
Fibring Semantic Tableaux

Bernhard Beckert1,⋆ and Dov Gabbay2

1 University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,
D-76128 Karlsruhe, Germany. E-mail: beckert@ira.uka.de

2 Imperial College, Department of Computing, 180 Queen’s Gate,
London SW7 2BZ, UK. E-mail: dg@ic.ac.uk

Abstract. The methodology of fibring is a successful framework for
combining logical systems based on combining their semantics. In this
paper, we extend the fibring approach to calculi for logical systems: we
describe how to uniformly construct a sound and complete tableau cal-
culus for the combined logic from calculi for the component logics.
We consider semantic tableau calculi that satisfy certain conditions and
are therefore known to be “well-behaved”—such that fibring is possible.
The identification and formulation of conditions that are neither too
weak nor too strong is a main contribution of this paper.
As an example, we fibre tableau calculi for first order predicate logic and
for the modal logic K.

1 Introduction

The methodology of fibring is a successful framework for combining logical sys-
tems based on combining their semantics [7, 6, 8]. The basic idea is to combine
the structures defining the semantics of two logics L1 and L2 such that the result
can be used to define semantics for expressions from the combined languages of
L1 and L2. The general assumption is that these structures have components
like, for example, the worlds in Kripke structures; to build fibred structures,
fibring functions F(1,2) are defined assigning to each constituent w of an L1-
model m1 an L2-model m2. An L2-expression is evaluated in w, where its value
is undefined, by instead evaluating it in m2 = F(1,2)(w). The full power of the
fibring method is revealed when this process it iterated to define a semantics for
the logic L[1,2], where the operators of the component logics can occur arbitrarily
nested in formulae. Fibring has been successfully used in many areas of logic to
combine systems and define their semantics; for an overview see [7].

In this paper, we extend the fibring approach to calculi for logical systems: we
describe how to uniformly construct a sound and complete tableau calculus for
the combined logic from calculi for the component logics. Since tableau calculi
are known for most “basic” logics [5] (including classical logic, modal logic,
intuitionistic logic, and temporal logic), calculi can be obtained for all “complex”
logics that can be constructed by fibring basic logics, such as modal predicate
logic, intuitionistic temporal logic, etc.

⋆ This work was carried out during a visit at Imperial College, London, UK.

One cannot fibre just any proof procedures for two logics in a uniform way.
First, “proving” can have different meanings in different logics: deciding (or semi-
deciding) satisfiability or validity, computing a satisfying variable instantiation,
etc. Second, it is not clear where to “plug in” the proof procedure for L2 into
that for L1; a proof procedure may do something completely different from
what (the definition of) the valuation function does that provides the truth
value of a formula in a given model. For example, if the procedure P1 is based
on constructing a (counter) model, whereas the procedure P2 uses a resolution
calculus, they cannot be fibred (at least not uniformly).

Therefore, we consider semantic tableau calculi that satisfy certain condi-
tions and are, thus, known to be “well-behaved”—such that fibring is possible
(for some substructural logics, e.g. linear logic, no such “well-behaved” calculi
exist). The identification and formulation of conditions that are neither too weak
nor too strong is a main contribution of this paper.

If the components that are fibred satisfy these conditions, then the resulting
calculus is automatically sound and complete. It may only be a semi-decision
procedure, i.e., only terminate for unsatisfiable input formulae, even if its com-
ponents are decision procedures; this, however, is not surprising because a fibred
logic may be undecidable even if its components are decidable.

Related work includes [4], where a method for fibring tableau calculi for
substructural implication logics has been presented. In [9], a method is described
for fibring tableaux for modal logics to construct calculi for multi-modal logics;
it can be seen as an instance of the general framework presented here.

We define the notion of a logical system in a very general way (Section 2); only
indispensable properties of its syntax and semantics are part of the definition
without which a useful tableau calculus for the logic cannot exist (or cannot be
fibred with calculi for other logical systems).

Similarly, as few restrictions as possible are made regarding the type and form
of tableau calculi. In particular, the calculus does not have to be analytical; and
the tableau rules do not have to be given in form of rule schemata but can be
described in an arbitrary way. The conditions that tableau calculi have to satisfy
to be suitable for fibring are described in Section 3. We present two examples of
calculi suitable for fibring in Sections 4 and 5: a calculus for first order predicate
logic and a calculus for the modal logic K. In Section 6, the method of fibring
logics is described in general and syntax and semantics of a fibred logic are
defined, based on syntax and semantics of its component logics.

In Section 7, we present our uniform method for constructing a tableau calcu-
lus for a fibred logic from calculi for the component logics. The resulting calculus
is shown to be sound and complete w.r.t. the semantics of the fibred logic and
to be itself suitable for fibring with other calculi. The latter property makes it
possible to iterate the fibring of tableau calculi and, thus, to construct a calculus
for the fully fibred logic L[1,2].

As an example, in Section 8, the calculi for first-order and for modal logic in-
troduced in Sections 4 and 5 are fibred resulting in a calculus for modal predicate
logic.

Finally, in Section 9 we draw conclusions from our work. Due to space re-
strictions, all proofs are omitted; they can be found in [2].

2 Logical Systems

In this section, we define the notion of a logical system in a very general way; only
indispensable properties of its syntax and semantics are part of the definition
without which a useful tableau calculus for the logic cannot exist (or cannot be
fibred with calculi for other logical systems).

The logic has to have a model semantics that uses Kripke-style models, i.e.,
models consisting of worlds in which formulae are true or false; there are no
restrictions on the relationship between these worlds. In fact, any kind of model
can be considered to be a Kripke-style model with a single world (namely the
model itself), including models of classical propositional and first-order logic.
However, since the labels of tableau formulae are interpreted as worlds, if there
is only one world in the models of a logic, then the interpretation of all labels is
the same and they become useless for the calculus.

The restriction that only two-valued logics are considered is solely made
for the sake of simplicity. All notions introduced in the following can easily be
extended to many-valued logics (but no additional insight is gained).

Definition 1. Associated with a logical system L (a logic for short) is a set
Sig of signatures1 of L. For each signature Σ ∈ Sig, syntax and semantics of
the instance LΣ of L are given by:

Syntax: A set FormΣ of formulae and a set AtomΣ ⊂ FormΣ of atomic for-
mulae (atoms), where the sets AtomΣ and FormΣ are decidable.

Semantics: A set MΣ of models where each model m ∈ MΣ (at least) contains
(a) a set W of worlds, (b) an initial world w0 ∈W , and (c) a binary relation
|= between W and FormΣ.

If w |= φ for some world w ∈ W and some formula φ ∈ FormΣ, then φ is
said to be true in w, else it is false in w. A formula φ ∈ FormΣ is satisfied by
a model m ∈ MΣ if (and only if) it is true in the initial world w0 of m. A set
G ⊂ FormΣ of formulae is satisfied by m iff all its elements are satisfied by m.
A formula φ ∈ FormΣ (a set G ⊂ FormΣ of formulae) is satisfiable if there is
a model m ∈ M satisfying φ (resp. G).

Although usually non-atomic formulae are constructed from atomic formulae,
and their truth value is determined by the truth value of the atoms they consist
of, this is not part of the above definition. However, the existence of a tableau
calculus for a logic L that is suitable for fibring implies that the truth value of a
formula φ is strongly related to the truth values of certain atoms (that may or
may not be sub-formulae of φ).

1 We do not further specify what a signature is; Sig can be seen as a set of indices for
distinguishing different instances of L (which usually differ in the symbols they use).

Tableau calculi allow to check the satisfiability of a formula; we only consider
this property. It may or may not be possible in a certain logic to check whether
a formula is valid in some model (true in all worlds) or is a tautology (valid in all
models) by reducing this problem to a satisfiability problem; in many logics—
though not in all—a formula is a tautology if its negation is not satisfiable.

Often, formulae are used in tableau calculi that are not part of the original
but of an extended signature (e.g., formulae containing Skolem symbols):

Definition 2. Given a logic L, a signature Σ∗ ∈ Sig is an extension of a sig-
nature Σ ∈ Sig (and Σ ∈ Sig is a restriction of Σ∗ ∈ Sig) if FormΣ ⊂ FormΣ∗

and AtomΣ ⊂ AtomΣ∗

.
In that case, a model m ∈ MΣ is a restriction of a model m∗ ∈ MΣ∗

(to
the signature Σ) if there is a function f that assigns to each world of m a world
of m∗ such that: (a) the initial world of m∗ is assigned to the initial world of m;
and (b) for all formulae φ ∈ FormΣ and worlds w of m: w |= φ iff f(w) |= φ.

3 Tableau Calculi and the Conditions they Must Satisfy

As said above, only few restrictions are made regarding the type and form of
tableau calculi. Any function that assigns to a tableau branch its (possible)
extensions is regarded a tableau rule. Nevertheless, certain conditions have to be
met, the first of which ensures that tableau rule applications do not transform
the whole tableau in an arbitrary way:

Condition 1. Tableau rule applications have only local effects, in that they
extend a single branch of a tableau, and do not alter or remove formulae already
on the tableau.

The second assumption is that the applicability of a tableau rule to a branch
and the result of its application are solely determined by the presence of certain
formulae on the branch to which it is applied; no other pre-conditions are allowed
such as, for example, the absence of certain formulae, the presence of formulae
on different branches, or the order of formulae on a branch:

Condition 2. Whether a tableau branch B can be expanded in a certain way
is solely determined by the presence of certain formulae on B (the premiss for
that expansion).

Condition 2 implies that tableau branches are regarded as sets and that tableau
rules are monotonic; thus, when formulae are added to the branch, previous
tableau rule applications are not invalidated.

Conditions 1 and 2 intuitively prohibit “strange” behaviour of calculi. There
are, however, useful calculi that violate these syntactical restrictions, including
(a) calculi where variable substitutions are applied to the whole tableau, (b) cal-
culi with resource restrictions that are not local to a branch (for example linear
logic, where a formula can be “used up” globally), and (c) calculi using expan-
sion rules that introduce new symbols, i.e., symbols that must not occur on the
branch or even the whole tableau. At least the latter type of rules can often be
replaced by similar rules satisfying Condition 2:

Example 3. In calculi for first-order predicate logic, often a tableau rule is used
that allows to derive φ(c) from formulae of the form (∃x)(φ(x)), where c is
a constant new to the tableau (or the branch); this rule violates Condition 2
because it demands the absence of formulae containing c.

If instead a special constant symbol cφ is used, which does not have to be
new, then the rule satisfies Condition 2 above. Soundness is preserved provided
that cφ is not introduced into the tableau in any other way than by skolemising
(∃x)(φ(x)); in particular, the Skolem constant cφ must not occur in the initial
tableau (this is an adaptation of the rule for existential formulae presented in [3]
to the ground case [1]).

As said before, we allow formulae from an extended signature Σ∗ to be used
in a tableau proof: Only the tableau formulae that are tested for satisfiability
have to be taken from the non-extended signature Σ; they are put on the inital
tableau. During the proof it is allowed, for example, to introduce Skolem symbols
that are not elements of Σ. We proceed to formally define our (syntactical)
notions of tableaux and tableau calculi:

Definition 4. Given a logic L, a signature Σ ∈ Sig, and a set Lab of labels, a
tableau formula σ:Sφ consists of a label σ ∈ Lab, a truth value sign S ∈ {T,F},
and a formula φ ∈ FormΣ; it is called atomic if φ ∈ AtomΣ. The set of all
tableau formulae is denoted with TabFormΣ. A tableau is a finitely branching
tree whose nodes are labelled with tableau formulae. A branch of a tableau T is a
maximal path in T . The set of formulae on a branch B is denoted with Form(B).

A tableau calculus C for a logic L has (different) “instances” CΣ for each
signature Σ ∈ Sig :

Definition 5. A tableau calculus C for a logic L is, for each signature Σ ∈ Sig,
specified by: (a) an extension Σ∗ ∈ Sig of the signature Σ; (b) a set Lab of labels
and an initial label σ0 ∈ Lab; (c) a tableau (expansion and closure) rule RΣ,

i.e., a function that assigns to each finite set Π ⊂ TabFormΣ∗

of tableau for-
mulae (each premiss)—and thus to each tableau branch B with Π ⊂ Form(B)—
a set RΣ(Π) of (possible) conclusions, where a conclusion is a finite set of
branch extensions or the symbol ⊥ (branch closure), and a branch extension

is a finite set of tableau formulae from TabFormΣ∗

. The rule RΣ must satisfy
the following conditions: (i) RΣ(Π) may be infinite but has to be enumerable;

(ii) RΣ(Π) ⊂ RΣ(Π ∪Π ′) for all Π,Π ′ ⊂ TabFormΣ∗

(monotonicity).

In practice, tableau rules are often described by means of rule schemata. This
fits perfectly in our framework, with the exception that different rule schemata
are usually considered to define different rules, whereas we consider them to
define different sub-cases of one (single) rule.

We now have everything at hand to define what the tableaux for a set G of
formulae is and when a tableau is closed. The construction of tableaux for G is in
general a non-deterministic process, since there may be any—even an infinite—
number of possible conclusions that can be derived from a given premiss.

Definition 6. Given a tableau calculus C for a logic L and a signature Σ ∈ Sig,
the set of all tableaux for a finite set Γ ⊂ TabFormΣ of tableau formulae is
inductively defined as follows: (1) A linear tableau whose nodes are labelled with
the formulae in Γ is a tableau for Γ (an initial tableau). (2) Let T be a tableau
for Γ , B a branch of T , and C 6= ⊥ a conclusion in RΣ(Π) for a premiss
Π ⊂ Form(B). Then a new tableau for Γ can be constructed from T as follows:
the branch B is extended by a new sub-branch for each extension E in C, where
the nodes in that sub-branch are labelled with the tableau formulae in E.

T is a tableau for a finite set G ⊂ FormΣ of formulae if it is a tableau for
the set {σ0:Tφ | φ ∈ G} of tableau formulae.

Definition 7. Given a tableau calculus C for a logic L and a signature Σ ∈ Sig,
a tableau branch B is closed iff ⊥ ∈ RΣ(Π) for a premiss Π ⊂ Form(B). A
tableau is closed if all its branches are closed.

Conditions 1 and 2 above, which are purely syntactical, still allow calculi to
behave “strangely”. Formulae could be added to the tableau that syntactically
encode knowledge derived from a premiss Π , but whose semantics (i.e., truth
value) has nothing to do with that of Π . An extreme example for this is that
two symbols of the signature are used to encode the formulae in Π in a binary
representation, and tableau rules are employed that operate on that binary rep-
resentation. Such calculi—though they may be sound and complete—cannot be
fibred in a uniform way as an understanding of the encoding would be needed. To
assure a more “conservative” behaviour one could impose additional syntactical
restrictions, for example only allow tableau rules that are analytic. However, the
property of tableau rules that has to be guaranteed is more of a semantic nature:
the result of a rule application must be semantically related to its premiss. The
first semantical condition (Cond. 3) is part of our definition of the semantics of
tableau formulae and tableaux (Def. 8):

Condition 3. The labels that are part of tableau formulae represent worlds in
models, and the truth value signs encode truth and falsehood of a formula; they
do not contain other information.

Definition 8. Given a tableau calculus C for a logic L and a signature Σ ∈ Sig,
a tableau interpretation for CΣ is a pair 〈m, I〉 where m ∈ MΣ∗

is a model
for the extended signature Σ∗ and I is a partial function that assigns to labels
σ ∈ LabΣ worlds of m such that I(σ0) = w0 (i.e., I assigns to the initial
label σ0 the initial world w0 of m). A tableau interpretation 〈m, I〉 satisfies a

tableau formula σ:Sφ ∈ FormΣ∗

iff I(σ) is defined and (a) S = T and φ is true
in I(σ) or (b) S = F and φ is false in I(σ). It satisfies a tableau branch B iff it
satisfies all tableau formulae on B. It satisfies a tableau iff it satisfies at least
one of its branches.

Often, only a subset of all possible tableau interpretations is used to define
the semantics of a tableaux. For example, to define the semantics of first-order
tableaux, only tableau interpretations are used whose first part is an Herbrand

model. In the following, the set of these tableau interpretations that are actually
used to define the semantics of a calculus CΣ is denoted with TabInterpΣ .

The next four conditions we impose to make calculi “well-behaved”, which
are semantical, resemble the properties that a tableau calculus is shown to have
in a classical soundness and completeness proof.

Condition 4. Appropriateness of the set of tableau interpretations: If a set G ⊂
FormΣ is satisfiable, then there is a tableau interpretation in TabInterpΣ that
satisfies the initial tableau for G (which is important for soundness); and, if
〈m∗, I〉 is such a tableau interpretation, then m∗ can be restricted to a model
m ∈ MΣ that satisfies G (which is important for completeness).

Condition 5. Soundness of expansion (preliminary version): If there is a ta-
bleau interpretation in TabInterpΣ satisfying a tableau T and T ′ is the result
of applying the expansion rule to T then there is a tableau interpretation in
TabInterpΣ satisfying T ′.

Condition 6. Soundness of Closure: If a tableau branch is closed then it is not
satisfied by any tableau interpretation in TabInterpΣ .

Before Condition 7 can be formulated that establishes completeness of a
calculus, the notion of a fully expanded tableau branch has to be defined. The
definition relies on the fact that tableau rules are monotonic (Condition 2);
without that property of tableau rules, it is difficult to define the notion of fully
expanded branches in a uniform way. Intuitively a branch is fully expanded if
no expansion rule application can add any new formulae to the branch.

Definition 9. Given a tableau calculus C for a logic L and a signature Σ ∈ Sig,
a tableau branch B is fully expanded if E ⊂ Form(B) for all extensions E in
all conclusions C ∈ RΣ(Π) for all premisses Π ⊂ Form(B).

Condition 7. Completeness: If a tableau branch B is fully expanded and not
closed then there is a tableau interpretation in TabInterpΣ satisfying B.

Conditions 4–7 ensure soundness and completeness of a tableau calculus:

Theorem 10. If a tableau calculus C for a logic L satisfies Conditions 4–7 for
all signatures Σ ∈ Sig then the following holds for all finite sets G ⊂ FormΣ:
There is a closed tableau for G if and only if G is not satisfiable.

To be suitable for fibring, a calculus has to satisfy two additional conditions.
The first of these replaces Condition 5:

Condition 8. Soundness of expansion: If a tableau T is satisfied by a tableau
interpretation in TabInterpΣ and T ′ is the result of applying the expansion rule
to T , then T ′ is satisfied by the same tableau interpretation.

Intuitively, the reason why Condition 8 has to be used instead of Condition 5 is
the following: Suppose T is a tableau for a fibred logic L(1,2), the tableau inter-
pretation 〈m1, I1〉 satisfies the L1-formulae on some branch B of T , the tableau
interpretation 〈m2, I2〉 satisfies the L2-formulae on B, and together they form
a tableau interpretation of the fibred logic L(1,2) satisfying the whole branch B
and, thus, the tableau T . Now, if the expansion rule for L1 only preserved satis-
fiability in some model, i.e., the L1-formulae on an extension B′ of B were only
satisfied by some different tableau interpretation 〈m′

1, I
′

1〉, then a problem would
arise if 〈m′

1, I
′

1〉 and 〈m2, I2〉 are incompatible and do not form a fibred model.

Condition 9. If a tableau branch B is fully expanded then every tableau inter-
pretation in TabInterpΣ satisfying the atoms on B satisfies all formulae on B.

This last condition ensures that the calculus is “analytical down to the atomic
level”. It is not a syntactical condition and it does not imply that the calculus
is analytic in the classical sense. The condition is needed to ensure completeness
when the calculus is used for fibring.

Example 11. In a tableau calculus for a modal logic that satisfies Condition 9, it
must be possible to add the formula τ :T p to a tableau branch containing σ:T 2p

for all labels τ representing a world reachable from the world represented by σ. In
a tableau calculus for classical propositional logic it must be possible to expand
a branch containing σ:T p ∨ q by sub-branches containing σ:T p resp. σ:T q, even
if one of these atoms is pure, i.e., occurs only positively on the branch.

When the two calculi for propositional and for modal logic are fibred, then
a propositional atom may indeed be a modal formula; even if it is pure (viewed
as a propositional atom), it may be unsatisfiable as a modal formula. Thus, for
example, a propositional calculus must expand the formula σ:T 3(r ∧ ¬r) ∨ q so
that 3(r ∧¬r) can be passed on to the modal component of the fibred calculus,
and its unsatisfiability can be detected.

Definition 12. A tableau calculus C for a logic L is suitable for fibring if, for
all signatures Σ ∈ Sig, there is a set TabInterpΣ of tableau interpretations such
that Conditions 4–9 are satisfied (Condition 1–3 are part of the definition of
tableau calculi resp. tableau interpretations).

4 Example: First-order Predicate Logic

4.1 The Logical System of First-order Predicate Logic

To specify the logical system LPL1 of first-order predicate logic, the set SigPL1

of signatures and the syntax and semantics of LPL1 have to be defined.
Signatures: The set SigPL1 consists of all first-order signatures Σ = 〈PΣ , FΣ〉

where PΣ is a set of predicate symbols and FΣ is a set of function symbols. For
skolemisation we do not use symbols from FΣ but from a special infinite set F sko

Σ

of Skolem function symbols that is disjoint from FΣ . The symbols in PΣ , FΣ and

F sko

Σ may be used with any arity n ≥ 0; in particular, function symbols can be
used as constant symbols (arity 0).

Syntax: In addition to the predicate and function symbols there is an infinite
set Var of object variables. The logical operators are ∨ (disjunction), ∧ (conjunc-
tion), → (implication), and ¬ (negation), and the quantifiers ∀ and ∃. Terms,
atoms, and formulae over a signature Σ are constructed as usual. As we use a
calculus without free variables, FormΣ

PL1 is the set of all formulae over Σ not
containing free variables, and AtomΣ

PL1 ⊂ FormΣ
PL1 is the set of all ground atoms.

Semantics: A first-order structure 〈D, I〉 for a signature Σ consists of a
domain D and an interpretation I, which gives meaning to the function and
predicate symbols of Σ. A variable assignment is a mapping µ : Var → D from
the set of variables to the domain D. The evaluation function val is defined as
usual; that is, given a structure 〈D, I〉 and a variable assignment µ, it assigns to
each formula φ ∈ FormΣ a truth value valI,µ(φ) ∈ {true, false}. As all models

must contain a set of worlds (Def. 1), we define MΣ
PL1 to consist of models

where the initial and only world w0 is a first-order structure. The relation |=PL1

is defined by: w0 |=PL1 φ iff, for all variable assignments µ, valI,µ(φ) = true.

4.2 A Tableau Calculus for First-order Predicate Logic

To describe our calculus CPL1 for first-order predicate logic LPL1, we have to de-
fine, for each signature Σ ∈ SigPL1, the extension Σ∗ to be used for constructing
tableaux, the set of labels, the initial label, and the expansion and closure rule.

Extended signature: Since the function sym-

α α1, α2

∗:T (φ ∧ ψ) ∗:Tφ, ∗:Tψ
∗:F (φ ∨ ψ) ∗:Fφ, ∗:Fψ
∗:F (φ→ ψ) ∗:Tφ, ∗:Fψ
∗:T¬φ ∗:Fφ, ∗:Fφ
∗:F¬φ ∗:Tφ, ∗:Tφ

β β1, βn

∗:T (φ ∨ ψ) ∗:Tφ, ∗:Tψ
∗:F (φ ∧ ψ) ∗:Fφ, ∗:Fψ
∗:F (φ→ ψ) ∗:Fφ, ∗:Tψ

γ(x) γ1(x)
∗:T (∀x)(φ(x)) ∗:Tφ(x)
∗:F (∃x)(φ(x)) ∗:Fφ(x)

δ(x) δ1(x)
∗:F (∀x)(φ(x)) ∗:Fφ(x)
∗:T (∃x)(φ(x)) ∗:Tφ(x)

bols in F sko

Σ are used for skolemisation, the ex-
tended signature Σ∗ is 〈PΣ , FΣ ∪ F sko

Σ 〉.
Labels: The models of first-order logic consist

of only one world; it is represented by the label ∗.
Thus, LabΣ = {∗}, and ∗ is the initial label.

Expansion and closure rule: The set of ta-
bleau formulae in TabFormΣ that are not literals
is divided into four classes as shown on the right:
α for formulae of conjunctive type, β for formu-
lae of disjunctive type, γ for quantified formulae
of universal type, and δ for quantified formulae
of existential type (unifying notation). To comply
with Condition 1, which does not allow the appli-
cation of substitutions (to the whole tableau), we
use the classical ground version of tableaux for
first-order logic (universally quantified variables
are replaced by ground terms when the γ-rule
is applied.) To comply with Condition 2, we use
a δ-rule that does not introduce a new Skolem
function symbol. Rather, each class of δ-formulae identical up to variable re-
naming is assigned its own unique Skolem symbol:

Definition 13. Given a signature Σ ∈ SigPL1, the function sko assigns to each

δ-formula φ ∈ TabFormΣ∗

a symbol sko(φ) ∈ F sko

Σ such that (a) sko(φ) > f for
all f ∈ F sko

Σ occurring in φ, where > is an arbitrary but fixed ordering on F sko

Σ ,

and (b) for all δ-formulae φ, φ′ ∈ TabFormΣ∗

the symbols sko(φ) and sko(φ′)
are identical if and only if φ and φ′ are identical up to renaming of quantified
variables.

The purpose of condition (a) in the above definition of sko is to avoid cycles
like: sko(φ) = f , f occurs in φ′, sko(φ′) = g, and g occurs in φ.

The expansion and closure rule RPL1 of our calculus CPL1 is formally de-
fined as follows: For all premisses Π ⊂ TabFormΣ∗

PL1, the set RΣ
PL1(Π) of pos-

sible conclusions is the smallest set containing the following conclusions (where
α, β, γ, δ denote tableau formulae of the corresponding type): (a) {{α1, α2}} for
all α ∈ Π , (b) {{β1}, {β2}} for all β ∈ Π , (c) {{γ1(t)}} for all γ ∈ Π and all
ground terms t over Σ∗, (d) {{δ1(c)}} for all δ ∈ Π where c = sko(δ) (Def. 13),

(e) ⊥ if ∗:Tφ, ∗:Fφ ∈ Π for any φ ∈ FormΣ∗

PL1.
Semantics: We define the semantics of CPL1-tableaux using tableau interpre-

tations that are canonical in the following sense:

Definition 14. A tableau interpretation for CPL1 is canonical if its first-order
structure 〈D, I〉 satisfies the following conditions: (a) D is the set of all ground

terms over Σ∗; (b) for all δ-formulae δ(x) ∈ TabFormΣ∗

and all variable assign-
ments µ: if valI,µ(δ(x)) = true then valI,µ(δ1(c)) = true where c = sko(δ).

Using the set TabInterpΣ
PL1 of canonical tableau interpretations, the calculus

CPL1 satisfies Conditions 4–9. In particular, if a tableau T is satisfied by a canon-
ical tableau interpretation, then all tableaux constructed from T are satisfied by
the same interpretation; and every fully expanded tableau branch that is not
closed is satisfied by a canonical interpretation.

Theorem 15. The tableau calculus CPL1 for LPL1 is suitable for fibring.

5 Example: The Logic LK of Modalities

5.1 The Logical System LK

As a second example, we use the modal logic K without binary logical con-
nectives; that is, all formulae are of the form ◦1 · · · ◦n p (n ≥ 0), where p is a
propositional variable and ◦i is one of the modalities 2,3 or the negation sym-
bol − (which is used to avoid confusion with first-oder negation ¬). We call this
logic LK. The missing connectives are not needed, since LK is later fibred with
first-oder logic where they are available (Sect. 8).

Signatures: A signature Σ in SigK is an enumerable non-empty set of prim-
itive propositions.

Syntax: The formulae in FormΣ
K consist of a single element of Σ prefixed by

a sequence of the logical operators 2,3,−. The set AtomΣ
K is identical to Σ.

Semantics: The semantics of LK is defined in the usual way using Kripke
structures: A model m in MΣ

K consists of (a) a non-empty set W of worlds, one
of which is the initial world w0, (b) a binary reachability relation on W , and
(c) a valuation V , which is a mapping from Σ to subsets of W . Thus, V (p) is
the set of worlds at which p is “true”. For primitive propositions p, the relation
|=K is defined by: w |=K p iff w ∈ V (p); for complex formulae it is recursively
defined by: (a) w |=K −φ iff not w |=K φ, (b) w |=K 2φ iff w′ |=K φ for all w′

reachable from w, and (c) w |=K 3φ iff w′ |=K φ for some w′ reachable from w.

5.2 A Tableau Calculus for the Logic LK

We define a calculus CK for LK that uses sequences of natural numbers as labels;
the world named by σ.n is reachable from the world named by σ.

Extended signature: No extension of the signature is needed, thus Σ = Σ∗.
Labels: The set LabK of labels is for all Σ inductively defined by: the initial

label 1 is a label, and if σ is a label then so is σ.n for all natural numbers n.
Expansion and closure rule: To comply with Condition 2, we use a π-rule that

does not introduce a new label but—similar to the δ-rule in Section 4.2—uses a
label that is uniquely assigned to the formula to which the rule is applied.

The expansion and closure rule of our calculus RΣ
K for the logic LK is formally

defined as follows: For all premisses Π ⊂ TabFormΣ
K , the set RK(Π) of possible

conclusions is the smallest set containing the following conclusions (where goedel
is any bijection from FormΣ

K to the set of natural numbers): (a) {{σ.n:Tφ}} for
all σ:T 2φ ∈ Π and all labels of the form σ.n occurring in Π , (b) {{σ.n:Fφ}}
for all σ:F3φ ∈ Π and all labels of the form σ.n occurring in Π , (c) {{σ.n:Fφ}}
for all σ:F2φ ∈ Π where n = goedel (φ), (d) {{σ.n:Tφ}} for all σ:T 3φ ∈ Π

where n = goedel (φ), (e) {{σ:Fφ}} for all σ:T−φ ∈ Π, (f) {{σ:Tφ}} for all
σ:F−φ ∈ Π , (g) ⊥ if σ:Tφ, σ:Fφ ∈ Π for any φ ∈ FormΣ

K .
Semantics: The setTabInterpΣ

K contains canonical tableau interpretation sat-
isfying the following condition:

Definition 16. A tableau interpretation 〈m, I〉 for LK is canonical if: (a) if
I(σ) is defined and satisfies σ:T 3φ, then I(σ.n) is defined and satisfies σ:Tφ
where n = goedel (φ); and (b) for all numers n, if w = I(σ) and w’=I(σ.n) are
defined, then the world w′ is reachable from w.

Theorem 17. The tableau calculus CK for LK is suitable for fibring.

6 Fibring Logical Systems

To fibre two logics L1 and L2 means to consider a logic whose formulae are
constructed from symbols and operators from both logics [7, 8]. In a first step
we consider a logic L(1,2) where L2-formulae can occur inside L1-formulae but
not vice versa.

Example 18. If L1 = LPL1 and L2 = LK, then (∀x)(p(x)), 2q, (∀x)(2p(x)), and
(∀x)(2p(x)) → (∃x)(3q(x)) are formulae of L(1,2), but 2(∀x)(p(x)) is not.

The logic L[1,2] ≡ L[2,1] that is the full combination of L1 and L2, where
expressions from the two logics can be nested arbitrarily, can be handled by
inductively repeating the construction presented in this section. Similarly, it is
possible to combine three or more logics.

We consider L(1,2) to be a special case of L1: it contains the formulae of L2

as (additional) atoms. And, in each world w of an L1-model, the truth value of
the additional atoms, which are L2-formulae, is the same as that in the initial
world of an L2-model assigned to w. Thus, an L(1,2)-model consists of an L1-
model m1 and a fibring function F that assigns to each world w in m1 an
L2-model. Intuitively, when an L2-formula is to be evaluated in w, where its
value is undefined, it is evaluated in m2 = F (w) instead. In most cases, certain
restrictions have to be imposed on F to make sure that the fibred models define
the desired semantics. These restrictions are given in form of a relation P between
L1-models, L1-worlds, and L2-models; a fibring function can be used for an L1-
model m1 if P(m1, w, F(1,2)(w)) holds for all worlds w of m1.

Example 19. A proposition may be represented by different atoms p1 and p2

in L1 and L2. Then, for the semantics defined by the fibred models to be useful,
one imposes the restriction that, if p1 is true in a world w of m1 then p2 is true
in the initial world of F (w).

Definition 20. Logics L1,L2 are suitable for fibring iff, for all Σ1 ∈ Sig1 and

Σ2 ∈ Sig2, there is a signature Σ(1,2) ∈ Sig1 such that FormΣ2
2 ⊂ Atom

Σ(1,2)

1 .

Let P be a restricting relation between L1-models, L1-worlds, and L2-models.
Then, the fibred logic L(1,2) is given by:

Signatures: Sig (1,2) = {Σ(1,2) | Σ1 ∈ Sig1, Σ2 ∈ Sig2}.

Syntax: For all Σ(1,2) ∈ Sig(1,2), Form
Σ(1,2)

(1,2) is identical to Form
Σ(1,2)

1 and

Atom
Σ(1,2)

(1,2) is identical to Atom
Σ(1,2)

1 .

Semantics: A model m(1,2) ∈ M
Σ(1,2)

(1,2) consists of an L1-model m1 ∈ M
Σ(1,2)

1

and a fibring function F that assigns to each world w in m1 an L2-model m2

in MΣ2
2 such that (a) P(m1, w,m2), and (b) w |=1 φ iff F (w) |=2 φ for all

φ ∈ FormΣ2
2 . We define |=(1,2) = |=1, W(1,2) = W1, and w0

(1,2) = w0
1.

Example 21. To fibre LPL1 and LK, we assume that there is an LK-signature ΣK

for every LPL1-signature ΣPL1 such that the atoms over ΣPL1 are the primitive
propositions in ΣK. Then, Σ(PL1,K) is an LPL1-signature such that the predicate
symbols are of the form ◦1 · · · ◦n p (n ≥ 0) where ◦i ∈ {2,3,−} and p is a
predicate symbol in ΣPL1.

The fibred logic L(PL1,K) is a first-order modal logic, where the modal op-
erators can only occur on the atomic level. If, however, the fibring process is
iterated, then the result is full modal predicate logic, because then the logical
connectives ∨,∧,¬ of LPL1 can be used inside modal formulae.

7 Fibring Tableau Calculi

In this section, we describe how to construct—in a uniform way—a calculus for
a fibred logic L(1,2) from two calculi C1 and C2 for L1 and L2.

Expanding a tableau can be seen as an attempt to construct a model for the
formula in the root node. If the tableau is closed, then there is no model and the
formula in the root node is unsatisfiable. A tableau formula σ:Tφ represents the
fact that, in the constructed model, φ is true in the world corresponding to σ.

Now, we have to construct a fibred model and, thus, to represent knowledge
about a fibred model by tableau formulae. Therefore, labels now are either of the
form σ1 ∈ Lab1 denoting a world in the L1-model or of the form (σ1;σ2) (where
σ1 ∈ Lab1 and σ2 ∈ Lab2) denoting a world in the L2-model that is assigned by
the fibring function to the world represented by σ1 in the L1-model. A tableau
formula σ1:Tφ still means that φ is true in I1(σ1); a tableau formula (σ1;σ2):Tφ
means that φ is true in the world I2(σ2) of the model assigned to I1(σ1).

The combined calculus does not construct separate tableaux for L1- and
L2-formulae but a single tableau, using a unified (set of) tableau rule(s).

The only additional assumption we have to make is that the extension of the
restricting relation P (Def. 20) to tableau interpretations can be characterised
using finite sets of tableau formulae:

Definition 22. Let L1 and L2 be logics suitable for fibring, let C1 and C2 be
calculi for L1,L2, let P be a restricting relation (Def. 20), and let Σ1 ∈ Sig1

and Σ2 ∈ Sig2. A function PT that assigns to a finite subset Π of TabForm
Σ∗

1
1

and a label σ1 ∈ Lab1 a finite set PT (Π,σ1) of L2-tableau formulae over the
non-extended signature Σ2 characterises P if the following holds for all finite or

infinite sets Π̃ ⊂ TabForm
Σ∗

1
1 , all labels σ1 ∈ Lab1, and all tableau interpreta-

tions 〈m1, I1〉 ∈ TabInterpΣ1
1 and 〈m2, I2〉 ∈ TabInterpΣ2

2 :
P(m1, I1(σ1),m2) holds if and only if (a) I1(σ1) is defined, (b) I1(σ1) |=1 Π̃,

and (c) 〈m1, I1〉 satisfies PT (Π,σ1) for all finite subsets Π of Π̃.

Of course, the fibred calculus can only be implemented if the function PT

is computable; for a semi-decision procedure, it is sufficient if PT (Π,σ1) is enu-
merable for all Π and σ1.

Example 23. The following function can be used to characterise the (simple)
restriction from Example 19: PT (Π,σ1) = {σ0

2 :S p2 | σ1:S p1 ∈ Π} where σ0
2 is

the initial label of C2.

The expansion and closure rule of the fibred calculus C(1,2) constructed from
C1 and C2 has four components: (1) the expansion rule of C1, which can be applied
to L1-tableau formulae; (2) the expansion rule of C2, which can be applied to
L2-tableau formulae with a label of the form (σ1;σ2); (3) a transition rule that
allows to derive (σ1;σ

0
2):Sφ2 from σ1:Sφ2 if φ2 is an L2-formula (in that case

φ2 has to be expanded by the C2-rule), i.e., if an L2-formula φ2 is true in an
L1-world w = I1(σ1) then it is true in the initial world of the L2-model assigned
to w; (4) a rule implementing the restriction relation, i.e., if the formulae in Π

occur on a branch and σ2:Sφ2 ∈ PT (Π,σ1) then (σ1;σ2):Sφ2 may be added.

Definition 24. Let L1,L2 be logics suitable for fibring; let C1, C2 be calculi for
logics L1,L2, and let these calculi be suitable for fibring; let P be a restricting
relation characterised by the function PT (Def. 22). Then, the fibred calculus
C(1,2) is, for all Σ1 ∈ Sig1, Σ2 ∈ Sig2, defined by:

Extended Signature: The extension of Σ(1,2) is the signature Σ∗

(1,2) that is
associated with Σ∗

1 and Σ∗

2 according to Definition 20.

Labels: Lab
Σ(1,2)

(1,2) = Lab1 ∪ {(σ1;σ2) | σ1 ∈ LabΣ1
1 , σ2 ∈ LabΣ2

2 }; the initial la-

bel σ0
(1,2) is the initial label σ0

1 if C1.

Expansion and closure rule: For all premisses Π ⊂ TabForm
Σ∗

(1,2)

(1,2) , the set

R(1,2)(Π) is the smallest set containing:

1. the conclusions in R1(Π1) where Π1 consists of all tableau formulae of the

form σ1:Sφ in Π such that φ ∈ Form
Σ∗

1
1 (expansion rule of C1),

2. for all σ1 ∈ Lab
Σ(1,2)

1 , the conclusions that can be constructed from the con-
clusions in R2(Π2,σ1) replacing σ2 by (σ1;σ2); the set Π2,σ1 consists of
all tableau formulae of the form σ2:Sφ such that (σ1;σ2):Sφ is in Π and

φ ∈ Form
Σ∗

2
2 (expansion rule of C2),

3. the conclusion {{(σ1;σ
0
2):Sφ}} for all tableau formulae of the form σ1:Sφ

in Π such that φ ∈ Form
Σ∗

2
2 (transition rule),

4. for all σ1 ∈ Lab
Σ(1,2)

1 and all subsets Π1 of Π (see point 1 above), the con-
clusion {PT (Π1, σ1)} (restriction relation).

Theorem 25. The fibred calculus C(1,2) that is constructed according to Defini-
tion 24 is suitable for fibring, i.e., it satisfies Conditions 4–9 in Section 3.

Corollary 26. The fibred calculus C(1,2) that is constructed according to Defini-
tion 24 is a sound and complete calculus for L(1,2), i.e., there is a closed tableau

for G ∈ FormΣ(1,2) if and only if G is not satisfiable.

8 Fibring Calculi for Predicate and Modal Logic

As an example, we fibre the calculi CPL1 for first-order predicate logic LPL1 in-
troduced in Section 4.2 and the calculus CK for the logic LK of modalities defined
in Section 5.2. The result is a calculus C(1,2) for first-order modal logic where
the modal operators can only occur on the literal level (Example 21). Since, in
this case, there is no additional restriction on which LK-models may be assigned
to worlds in LPL1-models, the function PT (Π,σ) characterising the fibring re-
striction (Def. 22) is empty for all formula sets Π and labels σ; therefore, the
tableau expansion rule that implements the restriction relation is never applied.

Due to space restrictions, we cannot list the tableau expansion and closure
rules of the fibred calculus, which can easily be constructed by instantiating the
calculi C1 and C2 in Definition 24 with CPL1 resp. CK. Instead, we prove the
formula

G = (∀x)(2p(x)) → [¬(∃y)(3−p(y)) ∧ ¬(∃z)(3−p(z))]

to be valid in all models of the logic L(1,2) = L(PL1,K), using the fibred calculus
C(1,2) = C(PL1,K) to construct a closed tableau for ¬G.

The closed tableau shown on the 1 �:T:((8x)(2p(x)) ! [:(9y)(3�p(y)) ^ :(9z)(3�p(z))])2 �:F (8x)(2p(x)) ! [:(9y)(3�p(y)) ^ :(9z)(3�p(z))]3 �:T (8x)(2p(x))4 �:F:(9y)(3�p(y)) ^ :(9z)(3�p(z))5 �:F:(9y)(3�p(y))7 �:T (9y)(3�p(y))8 �:T3�p(c1)9 (�; 1):T3�p(c1)10 (�; 1:1):T�p(c1)11 (�; 1:1):F p(c1)12 �:T2p(c1)13 (�; 1):T2p(c1)14 (�; 1:1):T p(c1)?
6 �:F:(9y)(3�p(y))15 �:T (9y)(3�p(y))16 �:T3�p(c1)17 (�; 1):T3�p(c1)18 (�; 1:1):T�p(c1)19 (�; 1:1):F p(c1)20 �:T2p(c1)21 (�; 1):T2p(c1)22 (�; 1:1):T p(c1)?

right is constructed as follows: Tableau
formula 1 is put on the tableau ini-
tially; then formulae 2–7 are added us-
ing the α- and β-rules of CPL1. The
δ-rule of CPL1 is applied to derive 8
from 7, using the Skolem constant c1 =
sko((∃y)(3−p(y))). Since 8 is an LK-
formula, the transition rule is applied
to add 9 to the branch, which then al-
lows to apply the LK-expansion rule
to derive 10 from 9 (we assume that
goedel (3−p(c1)) = 1) and to derive 11
from 10. At this point, the γ-rule of LPL1 is applied to 3 to derive 12, replacing
the universally quantified variable x with the ground term c1 (which shows that
L1- and L2-rules can be applied in an arbitrary order). Finally, the transition
rule is applied to 12 to derive 13, and the LK-rule for 2-formulae is applied to
derive 14. At this point, the left branch of the tableau is closed by the LK-closure
rule, because it contains the complementary atoms 11 and 14. The right branch
is expanded and closed in the same way.

The full power of the fibring me- 100 (�; 1:1):T�r(c1) _�s(c1)140 (�; 1:1):T r(c1) ^ s(c1)23 (�; 1:1; �):T r(c1) ^ s(c1)24 (�; 1:1; �):T r(c1)25 (�; 1:1; �):T s(c1)26 (�; 1:1; �):T�r(c1) _�s(c1)27 (�; 1:1; �):T�r(c1)28 (�; 1:1; �; 1):T�r(c1)29 (�; 1:1; �; 1):F r(c1)30 (�; 1:1; �; 1):T r(c1)? 31 (�; 1:1; �):T�s(c1)32 (�; 1:1; �; 1):T�s(c1)33 (�; 1:1; �; 1):F s(c1)34 (�; 1:1; �; 1):T s(c1)?
thod is revealed when the fibring pro-
cess is iterated to construct a calcu-
lus C[PL1,K] for the full modal predi-
cate logic L[PL1,K]; this is possible be-
cause the calculi C(1,2), C(1,(2,1)), . . . are
all suitable for fibring. As an example,
we use C[PL1,K] to prove that the for-
mula is valid in all models of L[PL1,K]

that is constructed from G replacing
the literal p(x) by r(x) ∧ s(x) and re-
placing the literals −p(y) and −p(z) by
−r(y) ∨ −s(y) resp. −r(z) ∨ −s(z). The construction of the tableau starts as
above for G. We only consider the left branch (the right branch can be closed
in the same way). Instead of the literals 10 and 14, the branch now contains
10′ = (∗; 1.1):T−r(c1) ∨−s(c1) and 14′ = (∗; 1.1):T r(c1) ∧ s(c1). The expan-
sion of the branch continues as shown above (to simplify notation, we write
(∗; 1; ∗) instead of (∗; (1; ∗)), etc.). The tableau formula 14′ contains an LPL1-
formula. Therefore, the transition rule is applied, and 23 is derived from 14′; this
is the transition rule of the calculus C(K,PL1) that, during the iteration process,
has been fibred with CPL1 to construct C(PL1,(K,PL1)). The α-rule of LPL1 is used
to derive 24 and 25 from 23; then, 26 is derived from 10′ by again applying the
transition rule, and the β-rule is applied to derive 27 and 31 from 26. The lit-

eral −p(c1) in 27 contains the modal and not the first-oder negation sign. Thus,
the transition rule has to be applied again to derive 28, which then allows to
derive 29 by applying the rule for modal negation. The atomic tableau formulae
24 and 29 cannot be used to close the branch, because their labels are different.
Thus, the transition rule is applied a last time to derive 30 from 24. Then, the
branch is closed by 29 and 30.

9 Conclusion

We have presented a uniform method for constructing a sound and complete
tableau calculus for a fibred logic from calculi for its component logics. Condi-
tions have been identified that tableau calculi have to satisfy to be suitable for
fibring; the conditions are neither too weak nor too strong. Since tableau calculi
are already known for most “basic” logics, it is possible to construct calculi for
all “complex” logics that can be constructed by fibring basic logics. The main
advantages of a uniform framework for fibring calculi are:

To construct a calculus for the combination L[1,2] of two particular logics, no
knowledge is needed about the interaction between calculi for L1 and L2. Thus,
a calculus for the combination L[1,2] can be obtained quickly and easily.

Soundness and completeness of the fibred calculus does not have to be proven;
it follows from Theorem 25 if the fibred calculi are suitable for fibring.

A calculus C1 for a logic L1 can be fibred with a calculus C2 for a “sub-
logic” L2 of L1 (for example, propositional logic is a sub-logic if predicate logic);
although C1 can handle the whole logic L1, the calculus C2 may be more efficient
for formulae from L2 such that the fibred calculus C(1,2) is more efficient than C1.
This can be seen as a generalisation of the theory reasoning method.

Acknowledgement. We thank Guido Governatori and two anonymous referees
for useful comments on an earlier version of this paper.

References

1. W. Ahrendt and B. Beckert. An improved δ-rule for ground first-order tableaux.
Unpublished draft available from the authors, 1997.

2. B. Beckert and D. Gabbay. A general framework for fibring semantic tableaux.
Unpublished draft available from the authors, 1997.

3. B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized δ-rule in free
variable semantic tableaux. In Proceedings of KGC, LNCS 713. Springer, 1993.

4. M. D’Agostino and D. Gabbay. Fibred tableaux for multi-implication logics. In
Proceedings of TABLEAUX, LNCS 1071. Springer, 1996.

5. M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of Tableau

Methods. Kluwer, Dordrecht, 1998. To appear.
6. D. Gabbay. Fibred semantics and the weaving of logics. Part 1: Modal and intu-

itionistic logics. Journal of Symbolic Logic, 61:1057–1120, 1996.
7. D. Gabbay. An overview of fibred semantics and the combination of logics. In

Proceedings of FroCoS. Kluwer, Dordrecht, 1996.
8. D. Gabbay. Fibring Logic. Oxford University Press, 1998. Forthcoming.
9. D. Gabbay and G. Governatori. Fibred modal tableaux. Draft, 1997.

