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Abstract. In this paper, we define a translation of UML class diagrams with OCL
constraints into first-order predicate logic. The goal is logical reasoning about UML
models, realized by an interactive theorem prover. We put an emphasis on usability of
the formulas resulting from the translation, and we have developed optimisations and
heuristics to enhance the efficiency of the theorem proving process.
The translation has been implemented as part of the KeY system, but our implemen-
tation can also be used stand-alone.

1 Introduction

Overview. The Unified Modeling Language (UML) [15] has been widely accepted as the
standard object-oriented modelling language and is supported by a great number of CASE
tools. The Object Constraint Language (OCL) is an integral part of UML, and was introduced
to express subtleties and nuances of meaning that diagrams cannot convey by themselves.

There is by now a great number of papers attributing a rigorous meaning to UML class di-
agrams (without OCL constraints) by translating them into a language with known semantics,
for example: the CASL-LTL language (an extension of CASL) [16], the Z specification lan-
guage [6] and its extension Object Z [13], the logical language of PVS [14], the Mathematical
System Model (MSM) [5], EER diagrams [7], the Maude language [2].

Clarification of the semantics of UML class diagrams, as provided by these papers, is a
necessary prerequisite for a rigorous semantics of OCL, as e.g. developed in [8, 9, 17] and in
the draft [4]. We believe that the semantics of UML class diagrams with OCL, both the
issues of common consent and controversial open issues, are by now understood well enough
to serve as a basis for further developments. The translation developed in this paper can be
applied to OCL constraints in any UML diagram type. But since the semantical status of
OCL constraints in other diagram types, such as state or sequence diagrams, is less clear, we
restrict attention for the moment to OCL constraints in class diagrams.

We present in this paper a translation of UML/OCL into first-order predicate logic. Our
goal is logical reasoning about UML models. The novel features of our work are that we put an
emphasis on usability of the formulas resulting from the translation, and we offer alternatives
for the translation of model elements. Where possible, we develop optimisations and heuristics
to enhance the efficiency of the theorem proving process. For interactive theorem proving ease
of use for the interacting human prover is a central factor for efficiency. Therefore readability
of the translated formulas becomes a crucial issue.

The KeY Project. The work reported here is part of the KeY project (see the overview paper [1]
or the web page i12www.ira.uka.de/~key for more information). The logical language used in
this project is Dynamic Logic, a multi-modal extension of first-order predicate logic specially
suited to reason about properties of programs. In this present account we restrict attention
to translation into first-order logic, which is the crucial part anyhow. The extension of the
translation to the OCL constructs that require Dynamic Logic as the target language, e.g.
@pre and result in post-conditions and the iterate operation, is rather straightforward and
can be found in [12]. An extensive account of how to treat the @pre operator in Dynamic
Logic is given in [3].



Implementation. We have implemented our translation, including some optimisations and
heuristics. The implementation, which is written in Java, is part of the KeY system. For
those who wish to use the translation in a different context, we have provided a stand-alone
version that reads the UML class diagram and the OCL constraints to be translated from
an XML file and generates a text file containing the resulting formulas. It uses the XML
dialect XMI, which is a standard for the textual representation of UML diagrams. For parsing
OCL constraints, we have integrated the parser component of the OCL compiler developed
by Hußmann et al. [11].

We tried to keep the implementation flexible and it should be easy to adapt to different
needs arising from other application areas, such as a different syntax for the output formulas,
new optimisations, and new heuristics for choosing between several possible translations. Also,
adaptations to future changes in the UML/OCL standard will not require much effort.

Both the KeY system and the stand-alone version, as well as additional documentation
and examples, can be downloaded from i12www.ira.uka.de/~key.

To the best of our knowledge, this is the first implementation of such a translation. We
hope that it can serve as a means helping to promote the use and application of OCL.

Structure of this Paper. In Section 2, we briefly review the semantical pre-requisites and
describe the semantical properties of our translation. The basic translation is presented in
Sections 3 and 4, while Section 5 is devoted to possible optimisations that improve the read-
ability and usability of the resulting first-order formulas. Section 6 concludes with an outlook
and future extensions.

All examples presented in the following refer to the class diagram shown in Figure 1.

Bank

bankID: Integer

Account

accountNumber: Integer
accountBalance: Integer

withDraw(anAmount: Integer): Integer
payOut(anAmount: Integer): Integer

Person

name: String
age: Integer
sex: String

startAccount(aBank: Bank): Boolean
unemployed(): Boolean

Customer

customerNumber: Integer

Company

name: String
numberOfEmployees: Integer

employ(aCandidate: Person): Boolean
stockPrice(): Real

Contract

job: String
income: Integer

manages

boss

0..*

companies

worksfor1..*

employees

0..*

employer

uses1..4

accountOwner

1..*

accounts

administers
0..*

accounts

1..*

employees

0..* 1..*

employer

hasCustomers

0..*

customers

1..*

favourites {ordered}

Fig. 1. Example for a UML class diagram.

2 Properties of the Translation

We start with a given UML class diagram D that is enriched by OCL constraints C1, . . . , Cn.
Together, D and C1, . . . , Cn describe the possible states of the system to be modelled. A sys-
tem state, sometimes also called a snapshot in the UML framework, is a complete description
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of an instance of the modelled system. It details what objects exist (they are instances of the
classes in D), gives the values of attributes for the existing objects, and defines which pairs of
objects (or more general, n-tuples of objects) are instances of the associations between classes
in D. We use first-order structures S to represent system states.

The vocabulary Σ = ΣD of S, i.e., the set of types, function, and relation symbols, is read
off from the diagram D. Sometimes there are choices in which symbols to include in ΣD: A
binary association between classes A and B with multiplicity 1 at the B-end may give rise
to the inclusion of a binary relation symbol in ΣD or of a unary function symbol. To have
a common platform for comparing these alternatives, we include (in this and similar cases)
both symbols in ΣD. The definition of ΣD follows shortly.

Of course, not all ΣD-structures are valid system states of D. We will say that a structure S
conforms to D in case that S satisfies the diagram D and its OCL constraints C1, . . . , Cn,
i.e., it is a possible system state according to the UML/OCL semantics [15].

In the next two sections, we describe how to associate with a UML class diagram D and
OCL constraints C1, . . . , Cn formulas ThD, ThC1

, . . . , ThCn
. Since new symbols are added

by the translation, they are formulas over an extended signature Σ∗ = ΣD ∪ Σtr. Therefore,
the correctness property of our translation reads: For every ΣD-structure S,

S conforms to D with C1, . . . , Cn if and only if
S∗ |= ThD ∧ ThC1

∧ . . . ∧ ThCn
for every Σ∗-extension S∗ of S.

A detailed analysis of the correctness property of such a translation can be found in [12].

Our translation does not handle meta level features—with the exception of OCLAny and
allInstances. This is due to that fact, that the future role of the meta level is unclear. In
version 2.0 of the UML standard, now under discussion, it may undergo substantial changes
or be eliminated alltogether.

3 Translating the Class Diagram

3.1 Extracting the Signature from the Class Diagram

In the following, we summarise how the first-order signature ΣD is extracted from a class
diagram D. A more extensive account may be found in [18]. The set of types of ΣD contains:

1. A type for every class in D. Types will be denoted by the same names as the corresponding
class, starting with an upper-case letter.

2. The types Integer , Real , Boolean , String.
3. If T is a type, then CollectionT , SetT , BagT , SequenceT are types. Types of this form

are called collection types. These collection types are only generated when T is not itself
a collection type, i.e., no nesting of the collection type operators is allowed.

4. ΣD will furthermore contain the type Any, which serves as the translation of the OCL
type OCLAny.

The subtype relation S1 <D S2 is defined as in [19]. For each type T there will be an infinite
supply of variables x:T, y:T, xi:T of type T . The set of functions and relations in ΣD contains:

1. For every binary association r in D with association ends e0, e1 there are two functions in
ΣD, which will be referred to by the role name ri at the association end ei (i = 0, 1). If
no role name is given, the name of the class attached to ei will be used. Function names
start with a lower-case letter. If ei is attached to class Si, then the function is of signature
ri : S1−i → SetSi

. In case the multiplicity at the end ei is 1, the signature is ri : S1−i → Si.
If the ei-end has the stereotype ≪ordered≫, then it is ri : S1−i → SequenceSi

. For n-ary
relations we proceed correspondingly.

2. For every n-ary association r in D there is, in addition, an n-ary predicate in ΣD.
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3. For every attribute a of a class S in D there is a function in ΣD that is referred to by
the name of the attribute and has signature a : S → Sr, where Sr is the value type of
attribute a as specified in D. If a is a class attribute (sometimes this is also called a
static attribute), then a constant of type Sr is added to ΣD. The concrete syntax of this
constant is S.a.

4. For every operation c of a class S with parameters of type S1, . . . , Sk and result type S′

there is a function fc : S × S1 × . . . × Sk → S′ in ΣD. In accordance with the OCL speci-
fication [15] we require that c has no side effects, i.e., it satisfies the property isQuery().

5. For every association class C attached to an association r, where r associates the classes
S1 and S2, there are unary projection functions s1 : C → S1 and s2 : C → S2 in ΣD.

6. All properties of the pre-defined OCL types, as detailed in the standard [15], are functions
or relations in ΣD.

7. The symbol
.
= will be used to denote equality. By overloading we use the same symbol

for all types.

3.2 Extracting Formulas from the Class Diagram

The translation ThD = (
∧

AxADT ∧
∧

AxD ∧
∧

ConstrD) of a class diagram D consists of
three parts: AxADT is actually independent of D. It contains the axioms of the Abstract
Data Types (ADTs) that are used to represent the built-in data types of OCL (Integer ,
Boolean , etc.), and the axioms for the ADTs SetT , BagT , etc. that are used to represent the
corresponding collection types of OCL.

The second part AxD is a set of axioms that depend on D but that do not express intrinsic
information of D. They deal with inter-dependencies among the function and relation symbols
extracted from D that reflect, for example, the symmetry of associations in UML.

Example 1. Consider the association worksfor between the classes Person and Company (Fig-
ure 1). The signature ΣD contains two function symbols and a relation symbol representing
this association: employer with argument type Person and value type SetCompany, employees

with argument type Company and value type SetPerson, and the binary relation symbol
worksfor with first argument of type Person and second argument of type Company .

To restrict the interpretation of these symbols appropriately, the set AxD contains the
following axioms:

∀p:Person ∀c:Company (c ∈ employer (p) ↔ p ∈ employees(c))
∀p:Person ∀c:Company (c ∈ employer (p) ↔ worksfor (p, c))
∀p:Person ∀c:Company (p ∈ employees(c) ↔ worksfor (p, c))

The third part ConstrD of ThD contains formulas representing the restrictions on system
states expressed graphically in D, e.g. multiplicity constraints, subtyping restrictions, and
others. We require in ConstrD also that an abstract class is the union of its concrete subclasses
and that enumerations are sets containing exactly their enumeration literals as elements. A
detailed account of this topic is given in [12]. Instead of giving a formal definition of ConstrD ,
we present a typical example:

Example 2. Consider the association uses between the classes Customer and Account . The
set ConstrD contains the following formulas expressing the multiplicity constraints attached
to uses:

∀c:Customer (size(accounts(c)) ≥ 1)
∀a:Account (1 ≤ size(accountOwner(a)) ∧ size(accountOwner(a)) ≤ 4)

4 Translating the OCL Constraints

4.1 Overview

OCL constraints consist of an OCL expression of type Boolean and some declaration connect-
ing the OCL expression to an item in the class diagram. In the case of pre- and post-conditions,
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the constraint is bound to an operation; invariants are bound to a class. The translation pro-
cedure for OCL constraints, therefore, cannot process OCL expressions as isolated entities
but also has to take into account the diagram and the information it contains.

In our basic translation described below, OCL expressions in most cases are translated
into a first-order term of the appropriate Abstract Data Type (ADT). The only exceptions
are expressions of OCL type Boolean , which are usually transformed into first-order formulas.
The first-order term resp. formula that is the result of translating an OCL expression exp is
denoted by ⌈exp⌉.

The translation procedure works by structural recursion on the expressions. When certain
OCL features are translated (as described in the following subsections), new function or
predicate symbols are introduced (they are elements of the extended signature Σ∗) as well as
axioms that constrain the interpretation of the introduced symbols according to the semantics
of UML/OCL.

Note, that OCL allows a modeller to use some shorthand notations. We assume that
constraints have been normalised to their (longer) standard form before they are translated (in
our implementation we use a normalisation provided by Hußmann et al.’s OCL compiler [11]).

The set Axexp generated during the translation of an expression exp includes all those
axioms that are generated by the recursive translation of subexpressions of exp—besides the
axioms that stem from the translation of the “top-level” OCL feature of exp.

The translation of OCL expressions is extended to OCL constraints as follows. Let I be
an OCL invariant of form “context C inv: b”, where C is a class in the diagram D and b is
an OCL expression of type Boolean . The invariant states that, for every instance self of C
existing in a system state, the property described by b holds. Accordingly, the translation ThI

of the invariant I is:
∧

Axb → ∀self :C ⌈b⌉ .

Pre- and post-conditions can be translated in a similar way; only the @pre operator, which
may occur in post-conditions, requires a special treatment (see [3] and [12] for a detailed
account).

4.2 Translating Built-in OCL Types

Translating Boolean Expressions. As said above, we usually translate OCL expressions of type
Boolean into first-order formulas. The boolean operators and, or, implies, not are translated
into the corresponding first-order operators. Equality of Boolean expressions is represented
by the operator ↔.

Translating Integer, Real , String Expressions. The OCL type Integer corresponds to an ADT
Integer . As said above, the signature ΣD contains a symbol for every feature1 of Integer .
Every feature of Integer is translated into the corresponding function or predicate symbol
of the ADT. In the same way, the OCL types Real and String are handled with the help of
ADTs Real and String.

Hußmann et al. [10] have argued convincingly that the encapsulation concepts of ADTs
and UML classes are very different and that UML classes can, as a consequence, not smoothly
be translated into ADTs. However, their analysis applies primarily to user defined classes and
does not affect the translation of the basic OCL types just mentioned.

Example 3. Given the following OCL expression (with respect to class Person)

self.age >= 0 and self.employer->size >= 1

that states that person self is employed and has a non-negative age the translation results in
the formula age(self ) ≥ 0 ∧ size(employer (self )) ≥ 1.

1 According to OCL terminology a feature of some OCL type T is any operation that can be applied
to instances of T .
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4.3 Translating the allInstances Operator

The OCL operator allInstances can be applied to a class (to be more precise it is applied
to the object of type OclType that corresponds to the class in the diagram D). It returns the
set of all instances of that class in the current state. To translate this operator, we introduce a
new symbol allInstancesC for each class C and define ⌈C.allInstances⌉ = allInstancesC.
The additional axiom ∀o:C (o ∈ allInstancesC) is introduced to specify the meaning of the
new constant.

4.4 Translating Collection Operators

Overview. OCL offers a common super-type Collection(T ) for the collection types Set(T ),
Bag(T ), and Sequence(T ). Since OCL defines this super-type to be abstract, it does not
occur in actual OCL constraints, but is used to define features that all collection types
have in common (e.g., the size operator). Consequently, we provide ADTs to represent sets,
bags, sequences and collections of all occurring types (e.g., SetBank, BagBank, SequenceBank,
CollectionBank), where the ADTs CollectionT are only relevant for the purpose of typing in
pathological borderline situations and play no role for modelling with OCL in practice.

Below, we describe the translation of the features that the collection types have in common.

Translating size, count, sum, includes, append, etc. These features are translated into the
functions that are their direct counterparts in the ADTs SetT , BagT , and SequenceT . For
example, ⌈c->size⌉ = size(⌈c⌉) and ⌈s->union(c)⌉ = union(⌈s⌉, ⌈c⌉).

Translating Equality. We translate the equality s1=s2 of sets s1, s2 of OCL type Set(T ) by
expressing that they have the same elements: ⌈s1=s2⌉ = ∀e:T (e ∈ ⌈s1⌉ ↔ e ∈ ⌈s2⌉). Here and
in all similar situations below, e:T is a new variable that has not been used before.

For bags we get the formula ⌈b1=b2⌉ = ∀e:T (count(⌈b1⌉, e)
.
= count(⌈b2⌉, e)), and for se-

quences a similar translation is generated.

Translating includesAll, excludesAll. E = c1->includesAll(c2) expresses that the col-
lection c2 is a subset of c1. Thus, ⌈E⌉ = ∀e:T (e ∈ ⌈c2⌉ → e ∈ ⌈c1⌉). excludesAll expresses
that no element of c2 is an element of c1 and is treated similarly.

Translating notEmpty, isEmpty. The translation of the expression E = c->notEmpty is the
formula ⌈E⌉ = ∃e:T (e ∈ ⌈c⌉). isEmpty is treated as the negation of notEmpty.

Translating forAll, exists. The meaning of E1 = c->forAll(e| b) is that b evaluates to
true for all possible instantiations of e with elements of the collection c. Thus, the trans-
lation of E1 is ⌈E1⌉ = ∀e:T ((e ∈ ⌈c⌉) → ⌈b⌉). To translate E2 = c->exists(e| b) we use
⌈E2⌉ = ∃e:T ((e ∈ ⌈c⌉) ∧ ⌈b⌉).

Example 4. Consider the following OCL expression, which formalises “For different objects
of class Bank , the attribute bankID has different values.”

Bank.allInstances->forAll(b1,b2 |

not (b1 = b2) implies not (b1.bankID = b2.bankID))

Its translation is the following formula (a much shorter and optimised translation is given in
Section 5.3):

Translation:

∀b1:Bank (b1 ∈ allInstancesBank → ∀b2:Bank (b2 ∈ allInstancesBank →
(¬(b1

.
= b2) → ¬(bankID(b1)

.
= bankID(b2)))))

Additional axiom:

∀b:Bank (b ∈ allInstancesBank)
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Translating isUnique. The meaning of E = c->isUnique(e|exp) is that the evaluation
of exp results in a different value for each instantiation of e with elements of c. So,

⌈E⌉ = ∀e1:T ∀e2:T ((e1 ∈ ⌈c⌉ ∧ e2 ∈ ⌈c⌉ ∧
⌈exp⌉{e/e1}

.
= ⌈exp⌉{e/e2}) → e1

.
= e2) .2

where e1:T, e2:T are two distinct new variables.

Translating sortedBy. The value of E = c->sortedBy(e|exp) is a sequence with (a) the same
elements as collection c, which are (b) ordered according to the values of the expression exp
(this only makes sense if there is some order ≤ defined on the OCL type of exp. To translate E,
we introduce a new function symbol sortedByE . Let p1, . . . , pn be the free variables occurring
in the translations ⌈c⌉ and ⌈exp⌉ of the subexpressions—excluding the variable e. Then, the
translation of E is ⌈E⌉ = sortedByE(p1, . . . , pn). To ensure that sortedByE has the desired
interpretation with properties (a) and (b), the following two axioms are added to AxE :

∀p1:T1 . . . ∀pn:Tn∀e′:T (count(⌈c⌉, e′)
.
= count(sortedByE(p1, . . . , pn), e′))

∀p1:T1 . . . ∀pn:Tn∀i:Integer , j:Integer (
(1 ≤ i ∧ i ≤ j ∧ j ≤ size(sortedByE(p1, . . . , pn))) →

⌈exp⌉{e/at(sortedByE(p1, . . . , pn), i)}
≤ ⌈exp⌉{e/at(sortedByE(p1, . . . , pn), j)})

where e′:T and i:Integer , j:Integer are distinct new variables.

Translating select, reject. The expression E = c->select(e|b) denotes the collection con-
sisting of those elements of c for which b evaluates to true when e is instantiated with the
element. The translation is based on introducing a new function symbol selectE. Let p1, . . . , pn

be the free variables occurring in the translation ⌈b⌉ of the condition b excluding e. Then,
the translation of E is ⌈E⌉ = selectE(⌈c⌉, p1, . . . , pn).3 Three axioms are added to specify the
meaning of selectE. Their form depends on whether c is a set, a bag, or a sequence. Here, we
present the axioms for sets (the axioms for the other types are similar):

∀p1:T1 . . .∀pn:Tn selectE(emptySetT , p1, . . . , pn)
.
= emptySetT

∀p1:T1 . . .∀pn:Tn∀s:SetT∀e:T (
⌈b⌉ → selectE(insert(s, e), p1, . . . , pn)

.
= insert(selectE(s, p1, . . . , pn), e))

∀p1:T1 . . .∀pn:Tn∀s:SetT∀e:T (
¬⌈b⌉ → selectE(insert(s, e), p1, . . . , pn)

.
= selectE(s, p1, . . . , pn))

Since the reject operator is just the opposite of select, we treat it by negating the filter
condition b and then applying the above translation.

Example 5. The following OCL expression E formalises “There is no person who works for
both company ‘BankA’ and company ‘BankB’.”

Person.allInstances->select(p| p.employer->exists(c1,c2 |

c1.name = ‘BankA’ and c2.name = ‘BankB’))->isEmpty

2 The notation t{e/s} denotes the result of syntactically replacing all occurrences of the variable e
in the term t by the term s.

3 In [9], a similar abbreviation technique is used for the translation of the select operator. There,
however, the free variables p1, . . . , pn are not made arguments of the new function, which leads to
incorrect results.
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Its translation is the following formula (a much shorter and optimised translation is given in
Section 5.3):

Translation:

∀p:Person (¬(p ∈ selectE(allInstancesPerson)))

Additional axioms:

∀p:Person (p ∈ allInstancesPerson)

selectE(emptySetPerson)
.
= emptySetPerson

∀s:SetPerson ∀p:Person (∃c1:Company (c1 ∈ employer (p) ∧
∃c2:Company (c2 ∈ employer (p) ∧
name(c1)

.
= ‘BankA‘ ∧ name(c2)

.
= ‘BankB ‘)) →

selectE(insert(s, p))
.
= insert(selectE(s), p))

∀s:SetPerson ∀p:Person (¬(∃c1:Company (c1 ∈ employer (p) ∧
∃c2:Company (c2 ∈ employer (p) ∧
name(c1)

.
= ‘BankA‘ ∧ name(c2)

.
= ‘BankB ‘))) →

selectE(insert(s, p))
.
= selectE(s))

4.5 Translating Other Constructs of OCL

Translating oclIsKindOf, oclIsTypeOf. These operators allow to check which type the value
of an expression exp has. The translation of exp.oclIsKindOf(T) is ∃e:T e

.
= ⌈exp⌉. The

operator oclIsTypeOf can be expressed by oclIsKindOf using the subtype relation extracted
from the diagram D.

Translating oclAsType. To translate the cast operator oclAsType, we introduce a new func-
tion symbol oclAsTypeT1,T1

: T1 → T2 for every pair T1 ,T2 where T2 is a subtype of T1 , and
we define ⌈o.oclAsType(T2)⌉ = oclAsTypeT1,T2

(⌈o⌉) (where o is of type T1 ). The additional
axioms specifying these symbols are of the form ∀x:T2 (oclAsTypeT1,T2

(x)
.
= x).

Translating Variables and Literals. The translation of an OCL variable v, including self, is
a first-order variable with the same name, i.e., ⌈v⌉ = v.

OCL literals of type Boolean , Integer , Real , or String are translated into a term over
the corresponding ADT. To translate literals of collection types, in case they enumerate the
elements of a collection, we construct a term over the ADT SetT (resp. BagT or SequenceT ).
For example,

⌈Set{1,2,3}⌉ = insert(insert(insert(emptySetInteger , 1), 2), 3) .

To translate collection literals that specify a range of elements, such as E = Set{e1..e2}, we
introduce a new function symbol setE and define ⌈E⌉ = setE(p1, . . . , pn) (where p1, . . . , pn

are the free variables occurring in the translations of the bounds e1 and e2). The additional
axiom specifying setE is

∀p1:T1 . . . ∀pn:Tn ∀i:T (i ∈ setE(p1, . . . , pn) ↔ (⌈e1⌉ ≤ i ∧ i ≤ ⌈e2⌉)) .

For bags and sequences, the translation is similar. However, additional axioms are needed
to express that (a) every element in the range occurs exactly once in the result and (b) for
sequences, that the elements are ordered.

Example 6. The following OCL expression (used as an invariant for class Customer) for-
malises “A customer’s favourite companies are ordered according to their stock price.”

Sequence {1 .. self.favourites->size}->forAll(i,j| j >= i implies

self.favourites->at(i).stockPrice() >=

self.favourites->at(j).stockPrice())
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Its translation is the following formula (a much shorter and optimised translation is given in
Section 5.3):

Translation:

∀i:Integer (i ∈ seq0(self ) → ∀j:Integer (j ∈ seq0(self ) → (j ≥ i →
stockPrice(at(favourites(self ), i)) ≥
stockPrice(at(favourites(self ), j)))))

Additional axioms:

∀c:Customer ∀i:Integer (i ∈ seq0(c) ↔
1 ≤ i ∧ i ≤ size(favourites(c)))

∀c:Customer ∀i:Integer , j:Integer (1 ≤ i ∧ i ≤ j ∧ j ≤ size(seq0(c)) →
at(seq0(c), i) ≤ at(seq0(c), j))

∀c:Customer ∀i:Integer (count(seq0(c), i) ≤ 1)

5 Optimisations and Simplifications

5.1 Motivation

It is crucial for the usability of the formulas generated by the translation (in particular in
interactive theorem proving)—and for the usefulness of such a translation itself—that the
formulas are as easy to understand as the original OCL expressions. One way for achieving
this goal is to generate a formula that is syntactically as close as possible to the translated
OCL expression. For example, the names of the function symbols used in a formula should
as far as possible coincide with the names of the corresponding features in OCL. We tried to
satisfy this demand with our basic translation described in Section 4.

But, although the generated formulas are very similar to the original expression in their
syntactic structure, they are sometimes unnecessarily complicated and hard to read. This
is due to the additional axioms introduced in order to constrain the interpretation of new
function symbols, which mainly represent OCL collections. Even for small OCL expression
there can be a large number of constraining axioms.

A technique that aims to overcome this problem is presented in this section. The idea is
to use a different representation for OCL collections. That can help to reduce the number of
additional function symbols and axioms, because most of them are introduced when collection
operators are translated (such as select and asSequence).

Note, that often the readability of formulas can be improved by applying rewriting rules.
But there are also many cases where the effects of an unsuitable translation cannot be undone
by mere simplification but where the form of the original constraint has to be known to choose
a good first-order representation; such choices, consequently, have to be made at the time and
as part of translation.

5.2 Representing Collections with Predicates

The translation described in Section 4 uses a functional representation of OCL collections, i.e.,
expressions of type Set , Sequence, or Bag are translated into first-order terms. An alternative
is to translate such expressions predicatively, i.e., to represent them by a formula.

For sets a predicative translation is easy to define: A set expression s is translated into a
“characteristic” formula φs(e) that is equivalent to e ∈ ⌈s⌉. Using such a presentation allows us
to translate most OCL set operators without the need to introduce new function symbols. For
example, the expression E = s->select(e|b) can then be represented by φE = φs(e) ∧ ⌈b⌉.

Unfortunately, there are also cases where a predicative representation is not useful. For
example, when an expression of the form s->size is translated, it is better to apply a func-
tional translation to the subexpression s. Also, for bags and sequences, a useful predicative
representation is more difficult to define than for sets, and the resulting formulas are often
hard to understand.
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Our investigation of examples showed however, that a predicative translation of sets is
preferable in most cases. Moreover, in many OCL constraints, expressions of type bag or
sequence are actually used as sets, i.e., the additional information they contain is irrelevant.
For example, when an expression E = s->forAll(e|b) is translated, the order of elements in s
and the number of their occurrences is of no importance, and E can be translated predicatively.
This basic idea gives rise to a simple but powerful heuristics to decide whether a predicative
translation is preferable to a functional form. Usually such a decision has to be made globally
for a whole expression, because combining the translations of subexpressions that use different
representations (functional resp. predicative) is awkward and leads to formulas that are hard
to read. For a detailed account of this topic please refer to [12].

5.3 Examples for Predicative Translations

In this section, we present the predicative translations of the OCL expression from the ex-
amples in Section 4. They are shorter and easier to read than the functional translations.
Moreover, it is not necessary anymore to generate additional axioms since no new symbols
are introduced.

Example 7. The predicative translation of the expression from Example 4 is:

∀b1:Bank ∀b2:Bank (¬(b1

.
= b2) → ¬(bankID(b1)

.
= bankID(b2)))

Example 8. The OCL expression from Example 5 translates to:

∀p:Person (¬ (∃c1:Company (c1 ∈ employer(p) ∧
∃c2:Company (c2 ∈ employer(p) ∧
name(c1)

.
= ‘BankA‘ ∧ name(c2)

.
= ‘BankB‘))))

Example 9. The predicative translation of the expression from Example 6 is:

∀j:Integer (1 ≤ j ∧ j ≤ size(favourites(self )) →
∀i:Integer (1 ≤ i ∧ i ≤ size(favourites(self )) →

(j ≥ i →
stockPrice(at(favourites(self ), i)) ≥
stockPrice(at(favourites(self ), j)))))

6 Conclusions and Future Work

We have presented in this paper a translation of the logical information contained in UML
class diagrams and OCL constraints into first-order predicate logic. It has been implemented
as part of the KeY system. It should be easy to use it with other systems, since first-order
logic by its universal nature can be readily mapped into almost all logical languages used in
formal methods.

We have provided a first set of optimisations. Experimenting with case studies will give
insight if and which further optimisations are necessary or desirable.

In the present account, we have deliberately excluded some items, e.g. the iterate oper-
ator, that are better expressed in a higher-order logic. These issues are treated in [12].

It also remains future research to compare and possibly adapt our translation to version 2.0
of UML/OCL standard once it is agreed upon.
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Jyväskylä, Finland, LNCS 1357, pages 205–210. Springer, 1998.

6. R. France. A problem-oriented analysis of basic UML static modeling concepts. In Proceedings,
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Denver, USA, volume 34 (10) of ACM SIGPLAN notices. ACM Press, 1999.

7. M. Gogolla and M. Richters. On constraints and queries in UML. In M. Schader and A. Korthaus,
editors, The Unified Modeling Language: Technical Aspects and Applications, pages 109–121.
Physica-Verlag, 1998.

8. A. Hamie, F. Civello, J. Howse, S. Kent, and M. Mitchell. Reflections on the Object Constraint
Language. In Post Workshop Proceedings of UML98. Springer, 1998.

9. A. Hamie, J. Howse, and S. Kent. Interpreting the Object Constraint Language. In Proceedings,
Asia Pacific Conference in Software Engineering. IEEE Press, July 1998.

10. H. Hußmann, M. Cerioli, G. Reggio, and F. Tort. Abstract data types and UML models. Technical
Report DISI-TR-99-15, DISI – Università di Genova, Italy, 1999.
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