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t. This paper reports on the ongoing KeY proje
t aimed at bridg-ing the gap between (a) OO software engineering methods and tools and(b) dedu
tive veri�
ation. A distin
tive feature of our approa
h is the use ofa 
ommer
ial CASE tool enhan
ed with fun
tionality for formal spe
i�
ationand dedu
tive veri�
ation.1 Introdu
tion1.1 Analysis of the Current SituationWhile formal methods are by now well established in hardware and system design(the majority of produ
ers of integrated 
ir
uits are routinely using BDD-basedmodel 
he
king pa
kages for design and validation), usage of formal methods insoftware development is 
urrently 
on�ned essentially to a
ademi
 resear
h proje
ts.Although there are industrial appli
ations of formal software development [7℄, theseare still ex
eptional [8℄.The limits of appli
ability of formal methods in software design are not de�nedby the potential range and power of existing approa
hes. Several 
ase studies 
learlydemonstrate that 
omputer-aided spe
i�
ation and veri�
ation of realisti
 softwareis feasible [27, 24℄. The real problem lies in the ex
essive demand imposed by 
urrenttools on the skills of prospe
tive users:1. Tools for formal software spe
i�
ation and veri�
ation are not integrated intoindustrial software engineering pro
esses.2. User interfa
es of veri�
ation tools are not ergonomi
, they are 
omplex, id-iosyn
rati
, and often without graphi
al support.3. Users of veri�
ation tools are expe
ted to know syntax and semanti
s of oneor more 
omplex formal languages. Typi
ally, at least a ta
ti
al programminglanguage and a logi
al language are involved. Even worse, to make serious useof many tools, intimate knowledge of employed logi
 
al
uli and proof sear
hstrategies is ne
essary.Su

essful spe
i�
ation and veri�
ation of larger proje
ts, therefore, is done sep-arately from software development by a
ademi
 spe
ialists with several years oftraining in formal methods, in many 
ases by the tool developers themselves.While this is viable for proje
ts with high safety and low se
re
y demands, itis unlikely that formal software spe
i�
ation and veri�
ation will be
ome a routinetask in industry under these 
ir
umstan
es.The future 
hallenge for formal software spe
i�
ation and veri�
ation is to makethe 
onsiderable potential of existing methods and tools feasible to use in an indus-trial environment. This leads to the requirements:



1. Tools for formal software spe
i�
ation and veri�
ation must be integrated intoindustrial software engineering pro
edures.2. User interfa
es of these tools must 
omply with state-of-the-art software engi-neering tools.3. The ne
essary amount of training in formal methods must be minimized. More-over, te
hniques involving formal software spe
i�
ation and veri�
ation mustbe tea
hable in a stru
tured manner. They should be integrated in 
ourses onsoftware engineering topi
s.To be sure, the thought that full formal software veri�
ation might be possiblewithout any ba
kground in formal methods is utopian. An industrial veri�
ationtool should, however, allow for gradual veri�
ation so that software engineers atany (in
luding low) experien
e level with formal methods may bene�t. In addition,an integrated tool with well-de�ned interfa
es fa
ilitates \outsour
ing" those partsof the modeling pro
ess that require spe
ial skills.Another important motivation to integrate design, development, and veri�
ationof software is provided by modern software development methodologies whi
h areiterative and in
remental. Post mortem veri�
ation would enfor
e the antiquatedwaterfall model. Even worse, in a linear model the extra e�ort needed for veri�
a-tion 
annot be parallelized and thus 
ompensated by greater work for
e. Therefore,delivery time in
reases 
onsiderably and would make formally veri�ed software de-
isively less 
ompetitive.But not only must the extra time for formal software development be withinreasonable bounds, the 
ost of formal spe
i�
ation and veri�
ation in an industrial
ontext requires a

ountability:4. It must be possible to give realisti
 estimations of the 
ost of ea
h step in formalsoftware spe
i�
ation and veri�
ation depending on the type of software and thedegree of formalization.This implies immediately that the mere existen
e of tools for formal software spe
i-�
ation and veri�
ation is not suÆ
ient, rather, a formal software spe
i�
ation andveri�
ation pro
ess is needed.1.2 The Proje
tSin
e November 1998 the authors work on a proje
t addressing the goals outlinedin the previous se
tion; we 
all it the proje
t (read \key").In the prin
ipal use 
ase of the KeY system there are a
tors who want to imple-ment a software system that 
omplies with given requirements and formally verifyits 
orre
tness. The system will assist with and do
ument the di�erent work-
ows ofthis pro
ess: requirements, analysis, design, and implementation. In addition therewill be the work-
ow 
alled veri�
ation. It is responsible for adding formal detail tothe analysis model, for 
reating 
onditions that ensure the 
orre
tness of re�nementsteps (
alled proof obligations), for �nding proofs showing that these 
onditions aresatis�ed by the model, and for generating 
ounter examples if they are not. Spe
ialfeatures of KeY are:{ We 
on
entrate on obje
t-oriented analysis and design methods (OOAD), be-
ause of their key role in today's software pra
ti
e, and on Java as the targetlanguage. In parti
ular, we use the Uni�ed Modeling Language (UML) [21℄ forvisual modeling of designs and spe
i�
ation and the Obje
t Constraint Lan-guage (OCL) for adding further restri
tions. This 
hoi
e is supported by thefa
t, that the UML (whi
h 
ontains OCL sin
e version 1.3) is not only an OMGstandard, but has been adopted by all major OOAD software vendors and isfeatured in re
ent OOAD textbooks [19℄.2



{ We use a 
ommer
ial CASE tool as starting point and enhan
e it by additionalfun
tionality for formal spe
i�
ation and veri�
ation. The 
urrent tool of our
hoi
e is Sterling's Cool:Jex.{ Formal veri�
ation is based on an axiomati
 semanti
s of the real programminglanguage Java Card [28℄ (soon to be repla
ed by Java 2 Mi
ro Edition, J2ME).{ As a 
ase study to evaluate the usability of our approa
h we develop a s
enariousing smart 
ards with Java Card as a programming language [14, 15℄. Javasmart 
ards make an extremely suitable target for a 
ase study:� As an obje
t-oriented language, Java Card is well suited for OOAD;� the Java Card language la
ks some 
ru
ial 
ompli
ations of the full Javalanguage (no threads, fewer data types, no graphi
al user interfa
es);� Java Card appli
ations are small (Java smart 
ards 
urrently o�er 16Kmemory for 
ode);� at the same time, Java Card appli
ations are embedded into larger pro-gram systems or business pro
esses whi
h should be modeled (although notne
essarily formally veri�ed) as well;� Java Card appli
ations are often se
urity-
riti
al, thus giving in
entive toapply formal methods;� the high number (usually millions) of deployed smart 
ards 
onstitutes anew motivation for formal veri�
ation, be
ause, in 
ontrast to software runon standard 
omputers, arbitrary updates are not feasible;1{ Through dire
t 
onta
ts with software 
ompanies we 
he
k the soundness of ourapproa
h for real world appli
ations.The KeY system 
onsists of three main 
omponents (see Fig. 1):
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Fig. 1. Ar
hite
ture of the KeY system.{ The modeling 
omponent : this 
omponent is based on the CASE tool and isresponsible for all user intera
tions (ex
ept intera
tive dedu
tion). It is usedto generate and re�ne models, and to store and pro
ess them. The extensionsfor pre
ise modeling 
ontains, e.g., editor and parser for the OCL. Additionalfun
tionality for the veri�
ation pro
ess is provided, e.g., for writing proof obli-gations.1 While Java Card applets on smart 
ards 
an be updated in prin
iple, for se
urityreasons this does not extend to those applets that verify and load updates.3



{ The veri�
ation manager : the link between the modeling 
omponent and thededu
tion 
omponent. It generates proof obligations expressed in formal logi
from the re�nement relations in the model. It stores and pro
esses partial and
ompleted proofs; and it is responsible for 
orre
tness management (to makesure, e.g., that there are no 
y
li
 dependen
ies in proofs).{ The dedu
tion 
omponent. It is used to a
tually 
onstru
t proofs|or 
ounterexamples|for the proof obligations generated by the veri�
ation manager. It isbased on an intera
tive veri�
ation system 
ombined with powerful automateddedu
tion te
hniques that in
rease the degree of automation; it also 
ontains apart for automati
ally generating 
ounter examples for failed proof attempts.The intera
tive and automated te
hniques and those for �nding 
ounter exam-ples are fully integrated and operate on the same data stru
tures.Although 
onsisting of di�erent 
omponents, KeY is a fully integrated system witha uniform user interfa
e.It is worth pointing out that we do not assume any dependen
ies between thein
rements in the development pro
ess and the veri�
ation of proof obligations.In Fig. 2 progress in modeling is depi
ted along the horizontal axis and progressin verifying proof obligations on the verti
al axis. The overall goal is to pro
eedfrom the upper left 
orner (empty model, nothing proved) to the bottom right one(
omplete model, all proof obligations veri�ed). There are two extreme ways ofdoing that:{ First 
omplete the whole modeling and 
oding pro
ess, only then start to verify(Fig. 2(a)).{ Start verifying proof obligations as soon as they are generated (Fig. 2(b)).In pra
ti
e one 
hooses an intermediate approa
h (Fig. 2(
)). How this approa
hdoes exa
tly look is an important design de
ision of the veri�
ation pro
ess withstrong impa
t on the possibilities for reuse and is the topi
 of future resear
h.
(a)

(a)

(c)

(b)

progrss in proving

progress in modeling 

Fig. 2. Two dimensions: modeling and veri�
ation.2 Designing a System with2.1 Spe
i�
ation with the UML in
luding the OCLWhen designing a system with KeY, one �rst develops a UML model using our inte-grated CASE tool as usual (see the following subse
tion for pro
ess methodology).4



The diagrams of the Uni�ed Modeling Language provide, in prin
iple, an easy and
on
ise way to formulate various aspe
ts of a spe
i�
ation, however, as Steve Cookremarked [30, foreword℄: \[. . . ℄ there are many subtleties and nuan
es of meaningdiagrams 
annot 
onvey by themselves."This was a main sour
e of motivation for the development of the Obje
t Con-straint Language (OCL), part of the UML sin
e version 1.3 [21℄. Constraints writtenin this language are understood in the 
ontext of a UML model, they never standby themselves. The OCL allows to atta
h pre
onditions, post
onditions, invariants,and guards to spe
i�
 elements of a UML model. It is easy to extra
t the signatureto be used in OCL expressions automati
ally from the 
lass diagrams of a model.The se
ond step in designing a system with KeY is thus to make the UMLmodel more pre
ise by adding OCL 
onstraints (making the UML more pre
ise isalso on the agenda of the pre
ise UML group whose goals are laid down in [9℄, seealso www.
s.york.a
.uk/puml/). For that purpose, the KeY system provides menuand dialog driven input possibility to assist the user. Certain standard tasks, forexample, generation of formal spe
i�
ations of indu
tive data stru
tures (in
ludingthe 
ommon ones su
h as lists, sta
ks, trees) in the UML and the OCL 
an be donefully automated, while the user simply supplies names of 
onstru
tors and sele
tors.Even if formal spe
i�
ations 
annot fully be 
omposed in su
h a s
hemati
 way,
onsiderable parts usually 
an.Another possibility to bring (OCL) 
onstraints into a UML model is by enri
heddesign patterns. In the KeY system we will provide 
ommon patterns that 
ome
omplete with prede�ned 
onstraints or 
onstraint s
hemata. The user needs notwrite formal spe
i�
ations from s
rat
h, but only to adapt and 
omplete them.As an example, 
onsider the 
omposite pattern [11, p. 163�℄, depi
ted in Fig. 3.This is a ubiquitous pattern in many 
ontexts su
h as user interfa
es, re
ursive datastru
tures, and, in parti
ular, in the model for the address book of an email 
lientthat is part of one of our 
ase studies.
Component

+Operation()
+Add(c:Component)
+Remove(c:Component)
+GetChild(i:int)

Leaf
+Operation()

Composite
+Operation()
+Add(c:Component)
+Remove(c:Component)
+GetChild(i:int)

 children
 0..*

Client

Fig. 3. The 
omposite pattern.The 
on
rete Add and Remove operations in Composite are intuitively 
learbut leave some questions unanswered. Can we add the same element twi
e? Someimplementations of the 
omposite pattern allow that [13℄. If it is not intended, thenone has to impose a 
onstraint, su
h as:
context Composite::Add(c:Component)
post: self.children!select(p|p = c)!size = 1This is a post
ondition on the 
all of the operation Add in OCL syntax. After
ompletion of the operation 
all, the stated post
ondition is guaranteed to be true.5



Without going into details of the OCL, we give some hints on how to read thisexpression. The arrow \!" indi
ates that the expression to its left represents a
olle
tion of obje
ts (a set, a multiset, or a sequen
e), and the operation to its rightis to be applied to this 
olle
tion. The dot \:" is used to navigate within diagramsand (here) yields those obje
ts asso
iated to the item on its left via the role nameon its right. If C is the multiset of all 
hildren of the obje
t self to whi
h Addis applied, then the select operator yields the set A = fp 2 C j p = cg and thesubsequent integer-valued operation size gives the number of elements in A. Thus,the post
ondition expresses that after adding c as a 
hild to self, the obje
t co

urs exa
tly on
e among the 
hildren of self.There are a lot of other useful (and more 
omplex) 
onstraints, e.g., the 
on-straint that the 
hild relationship between obje
ts of 
lass Component is a
y
li
.2.2 The Modeling Pro
essIn addition to a suitable language to express (formal) models|in KeY this is theUML in
luding the OCL|amethodology guiding the modeling pro
ess must be pro-vided. Most methodologies des
ribed in the OOAD literature, for example, OOD [5℄or the Rational Uni�ed Pro
ess [17℄, have two important features in 
ommon: Theyare iterative and in
remental.These features have been adopted for the methodology used in KeY: A proje
tis divided into iterations. In ea
h iteration the user develops a 
omplete model; thein
rements a
hieved within the iterations are that the models get more and morepre
ise. The model of iteration i+ 1 re�nes the model of iteration i (a detaileddes
ription of the re�nement relation is given below).In all re�nements|ex
ept the �nal one|models are expressed in the UML (in-
luding the OCL), however, in later iterations the models be
ome more detailedand, in addition, 
ontain more OCL 
onstraints, whi
h provide for a higher de-gree of pre
ision. The �nal re�nement step is the implementation, in other words,we 
onsider the realization of a system in Java 
ode to be a parti
ular (and verypre
ise) model of that system.2.3 The Module Con
eptAs said before, the pro
ess of modeling a system 
onsists of several iterations. Inaddition, the KeY system supports modularization of the model. Those parts of amodel that 
orrespond to a 
ertain 
omponent of the modeled system are groupedtogether and form a module. Modules are a di�erent stru
turing 
on
ept than iter-ations and serve a di�erent purpose. A module 
ontains all the model 
omponents(diagrams, 
ode et
.) that refer to a 
ertain system 
omponent. A module is notrestri
ted to a single level of re�nement.There are three main reasons behind the module 
on
ept of the KeY system:Stru
turing: Models of large systems 
an be stru
tured, whi
h makes them easierto handle.Information hiding: Parts of a module that are not relevant for other modulesare hidden. This makes it easier to 
hange modules and 
orre
t them whenerrors are found, and to re-use them for di�erent purposes.Veri�
ation of single modules: Modules 
an be veri�ed separately, whi
h al-lows to stru
ture large veri�
ation problems. If the size of modules is limited,the 
omplexity of verifying a system grows linearly in the number of its modulesand thus in the size of the system. This is indispensable for the s
alability ofthe KeY approa
h. 6



In the KeY approa
h, a hierar
hi
al module 
on
ept with sub-modules supportsthe stru
turing of large models. The modules in a system model form a tree withrespe
t to the sub-module relation.Besides sub-modules and other model 
omponents, a module 
ontains the re-�nement relations between 
omponents that des
ribe the same part of the modeledsystem in two 
onse
utive levels of re�nement. The veri�
ation problem asso
iatedwith a module is to show that these re�nements are 
orre
t (see Se
tion 3.1). There�nement relations must be provided by the user; typi
ally, they in
lude a signaturemapping.To fa
ilitate information hiding, a module is divided into a publi
 part, its 
on-tra
t, and a private (hidden) part; the user 
an de
lare parts of ea
h re�nement levelas publi
 or private. Only the publi
 information of a module A is visible in an-other module B provided that module B impli
itly or expli
itly imports module A.Moreover, a 
omponent of module B belonging to some re�nement level 
an onlysee the visible information from module A that belongs to the same level. Thus,the private part of a module 
an be 
hanged as long as its 
ontra
t is not a�e
ted.For the des
ription of a re�nement relation (like a signature mapping) all elementsof a module belonging to the initial model or the re�ned model are visible, whetherde
lared publi
 or not.As the modeling pro
ess pro
eeds through iterations, the system model be
omesever more pre
ise. The �nal step is a spe
ial 
ase, though: the involved models|the implementation model and its realization in Java|do not ne
essarily di�erin pre
ision, but use di�erent paradigms (spe
i�
ation vs. implementation) anddi�erent languages (UML/OCL vs. Java).2Fig. 4 shows a s
hemati
 example for the levels of re�nement and the modules ofa system model (the visibility aspe
t of modules is not represented here). Strongerre�nement may require additional stru
ture via (sub-)modules, hen
e the numberof modules may in
rease with the degree of re�nement.
Java
code

precise
model

imprecise
model

Refinement relation

Import relationModule

R
efin

em
en

t L
evels

Part of module within one refinementFig. 4. Example for levels of re�nement and modules of a system model.2 In 
onventional veri�
ation systems that do not use an iterative modeling pro
ess [22, 25℄,only these �nal two models exist (see also the following subse
tion). In su
h systems,modules 
onsist of a spe
i�
ation and an implementation that is a re�nement of thespe
i�
ation. 7



Although the import and re�nement relations are similar in some respe
ts, thereis a fundamental di�eren
e: by way of example, 
onsider a system 
omponent being(impre
isely) modeled as a 
lass DataStorage in an early iteration. It may later bere�ned to a 
lass DataSet, whi
h repla
es DataStorage. On the other hand, the mod-ule 
ontaining DataSet 
ould import a module DataList and use lists to implementsets, in whi
h 
ase lists are not a re�nement of sets and do not repla
e them.2.4 Relation of Modules to other Approa
hesThe ideas of re�nement and modularization in the KeY module 
on
ept 
an be
ompared with (and are partly in
uen
ed by) the KIV approa
h [25℄ and theB Method [1℄.In KIV, ea
h module (in the above sense) 
orresponds to exa
tly two re�nementlevels, that is to say, a single re�nement step. The �rst level is an algebrai
 datatype, the se
ond an imperative program, whose pro
edures intentionally implementthe operations of the data type. The import relation allows the algebrai
 datatype operations (not the program pro
edures!) of the imported module to appeartextually in the program of the importing module. In 
ontrast to this, the Java
ode of a KeY module dire
tly 
alls methods of the imported module's Java 
ode.Thus, the obje
t programs of our method are pure Java programs. Moreover, KeYmodules in general have more than two re�nement levels.The B Method o�ers (among other things) multi-level re�nement of abstra
tma
hines. There is an elaborate theory behind the pre
ise semanti
s of a re�nementand the resulting proof obligations. This is possible, be
ause both, a ma
hine andits re�nement, are 
ompletely formal, even if the re�nement happens to be lessabstra
t. That di�ers from the situation in KeY, where all but the last re�nementlevels are UML-based, and a re�ned part is typi
ally more formal than its origin.KeY advo
ates the integrated usage of notational paradigms as opposed to, forexample, prepending OOM to abstra
t ma
hine spe
i�
ation in the B Method [18℄.2.5 Modeling the Internal State of Obje
tsThe behavior of obje
ts depends on their state that is stored in their attributes,however, the methods of a Java 
lass 
an in general not be des
ribed as fun
tionson their input as they may have side e�e
ts and 
hange the state. To model anobje
t or 
lass, it must be possible to refer to its state (in
luding its initial state).DiÆ
ulties may arise, if methods for observing the state are not de�ned or arede
lared private and, therefore, 
annot be used in the publi
 
ontra
t of a 
lass. Tomodel su
h 
lasses, observer methods have to be added. These allow to observe thestate of a 
lass without 
hanging it.Example 1. Consider a 
lass Registry 
ontaining a method seen(o: Object):
Boolean that maintains a list of all the obje
ts it has \seen". It returns false,if it \sees" an obje
t for the �rst time, and true, otherwise. In this example, wewould add the fun
tion state(): Set(Object) allowing to observe the state ofan obje
t of 
lass Registry by returning the set of all seen obje
ts. The behavior of
seen 
an now be spe
i�ed in the OCL as follows:

context Registry::seen(o: Object)
post: result = state@pre()!includes(o) and

state() = state@pre()!including(o)The OCL key word result spe
i�es the expe
ted return value of seen, while @pregives the result of state() before invo
ation of seen, whi
h we denote by oldstate .The OCL expression state@pre()!includes(o) then stands for o 2 oldstateand state@pre()!including(o) for oldstate [ fog.8



3 Formal Veri�
ation withOn
e a program is formally spe
i�ed to a suÆ
ient degree one 
an start to formallyverify it. Neither a program nor its spe
i�
ation need to be 
omplete in order to startverifying it. In this 
ase one suitably weakens the post
onditions (leaving out prop-erties of unimplemented/unspe
i�ed parts) or strengthens pre
onditions (addingassumptions about unimplemented parts). Data en
apsulation and stru
turednessof OO designs should be of great help here.The veri�
ation pro
ess will be automated as mu
h as possible with the help ofdedu
tion te
hniques based on previous work [2℄ done in our group on integratingour automated [4℄ and intera
tive theorem provers [25℄.In a real development pro
ess, resulting programs often are bug-ridden, there-fore, disproving the 
orre
tness of programs is as important as proving it. The in-teresting and 
ommon 
ase is that neither 
orre
tness nor its negation are dedu
iblefrom given assumptions, often be
ause these assumptions do not fully spe
ify thedata stru
tures modi�ed by the program. As a simple example, we might not haveany knowledge about the behavior of, say, pop(s: Sta
k): Sta
k if s is empty.We are developing dedu
tive te
hniques to automati
ally exhibit bugs, in parti
ular
aused by underspe
i�
ation, within the veri�
ation pro
ess.Due to spa
e limitation, a full des
ription of the dedu
tive 
omponent will begiven elsewhere.3.1 Proof ObligationsThe basis for reasoning about properties of programs in KeY is dynami
 logi
(DL) [16℄, an extension of Hoare logi
 [3℄. In 
ontrast to Hoare logi
, the set offormulas of dynami
 logi
 is 
losed under the usual logi
al operations. Typi
al build-ings blo
ks of DL formulas are s
hemata P ! h�iQ, whi
h are true if for every statesatisfying pre
ondition P a run of the program � starting in su
h a state terminates,and in the terminating state the post
ondition Q holds. DL has been su

essfullyused in the KIV system [25℄. It was shown [23℄ that there are no prin
ipal obsta-
les to adapt the DL/Hoare approa
h to typed obje
t-oriented languages. DL isstronger than �rst-order logi
, and allows, for example, to 
hara
terize 
y
li
ity ofdata stru
tures.Typi
ally, the statements to be proven arise from OCL 
onstraints in UMLmodels. The OCL (a) has no formal semanti
s and (b) has no means to 
onne
t
onstraints to target programs. It is, therefore, not dire
tly usable for automated de-du
tion and, be
ause of (a), one has to translate OCL 
onstraints into DL formulas.Details of this interesting subtask of the KeY proje
t will be addressed in a separatepubli
ation. Here, we merely say a few words on the origin of proof obligations.We employ design by 
ontra
t [20℄ as a guiding prin
iple with the same restri
tionas [30℄: we 
ompletely ignore run-time aspe
ts of this 
on
ept. Constraints o

ur aspre- and post
onditions of operations, and as invariants of 
lasses, to mention themost frequent 
ases.We use 
onstraints in two di�erent ways: �rst, they 
an be part of a model (thedefault); these 
onstraints do not generate proof obligations by themselves. Se
ond,
onstraints 
an be given the status of a proof obligation; these are not part of themodel, but must be shown to hold in it.Proof obligations may arise indire
tly from 
onstraints of the �rst kind: by
he
king 
onsisten
y of invariants, pre- and post
onditions of a super
lass and itssub
lasses, by 
he
king 
onsisten
y of the post
ondition of an operation and theinvariant of its result type, et
.Even more important are proof obligations arising from iterative re�nementsteps. To prove that a diagram D0 is a sound re�nement of a diagram D requires9



to 
he
k that the assertions stated in D0 entail the assertions in D. A parti
ularre�nement step is the passage from a fully re�ned spe
i�
ation to its realization in
on
rete 
ode.3.2 The Program Logi
The basi
 building blo
ks for 
orre
tness statements in DL have the form h�iQ,representing the weakest 
ondition, whose validity in a state s guarantees thatexe
ution of the program � terminates in a state satisfying Q. We de
ided to takea bold step and allow any legal Java Card program to o

ur in the pla
e of � inour DL formulas.We assume that programs and, in parti
ular, expressions in programs are parsedalready. Thus, the 
al
ulus needs not to know about operator priorities et
., andwe 
an use notions like \immediate sub-expression" in the de�nition of our rules. Afull des
ription of KeY-DL, the dynami
 logi
 used in KeY, will be given elsewhere.Here, we try to 
onvey the basi
 spirit of our approa
h. The usual assignment ruleof DL3(P yx ^ x := tyx) ! QP ! hx = tiQ where y is new (1)has to be modi�ed and extended, be
ause the evaluation of the Java Card expres-sion t (and even of x) may have side e�e
ts. The logi
 has to \know" about the
ontrol 
ow during evaluation of expressions.Example 2. Let us 
onsider the formula F � (P ! h�iQ) withP � i := 3 ^ v[1℄ := 4 ^ j := 4� � v[i++℄ = j++ * j;Q � i := 4 ^ v[1℄ := 4 ^ v[3℄ := 20 ^ j := 5We want to show that F is a valid formula: the exe
ution of � in a state, wherepre
ondition P holds, terminates in a state where post
ondition Q holds.The program � 
ontains the post�x in
rement operator ++. A

ording to theJava language spe
i�
ation [12, Se
t. 15.13.2℄, i++ may be used to refer to thevariable i. As a side e�e
t, the value of i is in
reased by one afterwards. This isre
e
ted by a KeY-DL rule that handles i++. Applied to formula F , it yields:(P ^ x := i) ! hi = i+1;ihv[x℄ = j++ * j;iQ (2)Appli
ation of the assignment rule (1) to (2) then gives:(P yi ^ x := y ^ i := y + 1) ! hv[x℄ = j++ * j; iQTreating j++ in the same way we get the next two steps in the evaluation:(P yi ^ x := y ^ i := y + 1 ^ z := j) ! hj = j+1; ihv[x℄ = z*j; iQ(P y;ui;j ^ x := y ^ i := y + 1 ^ z := u ^ j := u+ 1)! hv[x℄ = z*j; iQHow to treat assignments to array variables in program logi
s is well known [3℄;in the present 
ase, note that v[1℄ o

urs in P and thus in the premiss of theimpli
ation, and the two 
ases that v[1℄ is/is not 
hanged by the assignment haveto be 
onsidered:((x := 1 ^ P y;u;wi;j;v[1℄ ^ � � � ^ j := u+ 1 ^ v[1℄ := z � j) ! Q) ^((:(x := 1) ^ P y;ui;j ^ � � � ^ j := u+ 1 ^ v[x℄ := z � j) ! Q) (3)3 The formula F yx arises from the formula F by repla
ing all free o

urren
es of x by y.10



The result (3) does not 
ontain any Java 
ode. Simpli�
ation of (3) using thede�nition of P now yields:((x := 1 ^ y := 3 ^ x := y ^ � � �) ! Q) ^((y := 3 ^ v[1℄ := 4 ^ u := 4 ^ � � � ^ i := 4 ^ z := 4 ^ j := 5 ^ v[3℄ := 20)! Q)It is easy to 
he
k that this indeed is a valid formula and our present theoremproving tools [25, 4℄ have no diÆ
ulties to show this automati
ally.It is important to note that the post�x in
remental operator ++ is not just a fan
y
onstru
t we must deal with to 
omplete the pi
ture. Su
h an operator, whetherimportant by itself or not, serves as a 
on
ise example for a general phenomenon ina language like Java: expressions 
an have both, a value and an e�e
t. In parti
ular,Java allows to 
all (non-void) methods, possibly 
hanging the obje
t's state, insidea value-returning expression. Therefore, the 
al
ulus must be able to exe
ute anexpression stepwise, as illustrated by the above example.4 Related WorkThere are many proje
ts dealing with formal methods in software engineering in-
luding several ones aimed at Java as a target language. There is also work onse
urity of Java Card and A
tiveX appli
ations as well as on se
ure smart 
ardappli
ations in general. We are, however, not aware of any proje
t quite like ours.We mention some of the more 
losely related proje
ts:{ The Cogito proje
t [29℄ resulted in an integrated formal software developmentmethodology and support system based on extended Z as spe
i�
ation languageand Ada as target language. It is not integrated into a CASE tool, but stand-alone.{ The FuZE proje
t [10℄ realized CASE tool support for integrating the FusionOOAD pro
ess with the formal spe
i�
ation language Z. The aim was to formal-ize OOAD methods and notations su
h as the UML, whereas we are interestedto derive formal spe
i�
ations with the help of an OOAD pro
ess extension.{ The goal of the Quest proje
t [26℄ is to enri
h the CASE tool AutoFo
usfor des
ription of distributed systems with means for formal spe
i�
ation andsupport by model 
he
king. Appli
ations are embedded systems, des
riptionformalisms are state 
harts, a
tivity diagrams, and temporal logi
.{ Aim of the SysLab proje
t is the development of a s
ienti�
ally founded ap-proa
h for software and systems development. At the 
ore is a pre
ise and formalnotion of hierar
hi
al \do
uments" 
onsisting of informal text, message sequen
e
harts, state transition systems, obje
t models, spe
i�
ations, and programs.All do
uments have a \mathemati
al system model" that allows to pre
iselydes
ribe dependen
ies or transformations [6℄.{ The PROSPER (www.d
s.gla.a
.uk/prosper/index.html) proje
t's goal was toprovide the means to deliver the bene�ts of me
hanized formal spe
i�
ation andveri�
ation to system designers in industry. The di�eren
e to the KeY proje
t isthat the dominant goal is hardware veri�
ation; the software part only involvesspe
i�
ation.5 Con
lusion and the Future ofIn this paper we des
ribed the 
urrent state of the KeY proje
t and its ultimategoal: To fa
ilitate and promote the use of formal veri�
ation in an industrial 
ontextfor real-world appli
ations. It remains to be seen to whi
h degree this goal 
an bea
hieved. 11



Our vision is to make the logi
al formalisms transparent for the user with respe
tto OO modeling. That is, whenever user intera
tion is required, the 
urrent state ofthe veri�
ation task is presented in terms of the environment the user has 
reatedso far and not in terms of the underlying dedu
tion ma
hinery. The situation is
omparable to a symboli
 debugger that lets the user step through the sour
e 
odeof a program while it a
tually exe
utes 
ompiled ma
hine 
ode.A
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