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Abstract. The KeY system offers a platform of software analysis tools
for sequential Java. Foremost, this includes full functional verification
against contracts written in the Java Modeling Language. But the ap-
proach is general enough to provide a basis for other methods and pur-
poses: (i) complementary validation techniques to formal verification
such as testing and debugging, (ii) methods that reduce the complex-
ity of verification such as modularization and abstract interpretation,
(iii) analyses of non-functional properties such as information flow se-
curity, and (iv) sound program transformation and code generation. We
show that deductive technology that has been developed for full func-
tional verification can be used as a basis and framework for other pur-
poses than pure functional verification. We use the current release of the
KeY system as an example to explain and prove this claim.

1 Overview

Motivation. Over the last decades the reach and power of verification methods
and tools has increased considerably, and there has been tremendous progress
in the verification of real world systems. The basic technologies of deductive
program verification have matured. State of the art verification systems can
prove functional correctness at the source code level for programs written in
industrial languages such as Java.

While for many years the term formal verification had been almost synony-
mous with functional verification, in the last decade it became more and more
clear that full functional verification is an elusive goal for almost all application
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scenarios. Ironically, this happened through the advances of verification technol-
ogy: with the advent of verifiers that fully cover and precisely model industrial
languages and that can handle realistic systems, it finally became obvious just
how difficult and time-consuming the specification and verification of real sys-
tems is. Because of this, ‘simpler’ verification scenarios are often used in practice,
relaxing the claim to universality of the verified properties.

Using deductive verification as core technology. In this paper, we show that
deductive technology that has been developed for full functional verification (of
Java programs) can be used as a basis and framework for other methods and
purposes than pure functional verification:
– complimentary validation techniques such as testing and debugging,
– methods tackling the complexity of verification such as modularization and

abstract interpretation,
– analyses of non-functional properties such as information flow security,
– sound program transformation and code generation.

We claim that for such an extended usage scenario, much of the work that
went into the development of deductive verification systems can be reused. This
includes the program logics and verification calculi that capture the semantics
of the target programing language as well as the specification language, proof
search mechanisms, user interfaces of semi-automatic verification systems that
support proof construction and understanding proof states, interfaces to SMT
(satisfiability modulo theories) solvers, as well as data structures for programs,
specifications, and formulas, and associated parsers and pretty printers.

The KeY system. We use the current release of the KeY system [1] (KeY 2.2)
to explain and prove the claim that deductive verifications methodology can
serve as a platform for various verification and analysis methods, though other
examples of this phenomenon, such as Boogie [2] and Why [3] verification frame-
works, can be given. The KeY system is developed by the KeY project, a joint
effort between the Karlsruhe Institute of Technology, Technical University of
Darmstadt, and Chalmers University of Technology in Gothenburg, ongoing
since 1999. KeY is free/libre/open source software and can be downloaded from
http://key-project.org/download/.

Contents of this paper. In the following two sections, we describe the core tech-
nology for functional verification implemented in KeY: its program logic for Java
and its sequent calculus, that provides symbolic execution for Java (Sect. 2), and
its user interface (Sect. 3). Java is not a modular language. The specification of
Java programs must support an appropriate mechanism that permits to de-
compose the verification target into components of manageable size that can
be verified separately. In Sect. 4 we show that such a technology can be seam-
lessly integrated into the core verification technology. In Sect. 5 we describe how
symbolic execution calculi can be reused for abstract interpretation based verifi-
cation. Verification methods such as symbolic execution can be used to generate
tests from the specification and the source code (glass box testing) or only the
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specification (black box testing) of the verification target. As shown in Sect. 6,
using reasoning techniques, one can generate tests that exercise particular pro-
gram paths, satisfy various code coverage criteria, or cover all disjunctive case
distinctions in the specification. A further use of verification for bug finding is to
enhance the debugging process by using verification technology that is based on
symbolic execution to implement symbolic debuggers (Sect. 7). Symbolic debug-
ging covers all possible execution paths, and there is no need to initialize input
values. Besides functional verification, the verification of non-functional prop-
erties, e.g., security properties, is of growing importance. In Sect. 8, we show
that information flow properties can be verified by using functional verification
methods as a basis. Finally, in Sect. 9, we show that a deductive calculus is a
good basis for covering additional mechanisms of the programing language in a
modular way (no need to build a new calculus or system). This is exemplified
with Java Card’s transaction mechanism that is not part of standard Java.

2 A Prover Performing Symbolic Execution

The core of the KeY system consists of a theorem prover for a program logic
that combines a variety of automated reasoning techniques. The KeY prover dif-
fers from many other deductive verification systems in that symbolic execution
of programs, first order reasoning, arithmetic simplification, external decision
procedures, and symbolic state simplification are interleaved.1 For loop and re-
cursion free programs, symbolic execution is performed in a fully automated
manner.

The program logic supported by KeY is Dynamic Logic (DL) [5], a first or-
der multi-modal logic. DL extends first order logic (FOL) with two families of
modal operators: 〈p〉 (‘diamond’) and [p] (‘box’) where p is a program frag-
ment. The formula 〈p〉φ expresses that the program p terminates in a state in
which φ holds, while [p]φ does not demand termination and expresses that if p
terminates, then φ holds in the final state.2 Typically, φ is a FOL formula; in
this case, 〈p〉φ corresponds to the weakest precondition of p w.r.t. φ. Another
frequent pattern of DL is φ → [p]ψ, which corresponds to {φ} p {ψ} in Hoare
logic [6]. DL is closed under all logical connectives. For instance, the formula
∃v . ([p](x .

= v) ∧ [q](x
.
= v)) states that the final value of x is the same, whether

we execute p or q.
To enable formal arguments about soundness and completeness, the KeY

prover employs a sequent calculus for reasoning about Java DL formulas. Each
proof node is a sequent of the form Γ ⇒ ∆, where Γ and ∆ are sets of formulas,
with the intuitive meaning that the conjunction of the assumptions Γ implies at
least one of the formulas in ∆.

A proof in KeY consists of logical rule applications on DL sequents, using a
proof strategy called symbolic execution. It is exactly this principle which makes

1 The prover closest to KeY in this regard is KIV [4].
2 This formulation assumes a deterministic programming language, like sequential

Java in the context of KeY.



the KeY prover an excellent basis for the various techniques described in this
paper. We exemplify the principle of KeY style symbolic execution: consider the
sequent (1), with precondition x > y and postcondition y > x. The program in
the modality swaps the values stored in x and y, using arithmetic.

x > y⇒ 〈x=x+y; y=x-y; x=x-y〉 y > x (1)

To prove this formula, KeY symbolically executes one statement at a time, turn-
ing Java code into a compact representation of its effect. This representation is
called update, essentially an explicit substitution, to be applied at some later
point. In our example, symbolic execution of x=x+y; y=x-y; x=x-y; results in

x > y⇒ {x := y || y := x}〈〉 y > x (2)

The expression x := y || y := x is an update. The symbol || indicates its parallel
nature. Once the modality is empty, it is discarded, and the accumulated update
is applied to the postcondition y > x, leading to the proof goal x > y⇒ x > y,
that can be closed immediately. The update application has swapped x and y,
translating the condition on the intermediate state into a condition on the initial
state. The interleaving of collecting and applying updates very much facilitates
forward symbolic execution. This is exploited not only for giving the proving
process an intuitive direction, but also as a basis for realizing the other features
of the KeY platform outlined in this paper.

To reason efficiently in a rich program logic for a target language like Java,
a large number of sequent calculus rules are needed (over 1500 in the standard
configuration). To implement these efficiently and to permit external validation
of the rules, we use so-called taclets, described in [1, Chap. 4]. Unbounded loops
cannot be handled by symbolic execution alone. KeY has invariant and induction
rules for this purpose [1, Sect. 3.6], see also Sect. 5 below. Method calls can be
handled either by inlining the method body or by replacing a method invocation
by the method’s specification, see Sect. 4 for an example.

3 User Interface

The KeY verification system uses a graphical user interface (GUI) that is de-
signed to make the interactive construction of formal verification proofs intuitive
and efficient. During formal verification a vast amount of technical information
is generated. The GUI helps the proof engineer to access relevant information.

Figure 1 shows KeY’s GUI with a loaded and partly performed proof task.
Problem files containing Java code and specifications as well as (partial) proofs
can be loaded into the KeY system by selecting ‘File → Load’ or using the
button . A new ‘Proof Management’ window appears and the user can choose
the proof obligation to verify. Complete and partly finished proofs are also listed.
If code or specifications that were used in a proof have changed, this is indicated
as well.

After choosing a proof obligation, the corresponding sequent formula is con-
structed and shown in the right pane of the main window, see Fig. 1 (1). Then



Fig. 1: The main window of the KeY GUI

the user can start the proof construction. In the upper left pane of the main
window the opened proofs are listed. Clicking allows to switch between different
proofs. The icon next to the proofs indicates whether a proof is complete ( )
or it contains open goals ( ). Below is a pane with different tabs to display the
open goals, the proof tree, strategy settings for the proof search and information
about the calculus rules. In Fig. 1 (2) the proof tree pane is shown. Each node of
the proof tree is annotated either with the applied proof rule (e.g., impLeft) or
with information about the proof step (case distinction, invariant, etc.). A right
click on the proof tree or a node in it produces a context menu with possible
actions on proof trees. The ability to prune, collapse, or unfold (parts of) the
proof tree are indispensable for navigation and understanding in larger proofs.
The user may also annotate proof nodes with free textual comments.

On the right pane (‘Current Goal’) of the of the main window the sequent
of the selected proof node is shown. Pointing and right-clicking on parts of the
sequent produces a context menu with a list of applicable proof rules for the
highlighted formula, see Fig. 1 (3). Hovering over the rules shows a tooltip with
the result that each rule gives when applied.

Hovering over operators in the ‘Current Goal’ pane, the subexpressions con-
nected with that operator are highlighted. To search for formulas or proof nodes
there are two mechanisms, one that searches for (sub)formulas in the sequent
view and one that searches for proof nodes in the proof tree. These searches are
useful when trying to understand how a formula has changed during the proof
process. All buttons and menu entries as well as strategy settings have related
tooltips, which briefly describe their functionality.



KeY provides a counter example generator (button ) that transforms a
proof goal to an SMT formula over bitvector types and feeds it to an SMT
solver. If a counterexample is found, it is presented to the user for inspection.
This feature can help the user in cases where it is unclear whether the current
proof goal is valid or there is a flaw in the specification or code.

User interaction during proof search. The KeY prover attempts to automate
proof search as much as possible, but its also supports user interaction to guide
the proof process. Proofs for valid formulas are often, but not always found au-
tomatically. For example, if complex quantifier instantiations are required, proof
search may fail. When automated proof search fails, the user can apply inference
rules interactively in a stepwise manner, as described above. The problem is that
after a failed automated verification attempt, the user may be confronted with an
intermediate proof object that is difficult to understand, because the automatic
proof strategy tends to produce normal forms that are hard to read. This led
us to pursue a semi-automated proof style where the user does not apply every
step manually, but interacts with the automated strategy only at certain points
of interest. KeY provides composite interaction steps, so-called strategy macros,
that combine the application of basic deduction steps to achieve a specific pur-
pose. The available strategy macros in KeY include: Finish symbolic execution
symbolically executes Java programs in modalities. Propositional expansion ap-
plies only propositional rules. Close provable goals closes any open goal that is
automatically provable, but does not touch goals where no automatic proof is
found. The strategy macro Autopilot applies these three substrategies in this
order. It divides the proof obligation into small subcases and thus guides the
user to those points of the specification for which the automated proof failed.

4 Modular Specification and Verification

A crucial goal for any formal verification system is the ability to modularize a
larger target program into manageable subtasks. In the context of KeY this con-
cerns the program written in Java and the Java Modeling Language (JML) [7] for
its specification. We have extended JML with concepts that support abstraction
and modular verification to a language called JML∗ [8]. In the recent verification
events in which KeY participated (VSTTE 2010, FoVeOOS 2011, VSTTE 2012,
and FM 2012; cf. [9]), these concepts have proven to be effective.

Abstraction in JML specifications is provided through model fields, model meth-
ods, and ghost fields. When specifying object-oriented code modularly, it is gen-
erally important that an abstraction of the state of an object exists and can be
used in other parts of the specification. This way, details of the object’s imple-
mentation need not be revealed, which lets the verification both scale better and
become more modular. In KeY we follow this general principle.

While similar in appearance to fields in Java, model fields are declared for
specification and verification only, which allows the specifier to use JML∗ features



beyond Java expressions for their definition (including quantification). The value
of a model field is computed from the system state to which it is coupled through
a represents clause that is understood as a logical axiom. Ghost fields, too, are
only visible during verification. Unlike model fields, however, their value does
not depend on the state but is part of it (like a Java field). Both abstraction
techniques (ghost and model) can be used within the same specification in KeY.

Going beyond original JML, specification-only program elements in JML∗

allow the use of abstract data types (ADTs). When reasoning about concrete,
mutable data structures, e.g., linked lists or trees, we are usually only interested
in properties regarding the payload within these structures. ADTs provide an
abstraction from the implementation, concealing details about the linked data
structure that resides on the heap. JML∗ provides the two built-in ADTs \seq

(finite sequences) and \locset (sets of memory locations; see below).

Modularity of verification is provided through the concept of design by con-
tract [10]. Every method implementation is verified against its contract. Since
method invocations are abstracted by their contracts, contracts proved correct
remain valid even in case that new code has been added to the program. Method
contracts do not only contain pre- and postconditions (to describe their intended
behavior), but also frame conditions (to describe what must be preserved). In
JML∗, a frame is a set of heap locations to which a method may write at most.

1 public interface List {
2 //@ public model instance \seq conts;
3 //@ accessible contents: footp;
4

5 //@ public model instance \locset footp;
6 //@ accessible footp: footp;
7

8 /*@ public normal_behavior
9 @ ensures \result == conts.length;

10 @ accessible footp; @*/
11 public /*@pure@*/ int size();
12

13 /*@ public normal_behavior
14 @ ensures conts == \seq_concat(
15 @ \old(conts), \seq_singleton(x));
16 @ ensures \new_elems_fresh(footp);
17 @ assignable footp; @*/
18 public void append(int x); }

Fig. 2: List specified with model fields

In some cases, the locations of a
frame are known beforehand and can
be simply enumerated (static framing).
For rich heap data structures, however,
there is a need to describe all locations
that ‘belong to’ the data structure; a
set that may change during a run of
the program. Such a set of locations
is called a footprint. The technique to
specify frames and footprints in JML∗

and to reason about them in KeY is
the dynamic frames approach [8, 11],
that introduces a type \locset for loca-
tion sets. Frames and footprints can be
given in an abstract, possibly recursive,
manner. For instance, the footprint of

a linked list is the union of its head node’s locations (for its local data) and the
footprint of its tail (if not null).

Fig. 2 shows an example of a list interface, that is specified using two model
fields: conts for its contents and footp for its footprint. The mutator append()

changes only the footprint of this instance (L. 17, assignable clause), while the
pure method size() depends only on this footprint (L. 10, accessible clause).
If for two lists a and b the footprints, a.footp and b.footp denote disjoint sets,
we can conclude—without any knowledge about implementation—that a call to
a.append() does not have an influence to the result of b.size(). Otherwise, a



and b could be aliased deeply, for instance, a could be a tail of b. The predicate
in L. 16 expresses that only fresh object references may be added to the footprint
ensuring that sets are still disjoint after the method call if they were before.

Other verification frameworks have similar concepts of modularization: Dafny
[12] uses less fine-grained dynamic frames, ghost state, and pure functions, and
allows for user-defined ADTs. An alternative approach to the framing challenge
is separation logic. VeriFast [13] allows the modular specification of Java and C
code based on separation logic together with user defined ADTs and lemmas.
VCC [14] uses ownership to deal with that challenge.

5 Abstract Interpretation

Achieving a high degree of automation is still a challenge in program verifica-
tion. The nature of user interactions is either direct with the underlying the-
orem prover (cf. Sect. 3) or it is implicit in the need to provide specifications
such as method contracts, loop invariants or induction hypotheses. SMT solvers
and automated theorem provers have improved considerably during the previ-
ous decade such that writing and finding specifications is now the main bot-
tleneck for program verification. In this section, we briefly sketch our approach
to achieve higher automation by generating loop invariants automatically, us-
ing abstract interpretation techniques [15]. More details on the approach are
given in [16] which, however, was only implemented recently and is available at
http://www.se.tu-darmstadt.de/research/projects/albia/download/.

In a nutshell, our approach works as follows: the verification process starts
as usual with a DL formula that represents a proof obligation, for instance, that
a method m() satisfies its contract. The automated proof search executes m()

symbolically. As Java DL models the semantics of sequential Java faithfully and
precisely, we do not lose any precision until we reach a loop. In general, the
user would now have to provide a loop invariant either annotated in the source
code as a JML loop invariant specification or entered interactively when the loop
is encountered during the proof. Instead, we use abstraction to avoid the need
for a user-supplied invariant. But unlike in abstract interpretation, we avoid
to abstract the symbolically executed program. Instead, we abstract only part
of the symbolic state when the loop is encountered, namely that part which is
possibly modified by the loop. The (automatically proven) soundness condition
is that the abstract symbolic state represents at least all concrete states that are
reachable by exiting the loop. For the part of the symbolic state that has not
been abstracted, no precision is lost.

We illustrate the process with a small example: the loop in Fig. 3 increases
the program variable i until n is reached. For ease of presentation we choose
exemplarily a trivial abstract domain for integers, namely, the sign domain
{0,≤,≥, <,>,>} which classifies integers into zero, non-positive, non-negative,
negative, positive, or any integer.

http://www.se.tu-darmstadt.de/research/projects/albia/download/


i = 0;

while (i < n)

i = i + 1;

Fig. 3: Loop ex-
ample for sym-
bolic state ab-
straction

On reaching the loop, the symbolic state looks as follows:
n:n0, i: 0 where n0 is a symbolic value representing an un-
known but concrete value. Note, both values are not abstract
and no precision has been lost until this point. Abstraction
of the symbolic state begins by unwinding the loop and ana-
lyzing which values have been changed, that is, one compares
the state before entering the loop with the state after the first
loop iteration. The only changed value is that of i. The most
precise abstract value that we can give to i and that is valid

before and after executing the body is ≥. Unwinding the loop once more and re-
computing the abstract value for i gives no change. We found a fixed point and
the abstracted symbolic state is n:n0, i:≥, which is used to continue symbolic
execution after the loop.

In contrast to approaches like CEGAR [17], which use a counterexample
guided refinement loop approach (i.e., a coarse abstraction is stepwise refined in
case of a spurious counterexample), we start with a fully precise modeling and
loose precision only when needed and only for a localized (and often small) part of
the symbolic state. As is true for all abstraction based approaches, we loose some
precision, and thus completeness, in exchange for higher automation. However,
the trade off is more than justifiable when targeting specific program properties
like secure information flow (see Sect. 8), absence of null pointer exceptions, etc.

Combining deductive verification and abstract interpretation has also been
pursued by Leino and Logozzo [18]. They use a theorem prover from within
an abstract interpretation system to compute loop invariants on demand. How-
ever, the abstract interpretation system and the theorem prover remain separate
systems. Deep integration of abstract interpretation into deductive verification
based on dynamic logic has also been proposed by [8] using the technique of
predicate abstraction [19].

6 Test Case Generation

Even though the area of deductive verification made tremendous progress and
provided powerful tools, deductive methods still require expert level knowledge.
As a lightweight technique, KeY offers a verification based test case generation
facility [20, 21], where deductive verification is used as a base technology. From
source code augmented with JML specifications, KeY generates proof obligations
in dynamic logic. During verification with the prover, the proof branches over the
necessary case distinctions, largely triggered by boolean decisions in the source
code, as explained in Sect. 2. On each proof branch, a certain path through
the program is executed symbolically. KeY TestGen uses the same machinery
for a different purpose, namely generating JUnit test cases. The idea is to let
the prover construct an unfinished proof tree (with a bounded number of loop
unwindings), then to read off a path constraint from each branch, i.e., a constraint
on the input parameters and initial state for this path. We generate concrete test
input data satisfying each of these constraints, thereby achieving strong code



1 final class List { /*@ nullable */ public List nxt;
2

3 public /*@ pure nullable */ List get(int i){
4 return i==0?this:((nxt==null || i<0)?null:nxt.get(i-1));
5 }
6 /*@ public normal_behaviour
7 requires a.length>0 && l!=null;
8 ensures (\forall int i;0<=i&&i<a.length;a[i]==l.get(i));*/
9 public void L2A(/*@nullable */List l, List[] a){

10 for(int i=0; i<a.length; i++){ a[i]=l;
11 if(l==null) break; l=l.nxt;
12 } } }

Fig. 4: Method L2A violates its contract

Step 1. Create a proof tree

Step 2. Press the button

Fig. 5: Test generation steps

coverage criteria, in particular MCDC (Modified Condition/Decision Criterion),
by construction.

In addition to the source code, KeY’s test generation facility requires formal
specifications, for two purposes. First, specifications are needed to complete the
test cases with oracles to check the test’s pass/fail status. The second role of
specifications is to allow symbolic execution of method calls within the code
under test. The prover can use the specification, rather than implementation,
of called methods to continue symbolic execution. In particular, frequently used
library methods need to be specified.

As an example, Fig. 4 shows a class List (representing a list node). Method
get returns the i-th list node starting from this and following the nxt field. The
intended behavior of method L2A is to copy list elements starting from l into
the array a—as many as fit into the array. The user may not see the mistake
in the code and spend valuable time with failed verification attempts. However,
the problem can be quickly detected using KeY’s test generation functionality.

The first step is to create a proof tree. For example, to execute all pro-
gram paths with a bound on loop unwindings, the user may choose the strategy
macro ‘TestGen’ (Fig. 5, Step 1). By pressing the button (Step 2), a test suite
is generated which constructs different method arguments and creates various
list shapes by initializing the nxt field, such that every case distinction in the
proof tree (and hence in the program) is satisfied and executed. To detect the
fault in method L2A, a test case is needed that executes the loop at least two
times, i.e. a.length ≥ 2. To fix the method L2A, Line 11 must be replaced with
if(l!=null){l=l.nxt;} which ensures that the rest of the array is initialized with
null if the end of the list is reached.

Besides generating test cases in order to find out why a proof cannot be
closed, we can generate them out of a closed proof tree. In this case a test suite
covering all feasible paths is created. This suite can be used for regression testing
the software.

The usefulness of combining proofs and tests has been recognized in the last
decade, leading to the conference series Tests and Proofs. A recent extension of a
deductive verification tool with test generation capabilities is based on Frama-C



[22]. A set of popular test generation tools that are based on symbolic execution
and its variants is described in [23].

7 Debugging and Visualization

The Symbolic Execution Debugger (SED) [24, 25] is an Eclipse extension that
executes Java methods symbolically. It is implemented on top of KeY and offers
interactive execution control just like a traditional debugger, including stepwise
execution and suspension at breakpoints.

Symbolic execution makes it possible to explore all concrete execution paths
of a program (up to a finite depth) in the symbolic states of a single sym-
bolic execution run. The result is a symbolic execution tree (SET). In this sense,
performing a proof in KeY realizes a sound, fully automatic, general purpose
symbolic execution engine for Java. A specific proof search strategy guarantees
that symbolic execution reflects the actual evaluation sequence defined by Java
semantics. JML specifications are not required, but can be used during symbolic
execution. Specifically, loop invariants ensure finite symbolic execution trees in
presence of loops; method contracts permit to handle methods for which the
source code is not available and guarantee finite symbolic execution trees in
presence of recursive method calls.

Debugging by symbolic execution is interesting for various reasons. Most im-
portantly, symbolic execution can start at any method or any other statement
in a program, no fixture is required. The initial state can be specified partially
or not at all. As all execution paths are covered, it is not necessary to set up
a concrete initial program state leading to an execution where a targeted bug
occurs. Because symbolic execution can be started ‘close’ to the suspected loca-
tion of a bug and the symbolic states contain only program variables accessed
during execution, the intermediate states of symbolic execution tend to be small
and simple. This makes it easy for the bug hunter to comprehend intermediate
states and the actions performed on them to find the origin of a bug. Finally, the
intended behavior of a program is correctly reflected in its symbolic execution,
which, therefore, will not cause a program error that disappears while debug-
ging. The underlying reason is that classical debuggers interact and influence
the execution of the analyzed program.

Fig. 6 shows a debugging session where method eq() is inspected. Its full
SET is displayed in the view on the left. Different icons emphasize the role of
each node. The root is a start node representing the program fragment under ex-
ecution. After the call to eq() the if-guard this.value == n.value is evaluated,
which involves an access to the instance variable value of parameter n. As we
know nothing about n—it might well be null—symbolic execution branches. The
tree branches are labelled with the condition under which each path is taken:
if n is null then execution terminates with an uncaught NullPointerException,
which may or may not be intended behavior. In the latter case, it directly points
to a bug. Otherwise, the guard can be evaluated to either true or false. In each
case a return statement is executed next.



Fig. 6: Symbolic Execution Debugger: debugging method eq symbolically

The symbolic program state of a selected node is shown in the Variables view.
The value fields of instance variables self and n have an identical symbolic value.
So either self.value and n.value have the same value or self and n refer to the
same object. Aliasing is a common source of bugs and SED helps to find them
by visualizing all nonisomorphic memory layouts fulfilling a symbolic state.

EFFIGY [26] was the first system that allowed to interactively execute a pro-
gram symbolically in the context of debugging. It did not support specifications
or visualization. Behavior trees [27] are an abstract visual notation to specify
the behavior of software systems. These are derived from a requirements analysis
rather than from source code and they do not represent symbolic states.

8 Information Flow Analysis

Programs with publicly accessible interfaces (like web applications) are increas-
ingly used to process confidential data. This raises the importance of information
flow control within such applications: confidential information must not leak to
public outputs. Information flow is the degree to which the initial values of vari-
ables containing confidential data (‘high’ variables) interfere with the final values
of publicly observable (‘low’) variables. Formal techniques for information flow
analysis and control are concerned with showing that information flow is absent
or limited in a program. A survey is available in [28], though many advances
have occurred since its publication. Three approaches for analyzing information
flow have been implemented using KeY.

The first approach is based on self-composition [29, 30], which is appealing
because it is semantically precise, supports semantic declassification (i.e., ac-
cepting that specific parts or properties of confidential information does become
public), and can be realized on top of a software verification systems like KeY in
a direct manner. The implementation in KeY [31] (which can be seen as a direct
formulation of information flow in Java DL) symbolically executes a program p



twice with equal symbolic values for the low variables but possibly different val-
ues for high variables. Absence of information flow is shown by proving that the
symbolic values for the low variables are equal in the respective final states.

Beyond this basic idea, the approach and its implementation feature several
optional refinements. First, it is possible to execute p symbolically only once
and combine the obtained verification conditions. Second, if p is decomposable
into individual parts, each without information flow, then these parts can be
considered independently reducing the number of code paths that need to be
reasoned about. Third, the analysis supports not only primitive types but also
object references as secret and publicly observable values [32]. Finally, modular
contracts used for functional verification (Sect. 4) can be used when proving
absence of information flow as well.

Specifying information flow policies that programs must adhere to happens
with an extension of JML [33]. The language allows a convenient and fine-grained
specification of declassification and erasure by assigning security levels (high/
low) to terms instead of variables and fields.

Another approach is to track information flow with ghost states [34]. It aims
at a higher degree of automation and higher efficiency by trading precision.
Declassification is supported. The approach can be combined with abstract in-
terpretation (Sect. 5) and thus holds the potential for increasing automation by
inference of suitable invariants. In this approach, we complement each program
variable with a ghost variable that overapproximates the set of locations the
actual variable depends on. When a program variable is assigned a new value t,
its corresponding ghost variable is automatically updated too. The new value of
the ghost variable is the union of the dependencies of all variables occurring in t
(plus implicit dependencies caused by control flow). A program is secure if the
set of calculated dependencies is a subset of those allowed by the specification.

The third approach combines KeY with external tools for projection com-
putation and model counting in a tool chain for quantitative information flow
analysis of imperative programs [35]. The user does not specify what informa-
tion is acceptable to declassify, but instead the tool chain computes a number
of information-theoretical measures (e.g., Shannon entropy or min-entropy) re-
flecting the amount of confidential information in bit disclosed by the program.

9 Verification of Java Card Applets

One of the specific strengths of KeY is its complete support for verification of
programs written in Java Card [36], a dialect of Java for smart cards. This
includes support for all features specific to the Java Card platform. These are
the memory model that distinguishes between persistent and transient data as
well as a transaction mechanism that ensures atomic updates of the persistent
memory of the device [37, Chap. 7]. Each Java Card device is equipped with
two types of memory: (i) persistent memory that keeps its contents between
card power-ups (i.e., sessions), (ii) transient (scratch pad) memory that is reset
on every power-up. Consequently, the semantics of a primitive assignment to an



array element3 depends on the kind of memory that the array is allocated to.
Moreover, the transaction mechanism allows to group several assignments into
atomic blocks and to collectively undo several assignments in one system API
call.

On top of this, there is a specific interplay between special system API calls
and regular assignments that involve the same persistent data. We illustrate
this with the two programs in Fig. 7 that are both correct relative to their
stated assert annotations. The call to the arrayFillNonAtomic method assigns
value 1 to the array element a[0]. In principle, it should bypass any rollback
effects of abortTransaction (which is what indeed happens in the program on the
left), however, an earlier regular assignment to a[0] inside the same transaction
disables this bypass effect of arrayFillNonAtomic.

a[0] = 0;

JCSystem.beginTransaction();

Util.arrayFillNonAtomic(a,0,1,1);

a[0] = 2;

JCSystem.abortTransaction();

//@ assert a[0] == 1;

a[0] = 0;

JCSystem.beginTransaction();

a[0] = 2;

Util.arrayFillNonAtomic(a,0,1,1);

JCSystem.abortTransaction();

//@ assert a[0] == 0;

Fig. 7: Two programs exhibiting subtleties of the Java Card memory management

A correct treatment of situations like the one in Fig. 7 in the underlying
program logic may be expected to be difficult. Indeed, previous formalizations
of Java Card were quite complex [38, 39]. In KeY 2.2 we use the explicit heap
model to our advantage: with an additional heap variable the Java Card mem-
ory model is formalized in a completely modular manner. This is achieved by
adding a handful of carefully crafted rules for entering and exiting transactions,
and assigning array elements in transaction contexts [40]. The introduction of
an additional heap variable also involves a slight, yet fully transparent, exten-
sion of the JML∗ specification language to enable sound and complete modular
verification also of programs involving Java Card transactions.
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(TAP), Zürich, Switzerland. Volume 4454 of LNCS., Springer (2007)

21. Beckert, B., Gladisch, C.: White-box testing by combining deduction-based spec-
ification extraction and black-box testing. In Meyer, B., Gurevich, Y., eds.: Pro-
ceedings, International Conference on Tests and Proofs (TAP), Zürich, Switzerland.
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