a loop when that loop has previously been “entered” by ap-
plying loopUnwind but not yet “left” by applying loopInvariant. Accordingly, the
entryNode function determines the node where a specific loop, passed as a pa-
rameter to the function, has last been entered. Function innermostLoop returns
the loop that has last been entered but not yet left.

Function waiting tells whether the symbolic execution of the passed node
should not be continued yet, because operations on other branches have to be
performed first. This is the case if the active statement is a loop, and if from the
entry node of that loop it is possible to reach in the graph open goals where the
active statement is not that loop: in this case, we first want to continue symbolic
execution of these other goals until they get back to the loop as active statement.
Only then do we continue with all of them, by combining them with merge.

The main function chooseRuleApplication now works as follows. First, it picks
an arbitrary open goal which is not waiting for other branches. Then, it checks
whether the innermost loop that symbolic execution is “in” does not occur in
the program contained in the modal operator anymore. If so, this indicates that
the current branch will not return to the loop entry, for example because an
exception has been thrown which is not caught within the loop body. The next
step is then to revert it to the entry point of the innermost loop with setBack.
Otherwise, the choice of the rule depends on whether the active statement is a
loop or not. If not, the strategy chooses a regular applicable symbolic execution
rule or a first-order rule (abbreviated as SE in Fig. 1).

If the active statement is a loop, and if an invariant is already known for
this loop, the invariant is used to apply loopInvariant. If no invariant is known,
special rules are applied in a fixed order. First after reaching the loop entry
via regular symbolic execution, shiftUpdate is used to get rid of any update
preceding the modal operator. Then, merge can be applied to merge the current
proof branch with all other branches that have been waiting for it. The next step

144 B. Weiß

Pseudocode

//returns the node where symbolic execution entered a loop
Node entryNode(node, loop)

if(activeStatement(node) = loop)
if(appliedRule(node) = loopUnwind) return node;
else if(appliedRule(node) = loopInvariant) return none;

return entryNode(firstParent(node), loop);

//returns the innermost loop which symbolic execution is in
Loop innermostLoop(node, leftLoops)

if(activeStatement(node) is a loop)
if(appliedRule(node) = loopUnwind and loop �∈ leftLoops)

return loop;
else if(appliedRule(node) = loopInvariant) leftLoops := leftLoops ∪ {loop};

return innermostLoop(firstParent(node), leftLoops);

//tells whether a node has to wait for other merge parents
boolean waiting(node)

if(activeStatement(node) is a loop)
foreach(goal reachable from entryNode(node, loop))

if(open(goal) and activeStatement(goal) �= loop) return true;
return false;

//main: chooses a goal and a rule which should be applied to the goal
(Node, Rule) chooseRuleApplication()

goal := any goal with open(goal) and not waiting(goal);
if(not occursIn(innermostLoop(goal, ∅), goal)) rule := setBack;
else if(activeStatement(goal) is a loop)

if(knownInvariant(loop) �= none) rule := loopInvariant;
else lastRule := appliedRule(firstParent(goal));

if(lastRule = SE) rule := shiftUpdate;
else if(lastRule = shiftUpdate) rule := merge;
else if(lastRule = merge) rule := predicateAbstraction;
else if(lastRule = predicateAbstraction)

if(fixed point) rule := loopInvariant;
else rule := loopUnwind;

else rule := SE;
return (goal, rule);

Pseudocode

Fig. 1. Proof search strategy for predicate abstraction

is to perform predicate abstraction. Finally, if the iterative unwinding process
has reached a fixed point, i.e., if the current abstraction (as returned by αP) is
logically equivalent to the previous abstraction for this loop, then this abstraction
is an invariant for the loop. This invariant is then used to apply loopInvariant.
Otherwise, one more iteration is initiated with loopUnwind.

Predicate Abstraction in a Program Logic Calculus 145

7 Predicate Abstraction Scheme

The details of the predicate abstraction operator αP have been left open in
Sect. 5, because the approach does not depend on the use of any particular
predicate abstraction algorithm. It is only necessary that ϕ → αP (ϕ) is always
valid, and that the image of αP is finite. Existing algorithms which can be used
include those presented in [7] and in [10].

The approach has been implemented prototypically as an extension of the KeY
system [1,3], a partly automated dynamic logic theorem prover for the verifica-
tion of Java programs. This implementation uses the following simple predicate
abstraction scheme: the abstraction of ϕ is the conjunction of all predicates from
P which are implied by ϕ, i.e., αP (ϕ) =

∧{p ∈ P | (ϕ→ p) is found to be valid}.
This only allows conjunctions of the predicates, which is less flexible than sup-
porting arbitrary boolean combinations. On the other hand, it is much cheaper
to compute, which allows to handle a significantly higher number of predicates.

For efficiency, the implementation uses Simplify [8] instead of KeY itself for
checking the validity of the formulas ϕ→ p. In order to keep the number of such
checks down, known implication relationships between predicates are exploited:
if p1 → p2 is known to be valid a priori, and if we have been unsuccessful in
proving ϕ→ p2, then there is no need to check ϕ→ p1.

Another aspect of practical importance are heuristics for automatically gen-
erating predicates. Our implementation features an ad hoc set of such heuristics.
These take into consideration the program, the manually specified predicates,
and the pre- and postcondition, and create in an exhaustive way many typical
invariant components, such as ordering comparisons between pairs of integer
variables, or that the value of a reference type variable is null or different from
null. Extending such heuristics to cover more invariant elements is easily possi-
ble; however, increasing the number of predicates of course has an adverse effect
on performance, so one has to strike a balance between power and efficiency.

8 Example

As an extended example, we walk through a proof for the Java implementation of
selection sort shown in Fig. 2. The code is annotated with specifications written
in the Java Modeling Language (JML) [13]. The requires and ensures clauses
give a pre- and a postcondition for sort, respectively. The clause diverges true
states that sort must not necessarily terminate; it is present because we are not
concerned with termination issues in this paper.

No loop invariants are specified for the two loops of sort, instead only loop
predicates are given. The syntax used for this has been proposed as an extension
of JML in [10]: loop annotations starting with loop_predicate contain an arbi-
trary number of user-specified predicates for the loop, and free variables can be
declared with skolem_constant. Fig. 2 gives exactly those predicates which are
minimally necessary to make our implementation arrive at an invariant strong
enough for proving the given method contract. These are supplemented by the

146 B. Weiß

Java + JML

����� Sorter {

������ ���[] a;

//@ �	
��� normal_behaviour

//@ ��	���� a != �	��;

//@ ���	��� (������� ��� x; 0 < x && x < a.length; a[x-1] <= a[x]);

//@ �������� ��	�;

�	
��� ������ ���� sort() {

//@ ��������������� ��� x, y;

//@ �������������� a[x] <= a[y];

���(��� i = 0; i < a.length; i++) {

��� minIndex = i;

//@ ��������������� ��� x;

//@ �������������� a[minIndex] <= a[x];

���(��� j = i + 1; j < a.length; j++)

��(a[j] < a[minIndex]) minIndex = j;

��� temp = a[i];

a[i] = a[minIndex];

a[minIndex] = temp;

} } }

Java + JML

Fig. 2. Java implementation of selection sort

heuristically generated predicates; for example, based on the specified predicate
a[minIndex] ≤ a[x], the essential predicate ∀x; (0 ≤ x < i → a[minIndex] ≤
a[x]) is generated automatically, together with many similar quantified formulas
using different guards.

The JML specification can be translated into a DL sequent of the form ϕ �
[Sorter.sort();]ψ, where ϕ and ψ are essentially DL representations of the
requires clause and the ensures clause, respectively. Applying the predicate
abstraction proof search strategy to this root sequent yields the proof graph
sketched in Fig. 3.

The first step in the construction of this proof is to perform symbolic execution
of the program (abbreviated as SE in the figure) until the outer loop becomes the
active statement. After applying shiftUpdate and merge (in this first iteration,
to only one predecessor), we perform predicate abstraction for the outer loop.
Since no fixed point has yet been reached, we unwind the outer loop, creating
one branch where the loop body is entered and one where the loop terminates.
The latter is immediately cut off with setBack, since it will not return to the
loop entry and is therefore irrelevant for the loop invariant. On the former, the
body is symbolically executed, which entails dealing with the inner loop (shown
in the right half of Fig. 3) and finally leads to two branches where the outer loop
is again the active statement. After applying shiftUpdate to each of them, these
branches can be merged, and predicate abstraction is done again. Assuming that
the resulting abstraction is not equivalent to the previous one, another identical
iteration is performed.

Predicate Abstraction in a Program Logic Calculus 147

r
o
o
t

o
u
t
e
r

lo
o
p

e
n
t
r
y

S
E
,

sh
if
tU

p
d
a
te

,
m

e
rg

e

o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

b
o
d
y

o
u
t
e
r

lo
o
p

e
x
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

o
u
t
e
r

lo
o
p

e
n
t
r
y

se
tB

a
c
k

in
n
e
r

lo
o
p

o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

e
n
t
r
y

sh
if
tU

p
d
a
te

,
m

e
rg

e

o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

b
o
d
y

o
u
t
e
r

lo
o
p

e
x
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

o
u
t
e
r

lo
o
p

e
n
t
r
y

se
tB

a
c
k

in
n
e
r

lo
o
p

o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

e
n
t
r
y

sh
if
tU

p
d
a
te

,
m

e
rg

e

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

o
u
t
e
r

lo
o
p

e
n
t
r
y

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

in
it

ia
ll
y

v
a
li
d

p
r
e
s
e
r
v
e
d

b
y

b
o
d
y

u
s
e

c
a
s
e

lo
o
p
In

v
a
ri
a
n
t

*
*

*

F
O

L
S
E
,

F
O

L
S
E
,

F
O

L

o
u
t
e
r

lo
o
p

b
o
d
y

in
n
e
r

lo
o
p

e
n
t
r
y

S
E
,

sh
if
tU

p
d
a
te

,
m

e
rg

e

in
n
e
r

lo
o
p

e
n
t
r
y

in
n
e
r

lo
o
p

b
o
d
y

in
n
e
r

lo
o
p

e
x
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

t
h
e
n

b
r
a
n
c
h

e
ls

e
b
r
a
n
c
h

S
E
,

if
E
ls
e

in
n
e
r

lo
o
p

e
n
t
r
y

se
tB

a
c
k

in
n
e
r

lo
o
p

e
n
t
r
y

in
n
e
r

lo
o
p

e
n
t
r
y

S
E

S
E

in
n
e
r

lo
o
p

e
n
t
r
y

sh
if
tU

p
d
a
te

,
m

e
rg

e

in
n
e
r

lo
o
p

e
n
t
r
y

in
n
e
r

lo
o
p

b
o
d
y

in
n
e
r

lo
o
p

e
x
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

t
h
e
n

b
r
a
n
c
h

e
ls

e
b
r
a
n
c
h

S
E
,

if
E
ls
e

in
n
e
r

lo
o
p

e
n
t
r
y

se
tB

a
c
k

in
n
e
r

lo
o
p

e
n
t
r
y

in
n
e
r

lo
o
p

e
n
t
r
y

S
E

S
E

in
n
e
r

lo
o
p

e
n
t
r
y

sh
if
tU

p
d
a
te

,
m

e
rg

e

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

in
n
e
r

lo
o
p

e
n
t
r
y

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

in
it

ia
ll
y

v
a
li
d

p
r
e
s
e
r
v
e
d

b
y

b
o
d
y

u
s
e

c
a
s
e

lo
o
p
In

v
a
ri
a
n
t

*
o
u
t
e
r

lo
o
p

e
n
t
r
y

o
u
t
e
r

lo
o
p

e
n
t
r
y

F
O

L
se

tB
a
c
k

S
E

F
ig

.
3
.
P

ro
o
f

g
ra

p
h

fo
r

se
le

ct
io

n
so

rt

148 B. Weiß

We assume that after this second iteration, a fixed point has been reached:
the current antecedent, resulting from an application of predicateAbstraction, is
logically equivalent to its counterpart in the first iteration, and is thus a loop
invariant. With our implementation this inferred invariant is

∀x; ∀y; (0 ≤ x ∧ x < y ∧ y < i → a[x] ≤ a[y])
∧ ∀x; ∀y; (0 ≤ x < i ∧ i ≤ y < a.length→ a[x] ≤ a[y])
∧ 0 ≤ a.length ∧ i ≤ a.length ∧ 0 ≤ i ∧ a � .= null ∧ exc

.= null

where exc is a temporary variable introduced in the course of symbolic execution
to buffer a possibly thrown exception. Using this for Inv , we apply loopInvariant.
This creates three branches: the “initially valid” branch is trivial to close, because
u is empty and Inv is identical to Γ . Proving the “preserved by body” branch
entails applying loopInvariant to the inner loop, using the invariant inferred for
that loop in the last iteration. As the inferred invariant is strong enough to imply
the postcondition, the “use case” is closeable by further symbolic execution of
the remaining program and first-order reasoning (abbreviated FOL in the figure).

The structure of the subgraph for the inner loop is analogous to the struc-
ture of the overall graph. Each time the inner loop is encountered, an invariant
is inferred for it by repeated unwindings and predicate abstraction steps. The
invariants inferred in the first and the second occurrence of the inner loop are
different; they are dependent on the initial states occurring for the inner loop in
each iteration for the outer loop. Of the three branches created by loopInvariant,
the first one is again trivially closeable; the “preserved by body” branch is set
back to the outer loop entry, because it does not return to that loop; and the
use case is where symbolic execution actually continues back to the outer loop.

In practice, additional proof branches occur, dealing e.g. with the situation
where the accessed array a is null. These are left out in Fig. 3 for simplicity. In
this example, they can always be closed immediately (because the corresponding
execution path is obviously infeasible), or cut off with setBack (because the
execution path never returns to the respective loop entry).

9 Experiments

To give an indication of the feasibility of the approach, the results of applying the
prototypical implementation to eight Java methods are listed in Table 1. For each
method, the table shows its lines of combined code and specifications; the number
of predicates that had to be given manually; the number of predicates that were
generated automatically by the heuristics; the number of rule applications; the
number of calls to Simplify for computing the predicate abstraction; and an
approximate overall running time (obtained on a 1.5GHz, 2GB laptop).

The getMaximumRecordmethod is a simple loop which retrieves the “largest”
element out of an array of objects. The second example is selection sort, as
discussed in Sect. 8. The next four methods are from the Java Card API reference
implementation described in [16]. These methods are simpler than selection sort

Predicate Abstraction in a Program Logic Calculus 149

Table 1. Experimental results

Lines Man. prds. Gen. prds. Rule apps. Simplify Time

LogFile::getMaximumRecord 22 1 30 1362 41 10 s

Sorter::sort 22 1 1092 4594 431 90 s

Dispatcher::dispatch 70 0 297 2434 338 85 s

Dispatcher::removeService 67 1 159 3607 229 55 s

KeyImpl::clearKey 74 1 105 1777 252 115 s

KeyImpl::initialize 69 1 104 1746 242 95 s

IntervalSeq::incSize 33 2 178 3666 231 120 s

Subject::registerObserver 36 2 185 4431 242 125 s

algorithmically, but more technically involved. The last two examples are the
two methods requiring loop invariants in the tutorial [1].

In all listed cases, the found invariant was strong enough to complete the
verification task at hand (except for proving termination), without interaction.
Manually specifying the necessary zero to two loop predicates appeared notably
easier than having to provide the invariant as a whole. On the negative side, there
are three additional loops in [16] for which a strong enough invariant could not be
inferred. Two of them require invariants of a form (involving, e.g., existentially
quantified subformulas) which are not covered by the implemented predicate
abstraction scheme. The third contains deeply nested case distinctions in the
loop body, which lead to large disjunctive formulas that overwhelmed Simplify.

10 Conclusions

This paper has investigated an approach for integrating abstract interpretation
techniques, in particular predicate abstraction, into a calculus for deductive pro-
gram verification. This allows to take advantage of the power of a deductive
framework, while selectively introducing the approximation characteristic for
abstract interpretation to find loop invariants automatically when necessary.

The approach consists of adding a small number of additional rules, and a
dedicated proof search strategy to drive the invariant inference process. As is
common for abstract interpretation, this process always finds an invariant for
a loop, but this invariant is not in all cases expressive enough to be useful.
Its strength heavily depends on the underlying set of loop predicates, whose
elements are either generated heuristically or provided manually instead of the
loop invariants themselves.

Experience with an implementation in the KeY system demonstrates the
general feasibility of the approach. A line of future work is combining it with
more sophisticated predicate abstraction algorithms and heuristics for generat-
ing predicates. Another possible direction is the integration of an abstraction-
refinement mechanism, which would aim at systematically deriving predicates
from failed proof attempts. Also, it should be possible to generalise the approach
to also support other abstract domains, in addition to predicate abstraction.

150 B. Weiß

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Rümmer, P., Schmitt, P.H.: Verifying object-
oriented programs with KeY: A tutorial. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 70–101. Springer,
Heidelberg (2007)

2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

4. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-
oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS, vol. 4130, pp. 266–280. Springer, Heidelberg (2006)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM Press, New York (1977)

7. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidel-
berg (1999)

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Journal of the ACM 52, 365–473 (2005)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27, 99–123 (2001)

10. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL
2002, pp. 191–202. ACM Press, New York (2002)

11. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12, 576–580 (1969)

13. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM Soft. Eng. Notes 31, 1–38 (2006)

14. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

15. Leino, K.R.M., Logozzo, F.: Using widenings to infer loop invariants inside an SMT
solver, or: A theorem prover as abstract domain. In: WING 2007 (2007)

16. Mostowski, W.: Fully verified Java Card API reference implementation. In: Beckert,
B., Beckert, B. (eds.) VERIFY 2007, vol. 259, pp. 136–151. CEUR-WS.org (2007)

17. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 422–436.
Springer, Heidelberg (2006)

18. Schmitt, P.H., Weiß, B.: Inferring invariants by symbolic execution. In: Beckert,
B. (ed.) VERIFY 2007, vol. 259, pp. 195–210. CEUR-WS.org (2007)

19. Tiwari, A., Gulwani, S.: Logical interpretation: Static program analysis using the-
orem proving. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 147–166.
Springer, Heidelberg (2007)

	Predicate Abstraction in a Program Logic Calculus
	Introduction
	Related Work
	Program Logic
	Approach
	Rules
	Proof Search Strategy
	Predicate Abstraction Scheme
	Example
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

