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Abstract

Predicate abstraction is a form of abstract interpretation where the abstract
domain is constructed from a finite set of predicates over the variables of the
program. This paper explores a way to integrate predicate abstraction into a
calculus for deductive program verification based on symbolic execution, where
it allows us to infer loop invariants automatically that would otherwise have to
be given interactively. The approach has been implemented as a part of the
KeY verification system.

1. Introduction

Deductive verification of imperative programs typically requires hand-crafted
loop invariants, i.e., assertions about the program states which can possibly oc-
cur at the beginning of each iteration of a loop. Finding sufficiently strong loop
invariants can be difficult, and today this is often one of only a few human inter-
actions necessary in an otherwise heavily automated verification environment.

On the other hand, there are methods which can automatically determine
loop invariants. Leaving aside testing-based approaches like Daikon [1], such
methods are predominantly based on abstract interpretation [2], a theoretical
framework for static program analysis which can roughly be described as sym-
bolic execution of the program, using an abstract (i.e., approximative) domain
for the variable values, together with fixed-point iteration.

Predicate abstraction [3] is a variant of abstract interpretation where the
abstract domain is constructed from a finite set of predicates over the variables
of the program. Here, the symbolic execution is itself done in a precise fashion.
It is interspersed with explicit abstraction steps, which introduce the necessary
approximation with the help of an automated theorem prover that determines
a valid Boolean combination of the predicates. Compared with other forms of
abstract interpretation, a fundamental disadvantage of predicate abstraction is
that it is limited to finite abstract domains [4]. On the other hand, an advantage
is that its abstract domain can be flexibly adapted by simply changing the set
of predicates. In the same vein, predicate abstraction can quite easily support
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complex, quantified invariants [5]. It can be extended with an iterative refine-
ment process that automatically adapts the domain to the particular problem
[6].

This paper presents an approach for integrating predicate abstraction into a
deductive program verification calculus. This allows us to infer loop invariants
within this calculus, on demand and as an integral part of constructing the
overall correctness proof.

The present paper is an extended version of [7]. The most notable extensions
are that the formal definitions of the underlying logic are included here, as well
as proofs of the main theorems and a more detailed discussion of heuristics
for generating loop predicates. The work underlying both papers is based on
earlier work reported in [8]. Changes compared to [8] include: the soundness
of all rules can now be proven, and has been; proofs are no longer necessarily
tree-shaped, allowing the integration as a whole to be more natural; and the
transformation of state updates into formulas is now lazy instead of eager, which
improves performance.

Outline. Sect. 2 gives an overview of relevant related work. Necessary back-
ground on the underlying program logic and calculus is provided in Sect. 3.
A high level explanation of the approach follows in Sect. 4. In Sect. 5, new
calculus rules are introduced, and how these rules are to be used is described
in more detail in Sect. 6. Sect. 7 gives some technical details on the predicate
abstraction scheme used in a prototypical implementation of the approach. The
overall method is further illustrated with the help of an example in Sect. 8, and
practical experience with the implementation is reported in Sect. 9. Finally,
Sect. 10 contains conclusions and future work.

2. Related Work

This paper draws much inspiration from Flanagan and Qadeer’s approach for
using predicate abstraction in program verification [5]. Both in their approach
and in ours, a set of predicates is associated with each loop in a program, and
used to abstract specifically at loop entry points. Quantified loop invariants are
supported by allowing the loop predicates to contain free variables which are
later quantified over. The main difference is that in our setting, the inference is
done within a logical calculus, the same that is used for the verification itself.
This also distinguishes our technique from the one used in the Boogie verifier
[9], where a separate abstract interpretation component is used to infer needed
loop invariants, leading to a duplication of knowledge between the verifier and
the abstract interpreter.

There are several related approaches that also aim at a closer integration
between deductive verification and invariant inference. In the “loop invariants
on demand” technique [10], first-order verification conditions are generated from
programs, which include placeholder predicates for the loop invariants. These
are then passed to a first-order theorem prover. When an invariant is necessary
for a sub-proof, the prover tries to infer it by repeatedly invoking an abstract in-
terpreter with successively more precise abstract domains. Still, the verification
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condition generator, theorem prover, and abstract interpreter, are all separate
components. In [11], parts of the invariant generation are moved inside the
theorem prover, with the verification condition generation remaining separated.
In our approach, all three tasks—especially generation of verification conditions
and generation of invariants, which are closely related as they both deal with
programs—can be performed within one program logic theorem prover. Logical
interpretation [12] goes the other way round by embedding theorem proving
techniques in an abstract interpretation framework.

3. Background on Program Logic

The verification framework used in this paper is a program logic called dy-
namic logic (DL) [13], which is a generalisation of Hoare logic [14]. DL extends
first-order logic by modal operators [p], where p can be any legal sequence of
statements in some imperative programming language. A typical program ver-
ification task is to prove that under the assumption of some precondition ϕ,
some program p establishes a postcondition ψ; in DL, this amounts to proving
logical validity of the formula ϕ→ [p]ψ, which is equivalent to the Hoare triple
{ϕ}p{ψ}. Unlike Hoare logic, DL is closed under its modal and logical opera-
tors; for example, the precondition ϕ and postcondition ψ in the above example
might themselves contain programs. In the software verification systems KIV
[15] and KeY [16, 17], DL is used for reasoning about Java programs.

Our flavour of DL goes beyond classical DL by featuring another form of
modal operator called updates [18, 19]. Updates serve to express state changes
in a way which is free from side effects and independent of the programming
language used to write the program under verification.

In the following we formally introduce dynamic logic with updates as far
as it is relevant for this work. We begin with syntax in Sect. 3.1, continue
with semantics in Sect. 3.2, and conclude with a look at a suitable calculus in
Sect. 3.3.

3.1. Syntax

Definition 1 (Signatures). A signature is a tuple (V,F ,P, P), where V is a
set of (logical) variables, F is a set of function symbols, P a set of predicate
symbols, and P a set of programs. Function and predicate symbols have fixed
arities. We demand that F and P contain an infinite supply of symbols of every
arity.

In the following we assume to be given a fixed signature. Based on this
signature, we define the syntactical categories of terms, formulas, and updates.

Definition 2 (Syntax). Terms t, formulas ϕ, and updates u are defined by
the following grammar, where x ∈ V ranges over logical variables, f ∈ F over
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function symbols, p ∈ P over predicate symbols, and p ∈ P over programs:

t ::= x | f(t, . . . , t) | if (ϕ)then(t)else(t) | {u}t
ϕ ::= true | false | p(t, . . . , t) | t .= t | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

∀x;ϕ | ∃x;ϕ | [p]ϕ | {u}ϕ
u ::= f(t, . . . , t) := t | u ‖u | for x;u

Terms f(t1, . . . , tn), formulas p(t1, . . . , tn) and updates f(t1, . . . , tn) := t must
respect the arities n of the symbols f and p.

DL formulas are evaluated in program states, which are interpretations of
the function and predicate symbols. Both programs p and updates u are state
transformers which change the interpretation of function symbols. Intuitively,
an update f(t1, . . . , tn) := t modifies the interpretation of the function symbol f
at position (t1, . . . , tn) to the value of t. A “parallel” update u1 ‖u2 executes u1
and u2 simultaneously, while a “quantified” update for x;u executes in parallel
all instances of u where variable x has been instantiated with some value of the
universe. For example, an update c := d ‖ for x; f(x) := c sets the value of the
constant symbol c to the value of d, and the value of all f(x) to the old value of
c. We will call the function symbols that are potentially affected by an update
the targets of the update:

Definition 3 (Update Targets). For every update u, the targets function re-
turns a set of function symbols:

targets(f(t̄) := t) = {f}
targets(u1 ‖u2) = targets(u1) ∪ targets(u2)

targets(for x;u) = targets(u)

From now on we use some vector notation for abbreviation. For example, in
Def. 3, the notation t̄ stands for t1, . . . , tn, where n is the arity of f .

We do not specify the exact programming language used to form the pro-
grams p here. It might be a simple theoretical “while”-language, or a minimalist
object-oriented language as in [18], or a large subset of sequential Java as in the
KeY system [16]. In this paper, we only require that its state transitions can be
modelled in terms of changing the interpretation of the function symbols in our
signature. To this end, a local program variable x can be represented logically
as a constant symbol x ∈ F , while an object field (or struct member) f is a
function symbol f ∈ F with arity 1, which maps an object to a value. In order
to resemble typical programming language notation, we often denote a term
f(o) as o.f for such function symbols f. Arrays can be modelled via a single
binary function [], where we typically pretty-print a term [](a, i) as a[i]. We
identify side-effect free program expressions with logical terms.

3.2. Semantics

The semantics of DL formulas is based on Kripke structures:
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Definition 4 (Kripke structures). A Kripke structure is a triple (D,S, ρ), where
D is a universe of semantical values; where S is the set of all program states,
which are functions s ∈ S that map every function symbol f ∈ F to a function
s(f) : Dn → D and every predicate symbol p ∈ P to a relation s(p) ⊆ Dn (where
n is the arity of f and p, respectively); and where ρ is a function that associates
with every program p ∈ P a transition relation ρ(p) ⊆ S2.

The function ρ represents the semantics of the programming language used
to form the programs in P: for two states s1, s2 ∈ S, having (s1, s2) ∈ ρ(p)
means that if we execute p in state s1, the execution may terminate in s2. If p
is deterministic, then for every starting state s1 there is at most one such state
s2.

In the following, we assume to be given a fixed Kripke structure. Before we
can define the semantics of terms, formulas and updates, we need to introduce
the concept of semantic updates, which represent state changes on the semantic
level.

Definition 5 (Semantic updates). A semantic update is a set U of tuples
(f, v̄, v), where f ∈ F is a function symbol with arity n, v̄ ∈ Dn is a tuple of
values, and where v is a value. Furthermore, a semantic update never contains
(f, v̄, v) and (f, v̄, v′) for values v, v′ ∈ D with v 6= v′. This absence of “con-
flicts” makes it possible to use such a semantic update U as a state transforming
function, where for each state s the output state U(s) is defined by:

U(s)(f)(v̄) =

{
v if (f, v̄, v) ∈ U
s(f)(v̄) otherwise

for all function symbols f ∈ F and all v̄ ∈ Dn (where n is the arity of f), and
by U(s)(p) = s(p) for all predicate symbols p ∈ P.

Definition 6 (Semantics). Given a state s ∈ S and a variable assignment
β : V → D, a term t is evaluated to a value vals,β(t) ∈ D, a formula ϕ to a
truth value vals,β(ϕ) ∈ {tt ,ff }, and an update u to a semantic update vals,β(u).
The evaluation is defined in Fig. 1. A formula ϕ is called (logically) valid,
denoted |= ϕ, iff vals,β(ϕ) = tt for all s ∈ S and all β.

As usual, βvx denotes the variable assignment which is identical to β except
that βvx(x) = v. As defined in the figure, a formula [p]ϕ holds in a state if all
states reachable by executing p in this state satisfy the postcondition ϕ, or in
other words, if p is partially correct wrt. ϕ. Similarly, {u}ϕ holds in a state if
ϕ holds in the state produced by the update u. In case of a conflict between
u1 and u2 in a parallel update u1 ‖u2, the rightmost update u2 “wins”. For
quantified updates for x;u, we do not care about their semantics in case of
conflicts here, and instead view it just as an unspecified semantic update. A
more precise definition can be found in [19], but does not matter here, because
the quantified updates occurring in this paper never produce conflicts.

Before moving on to the calculus, we state a few observations on the above
definitions that will be needed in a proof later on. We do not prove these
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vals,β(x) = β(x)

vals,β(f(t̄)) = s(f)(vals,β(t̄))

vals,β(if (ϕ)then(t1)else(t2)) =

{
vals,β(t1) if vals,β(ϕ) = tt
vals,β(t2) otherwise

vals,β({u}t) = vals′,β(t), where s′ = vals,β(u)(s)

vals,β(true) = tt

vals,β(false) = ff

vals,β(p(t̄)) = tt iff vals,β(t̄) ∈ s(p)
vals,β(t1

.
= t2) = tt iff vals,β(t1) = vals,β(t2)

vals,β(¬ϕ) = tt iff vals,β(ϕ) = ff

vals,β(ϕ1 ∧ ϕ2) = tt iff ff 6∈ {vals,β(ϕ1), vals,β(ϕ2)}
vals,β(ϕ1 ∨ ϕ2) = tt iff tt ∈ {vals,β(ϕ1), vals,β(ϕ2)}

vals,β(ϕ1 → ϕ2) = vals,β(¬ϕ1 ∨ ϕ2)

vals,β(∀x;ϕ) = tt iff ff 6∈ {vals,βv
x
(ϕ) | v ∈ D}

vals,β(∃x;ϕ) = tt iff tt ∈ {vals,βv
x
(ϕ) | v ∈ D}

vals,β([p]ϕ) = tt iff ff 6∈ {vals′,β(ϕ) | (s, s′) ∈ ρ(p)}
vals,β({u}ϕ) = tt iff vals′,β(ϕ) = tt , where s′ = vals,β(u)(s)

vals,β(f(t̄) := t) =
{

(f, vals,β(t̄), vals,β(t))
}

vals,β(u1 ‖u2) = (vals,β(u1) ∪ vals,β(u2)) \ C, where

C =
{

(f, v̄, v) | (f, v̄, v′) ∈ vals,β(u2)

and v 6= v′
}

vals,β(for x;u) =
⋃
v∈D

vals,βv
x
(u) if there are no conflicts

Figure 1: Semantics of terms, formulas and updates
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observations themselves, but consider them obvious. First we note that certain
updates replace the interpretation of one function symbol with that of another.

Proposition 1 (Function-replacing updates). If f, f ′ ∈ F are function symbols,
and u =

(
for x̄; f(x̄) := f ′(x̄)

)
, then for all states s, all variable assignments β,

all function and predicate symbols op ∈ F ∪ P:

vals,β(u)(s)(op) =

{
s(f ′) if op = f

s(op) otherwise

Secondly, we state that an update changes at most the interpretation of its
targets, i.e., of the function symbols f ∈ targets(u):

Proposition 2 (Non-targeted symbols). For all states s, all variable assign-
ments β, all updates u, and all symbols op ∈ (F ∪ P) \ targets(u):

vals,β(u)(s)(op) = s(op)

Our final observation is that the interpretation of symbols which do not occur
in a term, formula or update does not affect the evaluation of that term, formula
or update. Note however that we have to exclude from this statement all symbols
which can affect the interpretation of programs, such as function symbols used to
represent program variables. This is because the interpretation of such symbols
may affect the semantics of formulas indirectly via modal operators [p]. For
strictly logical symbols, such as fresh symbols introduced during a proof, we
know that they do not affect any programs.

Proposition 3 (Non-occurring symbols). For all states s1, s2 ∈ S, all variable
assignments β, and all terms, formulas or updates a: if for all function and
predicate symbols op ∈ F ∪ P that occur in a or whose interpretation affects
ρ(p) for any p ∈ P it holds that s1(op) = s2(op), then

vals1,β(a) = vals2,β(a)

3.3. Calculus

For mechanical reasoning about the validity of DL formulas we use a sequent
calculus. A sequent is a construct Γ ` ∆, where Γ (called the antecedent) and
∆ (called the succedent) are finite sets of formulas. Its semantics is defined
as vals,β(Γ ` ∆) = vals,β(

∧
Γ →

∨
∆). A sequent calculus rule deduces the

validity of a sequent (the rule’s conclusion) from the validity of one or more
other sequents (the rule’s premises). The rule is called sound iff the validity of
all the premises implies the validity of the conclusion.

In order to prove the validity of a sequent, one constructs a proof tree: its
root is the original sequent itself, and in each step, it is extended by applying
a rule to one of its leaves (called goals). Applying a rule means matching its
conclusion to the goal, and adding its premises as children of the goal. If the
applied rule does not have any premises, the branch is closed. If all branches
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of a proof tree are closed and all applied rules are sound, this implies that the
root sequent is logically valid.

The classical rules of a sequent calculus for first-order logic can be found,
e.g., in [16, Chapt. 2]. Here, we concentrate on how to handle formulas with
programs in them. For this purpose, we use rules which operate on the active
statement, i.e., the first basic command in the modal operator, and shorten
the program step by step until only a first-order problem remains. Intuitively,
this process can be understood as symbolic execution [20]: the program is “ex-
ecuted”, but with symbolic instead of concrete values for its variables. It is
similar to the verification condition generation or the strongest postcondition
computation in related verification approaches, but differs in that it is inter-
twined with other forms of reasoning, in particular first-order reasoning and
arithmetic simplification, within the same calculus.

Such symbolic execution rules formalise the semantics of the underlying pro-
gramming language. In the following, we take a look at typical rules for the three
elementary programming constructs of assignments, conditional statements, and
loops, in a simplified Java-like language. The basic assignment rule is

assign
Γ ` {u}{x := se}[ω]ψ, ∆
Γ ` {u}[x = se; ω]ψ, ∆

where Γ and ∆ are sets of formulas; u is an update; se is a “simple expression”,
i.e., an expression without side effects; ω is the rest of the program after the
assignment; and ψ is a formula. As a border case, any of Γ, ∆ and u may
be empty and disappear. The rule simply transforms the program assignment
x = se; into an equivalent update x := se.

This update and the preceding update u can then be aggressively simplified
and normalised using a set of update rewriting rules [19]. For example, the
following rule combines two updates into a single parallel one:

{u}{f(t̄) := t} {u ‖ f({u}t̄) := {u}t}

It is sound because by Def. 6, the rightmost sub-update of a parallel update
prevails in case of a conflict. Overall, the update rewrite system establishes a
normal form of updates, and immediately drops ineffective sub-updates. For
simplicity, we use it as a monolithic sequent rule simplifyUpdate here, which
performs several rewriting steps at once.

During the course of symbolic execution, a complex update describing the
state change of the program accumulates in this way in front of the modal
operator. Once the program has been dealt with completely, the final update
can be applied to the postcondition as a substitution, which is also done by
simplifyUpdate. As an example, consider the following unclosed proof tree (with
the root at the bottom):
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(simplifyUpdate)
(simplifyUpdate)

(assign)
(simplifyUpdate)

(assign)
(assign)

` if (a
.
= b)then(2)else(1)

.
= 1

` {a.f := 1 ‖ b.f := 2}(a.f .
= 1)

` {a.f := 1}{b.f := 2}(a.f .
= 1)

` {a.f := 1}[b.f = 2;]a.f
.
= 1

` {a.f := 0}{a.f := 1}[b.f = 2;]a.f
.
= 1

` {a.f := 0}[a.f = 1; b.f = 2;]a.f
.
= 1

` [a.f = 0; a.f = 1; b.f = 2;]a.f
.
= 1

Recall that a.f is just a notational variation of the term f(a), used in order to
resemble the usual object attribute access notation. One after the other, the
three assignments are turned into updates. Since the first update is overwritten
by the second, it can be simplified away. Finally, the resulting update is applied
to the postcondition a.f

.
= 1 as a substitution. This last step creates a syn-

tactical case distinction on whether a and b refer to the same object. Delaying
and sometimes avoiding such aliasing related case distinctions is the primary
motivation for handling assignments via updates in this way.

Conditional statements are symbolically executed by branching the proof on
whether the guard is true or false:

ifElse

Γ, {u}se .
= true ` {u}[p ω]ψ, ∆ (then branch)

Γ, {u}se .
= false ` {u}[q ω]ψ, ∆ (else branch)

Γ ` {u}[if(se) p else q ω]ψ, ∆

For loops, the simplest approach is to unwind them:

loopUnwind
Γ ` {u}[if(e){p while(e) p} ω]ψ, ∆

Γ ` {u}[while(e) p ω]ψ, ∆

Note that if the programming language has features such as exceptions, break
or continue statements, this rule (and others) become more complex, but the
basic concept remains the same.

Using loopUnwind is sufficient only for loops which terminate after a fixed,
statically known number of iterations. General loops can be handled with loop-
Invariant:

loopInvariant

Γ ` {u}Inv , ∆ (initially valid)
Inv , se

.
= true ` [p]Inv (preserved by body)

Inv , se
.
= false ` [ω]ψ (use case)
Γ ` {u}[while(se) p ω]ψ, ∆

Here, Inv is a formula acting as a loop invariant. The first two branches corre-
spond to the base case and the step case, respectively, of an inductive argument
guaranteeing that Inv holds at the beginning of all loop iterations. The result
of this induction is used on the third branch, where we can assume that Inv
holds after leaving the loop and before continuing program execution behind
the loop. The problem with the invariant rule is that—unlike the symbolic exe-
cution rules—it can be applied automatically only if a suitable invariant Inv is
already known for the loop.
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4. Approach

A program logic calculus like the one introduced in the previous section
bears many similarities to abstract interpretation style program analysis; both
use some form of symbolic execution to infer and check properties about pro-
grams. Unlike usual abstract interpretations, the deductive approach can, at
least in principle, handle arbitrarily precise properties. This comes at the cost of
sometimes needing human interaction for proving the resulting first-order prob-
lems, and at the cost of requiring manually specified loop invariants. This paper
aims to address the latter issue by integrating abstract interpretation concepts
into the deductive setting.

A difference between abstract interpretation and our calculus is in the treat-
ment of control flow splits: the calculus handles them by branching the proof
tree, where the created branches remain separated permanently. On the other
hand, abstract interpretations typically use a “merge” or “join” operator to com-
bine properties at junction points in the control flow graph. This corresponds
to accumulating properties for every program point, instead of treating the ex-
ecution paths separately. For loops, the infinite number of paths makes such an
accumulation necessary; deductive verification “cheats” here by assuming to be
given a loop invariant, which already is an accumulated description of all paths
through the loop. We can overcome this difference rather straightforwardly by
introducing a rule into the calculus which merges several proof branches into
one.

With this change, loops can be treated by applying loopUnwind and ifElse,
symbolically executing the body, and then merging the resulting sequent (where
the loop entry is again the active statement) with the previous such sequent.
For example, we might begin with a sequent i

.
= 0 ` [while(i<j) ...]ψ,

which says that we have to consider the loop in all states where i has the value
0. After one iteration, we might arrive at i

.
= 1 ` [while(i<j) ...]ψ, reflecting

the fact that after this iteration, i has been incremented by one. “Merging”
these sequents will combine the antecedents disjunctively, yielding the sequent
i
.
= 0 ∨ i

.
= 1 ` [while(i<j) ...]ψ. Thus, we know that after up to one

iteration through the loop, the value of i is either 0 or 1.
With every such iteration of unwinding, symbolically executing and merging,

the set of states that are deemed possible for the loop entry point becomes larger.
In principle, we only have to repeat this iterative process until this set of states
stabilises, i.e., until it is a fixed point of the process: once this happens, it covers
all states which are possible for the loop entry on any execution path, or in other
words, its representation as a formula then is a loop invariant.

In the terminology of abstract interpretation, this corresponds to a computa-
tion of the static semantics. Obviously, the infinite number of states means that
for most loops, such a computation will not terminate. To change this, we need
to introduce approximation. A form of approximation particularly suitable in
our context is that of predicate abstraction [3, 5]: We assume that for each loop
we are given a finite set P of predicates (formulas). Then, the abstraction of a
formula for the entry point of this loop is a Boolean combination of elements of
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P which is implied by the original formula. That is, the abstraction retains the
information from the formula which is expressible by the predicates in P , and
approximates away everything else. Since there are only finitely many Boolean
combinations of the predicates, performing such an abstraction before each un-
winding step ensures convergence after a finite number of iterations. The found
invariant can then be used to apply loopInvariant.

With predicate abstraction, the predicates P associated with a loop form
the building blocks for the invariants which can be found for that loop. Such
predicates can either be specified manually—which is easier than having to
specify whole, correct loop invariants—or be generated heuristically based on
the particular program and specification to be verified.

5. Rules

In this section, we define new sequent calculus rules which extend a rule base
like the one sketched in Sect. 3.3 with predicate abstraction based loop invariant
inference as described in Sect. 4.

5.1. Merging Proof Branches

First is a rule for merging execution paths at junction points in the control
flow graph, called merge:

merge

∧
(Γ1 ∪ ¬∆1) ∨ · · · ∨

∧
(Γn ∪ ¬∆n) ` ψ

Γ1 ` ψ,∆1 . . . Γn ` ψ,∆n

where ¬∆i stands for the set {¬δ | δ ∈ ∆i}. This rule is unusual in that it
has several conclusions, or in other words, in that it is applied to several proof
goals at once. To allow such rules means to generalise the structure of proofs
from trees to directed acyclic graphs (DAGs) which are connected and rooted.
Apart from that, merge is a rather simple rule operating on the propositional
logic level. A typical application (to be read, intuitively, from bottom to top) is

(merge)
ϕ1 ∨ ϕ2 ` [while(e) p]ψ

ϕ1 ` [while(e) p]ψ ϕ2 ` [while(e) p]ψ

Lemma 1 (Soundness of merge).

|=
∧

(Γ1 ∪ ¬∆1) ∨ · · · ∨
∧

(Γn ∪ ¬∆n) ` ψ (1)

implies

|= Γ1 ` ψ,∆1 . . . Γn ` ψ,∆n

Proof. Assume (1) holds. Let s ∈ S be a state, β a variable assignment, and
i ∈ {1, . . . , n}. We need to show vals,β(Γi ` ψ,∆i) = tt . If there is γ ∈ Γi with
vals,β(γ) = ff or if there is δ ∈ ∆i with vals,β(δ) = tt , this is trivially true.
We therefore assume vals,β(

∧
(Γi ∪¬∆i)) = tt , and aim to show vals,β(ψ) = tt .

This follows immediately from (1).
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5.2. Predicate Abstraction

The next rule is responsible for the predicate abstraction step:

predicateAbstraction
αP (

∧
(Γ ∪ ¬∆)) ` [while(e) p ω]ψ
Γ ` [while(e) p ω]ψ,∆

where P is the set of predicates associated with the loop while(e)p, and where
αP is a meta-operator which computes for any formula ϕ a predicate abstraction
using P . This means that αP (ϕ) is some Boolean combination of the predicates
in P such that ϕ→ αP (ϕ) is valid. The details of computing αP (ϕ) depend on
the particular predicate abstraction scheme (Sect. 7); usually, this computation
itself requires first-order reasoning modulo several theories.

Note that the semantics of the while loop occurring in predicateAbstraction
has not been formally defined. This does not matter, because the rule only
uses the loop as the provider of a set P of loop predicates and is otherwise
independent from the form of the program in the sequent.

Lemma 2 (Soundness of predicateAbstraction).

|= ϕ→ αP (ϕ) for all ϕ (2)

and

|= αP (
∧

(Γ ∪ ¬∆)) ` [while(e) p ω]ψ (3)

together imply

|= Γ ` [while(e) p ω]ψ,∆

Proof. Assume (2) and (3) hold. Let s ∈ S be a state and β a variable as-
signment. We need to show vals,β(Γ ` [while(e) p ω]ψ,∆) = tt . If there
is γ ∈ Γ with vals,β(γ) = ff or if there is δ ∈ ∆ with vals,β(δ) = tt , this is
trivially true. We therefore assume vals,β(

∧
(Γ ∪ ¬∆)) = tt , and aim to show

vals,β([while(e) p ω]ψ) = tt .
By (2), we know that |=

∧
(Γ ∪ ¬∆) → αP (

∧
(Γ ∪ ¬∆)). Thus, we have

vals,β(αP (
∧

(Γ ∪ ¬∆))) = tt . Together with (3), this yields the desired result
vals,β([while(e) p ω]ψ) = tt .

5.3. Handling Updates

Both above rules operate on sequents without updates in front of the modal
operators containing the programs. Thus, we need a way to transform typical
sequents ϕ ` {u}[p]ψ such that the update u is removed from the modality [p].
This can be achieved with the shiftUpdate rule:

shiftUpdate
{u′}Γ, Upd ` [p]ψ, {u′}∆

Γ ` {u}[p]ψ, ∆

12



where:

• for each f ∈ targets(u): f ′ ∈ F is a fresh function symbol with the same
arity as f

• the update u′ is the parallel composition of the updates (for x̄; f(x̄) :=
f ′(x̄)

)
for all such pairs (f, f ′), in an arbitrary order

• Upd =
∧
f∈targets(u) ∀ȳ; f(ȳ)

.
= {u′}{u}f(ȳ)

Intuitively, the update u′ substitutes for each updated function symbol f (as
defined in Def. 3) a fresh symbol f ′ which represents the old, pre-update, in-
stance of f . The formula Upd links the old instances with the current ones.
The new antecedent ({u′}Γ, Upd) is the strongest postcondition of Γ under u;
as a whole, the shiftUpdate rule is closely related to the classical strongest post-
condition rule for assignments, which in the same way introduces a fresh name
for the old instance of the assigned program variable (or which, in other words,
existentially quantifies the old instance of the assigned variable). The following
proof tree is an example:

(simplifyUpdate)

(shiftUpdate)

f ′(a)
.
= 27,

∀y; y.f
.
= if (y

.
= b)then(42)else(f ′(y))
` [p]ψ

{for x;x.f := f ′(x)}a.f .
= 27,

∀y; y.f
.
= {for x;x.f := f ′(x)}{b.f := 42}y.f

` [p]ψ
a.f

.
= 27 ` {b.f := 42}[p]ψ

Since the updates resulting from this application of shiftUpdate are attached to
formulas without modalities, they can be simplified away immediately, leading
to a sequent without updates at all. This example also shows the disadvantage
of applying shiftUpdate, which is that it indirectly introduces quantifications and
case distinctions for the possible aliasing situations. Using updates—instead of
handling assignments in a strongest postcondition style right away—allows us
to delay these complications as long as possible. However, the approach of the
paper is independent of the choice of using updates, and would still be valid in
an update-less setting.

Lemma 3 (Soundness of shiftUpdate).

|= {u′}Γ,Upd ` [p]ψ, {u′}∆ (4)

implies

|= Γ ` {u}[p]ψ,∆

Proof. Assume (4) holds. Let s ∈ S be a state and β a variable assignment. We
need to show vals,β(Γ ` {u}[p]ψ,∆) = tt . If there is γ ∈ Γ with vals,β(γ) = ff
or if there is δ ∈ ∆ with vals,β(δ) = tt , this is trivially true. We therefore
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assume vals,β(
∧

(Γ ∪ ¬∆)) = tt , and aim to show vals,β({u}[p]ψ) = tt .
Let U = vals,β(u), and let the state s′ ∈ S be defined as follows:

s′(op) =

{
s(f) if op = f ′ for some f ∈ targets(u)

U(s)(op) otherwise

That is, s′ is identical to U(s) except that the fresh function symbols f ′ are
interpreted like the corresponding f are interpreted in s. We are now going to
show that vals′,β({u′}

∧
(Γ∪¬∆)) = tt , i.e., that the changes we made to obtain

s′ and the update u′ “cancel each other out” wrt. the validity of
∧

(Γ ∪ ¬∆).
Let U ′ = vals′,β(u′), and s′′ = U ′(s′). By Prop. 1, s′′ satisfies

s′′(op) =

{
s′(f ′) if op = f ∈ targets(u)

s′(op) otherwise

By definition of s′, this is the same as

s′′(op) =


s(op) if op ∈ targets(u)

s(f) if op = f ′ for some f ∈ targets(u)

U(s)(op) otherwise

With the help of Prop. 2 we can simplify this to

s′′(op) =

{
s(f) if op = f ′ for some f ∈ targets(u)

s(op) otherwise
(5)

That is, s′′ is identical to s except for the interpretation of the fresh function
symbols f ′.
Since these symbols do not occur in Γ, ∆ or any programs, and since we know
that vals,β(

∧
(Γ∪¬∆)) = tt , it follows by Prop. 3 that vals′′,β(

∧
(Γ∪¬∆)) = tt ,

and consequently (by choice of s′′) we get the desired property

vals′,β({u′}
∧

(Γ ∪ ¬∆)) = tt (6)

Let f ∈ targets(u). (5) tells us that s′′(f) = s(f). Therefore U(s′′)(f) =
U(s)(f). Independently, the definition of s′ yields s′(f) = U(s)(f). Combined,
we have s′(f) = U(s′′)(f), which by definition of s′′ is the same as s′(f) =
U(U ′(s′))(f). Since this holds for all f ∈ targets(u) (and since by Prop. 3
U = vals′′,β(u)), this implies

vals′,β(Upd) = tt (7)

Together, (4), (6) and (7) imply vals′,β([p]ψ) = tt . Since s′ is identical to U(s)
except in the f ′ which do not occur in [p]ψ or any programs, this implies by
Prop. 3 that valU(s),β([p]ψ) = tt , or equivalently, vals,β({u}[p]ψ) = tt .
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5.4. Setting Back Proof Branches

The symbolic execution during invariant inference sometimes creates proof
branches that do not contribute to the loop invariant and which we thus do
not want to follow up on. For example, such irrelevant branches occur when
the loop body throws an uncaught exception; the execution paths where this
happens never return to the loop entry, and thus do not affect the loop invariant.
Another example is the loop termination branch which is created when applying
loopUnwind and subsequently ifElse. Instead of considering these side branches
in every iteration of symbolic execution, we will reverted them to the loop entry
with an operation setBack, that we informally define as

“replace a goal by any of its dominators in the proof graph”.

As usual, a dominator of a node n is a node n′ with the property that every path
from the root to n must pass through n′. As an example for setBack, consider
the proof graph below:

(loopUnwind, ifElse)
ϕ1 ` [p; while(e) p]ψ

(setBack)
ϕ ` [while(e) p]ψ

ϕ2 ` []ψ
ϕ ` [while(e) p]ψ

Instead of continuing on the right branch, it is set back to the loop entry. Once
the loop body p has been symbolically executed on the left branch, merge can
be used to combine both branches.

The setBack operation can be seen as a non-destructive form of backtrack-
ing. It is not expressible as a sequent calculus rule in the regular sense, but it
preserves the overall meaning of the proof: if all goals are valid, then the root
must be valid.

Lemma 4 (Soundness of setBack). Every proof graph which is constructed by
applying rules that are sound in the traditional sense and the setBack operation
satisfies: if all goal sequents are valid, then the root sequent is valid.

Proof sketch. For proof graphs consisting just of a root node, the proposition is
trivially satisfied.
As an induction hypothesis, assume that we are given a proof graph p with
root r and goals G for which all sub proof graphs (including p itself) satisfy the
proposition. We need to show that the graph p′ with goals G′ resulting from
applying setBack to one of the goals g ∈ G again satisfies the proposition, i.e.,
that the validity of all G′ implies the validity of r.
By definition of setBack, G′ = (G\{g})∪{g′}, where g′ corresponds to the same
sequent as some node d which dominates g. Consider the subgraph pd resulting
from cutting off in p all nodes strictly dominated by d. For the goals Gd of pd
we know: Gd ⊆ (G \ {g})∪{d} (because g has been cut off, while d has become
a leaf). By the induction hypothesis, we know that the validity of Gd implies
the validity of r. Since the sequents corresponding to G′ are a superset of the
sequents corresponding to Gd, this means that also the validity of G′ implies
the validity of r.
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6. Proof Search Strategy

Sect. 4 has sketched the overall idea of how to apply the rules defined in
Sect. 5. In this section, we concretise this aspect by defining a corresponding
proof search strategy, i.e., an algorithm which automatically chooses the next
rule to be applied to a given unclosed proof. Our strategy extends a strategy able
to do regular symbolic execution and first-order reasoning with the capability
to infer a loop invariant whenever an invariant-less loop is encountered during
proof construction.

The strategy is defined semi-formally in Figs. 2 and 3. The three functions in
Fig. 2 are helpers for the main function in Fig. 3. This main function returns a
pair of a goal node and a rule, with the meaning that the returned rule should be
applied to the returned goal. The presentation is a bit imprecise in this respect,
because in general there may of course be multiple ways to apply a single rule to
a particular goal. However, for the rules that matter here, the exact application
focus is either unique or it is explained in the paragraphs below. We assume
that the occurring sequents are of the form (Γ ` {u}[p]ψ,∆), where p is the only
program occurring in the sequent. This assumption holds throughout typical
Hoare-like proofs, e.g. in the KeY system.

We consider a symbolic execution state, as captured by a node of the proof
graph, to be “in” a loop when that loop has previously been “entered” by
applying loopUnwind but not yet “left” by applying loopInvariant. Accordingly,
the entryNode function determines the node where a specific loop, passed as
a parameter to the function, has last been entered. Function innermostLoop
returns the loop that has last been entered but not yet left.

Function waiting tells whether the symbolic execution of the passed node
should not be continued yet, because rule applications on other branches have
to be performed first. This is the case if the active statement is a loop, and
if from the entry node of that loop it is possible to reach in the graph open
goals where the active statement is not yet that loop: in this case, we first
want to continue symbolic execution of these other goals until they get back
to the loop as active statement. In this way, we turn the entry points of loops
into “synchronisation points”, where different proof branches belonging to the
same loop—to which rules are otherwise applied independently in an unspecified
order—wait for each other. Only when all of them are ready do we continue
with the waiting branches, by combining them all with merge.

The main function chooseRuleApplication now works as follows. First, it
picks an arbitrary open goal which is not waiting for other branches. Then, it
checks whether the innermost loop that symbolic execution is “in” (if any) does
not occur in the program contained in the modal operator anymore. If so, this
indicates that the current branch will not return to the loop entry, for example
because an exception has been thrown which is not caught within the loop
body. The next step is then to revert it to the entry point of the innermost loop
with setBack. Otherwise, the choice of the rule depends on whether the active
statement is a loop or not. If not, the strategy chooses a regular applicable
symbolic execution rule or a first-order rule (abbreviated as SE in Fig. 3).
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Pseudocode

//returns the node where symbolic execution entered a loop
Node entryNode(Node node, Loop loop)

if(activeStatement(node) = loop)
if(appliedRule(node) = loopUnwind) return node;
else if(appliedRule(node) = loopInvariant) return none;

return entryNode(firstParent(node), loop);

//returns the innermost loop which symbolic execution is in
Loop innermostLoop(Node node, SetOfLoop leftLoops)

if(activeStatement(node) is a loop)
Loop loop := activeStatement(node)
if(appliedRule(node) = loopUnwind and loop 6∈ leftLoops)

return loop;
else if(appliedRule(node) = loopInvariant)

leftLoops := leftLoops ∪ {loop};
return innermostLoop(firstParent(node), leftLoops);

//tells whether a node has to wait for other merge parents
boolean waiting(Node node)

if(activeStatement(node) is a loop)
Loop loop := activeStatement(node)
foreach(goal reachable from entryNode(node, loop))

if(open(goal) and activeStatement(goal) 6= loop) return true;
return false;

Pseudocode

Figure 2: Proof search strategy for predicate abstraction: helper functions

If the active statement is a loop, and if an invariant is already known for
this loop, this invariant is used to apply loopInvariant. If no invariant is known,
special rules are applied in a fixed order. First after reaching the loop entry via
regular symbolic execution, shiftUpdate is used to get rid of any update preced-
ing the modal operator. Then, merge can be applied to merge the current proof
branch with all other branches that have been waiting for it. The next step is
to perform predicate abstraction. Finally, we check whether the iterative un-
winding process has reached a fixed point, i.e., whether the current abstraction
implies the previous abstraction for this loop. The “abstraction” is the context
formula of the sequent, as produced by αP ; for example, in a sequent ϕ ` [p]ψ
resulting from predicateAbstraction, it is the formula ϕ. The initial abstraction
before the first iteration is simply false—the strongest possible invariant, which
is then weakened in each iteration (unless the loop is unreachable). If the cur-
rent abstraction is indeed a fixed point, then it is used as an invariant in the
loopInvariant rule. Otherwise, one more iteration is initiated with loopUnwind.
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Pseudocode

//chooses a goal and a rule which should be applied to the goal
(Node, Rule) chooseRuleApplication()

Node goal := any goal with open(goal) and not waiting(goal);
if(not occursIn(innermostLoop(goal, ∅), goal)) return (goal, setBack);
else if(activeStatement(goal) is a loop)

Loop loop := activeStatement(goal);
Node entry := entryNode(goal, loop);
Rule lastRule := appliedRule(firstParent(goal));
if(knownInvariant(loop) 6= none)

return (goal, loopInvariant[inv=knownInvariant(loop)]);
else if(lastRule = SE) return (goal, shiftUpdate);
else if(lastRule = shiftUpdate) return (goal, merge);
else if(lastRule = merge) return (goal, predicateAbstraction);
else if(lastRule = predicateAbstraction)

if(isValid(formula(goal) → formula(entry)))
return (goal, loopInvariant[inv=formula(goal)]);

else return (goal, loopUnwind);
else return (goal, SE);

Pseudocode

Figure 3: Proof search strategy for predicate abstraction: main function

Note that the other “direction” of implication always holds, i.e., the current
abstraction is always implied by the previous one. This is because in each
iteration, the new abstraction results from disjunctively combining several proof
branches, including at least one which corresponds to the previous abstraction.
Also note that checking whether the current abstraction implies the previous
one is a comparatively simple task: since both formulas are built from the same
set P of loop predicates, this check only requires propositional reasoning, not
full first-order theorem proving (unlike the computation of αP itself).

7. Implementational Details

7.1. Predicate Abstraction

So far, we have avoided looking into the details of the predicate abstraction
operator αP . This is because the contribution of this paper lies not in a way
of performing predicate abstraction, but in the integration of predicate abstrac-
tion into the calculus and the overall verification methodology. The approach
only requires that ϕ → αP (ϕ) is always valid, and that the image of αP is fi-
nite. Nevertheless, computing αP is non-trivial. Typically it is by far the most
computationally expensive operation of the whole inference/verification process,
because it requires many theorem prover queries of the form “does a imply b?”,
where a and b are first-order formulas.
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Several algorithms for doing predicate abstraction are available in the litera-
ture (see for example [21, 5]). The prototypical implementation of our approach
in the Java verification system KeY, which is the basis for the experiments in
Sect. 9, uses a somewhat more naive scheme than what is proposed in cur-
rent papers. For us, the abstraction of a formula ϕ is the conjunction of all
predicates from P which are implied by ϕ, i.e., αP (ϕ) =

∧
{p ∈ P | (ϕ →

p) is found to be valid}. This only allows conjunctions of the predicates, which
is less flexible than supporting arbitrary Boolean combinations. On the other
hand, it is much cheaper to compute, which allows us to handle a significantly
higher number of predicates.

For efficiency, our implementation uses the Simplify prover [22] instead of
KeY itself for checking the validity of the formulas ϕ → p. This is in fact
against the general spirit of our approach: we want to integrate everything into
a single prover, avoiding the duplication of knowledge that is present in related
approaches. However, this is an implementational decision, which would not be
necessary if the used program logic prover was more optimised towards speed
than KeY currently is.

In order to keep the number of calls to Simplify down, the implementation
exploits some known implication relationships between predicates: if p1 → p2 is
known to be valid a priori, and if we have been unsuccessful in proving ϕ→ p2,
then there is no need to check ϕ→ p1. Also, predicates that were already found
to be not valid in a previous iteration for a loop do not need to be checked
again.

7.2. Generating Loop Predicates

Besides the computation of αP , another aspect of practical importance is
how to automatically generate a useful set P of loop predicates. Our imple-
mentation features an ad hoc set of heuristics for this purpose. They are run
immediately before the first application of predicateAbstraction to a particular
loop. Based on the current sequent “Γ ` [while(e) p ω]ψ,∆” and on the loop
predicates manually specified by the user (if any), they create in an exhaustive
way many typical invariant components. The following paragraphs describe
these heuristics in more detail. Note that, unlike the simplified logic presented
in Sect. 3, the logic of KeY [16, Chapt. 3] is a typed logic, whose types corre-
spond to those of the verified Java program. As the predicate generation makes
use of type information, there will be some mention of types below.

As a first step, we identify those local program variables that occur both in
Γ ∪∆ and in [while(e) p ω]ψ. These are the only program variables that are
interesting at the current program point, since (i) no information is available
about those not in Γ ∪∆, and (ii) those not in [while(e) p ω]ψ are irrelevant
for both the further excution of the program and for the postcondition ψ. These
program variables, together with the constant symbols 0 and null (Java’s null
reference), are used to form an initial set of terms.

Next, we extend this set by applying to all terms in the set all suitably typed
function symbols that represent Java fields, as well as the array access operator
[] (Sect. 3.1). For example, if the original set contains program variables o
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and a, terms like o.f (where f is a Java field defined for the type of o), a[0]
and a.length (where the type of a is an array type) are added. The current
implementation does exactly one such step of “heap indirection”, but in general
of course an arbitrary number is possible.

We then generate the following predicates for all boolean terms b in the set,
for all integer terms i1, i2, i3, i4, for all reference terms o1, o2, for all arithmetic re-
lations /1, /2, /3, /4 ∈ {<,≤}, and for all user-specified predicates p1(x), p2(x, y)
containing one free variable x or two free variables x and y, respectively:

• b .= true, b
.
= false

• i1 /1 i2

• o1
.
= o2, ¬o1

.
= o2

• ∀x; (i1 /1 x ∧ x /2 i2 → p1(x))

• ∀x;∀y; (i1 /1 x ∧ x /2 y ∧ y /3 i2 → p2(x, y))

• ∀x;∀y; (i1 /1 x ∧ x /2 i2 ∧ i3 /3 y ∧ y /4 i4 → p2(x, y))

The last three cases can lead to large numbers of predicates. For example,
the number of predicates created by the very last case for each user predicate
p2(x, y) is 24 ∗ n4, where n is the number of integer terms in the set. Some of
these predicates imply others, which is exploited by our predicate abstraction
implementation to avoid some validity checks.

In addition to the above predicates, we use each elementary conjunct of the
postcondition ψ as a loop predicate. Finally, we derive a special predicate from
the postcondition in the following common case: frequently, the loop guard
is a binary formula such as i < n, while the postcondition contains a guarded
quantification such as ∀x; (ϕ1(x)∧x < n→ ϕ2(x)), where the quantified variable
x ranges up to the same boundary n as the variable i does in the loop. In this
case, we add a loop predicate ∀x; (ϕ1(x) ∧ x < i → ϕ2(x)), which expresses
the likely guess that, in each loop iteration, property ϕ2(x) has already been
established for all x up until i.

Extending and tuning these heuristics to cover more invariant elements is
possible quite easily. This flexibility, which enables us to quickly adapt the
class of inferrable invariants to a new problem domain, is one of the main ad-
vantages of predicate abstraction. However, increasing the number of predicates
of course has an adverse effect on performance, so one has to strike a balance
there between power and efficiency. An alternative to heuristically generating
predicates, which has gained a lot of popularity in recent years, is attempting
to infer the needed predicates systematically from failed proof attempts (see
e.g. [6, 23]). Combining such an iterative “counterexample-guided abstraction
refinement” (CEGAR) technique with our approach remains as future work.
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8. Example

As an extended example, we walk through a proof for the Java implemen-
tation of selection sort shown in Fig. 4. The code is annotated with specifica-
tions written in the Java Modeling Language (JML) [24]. The requires and
ensures clauses give a pre- and a postcondition for sort, respectively. The
clause diverges true states that sort must not necessarily terminate; it is
present because we are not concerned with termination issues in this paper.
The keyword normal_behaviour expresses that if the precondition holds, then
the method is not allowed to terminate by throwing an exception.

Java + JML

class Sorter {

static int[] a;

//@ public normal_behaviour

//@ requires a != null;

//@ ensures (\forall int x; 0 < x && x < a.length;

//@ a[x-1] <= a[x]);

//@ diverges true;

public static void sort() {

//@ skolem_constant int x, y;

//@ loop_predicate a[x] <= a[y];

for(int i = 0; i < a.length; i++) {

int minIndex = i;

//@ skolem_constant int x;

//@ loop_predicate a[minIndex] <= a[x];

for(int j = i + 1; j < a.length; j++)

if(a[j] < a[minIndex]) minIndex = j;

int temp = a[i];

a[i] = a[minIndex];

a[minIndex] = temp;

} } }

Java + JML

Figure 4: Java implementation of selection sort

No loop invariants are specified for the two loops of sort, instead only loop
predicates are given. The syntax used for this has been proposed as an exten-
sion of JML in [5]: loop annotations starting with loop_predicate contain an
arbitrary number of user-specified predicates for the loop, and free variables
can be declared with skolem_constant. Fig. 4 gives exactly those predicates
which are minimally necessary to make our implementation arrive at an invari-
ant strong enough for proving the given method contract. These are supple-
mented by the predicates generated by the heuristics of Sect. 7.2; for example,
based on the specified predicate a[minIndex] ≤ a[x], the essential predicate
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∀x; (0 ≤ x∧x < i→ a[minIndex] ≤ a[x]) is generated automatically, together
with many similar quantified formulas using different guards. For arriving at
the predicate a[minIndex] ≤ a[x], the user needs the intuition that the array
is supposed to contain a value at position minIndex that is smaller than its
values at other indices, and that this may be relevant for the verification of the
loop.

The JML specification can be translated into a DL sequent of the form
ϕ ` [Sorter.sort();]ψ, where ϕ and ψ are essentially DL representations
of the requires clause and the ensures clause, respectively. Applying the
predicate abstraction proof search strategy to this root sequent yields the proof
graph sketched in Fig. 5.

The first step in the construction of this proof is to perform symbolic ex-
ecution of the program (abbreviated as SE in the figure) until the outer loop
becomes the active statement. After applying shiftUpdate and merge (in this
first iteration, to only one predecessor), we perform predicate abstraction for
the outer loop. Since no fixed point has yet been reached, we unwind the outer
loop, creating one branch where the loop body is entered and one where the
loop terminates. The latter is immediately cut off with setBack, since it will not
return to the loop entry and is therefore irrelevant for the loop invariant. On
the former, the body is symbolically executed, which entails dealing with the
inner loop (shown in the right half of Fig. 5) and finally leads to two branches
where the outer loop is again the active statement. After applying shiftUpdate
to each of them, these branches can be merged, and predicate abstraction is
done again. Assuming that the resulting abstraction is not equivalent to the
previous one, another identical iteration is performed.

We assume that after this second iteration, a fixed point has been reached:
the current antecedent, resulting from an application of predicateAbstraction, is
logically equivalent to its counterpart in the first iteration, and is thus a loop
invariant. This is what happens with our implementation, where the inferred
invariant is

∀x;∀y; (0 ≤ x ∧ x < y ∧ y < i→ a[x] ≤ a[y])

∧ ∀x;∀y; (0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < a.length→ a[x] ≤ a[y])

∧ 0 ≤ a.length ∧ i ≤ a.length ∧ 0 ≤ i ∧ ¬a .
= null ∧ exc

.
= null

where exc is a temporary variable introduced in the course of symbolic execution
to buffer a possibly thrown exception. Using this for Inv , we apply loopInvari-
ant. This creates three branches: the “initially valid” branch is trivial to close,
because u is empty and Inv is identical to Γ. Proving the “preserved by body”
branch entails applying loopInvariant to the inner loop, using the invariant in-
ferred for that loop in the last iteration. As the inferred invariant is strong
enough to imply the postcondition, the “use case” is closeable by further sym-
bolic execution of the remaining program and first-order reasoning (abbreviated
FOL in the figure).

The structure of the subgraph for the inner loop is analogous to the structure
of the overall graph. Each time the inner loop is encountered, an invariant is
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Figure 5: Proof graph for selection sort
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Table 1: Experimental results
Lines Prds. Rule apps. Simplify Time

LogFile::getMaximumRecord 22 1 + 30 1362 41 10 s
Sorter::sort 22 1 + 1092 4594 431 90 s
Dispatcher::dispatch 70 0 + 297 2434 338 85 s
Dispatcher::removeService 67 1 + 159 3607 229 55 s
KeyImpl::clearKey 74 1 + 105 1777 252 115 s
KeyImpl::initialize 69 1 + 104 1746 242 95 s
IntervalSeq::incSize 33 2 + 178 3666 231 120 s
Subject::registerObserver 36 2 + 185 4431 242 125 s

inferred for it by repeated unwindings and predicate abstraction steps. The
invariants inferred in the first and the second occurrence of the inner loop are
different; they are dependent on the initial states occurring for the inner loop in
each iteration for the outer loop. Of the three branches created by loopInvariant,
the first one is again trivially closeable; the “preserved by body” branch is set
back to the outer loop entry, because it does not return to that loop; and the
use case is where symbolic execution actually continues back to the outer loop.

In practice, additional proof branches occur, dealing e.g. with the situation
where the accessed array a is null. These are left out in Fig. 5 for simplicity. In
this example, they can always be closed immediately (because the corresponding
execution path is obviously infeasible), or cut off with setBack (because the
execution path never returns to the respective loop entry).

9. Experiments

To give an indication of the feasibility of the approach, the results of applying
the prototypical implementation to eight Java methods are listed in Table 1.
For each method, the table shows the number of lines of combined code and
specifications; the number of predicates that had to be given manually; the
number of predicates that were generated automatically by the heuristics; the
number of rule applications; the number of calls to Simplify for computing the
predicate abstraction; and an approximate overall running time (obtained on a
1.5 GHz, 2 GB laptop).

The getMaximumRecord method is a simple loop which retrieves the “largest”
element out of an array of objects. The second example is selection sort, as dis-
cussed in Sect. 8. The next four methods are from the Java Card API reference
implementation described in [25]. These methods are simpler than selection sort
algorithmically, but technically more involved. The last two examples are the
two methods requiring loop invariants in the tutorial [17].

In all listed cases, the found invariant was strong enough to complete the
verification task at hand (except for proving termination), without interaction.
Manually specifying the necessary zero to two loop predicates appeared notably
easier than having to provide the invariant as a whole, in a similar way as in the
selection sort example. On the negative side, there are three additional loops
in [25] for which a strong enough invariant could not be inferred. Two of them
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require invariants of a form (involving, e.g., existentially quantified subformulas)
which are not covered by the implemented predicate abstraction scheme. The
third contains deeply nested case distinctions in the loop body, which lead to
large disjunctive formulas that overwhelmed Simplify.

10. Conclusions

This paper has investigated an approach for integrating abstract interpreta-
tion techniques, in particular predicate abstraction, into a calculus for deduc-
tive program verification. This allows us to take advantage of the power of a
deductive framework, while selectively introducing the approximation that is
characteristic for abstract interpretation to find loop invariants automatically
when necessary.

The approach consists of adding a small number of additional rules, and a
dedicated proof search strategy to drive the invariant inference process. As is
common for abstract interpretation, this process always finds an invariant for
a loop, but this invariant is not in all cases expressive enough to be useful,
i.e., expressive enough to prove the desired postcondition. In this case, user
intervention is required; the generated invariant, even though too weak, may be
helpful in figuring out what to do. The strength of the found invariants heavily
depends on the underlying set of loop predicates, whose elements are either
generated heuristically or provided manually in place of the loop invariants
themselves.

Experience with an implementation in the KeY system demonstrates the
general feasibility of the approach. A line of future work is combining it with
more sophisticated predicate abstraction algorithms and heuristics for generat-
ing predicates. Another possible direction is the integration of an abstraction-
refinement mechanism, which would aim at systematically deriving predicates
from failed proof attempts. Also, it should be possible to generalise the approach
to support other abstract domains, in addition to predicate abstraction.
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