
The Approa
h:Integrating Obje
t Oriented Design andFormal Veri�
ationWolfgang Ahrendt, Thomas Baar, Bernhard Be
kert, Martin Giese,Elmar Habermalz, Reiner H�ahnle, Wolfram Menzel, and Peter H. S
hmittUniversity of Karlsruhe, Institute for Logi
, Complexity and Dedu
tion Systems,D-76128 Karlsruhe, Germany, http://i12www.ira.uka.de/~keyAbstra
t. This paper reports on the ongoing KeY proje
t aimed at bridg-ing the gap between (a) OO software engineering methods and tools and(b) dedu
tive veri�
ation. A distin
tive feature of our approa
h is the use ofa
ommer
ial CASE tool enhan
ed with fun
tionality for formal spe
i�
ationand dedu
tive veri�
ation.1 Introdu
tion1.1 Analysis of the Current SituationWhile formal methods are by now well established in hardware and system design(the majority of produ
ers of integrated
ir
uits are routinely using BDD-basedmodel
he
king pa
kages for design and validation), usage of formal methods insoftware development is
urrently
on�ned essentially to a
ademi
 resear
h proje
ts.Although there are industrial appli
ations of formal software development [7℄, theseare still ex
eptional [8℄.The limits of appli
ability of formal methods in software design are not de�nedby the potential range and power of existing approa
hes. Several
ase studies
learlydemonstrate that
omputer-aided spe
i�
ation and veri�
ation of realisti
 softwareis feasible [27, 24℄. The real problem lies in the ex
essive demand imposed by
urrenttools on the skills of prospe
tive users:1. Tools for formal software spe
i�
ation and veri�
ation are not integrated intoindustrial software engineering pro
esses.2. User interfa
es of veri�
ation tools are not ergonomi
, they are
omplex, id-iosyn
rati
, and often without graphi
al support.3. Users of veri�
ation tools are expe
ted to know syntax and semanti
s of oneor more
omplex formal languages. Typi
ally, at least a ta
ti
al programminglanguage and a logi
al language are involved. Even worse, to make serious useof many tools, intimate knowledge of employed logi

al
uli and proof sear
hstrategies is ne
essary.Su

essful spe
i�
ation and veri�
ation of larger proje
ts, therefore, is done sep-arately from software development by a
ademi
 spe
ialists with several years oftraining in formal methods, in many
ases by the tool developers themselves.While this is viable for proje
ts with high safety and low se
re
y demands, itis unlikely that formal software spe
i�
ation and veri�
ation will be
ome a routinetask in industry under these
ir
umstan
es.The future
hallenge for formal software spe
i�
ation and veri�
ation is to makethe
onsiderable potential of existing methods and tools feasible to use in an indus-trial environment. This leads to the requirements:

1. Tools for formal software spe
i�
ation and veri�
ation must be integrated intoindustrial software engineering pro
edures.2. User interfa
es of these tools must
omply with state-of-the-art software engi-neering tools.3. The ne
essary amount of training in formal methods must be minimized. More-over, te
hniques involving formal software spe
i�
ation and veri�
ation mustbe tea
hable in a stru
tured manner. They should be integrated in
ourses onsoftware engineering topi
s.To be sure, the thought that full formal software veri�
ation might be possiblewithout any ba
kground in formal methods is utopian. An industrial veri�
ationtool should, however, allow for gradual veri�
ation so that software engineers atany (in
luding low) experien
e level with formal methods may bene�t. In addition,an integrated tool with well-de�ned interfa
es fa
ilitates \outsour
ing" those partsof the modeling pro
ess that require spe
ial skills.Another important motivation to integrate design, development, and veri�
ationof software is provided by modern software development methodologies whi
h areiterative and in
remental. Post mortem veri�
ation would enfor
e the antiquatedwaterfall model. Even worse, in a linear model the extra e�ort needed for veri�
a-tion
annot be parallelized and thus
ompensated by greater work for
e. Therefore,delivery time in
reases
onsiderably and would make formally veri�ed software de-
isively less
ompetitive.But not only must the extra time for formal software development be withinreasonable bounds, the
ost of formal spe
i�
ation and veri�
ation in an industrial
ontext requires a

ountability:4. It must be possible to give realisti
 estimations of the
ost of ea
h step in formalsoftware spe
i�
ation and veri�
ation depending on the type of software and thedegree of formalization.This implies immediately that the mere existen
e of tools for formal software spe
i-�
ation and veri�
ation is not suÆ
ient, rather, a formal software spe
i�
ation andveri�
ation pro
ess is needed.1.2 The Proje
tSin
e November 1998 the authors work on a proje
t addressing the goals outlinedin the previous se
tion; we
all it the proje
t (read \key").In the prin
ipal use
ase of the KeY system there are a
tors who want to imple-ment a software system that
omplies with given requirements and formally verifyits
orre
tness. The system will assist with and do
ument the di�erent work-
ows ofthis pro
ess: requirements, analysis, design, and implementation. In addition therewill be the work-
ow
alled veri�
ation. It is responsible for adding formal detail tothe analysis model, for
reating
onditions that ensure the
orre
tness of re�nementsteps (
alled proof obligations), for �nding proofs showing that these
onditions aresatis�ed by the model, and for generating
ounter examples if they are not. Spe
ialfeatures of KeY are:{ We
on
entrate on obje
t-oriented analysis and design methods (OOAD), be-
ause of their key role in today's software pra
ti
e, and on Java as the targetlanguage. In parti
ular, we use the Uni�ed Modeling Language (UML) [21℄ forvisual modeling of designs and spe
i�
ation and the Obje
t Constraint Lan-guage (OCL) for adding further restri
tions. This
hoi
e is supported by thefa
t, that the UML (whi
h
ontains OCL sin
e version 1.3) is not only an OMGstandard, but has been adopted by all major OOAD software vendors and isfeatured in re
ent OOAD textbooks [19℄.2

{ We use a
ommer
ial CASE tool as starting point and enhan
e it by additionalfun
tionality for formal spe
i�
ation and veri�
ation. The
urrent tool of our
hoi
e is Sterling's Cool:Jex.{ Formal veri�
ation is based on an axiomati
 semanti
s of the real programminglanguage Java Card [28℄ (soon to be repla
ed by Java 2 Mi
ro Edition, J2ME).{ As a
ase study to evaluate the usability of our approa
h we develop a s
enariousing smart
ards with Java Card as a programming language [14, 15℄. Javasmart
ards make an extremely suitable target for a
ase study:� As an obje
t-oriented language, Java Card is well suited for OOAD;� the Java Card language la
ks some
ru
ial
ompli
ations of the full Javalanguage (no threads, fewer data types, no graphi
al user interfa
es);� Java Card appli
ations are small (Java smart
ards
urrently o�er 16Kmemory for
ode);� at the same time, Java Card appli
ations are embedded into larger pro-gram systems or business pro
esses whi
h should be modeled (although notne
essarily formally veri�ed) as well;� Java Card appli
ations are often se
urity-
riti
al, thus giving in
entive toapply formal methods;� the high number (usually millions) of deployed smart
ards
onstitutes anew motivation for formal veri�
ation, be
ause, in
ontrast to software runon standard
omputers, arbitrary updates are not feasible;1{ Through dire
t
onta
ts with software
ompanies we
he
k the soundness of ourapproa
h for real world appli
ations.The KeY system
onsists of three main
omponents (see Fig. 1):

counter examples

automated

CASE Tool

System

Extension
for
Precise
Modeling

Deduction Component

interactive

Verification Manager

Fig. 1. Ar
hite
ture of the KeY system.{ The modeling
omponent : this
omponent is based on the CASE tool and isresponsible for all user intera
tions (ex
ept intera
tive dedu
tion). It is usedto generate and re�ne models, and to store and pro
ess them. The extensionsfor pre
ise modeling
ontains, e.g., editor and parser for the OCL. Additionalfun
tionality for the veri�
ation pro
ess is provided, e.g., for writing proof obli-gations.1 While Java Card applets on smart
ards
an be updated in prin
iple, for se
urityreasons this does not extend to those applets that verify and load updates.3

{ The veri�
ation manager : the link between the modeling
omponent and thededu
tion
omponent. It generates proof obligations expressed in formal logi
from the re�nement relations in the model. It stores and pro
esses partial and
ompleted proofs; and it is responsible for
orre
tness management (to makesure, e.g., that there are no
y
li
 dependen
ies in proofs).{ The dedu
tion
omponent. It is used to a
tually
onstru
t proofs|or
ounterexamples|for the proof obligations generated by the veri�
ation manager. It isbased on an intera
tive veri�
ation system
ombined with powerful automateddedu
tion te
hniques that in
rease the degree of automation; it also
ontains apart for automati
ally generating
ounter examples for failed proof attempts.The intera
tive and automated te
hniques and those for �nding
ounter exam-ples are fully integrated and operate on the same data stru
tures.Although
onsisting of di�erent
omponents, KeY is a fully integrated system witha uniform user interfa
e.It is worth pointing out that we do not assume any dependen
ies between thein
rements in the development pro
ess and the veri�
ation of proof obligations.In Fig. 2 progress in modeling is depi
ted along the horizontal axis and progressin verifying proof obligations on the verti
al axis. The overall goal is to pro
eedfrom the upper left
orner (empty model, nothing proved) to the bottom right one(
omplete model, all proof obligations veri�ed). There are two extreme ways ofdoing that:{ First
omplete the whole modeling and
oding pro
ess, only then start to verify(Fig. 2(a)).{ Start verifying proof obligations as soon as they are generated (Fig. 2(b)).In pra
ti
e one
hooses an intermediate approa
h (Fig. 2(
)). How this approa
hdoes exa
tly look is an important design de
ision of the veri�
ation pro
ess withstrong impa
t on the possibilities for reuse and is the topi
 of future resear
h.
(a)

(a)

(c)

(b)

progrss in proving

progress in modeling

Fig. 2. Two dimensions: modeling and veri�
ation.2 Designing a System with2.1 Spe
i�
ation with the UML in
luding the OCLWhen designing a system with KeY, one �rst develops a UML model using our inte-grated CASE tool as usual (see the following subse
tion for pro
ess methodology).4

The diagrams of the Uni�ed Modeling Language provide, in prin
iple, an easy and
on
ise way to formulate various aspe
ts of a spe
i�
ation, however, as Steve Cookremarked [30, foreword℄: \[. . . ℄ there are many subtleties and nuan
es of meaningdiagrams
annot
onvey by themselves."This was a main sour
e of motivation for the development of the Obje
t Con-straint Language (OCL), part of the UML sin
e version 1.3 [21℄. Constraints writtenin this language are understood in the
ontext of a UML model, they never standby themselves. The OCL allows to atta
h pre
onditions, post
onditions, invariants,and guards to spe
i�
 elements of a UML model. It is easy to extra
t the signatureto be used in OCL expressions automati
ally from the
lass diagrams of a model.The se
ond step in designing a system with KeY is thus to make the UMLmodel more pre
ise by adding OCL
onstraints (making the UML more pre
ise isalso on the agenda of the pre
ise UML group whose goals are laid down in [9℄, seealso www.
s.york.a
.uk/puml/). For that purpose, the KeY system provides menuand dialog driven input possibility to assist the user. Certain standard tasks, forexample, generation of formal spe
i�
ations of indu
tive data stru
tures (in
ludingthe
ommon ones su
h as lists, sta
ks, trees) in the UML and the OCL
an be donefully automated, while the user simply supplies names of
onstru
tors and sele
tors.Even if formal spe
i�
ations
annot fully be
omposed in su
h a s
hemati
 way,
onsiderable parts usually
an.Another possibility to bring (OCL)
onstraints into a UML model is by enri
heddesign patterns. In the KeY system we will provide
ommon patterns that
ome
omplete with prede�ned
onstraints or
onstraint s
hemata. The user needs notwrite formal spe
i�
ations from s
rat
h, but only to adapt and
omplete them.As an example,
onsider the
omposite pattern [11, p. 163�℄, depi
ted in Fig. 3.This is a ubiquitous pattern in many
ontexts su
h as user interfa
es, re
ursive datastru
tures, and, in parti
ular, in the model for the address book of an email
lientthat is part of one of our
ase studies.
Component

+Operation()
+Add(c:Component)
+Remove(c:Component)
+GetChild(i:int)

Leaf
+Operation()

Composite
+Operation()
+Add(c:Component)
+Remove(c:Component)
+GetChild(i:int)

 children
 0..*

Client

Fig. 3. The
omposite pattern.The
on
rete Add and Remove operations in Composite are intuitively
learbut leave some questions unanswered. Can we add the same element twi
e? Someimplementations of the
omposite pattern allow that [13℄. If it is not intended, thenone has to impose a
onstraint, su
h as:
context Composite::Add(c:Component)
post: self.children!select(p|p = c)!size = 1This is a post
ondition on the
all of the operation Add in OCL syntax. After
ompletion of the operation
all, the stated post
ondition is guaranteed to be true.5

Without going into details of the OCL, we give some hints on how to read thisexpression. The arrow \!" indi
ates that the expression to its left represents a
olle
tion of obje
ts (a set, a multiset, or a sequen
e), and the operation to its rightis to be applied to this
olle
tion. The dot \:" is used to navigate within diagramsand (here) yields those obje
ts asso
iated to the item on its left via the role nameon its right. If C is the multiset of all
hildren of the obje
t self to whi
h Addis applied, then the select operator yields the set A = fp 2 C j p = cg and thesubsequent integer-valued operation size gives the number of elements in A. Thus,the post
ondition expresses that after adding c as a
hild to self, the obje
t co

urs exa
tly on
e among the
hildren of self.There are a lot of other useful (and more
omplex)
onstraints, e.g., the
on-straint that the
hild relationship between obje
ts of
lass Component is a
y
li
.2.2 The Modeling Pro
essIn addition to a suitable language to express (formal) models|in KeY this is theUML in
luding the OCL|amethodology guiding the modeling pro
ess must be pro-vided. Most methodologies des
ribed in the OOAD literature, for example, OOD [5℄or the Rational Uni�ed Pro
ess [17℄, have two important features in
ommon: Theyare iterative and in
remental.These features have been adopted for the methodology used in KeY: A proje
tis divided into iterations. In ea
h iteration the user develops a
omplete model; thein
rements a
hieved within the iterations are that the models get more and morepre
ise. The model of iteration i+ 1 re�nes the model of iteration i (a detaileddes
ription of the re�nement relation is given below).In all re�nements|ex
ept the �nal one|models are expressed in the UML (in-
luding the OCL), however, in later iterations the models be
ome more detailedand, in addition,
ontain more OCL
onstraints, whi
h provide for a higher de-gree of pre
ision. The �nal re�nement step is the implementation, in other words,we
onsider the realization of a system in Java
ode to be a parti
ular (and verypre
ise) model of that system.2.3 The Module Con
eptAs said before, the pro
ess of modeling a system
onsists of several iterations. Inaddition, the KeY system supports modularization of the model. Those parts of amodel that
orrespond to a
ertain
omponent of the modeled system are groupedtogether and form a module. Modules are a di�erent stru
turing
on
ept than iter-ations and serve a di�erent purpose. A module
ontains all the model
omponents(diagrams,
ode et
.) that refer to a
ertain system
omponent. A module is notrestri
ted to a single level of re�nement.There are three main reasons behind the module
on
ept of the KeY system:Stru
turing: Models of large systems
an be stru
tured, whi
h makes them easierto handle.Information hiding: Parts of a module that are not relevant for other modulesare hidden. This makes it easier to
hange modules and
orre
t them whenerrors are found, and to re-use them for di�erent purposes.Veri�
ation of single modules: Modules
an be veri�ed separately, whi
h al-lows to stru
ture large veri�
ation problems. If the size of modules is limited,the
omplexity of verifying a system grows linearly in the number of its modulesand thus in the size of the system. This is indispensable for the s
alability ofthe KeY approa
h. 6

In the KeY approa
h, a hierar
hi
al module
on
ept with sub-modules supportsthe stru
turing of large models. The modules in a system model form a tree withrespe
t to the sub-module relation.Besides sub-modules and other model
omponents, a module
ontains the re-�nement relations between
omponents that des
ribe the same part of the modeledsystem in two
onse
utive levels of re�nement. The veri�
ation problem asso
iatedwith a module is to show that these re�nements are
orre
t (see Se
tion 3.1). There�nement relations must be provided by the user; typi
ally, they in
lude a signaturemapping.To fa
ilitate information hiding, a module is divided into a publi
 part, its
on-tra
t, and a private (hidden) part; the user
an de
lare parts of ea
h re�nement levelas publi
 or private. Only the publi
 information of a module A is visible in an-other module B provided that module B impli
itly or expli
itly imports module A.Moreover, a
omponent of module B belonging to some re�nement level
an onlysee the visible information from module A that belongs to the same level. Thus,the private part of a module
an be
hanged as long as its
ontra
t is not a�e
ted.For the des
ription of a re�nement relation (like a signature mapping) all elementsof a module belonging to the initial model or the re�ned model are visible, whetherde
lared publi
 or not.As the modeling pro
ess pro
eeds through iterations, the system model be
omesever more pre
ise. The �nal step is a spe
ial
ase, though: the involved models|the implementation model and its realization in Java|do not ne
essarily di�erin pre
ision, but use di�erent paradigms (spe
i�
ation vs. implementation) anddi�erent languages (UML/OCL vs. Java).2Fig. 4 shows a s
hemati
 example for the levels of re�nement and the modules ofa system model (the visibility aspe
t of modules is not represented here). Strongerre�nement may require additional stru
ture via (sub-)modules, hen
e the numberof modules may in
rease with the degree of re�nement.
Java
code

precise
model

imprecise
model

Refinement relation

Import relationModule

R
efin

em
en

t L
evels

Part of module within one refinementFig. 4. Example for levels of re�nement and modules of a system model.2 In
onventional veri�
ation systems that do not use an iterative modeling pro
ess [22, 25℄,only these �nal two models exist (see also the following subse
tion). In su
h systems,modules
onsist of a spe
i�
ation and an implementation that is a re�nement of thespe
i�
ation. 7

Although the import and re�nement relations are similar in some respe
ts, thereis a fundamental di�eren
e: by way of example,
onsider a system
omponent being(impre
isely) modeled as a
lass DataStorage in an early iteration. It may later bere�ned to a
lass DataSet, whi
h repla
es DataStorage. On the other hand, the mod-ule
ontaining DataSet
ould import a module DataList and use lists to implementsets, in whi
h
ase lists are not a re�nement of sets and do not repla
e them.2.4 Relation of Modules to other Approa
hesThe ideas of re�nement and modularization in the KeY module
on
ept
an be
ompared with (and are partly in
uen
ed by) the KIV approa
h [25℄ and theB Method [1℄.In KIV, ea
h module (in the above sense)
orresponds to exa
tly two re�nementlevels, that is to say, a single re�nement step. The �rst level is an algebrai
 datatype, the se
ond an imperative program, whose pro
edures intentionally implementthe operations of the data type. The import relation allows the algebrai
 datatype operations (not the program pro
edures!) of the imported module to appeartextually in the program of the importing module. In
ontrast to this, the Java
ode of a KeY module dire
tly
alls methods of the imported module's Java
ode.Thus, the obje
t programs of our method are pure Java programs. Moreover, KeYmodules in general have more than two re�nement levels.The B Method o�ers (among other things) multi-level re�nement of abstra
tma
hines. There is an elaborate theory behind the pre
ise semanti
s of a re�nementand the resulting proof obligations. This is possible, be
ause both, a ma
hine andits re�nement, are
ompletely formal, even if the re�nement happens to be lessabstra
t. That di�ers from the situation in KeY, where all but the last re�nementlevels are UML-based, and a re�ned part is typi
ally more formal than its origin.KeY advo
ates the integrated usage of notational paradigms as opposed to, forexample, prepending OOM to abstra
t ma
hine spe
i�
ation in the B Method [18℄.2.5 Modeling the Internal State of Obje
tsThe behavior of obje
ts depends on their state that is stored in their attributes,however, the methods of a Java
lass
an in general not be des
ribed as fun
tionson their input as they may have side e�e
ts and
hange the state. To model anobje
t or
lass, it must be possible to refer to its state (in
luding its initial state).DiÆ
ulties may arise, if methods for observing the state are not de�ned or arede
lared private and, therefore,
annot be used in the publi

ontra
t of a
lass. Tomodel su
h
lasses, observer methods have to be added. These allow to observe thestate of a
lass without
hanging it.Example 1. Consider a
lass Registry
ontaining a method seen(o: Object):
Boolean that maintains a list of all the obje
ts it has \seen". It returns false,if it \sees" an obje
t for the �rst time, and true, otherwise. In this example, wewould add the fun
tion state(): Set(Object) allowing to observe the state ofan obje
t of
lass Registry by returning the set of all seen obje
ts. The behavior of
seen
an now be spe
i�ed in the OCL as follows:

context Registry::seen(o: Object)
post: result = state@pre()!includes(o) and

state() = state@pre()!including(o)The OCL key word result spe
i�es the expe
ted return value of seen, while @pregives the result of state() before invo
ation of seen, whi
h we denote by oldstate .The OCL expression state@pre()!includes(o) then stands for o 2 oldstateand state@pre()!including(o) for oldstate [fog.8

3 Formal Veri�
ation withOn
e a program is formally spe
i�ed to a suÆ
ient degree one
an start to formallyverify it. Neither a program nor its spe
i�
ation need to be
omplete in order to startverifying it. In this
ase one suitably weakens the post
onditions (leaving out prop-erties of unimplemented/unspe
i�ed parts) or strengthens pre
onditions (addingassumptions about unimplemented parts). Data en
apsulation and stru
turednessof OO designs should be of great help here.The veri�
ation pro
ess will be automated as mu
h as possible with the help ofdedu
tion te
hniques based on previous work [2℄ done in our group on integratingour automated [4℄ and intera
tive theorem provers [25℄.In a real development pro
ess, resulting programs often are bug-ridden, there-fore, disproving the
orre
tness of programs is as important as proving it. The in-teresting and
ommon
ase is that neither
orre
tness nor its negation are dedu
iblefrom given assumptions, often be
ause these assumptions do not fully spe
ify thedata stru
tures modi�ed by the program. As a simple example, we might not haveany knowledge about the behavior of, say, pop(s: Sta
k): Sta
k if s is empty.We are developing dedu
tive te
hniques to automati
ally exhibit bugs, in parti
ular
aused by underspe
i�
ation, within the veri�
ation pro
ess.Due to spa
e limitation, a full des
ription of the dedu
tive
omponent will begiven elsewhere.3.1 Proof ObligationsThe basis for reasoning about properties of programs in KeY is dynami
 logi
(DL) [16℄, an extension of Hoare logi
 [3℄. In
ontrast to Hoare logi
, the set offormulas of dynami
 logi
 is
losed under the usual logi
al operations. Typi
al build-ings blo
ks of DL formulas are s
hemata P ! h�iQ, whi
h are true if for every statesatisfying pre
ondition P a run of the program � starting in su
h a state terminates,and in the terminating state the post
ondition Q holds. DL has been su

essfullyused in the KIV system [25℄. It was shown [23℄ that there are no prin
ipal obsta-
les to adapt the DL/Hoare approa
h to typed obje
t-oriented languages. DL isstronger than �rst-order logi
, and allows, for example, to
hara
terize
y
li
ity ofdata stru
tures.Typi
ally, the statements to be proven arise from OCL
onstraints in UMLmodels. The OCL (a) has no formal semanti
s and (b) has no means to
onne
t
onstraints to target programs. It is, therefore, not dire
tly usable for automated de-du
tion and, be
ause of (a), one has to translate OCL
onstraints into DL formulas.Details of this interesting subtask of the KeY proje
t will be addressed in a separatepubli
ation. Here, we merely say a few words on the origin of proof obligations.We employ design by
ontra
t [20℄ as a guiding prin
iple with the same restri
tionas [30℄: we
ompletely ignore run-time aspe
ts of this
on
ept. Constraints o

ur aspre- and post
onditions of operations, and as invariants of
lasses, to mention themost frequent
ases.We use
onstraints in two di�erent ways: �rst, they
an be part of a model (thedefault); these
onstraints do not generate proof obligations by themselves. Se
ond,
onstraints
an be given the status of a proof obligation; these are not part of themodel, but must be shown to hold in it.Proof obligations may arise indire
tly from
onstraints of the �rst kind: by
he
king
onsisten
y of invariants, pre- and post
onditions of a super
lass and itssub
lasses, by
he
king
onsisten
y of the post
ondition of an operation and theinvariant of its result type, et
.Even more important are proof obligations arising from iterative re�nementsteps. To prove that a diagram D0 is a sound re�nement of a diagram D requires9

to
he
k that the assertions stated in D0 entail the assertions in D. A parti
ularre�nement step is the passage from a fully re�ned spe
i�
ation to its realization in
on
rete
ode.3.2 The Program Logi
The basi
 building blo
ks for
orre
tness statements in DL have the form h�iQ,representing the weakest
ondition, whose validity in a state s guarantees thatexe
ution of the program � terminates in a state satisfying Q. We de
ided to takea bold step and allow any legal Java Card program to o

ur in the pla
e of � inour DL formulas.We assume that programs and, in parti
ular, expressions in programs are parsedalready. Thus, the
al
ulus needs not to know about operator priorities et
., andwe
an use notions like \immediate sub-expression" in the de�nition of our rules. Afull des
ription of KeY-DL, the dynami
 logi
 used in KeY, will be given elsewhere.Here, we try to
onvey the basi
 spirit of our approa
h. The usual assignment ruleof DL3(P yx ^ x := tyx) ! QP ! hx = tiQ where y is new (1)has to be modi�ed and extended, be
ause the evaluation of the Java Card expres-sion t (and even of x) may have side e�e
ts. The logi
 has to \know" about the
ontrol
ow during evaluation of expressions.Example 2. Let us
onsider the formula F � (P ! h�iQ) withP � i := 3 ^ v[1℄ := 4 ^ j := 4� � v[i++℄ = j++ * j;Q � i := 4 ^ v[1℄ := 4 ^ v[3℄ := 20 ^ j := 5We want to show that F is a valid formula: the exe
ution of � in a state, wherepre
ondition P holds, terminates in a state where post
ondition Q holds.The program �
ontains the post�x in
rement operator ++. A

ording to theJava language spe
i�
ation [12, Se
t. 15.13.2℄, i++ may be used to refer to thevariable i. As a side e�e
t, the value of i is in
reased by one afterwards. This isre
e
ted by a KeY-DL rule that handles i++. Applied to formula F , it yields:(P ^ x := i) ! hi = i+1;ihv[x℄ = j++ * j;iQ (2)Appli
ation of the assignment rule (1) to (2) then gives:(P yi ^ x := y ^ i := y + 1) ! hv[x℄ = j++ * j; iQTreating j++ in the same way we get the next two steps in the evaluation:(P yi ^ x := y ^ i := y + 1 ^ z := j) ! hj = j+1; ihv[x℄ = z*j; iQ(P y;ui;j ^ x := y ^ i := y + 1 ^ z := u ^ j := u+ 1)! hv[x℄ = z*j; iQHow to treat assignments to array variables in program logi
s is well known [3℄;in the present
ase, note that v[1℄ o

urs in P and thus in the premiss of theimpli
ation, and the two
ases that v[1℄ is/is not
hanged by the assignment haveto be
onsidered:((x := 1 ^ P y;u;wi;j;v[1℄ ^ � � � ^ j := u+ 1 ^ v[1℄ := z � j) ! Q) ^((:(x := 1) ^ P y;ui;j ^ � � � ^ j := u+ 1 ^ v[x℄ := z � j) ! Q) (3)3 The formula F yx arises from the formula F by repla
ing all free o

urren
es of x by y.10

The result (3) does not
ontain any Java
ode. Simpli�
ation of (3) using thede�nition of P now yields:((x := 1 ^ y := 3 ^ x := y ^ � � �) ! Q) ^((y := 3 ^ v[1℄ := 4 ^ u := 4 ^ � � � ^ i := 4 ^ z := 4 ^ j := 5 ^ v[3℄ := 20)! Q)It is easy to
he
k that this indeed is a valid formula and our present theoremproving tools [25, 4℄ have no diÆ
ulties to show this automati
ally.It is important to note that the post�x in
remental operator ++ is not just a fan
y
onstru
t we must deal with to
omplete the pi
ture. Su
h an operator, whetherimportant by itself or not, serves as a
on
ise example for a general phenomenon ina language like Java: expressions
an have both, a value and an e�e
t. In parti
ular,Java allows to
all (non-void) methods, possibly
hanging the obje
t's state, insidea value-returning expression. Therefore, the
al
ulus must be able to exe
ute anexpression stepwise, as illustrated by the above example.4 Related WorkThere are many proje
ts dealing with formal methods in software engineering in-
luding several ones aimed at Java as a target language. There is also work onse
urity of Java Card and A
tiveX appli
ations as well as on se
ure smart
ardappli
ations in general. We are, however, not aware of any proje
t quite like ours.We mention some of the more
losely related proje
ts:{ The Cogito proje
t [29℄ resulted in an integrated formal software developmentmethodology and support system based on extended Z as spe
i�
ation languageand Ada as target language. It is not integrated into a CASE tool, but stand-alone.{ The FuZE proje
t [10℄ realized CASE tool support for integrating the FusionOOAD pro
ess with the formal spe
i�
ation language Z. The aim was to formal-ize OOAD methods and notations su
h as the UML, whereas we are interestedto derive formal spe
i�
ations with the help of an OOAD pro
ess extension.{ The goal of the Quest proje
t [26℄ is to enri
h the CASE tool AutoFo
usfor des
ription of distributed systems with means for formal spe
i�
ation andsupport by model
he
king. Appli
ations are embedded systems, des
riptionformalisms are state
harts, a
tivity diagrams, and temporal logi
.{ Aim of the SysLab proje
t is the development of a s
ienti�
ally founded ap-proa
h for software and systems development. At the
ore is a pre
ise and formalnotion of hierar
hi
al \do
uments"
onsisting of informal text, message sequen
e
harts, state transition systems, obje
t models, spe
i�
ations, and programs.All do
uments have a \mathemati
al system model" that allows to pre
iselydes
ribe dependen
ies or transformations [6℄.{ The PROSPER (www.d
s.gla.a
.uk/prosper/index.html) proje
t's goal was toprovide the means to deliver the bene�ts of me
hanized formal spe
i�
ation andveri�
ation to system designers in industry. The di�eren
e to the KeY proje
t isthat the dominant goal is hardware veri�
ation; the software part only involvesspe
i�
ation.5 Con
lusion and the Future ofIn this paper we des
ribed the
urrent state of the KeY proje
t and its ultimategoal: To fa
ilitate and promote the use of formal veri�
ation in an industrial
ontextfor real-world appli
ations. It remains to be seen to whi
h degree this goal
an bea
hieved. 11

Our vision is to make the logi
al formalisms transparent for the user with respe
tto OO modeling. That is, whenever user intera
tion is required, the
urrent state ofthe veri�
ation task is presented in terms of the environment the user has
reatedso far and not in terms of the underlying dedu
tion ma
hinery. The situation is
omparable to a symboli
 debugger that lets the user step through the sour
e
odeof a program while it a
tually exe
utes
ompiled ma
hine
ode.A
knowledgementsThanks are due to S. Klingenbe
k and J. Posegga for valuable
omments on earlierversions of this paper. We also thank our former group members T. Fu
h�, R. Prei�,and A. S
h�onegge for their input during the preparation of the KeY proje
t. TheKeY proje
t is supported by the Deuts
he Fors
hungsgemeins
haft under grant no.Ha 2617/2-1.Referen
es1. J.-R. Abrial. The B Book { Assigning Programs to Meanings. Cambridge UniversityPress, 1996.2. W. Ahrendt, B. Be
kert, R. H�ahnle, W. Menzel, W. Reif, G. S
hellhorn, and P. H.S
hmitt. Integration of automated and intera
tive theorem proving. In W. Bibeland P. S
hmitt, editors, Automated Dedu
tion: A Basis for Appli
ations, volume II,
hapter 4, pages 97{116. Kluwer, 1998.3. K. R. Apt. Ten years of Hoare logi
: A survey|Part I. ACM Transa
tions on Pro-gramming Languages and Systems, 3(4):431{483, O
t. 1981.4. B. Be
kert, R. H�ahnle, P. Oel, and M. Sulzmann. The tableau-based theorem prover3TAP , version 4.0. In 13th International Conferen
e on Automated Dedu
tion, NewBrunswi
k/NJ, USA, volume 1104 of LNCS, pages 303{307. Springer-Verlag, 1996.5. G. Boo
h. Obje
t-Oriented Analysis and Design with Appli
ations. Benjamin Cum-mings, Redwood City, 2nd edition, 1994.6. R. Breu, R. Grosu, F. Huber, B. Rumpe, andW. S
hwerin. Towards a pre
ise semanti
sfor obje
t-oriented modeling te
hniques. In J. Bos
h and S. Mit
hell, editors, Obje
t-Oriented Te
hnology, ECOOP'97 Post Conferen
e Workshop Reader, Jyv�askyl�a, Fin-land, volume 1357 of LNCS. Springer-Verlag, 1997.7. E. Clarke and J. M. Wing. Formal methods: State of the art and future dire
tions.ACM Computing Surveys, 28(4):626{643, 1996.8. D. L. Dill and J. Rushby. A

eptan
e of formal methods: Lessons from hardware de-sign. IEEE Computer, 29(4):23{24, 1996. Part of: Hossein Saiedian (ed.). An Invitationto Formal Methods, pages 16{30.9. A. S. Evans, S. Cook, S. Mellor, J. Warmer, and A. Wills. Panel paper: Advan
edmethods and tools for a pre
ise UML. In B. Rumpe and R. B. Fran
e, editors, 2ndInternational Conferen
e on the Uni�ed Modeling Language, volume 1732 of LNCS.Springer-Verlag, 1999.10. R. B. Fran
e, J.-M. Bruel, M. M. Larrondo-Petrie, and E. Grant. Rigorous obje
t-oriented modeling: Integrating formal and informal notations. In M. Johnson, editor,Algebrai
 Methodology and Software Te
hnology (AMAST), Berlin, Germany, volume1349 of LNCS. Springer-Verlag, 1997.11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1995.12. J. Gosling, B. Joy, and G. Steele, editors. The Java Language Spe
i�
ation. AddisonWesley, 1996.13. M. Grand. Patterns in Java, volume 2. John Wiley & Sons, 1999.14. S. B. Guthery. Java Card: Internet
omputing on a smart
ard. IEEE Internet Com-puting, 1(1):57{59, 1997.15. U. Hansmann, M. S. Ni
klous, T. S
h�a
k, and F. Seliger. Smart Card Appli
ationDevelopment Using Java. Springer-Verlag, 1999, to appear.12

16. D. Harel. Dynami
 logi
. In Handbook of Philosophi
al Logi
, volume II: Extensionsof Classi
al Logi
, pages 497{604. Reidel, 1984.17. I. Ja
obson, G. Boo
h, and J. Rumbaugh. The Uni�ed Software Development Pro
ess.Obje
t Te
hnology Series. Addison-Wesley, 1999.18. K. Lano. The B Language and Method: A guide to Pra
ti
al Formal Development.Springer-Verlag London Ltd., 1996.19. J. Martin and J. J. Odell. Obje
t-Oriented Methods: A Foundation, UML Edition.Prenti
e-Hall, 1997.20. B. Meyer. Obje
t-Oriented Software Constru
tion. Prenti
e-Hall, Englewood Cli�s,se
ond edition, 1997.21. Obje
t Modeling Group. Uni�ed Modeling Language Spe
i�
ation, version 1.3, June1999. URL: uml.shl.
om:80/do
s/UML1.3/99-06-08.pdf.22. L. C. Paulson. Isabelle: a generi
 theorem prover, volume 828 of LNCS. Springer-Verlag, 1994.23. A. Poetzs
h-He�ter and P. M�uller. A programming logi
 for sequential Java. InS. D. Swierstra, editor, Programming Languages and Systems (ESOP), volume 1576of LNCS, pages 162{176. Springer-Verlag, 1999.24. S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual ex
lusion algorithm. InIFIP Working Conferen
e on Programming Con
epts and Methods (PROCOMET),Shelter Island/NY, USA. Chapman & Hall, 1998.25. W. Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen,editors, KORSO: Methods, Languages, and Tools for the Constru
tion of Corre
t Soft-ware { Final Report, volume 1009 of LNCS. Springer-Verlag, 1995.26. O. Slotos
h. QUEST: Overview over the proje
t. In D. Hutter, W. Stephan,P. Traverso, and M. Ullmann, editors, Applied Formal Methods | FM-Trends 98| International Workshop on Current Trends in Applied Formal Methods, Boppard,Germany, volume 1641 of LNCS, pages 346{350. Springer-Verlag, 1999.27. K. Stenzel. A Veri�ed A

ess Control Model. Te
hni
al Report 26/93, Fakult�at f�urInformatik, Universit�at Karlsruhe, 1993.28. Sun Mi
rosystems, In
., Palo Alto/CA, USA. Java Card 2.1 Platform API Spe
i�
a-tion, 1998. URL: java.sun.
om/produ
ts/java
ard/JavaCard21API.pdf.29. O. Traynor, D. Hazel, P. Kearney, A. Martin, R. Ni
kson, and L. Wildman. The Cog-ito development system. In M. Johnson, editor, Algebrai
 Methodology and SoftwareTe
hnology, Berlin, Germany, volume 1349 of LNCS, pages 586{591. Springer-Verlag,1997.30. J. Warmer and A. Kleppe. The Obje
t Constraint Language: Pre
ise Modeling withUML. Obje
t Te
hnology Series. Addison-Wesley, 1999.

13

