Free Variable Tableaux for
Propositional Modal Logics

Bernhard Beckert* Rajeev Goré
Imperial College Automated Reasoning Project
Department of Computing Australian National University
180 Queen’s Gate, London SW7, England Canberra, ACT, 0200, Australia
beckert@ira.uka.de rpglarp.anu.edu.au
http://il2www.ira.uka.de/ beckert http://arp.anu.edu.au/

Abstract. We present a sound, complete, modular and lean labelled
tableau calculus for many propositional modal logics where the labels
contain “free” and “universal” variables. Our “lean” Prolog implementa-
tion is not only surprisingly short, but compares favourably with other
considerably more complex implementations for modal deduction.

1 Introduction

Free variable semantic tableaux are a well-established technique for first-order
theorem proving—both theoretically and practically. Free variable quantifier
rules [19, 7] are crucial for efficiency since free variables act as a meta-linguistic
device for tracking the eigenvariables used during proof search.

Traditional tableau-based theorem provers developed during the last decade
for first-order logic have been complex and highly sophisticated, typified by sys-
tems like Setheo [16] and 74P [2]. On the other hand, free variable tableaux, and
their extensions like universal variable tableaux, have been used successfully for
lean Prolog implementations, as typified by leanT4P [3]. A “lean” implemen-
tation is an extremely compact (and efficient) program that exploits Prolog’s
built-in clause indexing scheme and backtracking mechanisms instead of relying
on elaborate heuristics. Such compact lean provers are much easier to under-
stand than their more complex stablemates, and hence easier to adapt to special
needs.

Simultaneously, Kanger’s meta-linguistic indices for non-classical logics [15]
have been generalised by Gabbay into Labelled Deductive Systems [10]. And
Massacci [17] and Russo [20] have recently shown the utility of using ground
labels for obtaining modular modal tableaux and natural deduction systems
(respectively); see [11] for an introduction to labelled modal tableaux.

By allowing labels to contain free (and universal) variables, we obtain effi-
cient and modular tableaux systems for all the 15 basic propositional modal log-
ics. Furthermore, our leanT4P style implementation compares favourably with
existing fast implementations of modal tableau systems like LWB [13].

* On leave from University of Karlsruhe, Institute for Logic, Complexity and Deduction
Systems, D-76128 Karlsruhe, Germany.

Our object language uses labelled formulae like o : A, where o is a label and A
is a formula, with intuitive reading “the possible world o satisfies the formula A”;
see [6, 18, 11] for details. Thus, 1:0p says that the possible world 1 satisfies
the formula Op. Our box-rule then reduces the formula 1:0p to the labelled
formula 1.(z) : p which contains the universal variable z in its label and has an
intuitive reading “the possible world 1.(z) satisfies the formula p”. Since different
instantiations of x give different labels, the labelled formula 1.(x): p effectively
says that “all successors of the possible world 1 satisfy p”, thereby capturing the
usual Kripke semantics for Op (almost) exactly. But the possible world 1 may
have no successors; so we enclose the variable in parentheses and read o: A as
“for all instantiations of the variables in o, if the world corresponding to that
instantiation of o exists then the world satisfies the formula A”.

Similar approaches using labels containing variables have been explored by
Governatori [12] and D’Agostino et al. [5]. But D’Agostino et al. relate the labels
to modal algebras, instead of to first-order logic as we do. And whereas Gover-
natori uses string unification over labels to detect complementary formulae, we
use Prolog’s matching, since string unification cannot be implemented in a lean
way. Our variables are of a simpler kind: they capture all immediate children of
a possible world (in a rooted tree model), but do not capture all R-successors;
see [17, 11]. As a consequence, we can make extensive use of Prolog features
like unification and backtracking in our implementation. Note, however, that a
non-lean extension of our calculi using string unification is perfectly feasible.

The following techniques, in particular, are crucial:

Free variables: Applying the traditional ground box-rule requires guessing the
correct eigenvariables. Using (free) variables in labels as “wildcards” that
get instantiated “on demand” during branch closure allows more intelligent
choices of these eigenvariables. To preserve soundness for worlds with no
R-successors, variable positions in labels must be conditional.

Universal variables: Under certain conditions, a variable z introduced by a
formula like OA is “universal” in that an instantiation of x on one branch
need not affect the value of z on other branches, thereby localising the effects
of a variable instantiation to one branch. The technique entails creating and
instantiating local duplicates of labelled formulae instead of the originals.

Finite diamond-rule: Applying the diamond-rule to ¢ A usually creates a new
label. By using (a Godelisation of) the formula A itself as the label instead,
we guarantee that only a finite number of different labels (of a certain length)
are used in the proof. In particular, different (identically labelled) occur-
rences of O A generate the same unique label.

The paper is structured as follows: In Sections 2 and 3 we introduce the
syntax and semantics of labelled modal tableaux. In Section 4 we introduce our
calculus, formalise its soundness and completeness (full proofs can be found
in [1]), and present an example. In Section 5 we describe our implementation
and present experimental results; and in Section 6 we present our conclusions
and discuss future work.

2 Syntax

The formulae of modal logics are built-in the usual way; see [11]. To reduce the
number of tableau rules and the number of case distinctions in proofs, we restrict
all considerations to implication-free formulae in negated normal form (NNF);
thus negation signs appear in front of primitive propositions only. Using NNF
formulae is no real restriction since every formula can be transformed into an
equivalent NNF formula in linear time.

Labels are built from natural numbers and variables, with variables intended
to capture the similarities between the V quantifier of first-order logic and the
O modality of propositional modal logic. However, whereas first-order logic for-
bids an empty domain, the O modality tolerates possible worlds with no succes-
sors.? To capture this (new) behaviour, variable positions in labels are made
“conditional” on the existence of an appropriate successor by enclosing these
conditional positions in parentheses.

Definition 1. Let Vars be a set of variables, and let N be the set of natural
numbers. Let x, y, z range over arbitrary members of Vars, let n and m range over
arbitrary members of N, and let [range over arbitrary members of Vars U IN.
Then, the string 1 is a label; and if ¢ is a label, then so are o.m and o.(1). The
length of a label o is the number of dots it contains plus one, and is denoted
by |o|. The constituents of a label o are called positions in ¢ and terms like “the
1st position” or “the n-th position” are defined in the obvious way. A position
is conditional if it is of the form (I), and a label is conditional if it contains a
conditional position. By ipr(o) we mean the set of all non-empty initial prefixes
of a label o, excluding o itself. A label is ground if it consists of (possibly
conditional) members of N only. Let £ be the set of all ground labels.

When dealing with ground labels, we often do not differentiate between the
labels o.n and o.(n), and we use o.[n| to denote that the label may be of either
form. Note also that o.x (parentheses around z omitted) is not a label: the
parentheses mark the positions that contain variables, or that used to contain
variables before a substitution was applied.

Definition 2. A set I of labels is strongly generated if: (a) there is some
(root) label p € I' such that p € ipr(o) for all o € I'\ {p}; and (b) ¢ € I" implies
T € I for all T € ipr(o).

Since we deal with mono-modal logics with semantics in terms of rooted
frames (see Section 3), we always assume that our labels form a strongly gener-
ated set with root p = 1. In any case, our definition of labels guarantees that all
our labels begin with 1, and it is easy to see that the labels that appear in any
of our tableaux are strongly generated.

2 To that extent, modal logics are similar to free logic, i.e., first-order logic where the
domains of models may be empty [4].

Definition 3. A labelled tableau formula (or just tableau formula) is a struc-
ture of the form X : A:0: A, where X is a subset of Vars U N, A is a set of labels,
o is a label, and A is a formula in NNF. If the set A is empty, we use X :0: A
as an abbreviation for X :0:0: A. A tableau formula X : A:c0: A is ground, if
o and all labels in A are ground. If F is a set of labelled tableau formulae, then
lab(F) is the set {0 | X: A:0: A € F}.

The intuitions behind the different parts of our “tableau formulae” are as fol-
lows: The fourth part A is just a traditional modal formula. The third part o is a
label, possibly containing variables introduced by the reduction of O modalities.
If the label ¢ is ground, then it corresponds to a particular path in the intended
rooted tree model; for example, the ground label 1.1.1 typically represents the
leftmost child of the leftmost child of the root 1. If o contains variables, then
it represents all the different paths (successors) that can be obtained by dif-
ferent instantiations of the variables, thereby capturing the semantics of the
0O modalities that introduced them. Our rule for splitting disjunctions allows us
to retain these variables in the labels of the two disjuncts, but because O does
not distribute over V, such variables then lose their “universal” force, meaning
that these “free” variables can be instantiated only once in a tableau proof.
We use the first component X to record the variables in the tableau formula ¢
that are “universal”’, meaning that ¢ can be used multiply in the same proof
with different instantiations for these variables. The free variables in ¢ (that do
not appear in X) can be used with only one instantiation since they have been
pushed through the scope of an V connective. The second part A, which can be
empty, has a significance only if our calculus is applied to one of the four logics
KB, K5, KB4, and K45 (that are non-serial, but are symmetric or euclidean,
see Section 3). It is empty for the other logics. The intuition of A is that the
formula A has to be true in the possible world called o only if the labels in A
name legitimate worlds in the model under consideration. This feature has to
be used, if (a) rule applications may shorten labels, which is the case if the logic
is symmetric or euclidean, and (b) the logic is non-serial and, thus, the exis-
tence of worlds is not guaranteed. The set A can contain both universal and free
variables, and some of them may appear in o.

Definition 4. Given a tableau formula ¢ = X : A:0: A, Univ(¢) = X is the set
of universal variables of ¢, while Free(¢) = {z appearsin o or A |z ¢ X} is
the set of free variables of ¢. These notions are extended in the obvious way
to obtain the sets Free(7') and Univ(7) of free and universal variables of a given
tableau 7 (see Def. 5).

Definition 5. A tableau is a (finite) binary tree whose nodes are tableau for-
mulae. A branch in a tableau 7 is a maximal path in 7.3 A branch may be
marked as being closed. If it is not marked as being closed, it is open. A
tableau branch is ground if every formula on it is ground, and a tableau is
ground if all its branches are ground.

3 Where no confusion can arise, we identify a tableau branch with the set of tableau
formulae it contains.

Since we deal with propositional modal logics, notions from first-order logic
like variables and substitutions are needed only for handling meta-linguistic no-
tions like the accessibility relation between worlds. Specifically, whereas substi-
tutions in first-order logic assign terms to variables, here they assign numbers
or other variables (denoting possibles worlds) to variables.

Definition 6. A substitution is a (partial) function p : Vars — N U Vars. Sub-
stitutions are extended to labels and formulae in the obvious way. A substitution
is grounding if its range is the (whole) set Vars and its range is N; that is, if
it maps all variables in Vars to natural numbers. A substitution is a variable
renaming if its range is Vars, and it replaces distinct variables by other distinct
variables only. The restriction of a substitution u to a set X of variables is
denoted by px-

Definition 7. Given a tableau 7 containing a tableau formula X:A:0: A4, a
tableau formula X’: A’:¢’: A is a T-renaming of X : A: o : A if there is a vari-
able renaming p such that X': A':¢0’': A = (X:A:0:A)p, and every variable
introduced by p is new to the tableau 7.

3 Semantics

To save space, we assume familiarity with Kripke semantics for propositional
normal modal logics; see [11] for details of any undefined terms. A world w €
W is idealisable if it has a successor in W. To illustrate the modularity of
our method we concentrate on the five basic axioms known as (T) OA — A,
(D) OA — ©A, (4) OA — OOA, (5) ©A — OCA, (B) A — OCA, and the 15
extensions of the basic propositional normal modal logic K obtained as shown in
the first two columns of Table 1. The following properties of the reachability rela-
tion R characterise these axioms, (T): reflexivity, (D): seriality, (4): transitivity,
(5): euclideanness, and (B): symmetry; see [11] for details. We therefore obtain:

Definition 8. For any logic L from Table 1, (W, R) is an L-frame if each axiom
of L is valid in (W, R). A model (W, R, V) is an L-model if (W, R) is an L-frame.

It is also well-known that finer characterisation results for these logics can be
given in terms of finite rooted tree frames; see [11] for details. These results are
built into the following definition of L-accessibility which views a set of strongly
generated ground labels as a tree with root p where o.[n] is an immediate child
of o (hence the name “strongly generated”).

Definition 9. Given a logic L and a set I of strongly generated ground labels
with root p = 1, a label 7 € I' is L-accessible from a label ¢ € I', written
as o > 7, if the conditions set out in Table 1 are satisfied. A label o € I is an
L-deadend if no 7 € I' is L-accessible from o.

The following lemma (see [11] for a proof) shows that the L-accessibility
relation > on labels has the properties like reflexivity, transitivity, etc. that are
appropriate for L-frames.

Lemma10. If I is a strongly generated set of ground labels with root p = 1,
then (I',>) is an L-frame.

Logic |Axioms| 7 is L-accessible from o || Logic |Axioms| 7 is L-accessible from o
K (K) T=o0.n KT |(KT) |r=o.njorT=0
KB [((KB) |r=o.n]oro=r.[m] K4 |(K4) |r=0.0
K5 [(K5) |r=o0.[n],or K45 |(K45) |1 =00, or
lo| > 2 and |7] > 2 o] > 2 and |r| > 2
KD |(KD) |K-condition, or o is a KDB|(KDB) [KB-condition, or
K-deadend and o = 7 [IN=1lando=7=1
KD4 ((KD4) |K4-condition, or o is a KD5 |(DK5) |K5-condition, or
K-deadend and o = 7 [IN=1lando=7=1
KD45|(KD45)|K45-condition, or KB4 |(KB4) (|| > 2
['=lando=7=1
B (KTB) |t =0, or 7 = 0.[n], or S4 |(KT4) [r=0forT=0
o =T7.[m)]
S5 (KT5) |all o, 7

Table 1. Basic logics, axiomatic characterisations, and L-accessibility ©>.

Traditionally, the notion of satisfaction relates a world in a model with a
formula or a set of formulae. For formulae annotated with ground labels, this
notion must be extended by a further “interpretation function” mapping ground
labels to worlds; see [7, 11]. If labels contain free variables and, in particular,
universal variables, then this notion must also cover all possible instantiations
of the universal variables, thus catering for many different “interpretation func-
tions”. We extend the notion of satisfiability so it is naturally preserved by our
tableau expansion rules, and so that a “closed tableau” is not satisfiable.

We proceed incrementally by defining satisfiability for: ground labels; ground
tableau formulae; non-ground tableau formulae; and finally for whole tableaux.
But first we enrich models by the “interpretation function” that maps labels to
worlds. Note that such interpretations give a meaning to all ground labels, not
just to those that appear in a particular tableau.

Definition 11. An L-interpretation is a pair (M, I), where M = (W, R, V), is
an L-model and I: £ — W U {L} is a function interpreting ground labels such
that: (a) I(1) € W; (b) I{(o.(n)) = I(o.n) for all o.n and o.(n) in £; (c) for all
o€ L,if I(r) = L for some 7 € ipr(o) then I(c) = L; (d)if o > 7, I(0) € W,
I(r) € W, and I(0) is idealisable, then I(c) RI(7).

Definition 12. An L-interpretation (M, I), where M = (W, R, V'), satisfies a
ground label o, if for all labels 7.n € ipr(c) U {o} (that end in an unconditional
label position): I(7) € W implies I(7.n) € W. The L-interpretation (M, I) satis-
fies a ground tableau formula X : A:c0: A, if (a) I(o) = L, or I(7) = L for some
T € A, or I(0) = A; and (b) if I(7) € W for all 7 € A, then (M, I) satisfies o.

Thus, a tableau formula is satisfied by default if its label o is undefined (that
is, if I(o) = L) or if one of the labels in A is undefined. But because we deal only
with strongly generated sets of labels with root 1, Definitions 11 and 12 force I
to “define” as many members of ipr(c) as is possible. However, for a conditional
ground label of the form 7.(n), where n is parenthesised, it is perfectly acceptable
to have I(7.(n)) = L even if I(7) € W.

Ezample 1. If (M, 1) satisfies ¢ = 1.1.1, then I(1), I(1.1), and I(1.1.1) must
be defined. If o = 1.(1).1, then I(1.(1)) need not be defined; but if it is, then
I(1.(1).1) must be defined.

The domain of every interpretation function I is the set of all ground la-
bels £, but our tableaux contain labels with variables. We therefore introduce
a definition of satisfiability for non-ground tableau formulae capturing our in-
tuitions that a label o.(x) stands for all possible successors of the label o, and
taking into account the special nature of universal variables.

Definition 13. Given an L-interpretation (M,I) and a grounding substitu-
tion u, a (non-ground) tableau formula ¢ = X : A: o : A is satisfied by (M, I, p1),
written as (M, I, u) = ¢, if, for all grounding substitutions A, the ground formula
PAx p is satisfied by (M, I) (Def. 12). A set F of tableau formulae is satisfied
by (M, I, u), if every member of F is simultaneously satisfied by (M, I,).

In the above definition, a ground formula ¢\ x 11 is constructed from ¢ in two
steps such that the definition of satisfiability for ground formulae can be applied.
To cater for the differences between the free variables and universal variables,
we use two substitutions: a fixed substitution p and an arbitrary substitution .
The first step, applying A\|x to ¢, instantiates the universal variables z € X.
The second step, applying u to ¢ x, instantiates the free variables. Therefore,
the instantiation of universal variables x € X is given by the arbitrary substi-
tution A, and the instantiation of free variables x ¢ X is given by the fixed
substitution .

Note, that in the following definition of satisfiable tableaux, there has to be
a single satisfying L-interpretation for all grounding substitutions u.

Definition 14. A tableau 7 is L-satisfiable if there is an L-interpretation (M, I)
such that for every grounding substitution u there is some open branch B in 7
with (M, I, u) = B.

4 The Calculus

We now present an overview of our calculus, highlighting its main principles.
Our calculus is a refutation method. That is, to prove that a formula A is a
theorem of logic L, we first convert its negation = A into NNF obtaining a for-
mula B, and then test if B is L-unsatisfiable. To do so, we start with the initial
tableau whose single node is §:(): 1: B and repeatedly apply the tableau expan-
sion rules, the substitution rule, and the closure rule until a closed tableau has

been constructed. Since our rules preserve L-satisfiability of tableaux, a closed
tableau indicates that B is indeed L-unsatisfiable, and hence that its negation
A is L-valid. Since L-frames characterise the logic L we then know that A is a
theorem of logic L. Constructing a tableau for §:(): 1: B can be seen as a search
for an L-model for B. Each branch is a partial definition of a possible L-model,
and different substitutions give different L-models. Our tableau rules extend one
particular branch using one particular formula, thus differing crucially from the
systematic methods in [6, 11] where a rule extends all branches that pass through
one particular formula.

Free variables are used in the labels so that when the box-rule is applied in a
world, the actual ground label of the successor world does not have to be guessed.
Instead, free variables can be instantiated immediatedly before a branch is closed
to make that closure possible. Note, however, that one single instantiation of the
free variables has to be found that allows us to close all branches of a tableau
simultaneously, and that instantiating a free variable (in the wrong way) to close
one branch, can make it impossible to close other branches.

Because a world may have no successor, variable positions in labels have to
be conditional to preserve soundness for non-serial logics.

Every variable is introduced into a label by the reduction of a box-formula
like OA. Such a variable x in a tableau formula ¢ on branch B is “universal”
if a renaming ¢’ = ¢{z := 2’} of ¢ could be added to B without generating
additional branches. That is, the modified tableau would be no more difficult
to close than the original. An easy way to generate the renaming is to repeat
the rule applications that lead to the generation of ¢, starting from the box-rule
application that created x. Once the renaming ¢’ is present on B, the variable
x never has to be instantiated to close B because ¢’ could be used instead of ¢,
thus instantiating 2’ instead of x. However, if x occurs on two separate branches
in the tableau, then z is not universal because repeating these rule applications
would generate at least one additional branch. Since the only rule that causes
branching is the disjunctive rule, the two separate occurrences of x must have
been created by a disjunctive rule application. Therefore, an application of the
disjunctive rule to a formula 1) causes the universal variables of ¥ to become free
variables. Thus, all free variables are a result of a disjunction within the scope
of a O, corresponding to the fact that O does not distribute over V.

When the disjunctive rule “frees” universal variables, additional copies of the
box-formula that generated them are needed. However, these additional copies
are not generated by the box-rule, but by the disjunctive rule itself.

Our diamond-rule does not introduce a new label o.n, when it is applied to
X:A:0:0A. Instead, each formula GA is assigned its own unique label [A]
which is a Godelisation of A itself. This rule is easier to implement than the
traditional one; and it guarantees that the number of different labels (of a certain
length) in a proof is finite, thus restricting the search space.

The box-rule for symmetric and euclidean logics can shorten labels. For ex-
ample, the tableau formula X’': A’:1: A is derived from X : A:1.(1):0A if the
logic is symmetric. The semantics for serial logics guarantee that all labels define

worlds, but in non-serial logics, the label 1 may be defined even though 1.(1) is
undefined. To ensure that the formula X’: A’:1: A or one of its descendants is
used to close a branch only if the label 1.(1) is defined, the label 1.(1) is made
part of A’ (see Section 4.2). Such problems do not occur when rule applications
always lengthen labels since 7 has to be defined if 7.l is defined.

All expansion rules are sound and invertible (some denominator of each rule
is L-satisfiable iff the numerator is L-satisfiable). Thus, unlike traditional modal
tableau methods where the order of (their non-invertible) rule applications is
crucial [6, 11], the order of rule application is immaterial.

The differences in the calculi for different logics L is mainly in the box-rule,
with different denominators for different logics. In addition, a simpler version of
the closure rule can be used if the logic is serial.

4.1 Tableau Expansion Rules

There are four expansion rules, one for each type of complex (non-literal) for-
mula. If we wanted to avoid NNF we would have four formula classes (o, 8, v, 7)
a la Smullyan [6], and an extra rule for double negation. Since we assume that
all our formulae are in NNF, we need just one representative for each of the four
classes.

As usual, in each rule, the formula above the horizontal line is its numerator
(the premiss) and the formula(e) below the horizontal line, possibly separated
by vertical bars, are its denominators (the conclusions). All expansion rules
(including the box-rule) are “destructive”; that is, once the (appropriate) rule
has been applied to a formula occurrence to expand a branch, that formula
occurrence is not used again to expand that branch. Note that we permit multiple
occurrences of the same formula on the same branch.

Definition 15. Given a tableau 7, a new tableau 7’ may be constructed from 7°
by applying one of the L-expansion rules from Table 2 as follows: If the nu-
merator of a rule occurs on a branch B in 7, then the branch B is extended
by the addition of the denominators of that rule. For the disjunctive rule the
branch splits and the formulae in the right and left denominator, respectively,
are added to the two resulting sub-branches instead.

The box-rule(s) shown in Table 2 require explanation. The form of the rule is
determined by the index L in the accompanying table. But some of the denomina-
tors have side conditions that determine when they are applicable. For example,
the constraint o = 1.l means that (5) is part of the denominator only when
the numerator of the box-rule is of the form X : A:1.lg:0A. Similarly, the con-
straints o3 = 73.03 and o5 = 75.05 for the (4") and (B) denominators mean these
rules can be used only for a numerator of the form X : A:o:0A where |o| > 2,
thereby guaranteeing that the strictly shorterlabels 75 and 75 that appear in the
respective denominators are properly defined. Note that the (4?) denominator is
the restriction of the (4) denominator to the case where |o| > 2. The table indi-
cates that the rules for a logic L and its serial version LD are identical because

X:A:0:ANB
X:A:0:A
X' :A:0':B

Conjunctive rule. X' : A’':0’':B is a 7-
renaming of X : A:0: B.

X:A:0:AVB
D:A1:01: A D:A:01:B
Xo:As:00: AV B|X3:A3:03: AV B

Disjunctive rule. ¢, = X;: A;:0,: AV B
are 7-renamings of Y = X : A:0: AV B for
1 < ¢ < 3 (where the X; are pairwise dis-
joint). If X = 0 then 12,13 are omitted.

X:A:0:0A Diamond-rule. [-] is an arbitrary but fixed
X:A:0JA]: A bijection from the set of formulae to N.
X:A:0:0A Box-rule. For 1 < i < 6, X;:4;:0;,:04

XU{z}:A:0.(x): A (K)
X, U {:81} t Aq 201.(1'1) :0A (4)
Xo U {:82} 1 Ao 202.(1'2) :0A (4d)

(

are 7-renamings of X : A:¢o:0A. The vari-
ables x, x1, 2 € Vars are new to 7. The sets
XU {ZE}, X U {l’l}, X U {ZEQ}, X3, X4,

X3:AsU{os}:73:0A4 4" X5, and X are pairwise disjoint. In addi-
X4:As:04: A (T) tion, o3 = Tg,.lg,7 o5 = T5.l5, 06 = 14167 and
X5:AsU{os}:715: A (B) |o2| > 2. The form of the denominator de-
Xe:A¢ U{o6}:1:004 (5) pends on the logic L, and is determined by

including every denominator corresponding
to the entry for L in the table below.

|Logics |B0X—rule denominator”Logics |B0X—rule denominator|
K,D (K) K45, K45D|(K), (4), (4")

T (K), (T) K4B, (K), (B), (4), (47)
KB, KDB|(K), (B) B (X), (T), (B)

K4, KD4 ((K), (4) S4 (K), (T), (4)

K5, KD5 [(K), (49, (47), (5) ||S5 (K), (T), (4), (47)

Table 2. Tableau expansion rules.

these logics are distinguished by the form of our closure rule; see Definition 18.
Various other ways to define the calculi for serial logics exist; see [11].

4.2 The Substitution Rule and the Closure Rule

By definition, the substitution rule allows us to apply any substitution at any
time to a tableau. In practice, however, it makes sense to apply only “useful”
substitutions; that is, those most general substitutions which allow to close a
branch of the tableau.

Definition 16. Substitution rule: Given a tableau 7, a new tableau 7’ = 7o
may be constructed from 7 by applying a substitution o to 7 that instantiates
free variables in 7 with other free variables or natural numbers.

In tableaux for modal logics without free variables as well as in free-variable
tableaux for first-order logic, a tableau branch is closed if it contains comple-

mentary literals since this immediately implies the existence of an inconsistency.
Here, however, this is not always the case because the labels of the complemen-
tary literals may be conditional. For example, the (apparently contradictory)
pair 0:1.(1):p and 0:1.(1):—p is not necessarily inconsistent since the world
I(1.(1)) may not exist in the chosen model. Before declaring this pair to be in-
consistent, we therefore have to ensure that I(1.(1)) # L for all L-interpretations
satisfying the tableau branch B that is to be closed. Fortunately, this knowledge
can be deduced from other formulae on B. Thus in our example, a formula like
¥ = X:1.1: A on B would “justify” the use of the literal pair §:1.(1):p and
(:1.(1): —p for closing the branch B since any L-interpretation (M, I) satisfy-
ing B has to satisfy ¢, and, thus, I(1.(1)) = I(1.1) # L has to be a world in
the chosen model M. The crucial point is that the label 1.1 of v is uncondi-
tional exactly in the conditional positions of @:1.(1):p and @:1.(1): —p. These
observations are now extended to the general case of arbitrary ground labels.

Definition17. A ground label o with j-th position [n;] (1 < j < |o]) is justi-
fied on a branch B if there is some set F C B of tableau formulae such that for
every j: (a) some label in lab(F) has (an unconditional but otherwise identical)
Jj-th position n;; and (b) for all 7 € lab(F): if |7| > j then the j-th position in 7
is nj or (n;).

Definition 18. Given a tableau 7 and a substitution p : Univ(7) — N that in-
stantiates universal variables in 7 with natural numbers, the L-closure rule
allows to construct a new tableau 7’ from 7 by marking B in 7 as closed pro-
vided that: (a) the branch Bp of 7 p contains a pair X : A:o:pand X' : A’ :0:—p
of complementary literals; and (bl) the logic L is serial, or (b2) all labels in
{c} UAUA" are ground and justified on Bp.

Note that the substitution p that instantiates universal variables is not ac-
tually applied to the tableau when the branch is closed; it only has to exist.

By definition, only complementary literals close tableau branches, but in
theory, pairs of complementary complex formulae could be used as well.

4.3 Tableau Proofs

We now have all the ingredients we need to define the notion of a tableau proof.

Definition 19. A sequence 79,...,7" of tableaux is an L-proof for the L-
unsatisfiability of a formula A if: (a) 7° consists of the single node 0:0):1: 4;
(b) for 1 < m < 7, the tableau 7™ is constructed from 7™ ! by applying an
L-expansion rule (Def. 15), the substitution rule (Def. 16), or the L-closure rule
(Def. 18); and (c) all branches in 7" are marked as closed.

Theorems 20 and 22 state soundness and completeness for our calculus with
respect to the Kripke semantics for logic L; the proofs can be found in [1].

Theorem 20 (Soundness). Let A be a formula in NNF. If there is an L-proof
T ..., T" for the L-unsatisfiability of A (Def. 19), then A is L-unsatisfiable.

We prove completeness for the non-deterministic and unrestricted version
of the calculus, and also for all tableau procedures based on this calculus that
deterministically choose the next formula for expansion (in a fair way) and that
only apply most general closing substitutions.

Definition 21. Given an open tableau 7, a tableau procedure ¥ deterministi-
cally chooses an open branch B in 7 and a non-literal tableau formula v on B
for expansion.

The tableau procedure ¥ is fair if, in the (possibly infinite) tableau that is
constructed using ¥ (where no substitution is applied and no branch is closed),
every formula has been used for expansion of every branch on which it occurs.

Theorem 22 (Completeness). Let ¥ be a fair tableau procedure, and let A
be an L-unsatisfiable formula in NNF. Then there is a (finite) tableau proof
T9,...,T" for the L-unsatisfiability of A, where T* is constructed from T*~1
(1 <i<r)by (a)applying the appropriate L-expansion rule to the branch B
and the formula v on B chosen by ¥ from T*=1; or (b) applying a most general
substitution such that the L-closure rule can be applied to a previously open
branch in T~ 1,

Ezample 2. We prove that A = O(p — ¢q) — (Op — (g A Op)) is a K-theorem.
To do this, we first transform the negation of A into NNF; the result is B =
NNF(-A) = O(-p V ¢) AOp A (O=g V O—p). The (fully expanded) tableau 7,
that is part of the proof for the K-unsatisfiability of B is shown in Figure 1. The
nodes of the tableau are numbered; a pair [i; j] is attached to the i-th node, the
number j denotes that node ¢ has been created by applying an expansion rule
to the formula in node j. Note, that by applying the disjunctive rule to 6, the
nodes 11 to 14 are added; 13 and 14 are renamings of 6. The variable y; is no
longer universal in 11 and 12.

When the substitution o = {y1/[—q]} is applied to 7, the branches of the
resulting tableau 7o can be closed as follows, thereby completing the tableau
proof: The left branch B; of 7o can be closed by the universal variable sub-
stitution p; = {z/[—q]} because Bip; then contains the complementary pair
{[=q1}:1.([~q]):p and O:1.([~¢]): —p in nodes 7 and 11, respectively. The la-
bel 1.([—¢q]) of these literals is justified on Byp; by label 1.[—q] of formula 10.
In this case, the complementary literals contain conditional labels which are
only justified by a third formula on the branch, so checking for justification is
indispensable. The middle branch By of 7o can be closed using the same uni-
versal variable substitution ps = p1 = {x/[—q]} as for the left branch. The
branch Baps then contains the complementary literals {[—q¢]}:1.([—¢]):¢q and
0:1.([-q]):—q in nodes 10 and 12. The label is again justified by formula 10,
which in this case is one of the complementary literals. Note that the mid-
dle branch in 7 can be closed only by the substitution o = {y1/[—q]|}, other
choices will not suffice. The right branch B3 of 7o can be closed using the
universal variable substitution ps = {z/[-p]} as Bsps then contains the pair
{[-p1}:1.([-p]):p and {[-p]}:1.[-p]:—p of complementary literals in nodes
7 resp. 15. The label 1.([—p]) of node 7 is justified on Bs by formula 15.

;-] 0:1:0(-pVq) AOp A (Og V O—p)
211 0:1 :ID(ﬂp V q)
3;1] 0:1:0p /{ (=g Vv O—p)
[4;3] (Z)I: 1:0p
(5:3] 0:1: <I>ﬂq VvV O-p
[6;2] {y}rlz(y):ﬂp\/ q
[7:4] {z}:1.(z):p

—_— —
8;5] 0:1:0—¢q (9;5] 0:1:O—p
| 1
[10;8] B:1.[—q]: g [15;9] O:1.[-p]:—p
—_— —

[11;6] @:%.(yl):ﬂp [12;6] (Z):Ill(yl):q BT

[13:6] {ye}: L.(y2):op V g 14i6] {ys}: L.(ya):p V q ’
T T
B B

Fig. 1. The tableau 7 from Example 2.

The universal variable substitution p; = pa = {x/[—¢]} that closes B; and B,
is incompatible with the substitution ps = {z/[—p] that closes Bs. Therefore, if
the variable z were not universal in formula 7, the tableau could not be closed;
a second instance of formula 7 would have to be added (which in this example
would not do much harm).

5 leanK: An Implementation

We have implemented our calculus as a “lean” theorem prover written in Prolog
(the source code is available at http://il2www.ira.uka.de/modlean on the
World Wide Web). The basic version leanK, for the logic K, consists of just
eleven Prolog clauses and 45 lines of code. The version for the logic KD, which
allows unjustified labels, is even shorter: it consists of only 6 clauses and 27 lines
of code.

The leanK program employs the following fair tableau procedure: Given a
tableau 7', the branch that is expanded next is the left-most open branch, with
the formulae on any particular branch organised as a queue. The first formula
in the chosen branch/queue is removed from the queue and is used to update
the tableau as follows: If the chosen formula is not a literal then some (one)
rule is applicable to it, and the formulae created by that rule application are
added to the queue as follows: if the (traditional part of the) created formula
is strictly less complex than the numerator, this new formula is added to the
front of the queue, otherwise it is added to the end of the queue. In particular,
this means that renamings of formulae added by the disjunctive rule, and the
formula labelled (4) and (4") in the denominator of the box-rule, are added to

the end of the queue. If the chosen formula in the queue is a literal ¢ and there
is a most general substitution p of the free variables in ¢ such that ¢u and some
other literal ¢)u on the branch can be used for closure, then there is a choice
point: (1) the substitution u may be applied and the branch closed, or (2) the
literal is removed from the queue and the next formula moves to the front. There
is a further choicepoint if there is more than one closing substitution u. In case
no closing substitution u exists, option (2) is used deterministically. If there is a
choice, Prolog’s backtracking mechanism is used to resolve this non-determinism
and explore all choices.

Limiting the number of free variables in a branch forces every branch to
terminate after some finite number of rule applications. Prolog’s backtracking
mechanism then automatically processes the next branch in the queue. Iterative
deepening preserves completeness by increasing this branch limit, step by step,
as long as no proof can be found.

A lean and efficient implementation is only possible by making use of Pro-
log’s special features: backtracking is used to resolve the non-determinism in the
tableau procedure; built-in unification is used for finding most general closing
substitutions and for the justification test; and first-argument clause indexing is
employed to quickly determine the appropriate tableau rule for the next formula.

To avoid generating useless renamings of disjunctive formulae, the version of
leanK used to obtain statistics uses the following restriction: when the disjunctive
rule is applied to a formula ¢ = X:A:0: AV B, the renaming ¥ (resp. ¥3)
created by the disjunctive rule is “protected” from further applications of the
disjuntive rule until one of the variables in X; has been instantiated. That is, a
renaming is useful only when one of the variables in X; has been used to close
a branch using (a descendant of) §: Ay :01: Aor 0:A;:0;1: B.

The following table shows statistics for a set of 72 K-theorems kindly pro-
vided by A. Heuerding. Of these, leanK could prove 61 in the allotted time of
15sec, with 52 in less than 10msec (not shown in the table). The program was
terminated if no proof had been found after 15sec. The table shows the number of
branches that were closed, the maximal number of free variables in a branch, and
the proof time (running under SICStus Prolog on a SUN Ultra 1 workstation).

[No. [24 44] 46] 50] 52] 55 56| 67] 72
Branches [[22251] 90] 137] 43[56| 1011] 63[26565] 154
Var -Limit 10 5] 5] 4 4 11| 4 11 6

Time [msec]| 4400 50 80 20 30| 1000 30| 9520 90

The examples that took several seconds to prove show an advantage of lean
implementations: the very high inference rate of about 2500 closed branches per
second. The complexity of these formulae is non-trivial; one of the more complex
ones, No. 55, is:

((B(O(p—Dp)—p)—p)AN(O(O((O(p—DOp)—p)A(B(B(p—D0p)—p)—
00(0(p—0p)—p))—0((B(p—B8p)—p)A(O(B(p—0p)—p)—00(0(p—D0p)—p))))—
(O(p—Bp)—p)A(O(O(p—DOp)—p)—00(D(p—0p)—p)))— (B (p—0p)—p)A
(0(0(p—0p)—p)—00(0(p—0p)—p)))—0(0(p—D0p)—p)—pVOp)

6 Conclusion and Future Work

Our initial results, presented in the last section, are very encouraging. We believe
that labels with variables deliver the following advantages:

— The use of variables generates a smaller search space since a label can now
stand in for all its ground instances. This is in stark contrast to the modular
systems of [17], where only ground labels are used.

— The use of a Godelisation function in the diamond-rule leads to a smaller
number of labels than in other labelled tableau methods since two dif-
ferent occurrences of the formula X :A:0:<CA lead to the same formula
X :A:0.[A]: A. We therefore do not need to delete duplicate occurrences of
a formula as is done in some tableau implementations for modal logics. This
is particularly important since the world o.[A] may be the root of a large
sub-model and duplicating it is likely to be extremely inefficient.

— The use of universal variables can exponentially shorten the length of proofs
(see [1]), with only a minor increase in the implementation overheads.

— Our “lean” implementation is perfect for applications where the deductive
engine must be transparent and easily modifiable.

Our method is really a very clever translation of propositional modal logics
into first-order logic, and most of the complications arise because some worlds
may have no successors. The new notion of conditional labels allows us to keep
track of these complications, and thus handle the non-serial logics that frustrate
other “general frameworks” [9, 14]. Nevertheless, our method can also handle sec-
ond order “provability” logics like G and Grz; see [11]. Furthermore, specialised
versions of these tableau systems can match the theoretical lower bounds for
particular logics like K45, G and Grz if we give up modularity; see [11, 17]. We
intend to extend our initial implementation of leanK along these lines.

The 15 basic modal logics are known to be decidable and techniques from [6,
11, 17, 13] can be used to extend our method into a decision procedure. However,
it is not clear that this is possible in a lean way. The extra implementation
restriction mentioned in the previous section is of vital importance here since
it is essentially a demand driven contraction rule on box-formulae since box-
formulae get copied only as the required free variables get instantiated. And
controlling contraction is often the key to decidability.

Fitting [8] has recently shown how to view the original leanTAP program for
classical propositional logic as an unusual sequent calculus dirseq. He has also
shown how to extend dirseq to handle the modal logics K, KT, K4, and S4. As
with traditional modal tableaux, however, dirseq does not handle the symmetric
logics like S5 and B. We are currently extending our work to give a modular
free variable version of dirseq that does handle these logics.

It is also possible to extend our method to deal with the notions of global
and local logical consequence [6].

An alternative variable label approach [12] uses different unification algo-
rithms to find complementary literals for branch closure. However, the inter-
actions between modalities, variable labels, and unification algorithms is by no

means easy to disentangle. Extending our method to utilise special unification al-
gorithms is perfectly possible, now that correctness and completeness have been
worked out for the interactions between modalities and variable labels alone.

References

1. B. Beckert and R. Goré. Free variable tableaux for propositional modal logics.
Interner Bericht 41/96, Universitat Karlsruhe, Fakultét fiir Informatik, 1996.

2. B. Beckert, R. Hahnle, P. Oel, and M. Sulzmann. The tableau-based theorem
prover ;),’PqP7 version 4.0. In Proc. CADE-13, LNCS 1104. Springer, 1996.

3. B. Beckert and J. Posegga. leanTP: Lean tableau-based deduction. Journal of
Automated Reasoning, 15(3):339-358, 1995.

4. E. Bencivenga. Free logic. In D. Gabbay and F. Giinthner, editors, Handbook of
Philosophical Logic, volume 3. Kluwer, Dordrecht, 1986.

5. M. D’Agostino, D. Gabbay, and A. Russo. Grafting modalities onto substructural

implication systems. Studia Logica, 1996. To appear.

6. M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Syn-

these Library. D. Reidel, Dordrecht, Holland, 1983.

7. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, second

edition, 1996.

M. Fitting. Leantap revisited. Draft Manuscript, Jan. 1996.

9. A. Frisch and R. Scherl. A general framework for modal deduction. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proc. 2nd Conference on Principles of Knowl-
edge Representation and Reasoning. Morgan-Kaufmann, 1991.

10. D. Gabbay. Labelled Deductive Systems. Oxford University Press, 1996.

11. R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino,
D. Gabbay, R. Hahnle, and J. Posegga, editors, Handbook of Tableau Methods,
chapter 7. Kluwer, Dordrecht, 1997. To appear.

12. G. Governatori. A reduplication and loop checking free proof system for S4. In
Short Papers: TABLEAUX’96, number 154-96 in RI-DSI, Via Comelico 39, 20135
Milan, Italy, 1996. Department of Computer Science, University of Milan.

13. A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward
proof search in some non-classical logics. In P. Miglioli, U. Moscato, D. Mundici,
and M. Ornaghi, editors, Proc. TABLEAUX’96, LNCS 1071. Springer, 1996.

14. P. Jackson and H. Reichgelt. A general proof method for first-order modal logic.
In 9th Int. Joint Conference on Artificial Intelligence, pages 942-944, 1987.

15. S. Kanger. Provability in Logic. Stockholm Studies in Philosophy, University of
Stockholm. Almqvist and Wiksell, Sweden, 1957.

16. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-performance
theorem prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

17. F. Massacci. Strongly analytic tableaux for normal modal logics. In A. Bundy,
editor, Proc., CADE-12, LNCS 814. Springer, 1994.

18. G. Mints. A Short Introduction to Modal Logic. CSLI, Stanford, 1992.

19. S. Reeves. Semantic tableaux as a framework for automated theorem-proving. In
C. Mellish and J. Hallam, editors, Advances in Artificial Intelligence. Wiley, 1987.

20. A. Russo. Generalising propositional modal logic using labelled deductive systems.
In F. Baader and K. Schulz, editors, Proceedings FroCoS. Kluwer, 1996.

®

This article was processed using the IXTEX macro package with LLNCS style

