
Computing Exact Loop Bounds for Bounded
Program Verification

Tianhai Liu1, Shmuel Tyszberowicz2, Bernhard Beckert1, and Mana Taghdiri3

1 Karlsruhe Institute of Technology, Germany
2 RISE, Southwest University, China and The Academic College Tel Aviv Yaffo, Israel

3 Horus software GmbH, Germany

Abstract. Bounded program verification techniques verify functional
properties of programs by analyzing the program for user-provided bounds
on the number of objects and loop iterations. Whereas those two kinds
of bounds are related, existing bounded program verification tools treat
them as independent parameters and require the user to provide them. We
present a new approach for automatically calculating exact loop bounds,
i.e., the greatest lower bound and the least upper bound, based on the
number of objects. This ensures that the verification is complete with
respect to all the configurations of objects on the heap and thus enhances
the confidence in the correctness of the analyzed program. We compute
the loop bounds by encoding the program and its specification as a logical
formula, and solve it using an SMT solver. We performed experiments to
evaluate the precision of our approach in loop bounds computation.

1 Introduction

Bounded program verification techniques (e.g. [7, 15,24]) verify functional prop-
erties of object-oriented programs, where loops are unrolled and the number of
objects for each class is bounded. These techniques typically encode the program
and the property of interest into a logical formula and check the satisfiability
of the formula by invoking an SMT solver. They provide an attractive trade-off
between automation and completeness. They automatically exhaustively analyze
a program based on the user-provided bounds 4 and thus guarantee to find any
bug (with respect to the analyzed property) within the bounds, but defects
outside bounds may be missed. As a result, bounded program verification has
becomes an increasingly attractive choice for gaining confidence in the correctness
of software.

Existing bounded program verification techniques typically require the user
to provide two kinds of bounds as separate parameters: (1) the loop bounds that
limit the number of iterations for each loop, and (2) the class bounds that limit
the number of objects for each class. (The class bound for a primitive type,
e.g., the Java int, is the size of integer bit-width.) These two kinds of bounds,

4 They analyze a program based on both bounds—objects and loop iterations. Thus,
not all object space within bounds is necessarily explored (as explain in what follows).

however, are not independent and have to be chosen carefully; the class bounds
can affect the number of loop iterations, and the loop bounds can influence the
size of object space to be explored. To clarify, consider the following loop that tra-
verses an acyclic singly-linked list in Java, starting from the header entry l.head:
e=l.head; while(e!=null){ e=e.next;}.

Supposing the loop bound is 2, we unroll the loop twice and then add an
assume clause which fails if it iterates more than 2 times. The code will be:
e=l.head; if(e!=null){ e=e.next; if(e!=null){ e=e.next;assume(e==null);}}.

When the list has at most one element (implied, e.g., by the provided class bound),
the second if-condition always evaluates to false and thus the following code is
unreachable. On the other hand, if the list contains at least 5 elements (implied,
e.g., by the specification or by the rest of the code), the encoding formula of the
code evaluates to false, since the assume statement will never evaluate to true.
Furthermore, when the list contains up to 5 elements, only the lists with at most
2 elements are analyzed and the other elements in the list are not treated.

When a loop is unrolled too many times (i.e., more than the least upper bound
on the number of loop iterations), the unrolled program has many unreachable
paths which may impede the performance of the underlying solver. The verification
process may fail due to the solver being overloaded. When a loop is unrolled
too few times (i.e., fewer than the greatest lower bound on the number of loop
iterations), none of the program executions that reach the loop will be valid in
the unrolled program, thus any property concerning the loop will vacuously hold
in all runs. This is also the case for infinite loops; we consider a loop infinite
when it does not terminate for any input. Selecting a loop bound that lies strictly
between the greatest lower- and the least upper-bound causes the analysis to be
incomplete (i.e., it explores only a part of object space).

Several approaches have been developed to compute loop upper bounds
(e.g. [4, 10,18,22]), and many of them (e.g. [4, 10,18]) do not require a specific
bound for objects; they compute loop upper bounds as functions, based on the
input sizes. However, none of those approaches can handle arbitrary configuration
of objects on the heap. They either focus only on primitive types [4, 18, 22] or
support only particular configuration of objects [10]. Furthermore, none of those
approaches considers specifications in computing loop bounds, and many of them
compute a valid upper bound, which is not necessarily the least upper bound.

Incremental bounded model checkers, e.g. NBIS [11], also can be used to
compute loop upper bounds. Starting from an initial number, they unroll a loop
and check whether the loop condition still holds after the last unrolled iteration.
If so, a new upper bound candidate is found and checked again iteratively. This
approach, however, is imprecise in the presence of class bounds and specifications.
It may compute upper bounds that are higher than the least upper bound,
thus many unreachable paths arise in the unrolled program, and the verification
may fail. To overcome this potential failure, the user may restart verification
with smaller class bounds. Thus the confidence in the correctness of the code is
reduced, as the number of relevant objects is smaller. Moreover, this approach does
not compute bounds when the loops are non-terminating. A loop is considered

2

non-terminating when it does not terminate for at least one input while it
may terminate for other inputs. This is inconsistent with bounded program
verification tool, which do analyze the terminating executions of a method and
ignore non-terminating runs.

We present an approach that is meant to be used as a pre-processing phase
in bounded program verification. It focuses on data-structure-rich programs and
can handle arbitrary configurations for the objects in the heap. Given both a
program method m selected for analysis and class bounds b, we compute both the
greatest lower bound and the least upper bound for each loop that is reachable
from m. Our approach, therefore, can provide the user with an insight on what
loop bounds to consider in bounded program verification, and to enhance the
confidence for program correctness with respect to the class bounds. When a
method specification exists, we consider it as well. In addition to numerical
bounds, we also output a pre-state (and an execution trace) that witnesses each
computed bound, which guarantees that the computed bounds are feasible. We
produce loop bounds even for a non-terminating loop, provided that the loop
has at least one terminating execution; recall our definition of non-terminating.
This is consistent with bounded program verification approaches. Besides, we
can detect unreachable loops by analyzing the results of bound computation.

We compute loop lower- and upper-bounds for Java programs annotated in a
subset of JML (Java Modeling Language) [13]. We translate the code, its precon-
dition, and its sub-routines’ specifications (if they exist) into a first-order formula,
encoding the loops’ effects as recursive uninterpreted functions. The resulting
formula is solved for the exact greatest lower and least upper bounds for each loop.
This is achieved by calling an SMT (satisfiability modulo theories) solver that
is able to solve optimization problems. Given a formula f and an optimization
objective o, the SMT solver finds a model for f to achieve the goal o. Several
off-the-shelf SMT solvers have been extended to solve optimization problems,
e.g., Z3 [19] with νZ [3] and SYMBA [14], MathSAT5 [5] with OptiMathSAT [21].
Besides, some SMT-based algorithms for solving optimization problems have
been developed, e.g., the authors of [17] integrated an SMT solver with a classical
incremental solving algorithm to solve generic optimization problems, and an
algorithm in [20] aims to solve linear arithmetic problems. Our approach takes
advantage of these recent advances in SMT solvers. Our target logic is undecid-
able, i.e., it is possible for the underlying solver to output ‘unknown’. However,
for the small class bounds generally used in bounded program verification, the
solver returns a definite answer.

We have implemented our approach and NBIS’ approach in prototype tools
BoundJ and IncUnroll, respectively. We compared the computed bounds using
these tools. Our experiments reveal that in all cases BoundJ has computed
precise loop bounds, while IncUnroll does not. On the other hand, IncUnroll can
produces loop bounds with the increased class bounds, while BoundJ returns
‘unknown’ for large class bounds.

3

2 Logical Formalism

We focus on analyzing object-oriented programs, and currently support a basic
subset of Java—excluding floating-point numbers, strings, generics, and concur-
rency. We support class hierarchy without interfaces and abstract classes. Any
method which is called by the analyzed method and has no specification is inlined
into its call sites; otherwise it is replaced by its specification. Specifications are
written in JML [13], and should not include exceptional behaviors and model
fields. The constructs requires and ensures define, respectively, a method’s
pre- and postcondition. We support arbitrarily nested universal and existential
quantifiers, and allow using the JML reachability construct.

We translate the given code and its specifications into a first-order SMT logic
that consists of quantified bit-vectors, unbounded integers, and uninterpreted
functions. We now describe our target logic. For this we use the SMT-LIB 2.0
syntax [2], in which expressions are given in a prefix notation. The command
(declare-fun f (A1 .. An−1) An) declares a function f : A1×..×An−1 → An.
Constants are functions that take no arguments. The command (assert F) as-
serts a formula F in the current logical context; multiple assert statements are
assumed to be implicitly conjoined. The (push) command pushes an empty as-
sertion set onto the assertion-set stack. and (pop) pops the top assertion set from
the stack. The command (check-sat) triggers solving a conjunction of formulas.
The operator ite denotes a ternary if-then-else expression. Basic formulas are
combined using the boolean operators and, or, not, and => (implies). Universal
and existential quantifiers are denoted by the keywords forall and exists. The
Z3 solver contains two extensions of SMT-LIB to express optimization objectives.
The command (maximize t) instructs the solver to produce a model that maxi-
mizes the value of the integer term t and to return the assignment for t in the
solution, if one exists. The (minimize t) command finds the smallest value of t.

Our translation uses the fixed-size bit-vectors theory, in which sorts are of
the form (BitVec m), where m is a non-negative integer denoting the size of
the bit-vector. Bit-vectors of different sizes represent different sorts in SMT. This
theory models the precise semantics of unsigned and of signed two-complements
arithmetic, supporting a large number of logical and arithmetic operations on bit
vectors. The translation also uses the unbounded integers theory, which contains
only one sort Int, corresponding to integer numbers. It supports arithmetic
operations to be applied to numerical constants or variables.

3 Motivating Example

We use two examples to illustrate that we compute precise loop bounds. Figure 1
shows a Java program for a check-in process in a youth hostel. The check-in
process requires that the guests will be young (the precondition of the method
checkin), and the group size is neither greater than 10 nor less than 3 (the
postcondition5 of the method openRoomFor). Carefully inspecting the code, we

5 We intentionally refer to the postcondition rather than to a precondition that limits
the number of guests in order to demonstrate our approach.

4

1 int guest = 0;

2 //@requires (\forall int i; 0<=i&&i<ages.length; 0<ages[i]&&ages[i]<=18);

3 void checkin(int[] ages) {

4 for (int i = 0; i < ages.length; i++) {

5 if (ages[i] <= 27) guest++;}

6 openRoomFor();}

7 //@ ensures 3<=\old(guest) && \old(guest)<=10;

8 native void openRoomFor();

Fig. 1: A simple program for youth hostel checkin. The method openRoomFor’s
postcondition at line 7 constrains the range of values of guest.

notice that the branch condition at line 5 is implied true by the precondition of
the method checkin. Thus the number of loop (line 4) iterations equals to the
number of young guests (the field guest when the loop terminates). Suppose the
Java int bit-width is 6 (i.e., integer numbers ranging from −32 to 31). We evaluate
the loop lower- and upper bounds to 3 and 10, respectively. However, using an
approach that computes loop bounds by incrementally unrolling loops (Section 1),
the loop upper bound is 31, since it does not consider the postcondition of the
method openRoomFor when evaluating the loop condition. The incremental loop
unrolling approach provides no lower bounds computation.

Figure 2 illustrates a Java implementation of a copy method for a singly-linked
list of Data entries. Given an instance d of Data, the copy method deeply copies
the receiver list, starting from the first occurrence (exclusive) of d. If d does
not exist, nothing is copied. Bounded program verification techniques analyze
programs with respect to specific bounds on the number of objects. Assume that
the maximum number of objects of type List, Entry, and Data is 2, 26, and 1,
respectively. The bounds for each loop are computed separately. For instance,
when the upper bound of the second loop (Loop2 at line 9) is computed, no
specific bound for the preceding loop (Loop1 at line 4) is assumed. Our technique
computes the loop upper bounds considering all the cases in which the loops
terminate. Loop1 may not terminate for some inputs, e.g., when the receiver list
is a cyclic one. For all inputs for which Loop1 terminates our technique outputs
26 as the upper bound and generates a witness in which an acyclic list contains
26 entries, where the last one is followed by null. For all inputs for which Loop2
terminates, our technique outputs 12 as Loop2’s upper bound and generates a
witness where an acyclic list has 13 entries, where the first one has Data d. That
makes sense, because the copy method deep copies an acyclic linked list, and
fresh entries one-to-one correspond (excluding the entry containing d) to the
entries in the receiver list. Thus Loop2 can allocate at most 12 fresh objects, and
a total of 25 (= 12 ∗ 2 + 1) Entry objects are used. If Loop2 iterates 13 times,
e.g., a total 27 objects are needed, which is larger than the bound (26) on Entry.

As shown, the number of loop iterations heavily depends on both the specifica-
tions and the number of objects in the analyzed domain. Furthermore, the number
of iterations of different loops is inter-dependent. Detecting those dependencies
manually and computing the precise loop bounds can be prohibitively difficult,

5

1 class List { Entry head;

2 List copy(Data d) {

3 Entry curr = head;

4 while (curr != null && curr.data != d) curr = curr.next; // Loop 1

5 List result = new List();

6 if (curr != null) {

7 curr = curr.next;

8 Entry last = null;

9 while (curr != null) { // Loop 2

10 Entry e = new Entry(curr.data);

11 if (last == null) { result.head = e; }

12 else { last.next = e; }

13 last = e;

14 curr = curr.next;

15 }

16 }

17 return result;}}

18 class Entry {/*@ nullable */ Entry next; /*@ nullable */ Data data;

19 Entry(Data d) { data = d; next = null;}}

20 class Data {}

Fig. 2: A Java program to perform a deep copy on a linked list.

thus an automatic approach for computing exact loop bounds (in the presence of
specifications and class bounds) can significantly enhance the bounded program
verification engineers’ confidence in the correctness of the analyzed programs.

4 Our Approach

Given a method p selected for analysis from a piece of code and a set of class
bounds b, our technique computes for each loop l two numbers, GLBl and LUBl.
They respectively denote the greatest lower bound and the least upper bound
on the number of iterations of l, since we ensure that no valid execution of p
can iterate the loop l less times than GLBl or more times than LUBl. In order
to analyze only valid executions, we consider the whole code when computing
the bounds for a loop l. For each computed bound the output also contains a
witnessing pre-state and an execution trace.

We translates the given method p and its constraints (specifications) c (con-
sisting of p’s precondition and the annotations of the methods reachable from p)
into an SMT formula, based on a set of user-provided bounds b on the number of
instances of the classes. Let T denote this translation; then T [p, c, b] produces a
tuple (s, f,Nl), where s is the pre-state of p, f is an SMT formula that encodes
the control flow and dataflow of p and the additional constraints b and c, and Nl

represents the number of times the loop condition has been checked for loop l.
We distinguish various loops inside p using loop ids.

The LUBl is computed by delegating a formula of the form f ∧ exit(l, Nl) ∧
maximize(Nl) to an SMT solver that provides the functions to solve optimization

6

problems. The function exit means that the loop l exits after checking the loop
condition Nl times. The maximize command instructs the solver to find a model
where Nl is the biggest compared to the values in other models. A satisfying
solution to this formula represents a terminating execution of p in which the loop
l is reachable when running p and the number of iterations of l is Nl−1 (Nl > 0),
and unreachable in case that Nl = 0. When the formula is unsatisfiable, it means
that either the user-provided class bounds are too small or the methods are
over-specified (e.g., the precondition of the analyzed method is false). The GLBl

is computed similarly to least upper bound computation, using the command
minimize instead of maximize.

Unbounded integers are used in our translation to encode loop iterations.
Since (1) a loop may not terminate, and (2) even for terminating loops, the
number of iterations is not known and thus cannot be bounded apriori. Hence, our
target logic is undecidable, and it is possible for the solver to output ‘unknown’.
In such a case, our analysis terminates with no conclusive outcome.

4.1 Encoding Control Flow

We encode the control flow of the analyzed method using a computation
graph [24]. Each node in this graph represents a control point in the program, and
each edge represents either a program statement or a branch condition. There
are exactly one node to entry the graph and one node to exit from the graph. If
a loop in the analyzed method is triggered multiple times, due to either method
invocations or that it is an inner loop, then multiple occurrences of the loop exist
in the computation graph. We compute the loop bounds for each loop occurrence.
This is consistent with bounded program verification.

Bounded program verification tools such as Jalloy [24] and InspectJ [15] also
use computation graphs to encode control flow. However, they unroll loops and
thus assume that the graph is acyclic. In that case, control flow can be encoded
by simple boolean variables. Our approach, on the other hand, preserves loops
as cycles in the graph and encodes their (cyclic) control flow via uninterpreted
functions in the SMT logic. More precisely, similarly to previous approaches,
we encode an edge that does not belong to any loop from node m to node n,
using a boolean variable Emn, whose truth value denotes whether the edge is
traversed or not. When an edge belongs to a loop, the encoding must clarify in
which loop iterations the edge is traversed. Therefore, when an edge from m to n
belongs to loop l, we encode it using a boolean-valued, uninterpreted function
Emn : Int>0 → Bool (Int>0 denotes positive integers). The expression Emn(i)
evaluates to true if the edge is traversed in the ith iteration of l. The exit edge of
l is traversed only once the loop condition is not fulfilled for the (Nl)

th iteration
of the loop. We encode the exit edge of a loop l as the expression Emn(Nl), where
Nl > 0 and Nl = 1 +K, where K is the number of iterations of the loop l.

We use the term entry edge (exit edge) to denote an edge that leads to the
entry node (exits from the exit node) of a loop but does not belong to that loop.
We use the term head edge (tail edge) to denote the first (the last) edge of a loop.
The control flow for the computation of the loop bounds is encoded using the

7

class Entry { Entry next;
Data data;
boolean assign(Data d){
boolean r = false;
if(d != null){
r = true;
Entry e = this;
while(e != null){

e.data = d;
e = e.next;

}
}
return r;}}

class Data {}

2

85

r0 = false
10

4

d0 = p0 && NL0 = 0

d0 ≠ null

d0 = null &&
r1 = r0 &&
e1 = e0 &&
NL1 = NL0

r1 = true

e0 = this && Le0(1) = e0

3

6

7

9

e1 = null && e1 = Le0(NL1)

ret = r1Le0(i) ≠ null

Le1(i) = Le0(i).next0 &&
Le0(i+1) = Le1(i) &&
Ldata0(i+1) = Ldata1(i)

Le0(i).Ldata1(i) = d0

(a) (b)

(1) (assert E_0_1)
(2) (assert (=> E_0_1 E_1_2))
(2) (assert (=> E_1_2 (or E_2_3 E_2_8)))
(2) (assert (=> E_2_3 E_3_4))
(2) (assert (=> E_3_4 E_4_5))
(2) (assert (=> E_2_8 E_8_9))
(2,3)(assert(=> E_4_5(or(E_5_6 1)(and(E_5_8 N_L_1)(= N_L_1 1)))))
(2) (assert (forall ((i Int)) (=> (E_5_6 i) (E_6_7 i))))
(2) (assert (forall ((i Int)) (=> (E_6_7 i) (E_7_5 i))))
(2,4)(assert (forall ((i Int)) (=> (E_7_5 i) (or (E_5_6 (+ i 1))

(and (E_5_8 N_L_1) (= N_L_1 (+ i 1)))))))
(2) (assert (=> (E_5_8 N_L_1) E_8_9))

(c)
Fig. 3: (a) sample Java code, (b) its computation graph, (c) our control flow
encoding. The character ‘L’ in (b) denotes loop id. The variable NL0 represents
the number of times that the loop condition has been checked. After exiting the
loop it is renamed to NL1, and is encoded in (c) as the SMT variable N L 1.

following four general rules. (1) The first edge of the computation graph must be
traversed. (2) If an edge Emn is traversed, at least one of the outgoing edges of
node n must be traversed (dataflow constraints prevent more than one outgoing
edge from being traversed). If node n belongs to a loop l, the iteration index
must be considered. In particular, if n is the loop’s head node, then (3) if a head
edge is traversed, either the first iteration starts or the loop exits before the first
iteration, and (4) if a tail edge at the ith iteration of the loop is traversed, then
either the (i+ 1)th iteration starts or the loop exits before this iteration.

Figure 3 provides an example. Figure 3(a) shows a Java method that sets the
field data of all list elements to the input value, provided that this value is not
null. Figure 3(b) gives the corresponding computation graph. The edge labels
denote the statements and branch conditions in a special SSA-like format as
described in Section 4.2. Figure 3(c) presents our encoding of the control flow. In
this example, E 0 1, E 1 2, E 2 3, E 2 8, E 3 4, E 4 5, and E 8 9 are
boolean variables, while E 5 6, E 6 7, E 7 5, and E 5 8 are boolean-valued

8

(assert (=> E_0_1 (and (= d_0 p0) (= N_L_0 0))))
(assert (=> E_1_2 (= r_0 false)))
(assert (=> E_2_3 (not (= d_0 null_Data))))
(assert (=> E_3_4 (= r_1 true)))
(assert (=> E_4_5 (= e_0 this)))
(assert (=> E_2_8 (= d_0 null_Data)))
(assert (=> E_8_9 (= ret r_1)))
(assert (=> (E_5_8 N_L_1) (= e_1 null_Entry)))
(assert(forall((i Int))(=>(E_5_6 i)(not(=(L_e_0 i)null_Entry)))))
(assert(forall((i Int))(=>(E_6_7 i)(forall((e Entry))

(=(L_data_1 i e)(ite(= e (L_e_0 i))d_0(L_data_0 i e)))))))
(assert (forall ((i Int)) (=> (E_7_5 i)

(= (L_e_1 i) (next_0 (L_e_0 i))))))

(a)

(assert(=> E_4_5 (and (= (L_e_0 1) e_0)
(= (L_data_0 1) e_0) (data_0 e_0))))

(assert (=> (E_5_8 N_L_1) (= (L_e_0 N_L_1) e_1)))
(assert(forall((i Int))(=>(E_7_5 i)(and(=(L_e_0(+ i 1))(L_e_1 i))

(forall((e Entry))(=(L_data_0(+ i 1) e)(L_data_1 i e)))))))
(assert (=> E_2_8 (and (= r_1 r_0) (= e_1 e_0) (= N_L_1 N_L_0))))

(b)
Fig. 4: Dataflow Encoding SMT formulas: (a) dataflow (b) frame conditions. Each
class has a distinct null value, e.g., the null Data and the null Entry.

functions. The edge E 4 5 is an entry edge, E 5 6 is a head edge, E 7 5 is
a tail edge, and E 5 8 is an exit edge. The numbers preceding the constraints
correspond to the four encoding rules presented above. For each loop l in the
computation graph, we introduce an integer variable Nl to represent the number
of times that the loop condition has been checked; e.g., NL0 and NL1 in Fig. 3(b)
and N L 1 (that encodes NL1) in Fig. 3(c).

4.2 Encoding Dataflow

We now provide an overview of our encoding of Java statements, which is based
on the InspectJ approach [15]. We focus on how loops affect the encoding. The
types that are accessed in the analyzed code are encoded using bit-vectors in the
SMT logic. That is, if a Java type T is bounded by the user-provided number n,
we encode T as a bit-vector of size dlog(n+ 1)e (including the null value). In the
following description, we use BV [T] to represent the bit-vector of a Java type T .

In an acyclic computation graph, all variables and fields of the program are
renamed so that they are assigned at most once along each path of the graph.
Since our computation graphs can be cyclic, renaming cannot be achieved by
enumerating all paths. We rename variables and fields of the program assuming
that each loop constructs a separate naming context (similar to a called method,
e.g.). This separates the naming of variables (fields) in one loop from the others,
which makes it easier to support complex loop structures. More precisely, renaming
variables (fields) involves the following steps. (1) Starting from the innermost

9

loop l, we give any variable (field) that may be updated by l an initial name, and
then perform renaming within the body of l as for an acyclic computation graph.
(2) We collapse the cycle (loop) l of the computation graph into a single node,
denoting the initial and the final names of the variables updated in l. (3) We
repeat step 1, considering the collapsed loops. Hence, any time a collapsing node
is visited, adequate conditions are produced to ensure that the variables (fields)
of the current context hold the same values as the initial/final variables (fields)
of the collapsed loop. In the example in Fig. 3(b), d0, NL0, NL1, e0, e1, r0, r1,
and data0 belong to the outer context, whereas Le0, Le1, Ldata0, and Ldata1
belong to the loop context. Since the loop does not update the next0 field and
the constants, e.g., this, p0 and ret, both contexts share them. Data accesses
outside loops are encoded as follows: A variable v of type T is encoded as an
SMT variable v : BV [T], and a field f of type T2 declared in a class T1 is encoded
as a function f : BV [T1] → BV [T2]. However, if a variable or field is updated
within a loop, one needs to know the updates performed in each loop iteration. A
variable vl of type T that may be modified within a loop l is encoded as a function
vl : Int>0 → BV [T], where vl(i) denotes the value of v in the ith iteration of l.
Similarly, a field f of type T2 declared in a class of type T1, that may be modified
within a loop l, is encoded as a function fl : Int>0 ×BV [T1]→ BV [T2], fl(i, o)
denotes the value of o.f in the ith iteration of the loop. Figure 4(a) shows the
dataflow formulas for Fig. 3(b). The first 8 formulas correspond to the edges
outside the loop. The last 3 encode the dataflow in each loop iteration.

Frame Conditions. Frame conditions are used to avoid underspecification
of nodes with multiple incoming edges, and to ensure the correctness of the
dataflow. The highlighted expressions in Fig. 3(b) are the frame conditions for
the corresponding dataflow expressions. Lets take the merge node 8 for example.
Since the variables r, e, and NL are updated (and thus renamed) only in the path
2→ 3→ 4→ 5→ 8, frame conditions for these variables are required when the
path 2→ 8 is taken; the last formula in Fig. 4(b) is the relevant frame condition.
Special frame conditions are required when the merge node is a loop’s head node,
e.g., node 5 in Fig. 3(b). Before the first iteration, Le0(1) equals e0 and Ldata0(1)
equals data0 (encoded as the first formula in Fig. 4(b)). After the last iteration,
e1 equals Le0(Nl) (encoded as the second formula in Fig. 4(b)). Furthermore,
in each new iteration i + 1, Le0(i + 1) equals Le1(i) and Ldata0(i + 1) equals
Ldata1(i) (encoded as the third formula in Fig. 4(b)). It should be noted that
the frame condition for Nl ensures that the variable N L 1 equals to the number
of times that the loop condition has been checked. Without the frame condition
we may get wrong loop bounds, due to traversing spurious paths.

Nested Loops. If a loop l2 is nested in a loop l1, the iterations of l2 depend
on the iterations of l1. Therefore, we encode those variables (fields) that are
updated in the inner loop l2 by adding an additional iteration column to the SMT
functions that represent those variables (fields). That is, if a variable vl2 of type T
is modified within l2, we declare an SMT function vl2 : Int>0 × Int>0 → BV [T],
where vl2(i1, i2) denotes the value of vl2 in the (i2)th iteration of l2 while in the
(i1)th iteration of l1. Updated fields are encoded in a similar way by adding an

10

additional column. Moreover, the edge variables encoding the control flow of l2
will also get an additional column corresponding to the iteration number of the
outer loop. It works the same way for any depth of nesting.
Encoding Specifications. Computing loop bounds does not require any user-
provided specifications or annotations; the user only provides bounds on the
number of elements of each type. However, if the precondition of the analyzed
method or the method contracts of the called methods are provided, our analysis
will take them into account. That is, if the user provides method contracts for
an invoked method, they will be used to substitute any call to the method.
Otherwise, the method body will be inlined in its call sites. More details can be
found in our previous work [15].

4.3 Computing Loop Bounds

In order to compute the bounds of a loop l, we constrain l to terminate, that is,
its exit edge to be traversed when its loop condition has been checked Nl times,
if l is reachable from the analyzed method. We also trigger the solver to find
the model where Nl has the maximal assignment. We solve the conjunction of
all the control flow, dataflow, frame conditions, and specification formulas. If
this formula is satisfiable, Nl is assigned a value in the satisfying solution, where
Nl > 0 denotes the loop l is reachable and its bound is Nl, Nl = 0 denotes l is
not reachable. If the formula is unsatisfiable, then either the user-provided class
bounds are not large enough or the user-provided specifications are not consistent
by themselves. The following formulas give the SMT commands that computes
the least upper bound for the example of Fig. 3.
(push) (assert (=> (> N_L_1 0) (E_5_8 N_L_1)))
(maximize N_L_1) (check-sat) (get-model) (pop)

To compute a loop lower bound, we just replace the maximize command by
minimize. It is possible for the solver to output ‘unknown’ because our logic is
undecidable, and then our analysis terminates with no conclusive outcome.

5 Experiments

Our prototype tool (BoundJ) uses: the Jimple 3-address intermediate represen-
tation provided by the Soot optimization framework [23] to preprocess Java
program code; the Common JML Tools package (ISU) [13] to preprocess JML
specifications; and Z3 version 4.4.2 [19] as the underlying SMT solver. We also
have considered the approach used in NBIS [11]to evaluate the precision of our
approach. Since NBIS targets C and C++ code, and does not consider speci-
fications or class bounds, we implemented that approach in a prototype tool
(IncUnroll) that targets Java and accepts the same inputs that BoundJ does.
We report on a collection of benchmarks, selected from InspectJ [15] (a bounded
program verification system), KeY [1] (a program verification system), JDK
(Java Development Kit), and TPDB (Termination Programs Data Base) [25]. All
the experiments6 have been performed on an Intel Core 2.50 GHz with 4 GB of
RAM using Linux 64bit.

6 The complete benchmarks can be found at http://asa.iti.kit.edu/478.php.

11

http://asa.iti.kit.edu/478.php

Method Scope Size GLB (BoundJ) LUB (BoundJ) LUB (IncUnroll)

3 X X 3
BinaryHeap 4 1 1 4
deleteMin 5 1 1 5

6 1 2 6

4 5, 0 5, 0 7, 1
KeYList. 5 5, 0 6, 0 15, 2
removeDup 6 5, 0 7, 1 31, 3

7 5, 0 8, 2 63, 4
8 5, 0 9, 3 127, 5

3 0, 0 3, 1 ?, ?
OurList. 4 0, 0 4, 1 ?, ?
copy 5 0, 0 5, 2 ?, ?

6 0, 0 6, 2 ?, ?

3 1, 1 1, 2 1, 2
JDKList. 4 1, 1 3, 4 3, 4
add 5 1, 1 7, 8 7, 8

7 1, 1 21, ? 21, 32
10 1, 1 ?, ? 175, 256

3 0 9 ?
NonTerm. 4 0 10 ?
fibonacci 5 0 10 ?

6 0 10 ?

6 0 63 63
NonTerm. 7 0 ? 127
gause 9 0 ? 508

Table 1: Results of Computing Loop Bounds using BoundJ and IncUnroll.

The evaluation results are shown in Table 1. The Method column shows the
names of the entry methods of the analyzed programs. There are in total 6
programs have been analyzed. To increase the complexity of the specifications,
we also added special method contracts for the sub-routines (if exist). The
method deleteMin of the class BinaryHeap (that calls another 3 methods, 109
LOC) effectively extracts the minimum element in a min heap7 and restores
the properties of min heap. The removeDups method of the class KeYList (3
methods, 33 LOC) removes the duplicate elements from a queue. The add method
(2 methods, 39 LOC) is classical implementation in JDK 1.7. All those methods
have complex preconditions, i.e., quantifiers have been involved. The methods
deleteMin and add also use JML reachability expressions to constrain the heap
configurations. The copy method is the method presented in Section 3. In addition
to these data-structure-based benchmarks, we have also used benchmarks that
involve only primitive types. Such benchmarks are typical for the loop bound
computation and the non-termination detection communities. They (the methods
fibnacci and gause) do not have any specification and there are around 10
LOC in average in each method, however, we have selected these benchmarks for

7 A min heap is a binary heap where the values that are stored in the children nodes
are greater than the value stored in the parent node.

12

the following two reasons: (i) The number of iterations for many of these loops is
non-linearly distributed. Therefore, computing their loop bounds is particularly
challenging in many existing approaches. (ii) To validate that our approach indeed
computes loop bounds for the methods that contain at least one terminating
path. For each analyzed program, we have exploited each tool to compute ∼4
loop upper bounds for different class bounds, and in total 25 loop upper bounds
computations have been done using each tool. Besides, we also used BoundJ to
compute the loop lower bounds. Thus in total we have done 75 computations.

The Scope Size column shows the bounds on the number of objects of each
class and on the size of the integer bit-width. For a scope size n, the analyses
of deleteMin, removeDups, and copy methods have to explore data spaces of
size (n+ 1)11 ∗ 29n, (n+ 1)9 ∗ 2n, and (n+ 1)5 ∗ 2n, respectively. (The numbers
are calculated based on the number of accessed classes, fields, and parameters.
Computations are skipped for space reasons.) The columns GLB and LUB
represent the computed lower and upper bounds, respectively. When a method
contains more than one loop, the bounds are shown as a sequence of numbers
separated by commas. The symbol X denotes that the loop is not reachable from
the method. Question marks (?) mean that no definite answer is achieved after
the timeout limit of 20 minutes.

In Table 1 we observe that: (i) BoundJ computed exact loop lower-/upper-
bounds for all data structure-rich methods. A careful inspection of the code
reveals that all computed loop lower- and upper bounds are greatest and least,
respectively. (ii) IncUnroll does not always compute precise loop bounds as
BoundJ does. Since IncUnroll does not consider the whole code in loop bounds
computation, on average its computed loop upper bounds are 4.2 times (median
4, maximum 13) greater than the ones BoundJ computed. In addition, IncUnroll
failed to compute the loop upper bounds for the non-terminating methods copy
and fibonacci because of timeout, while BoundJ still produced the loop upper
bounds for the methods since it considers all program executions that terminate.
(iii) Nevertheless, IncUnroll can compute loop upper bounds with increased class
bounds, while BoundJ timeouts for 2 (of 25) cases. According to the small scope
hypothesis [12], bounded program verification systems aim to analyze the program
with respect to a small scope. Furthermore, BoundJ always produces the exact
loop bounds based on the user-provided class bounds, thus it guarantees any
bounded program verification is complete for the given class bounds and enhances
the confidence in the correctness of the analyzed program.

6 Related Work

Various techniques have been developed to compute loop bounds in real-time
systems. To estimate loop bounds, they either require annotations [8] or perform
a numerical analysis to achieve a numerical interval of loop upper bounds [6].
To achieve better analysis performance and more precise loop bounds, the tech-
nique described in [16] employs a combination of abstract interpretation, inter-
procedural program slicing, and inter-procedural dataflow analysis. Unlike our
technique that requires explicit user-provided class bounds, the techniques de-

13

scribed in [4, 9, 22] generate symbolic bounds (functions) in terms of loop inputs.
All these approaches, however, focus on numerical loops; some of them (e.g. [4,6])
even require well-structured loops with no branches inside them. Our approach
can work on arbitrary loops and target data structure-rich programs.

To compute bounds for complex loops in C++ code, SPEED [10] generates
computational complexity bound functions that contain well-implemented ab-
stract data structures. For loops that access data structures, it generates symbolic
bound expressions in terms of numerical properties of the data structures and
user-defined quantitative functions. Generating symbolic bounds depends on the
generation of loop invariants. SPEED, however, requires user-provided specifica-
tions, does not support complex heap configurations (e.g., transitive reachability)
in the precondition of the analyzed method, and in some cases outputs only an
approximate loop bound functions.

The incremental bounded model checker NBIS [11] can be used to compute
loop upper bounds. It instruments every loop in a given C/C++ code with an
unrolling assertion that checks whether the loop can iterate beyond the current
loop bound. The encoding of the code along with the unrolling assertions is
checked for satisfiability. A satisfiable instance denotes an execution trace in
which a loop iterates more times than its current bound. That loop is then unrolled
according to the newly-found bound and the process starts over. However, such
an approach has the following three drawbacks. (1) It does not terminate in case
of non-terminating loops. (2) It does not always return the least upper bound,
because the trace corresponding to a satisfying instance stops the execution when
exiting the loop with a new bound, hence the code following the loop is ignored. 8

Preventing the trace from stopping is not possible, since it requires an encoding
that does not depend on the loops being unrolled (since the needed number of
unrolling is unknown prior to invoking the satisfiability procedure),9 (3) This
approach reduces the necessary confidence in the correctness of the analyzed code.
The over-approximated loop upper bounds result in many unreachable paths
after loop unrolling. Hence, the formulas that are translated from the unreachable
paths may overload the underlying solver and cause the verification process to
fail. It might be due to the computed upper bound of the loop is too high or
the user-provided class bounds are too big. When the verification engineer uses
smaller class bounds than those in the previous run to re-compute the loop upper
bounds, the new loop upper bounds still may be too high, since the computation
ignores the code and specifications following the loop under consideration. If the

8 For instance, when each iteration of the loop allocates one instance of class A and the
code after the loop allocates 2 objects of type A. If bound(A) = 5, no valid execution
of the code (with respect to class bounds) can iterate the loop more than 3 times,
whereas the computed upper bound will be 5 when ignoring the code after the loop.

9 An alternative checking whether the trace is valid with respect to the class bounds
by executing (symbolically or dynamically) the whole code. Invalidity of the current
instance, however, does not necessarily mean that the newly-found loop bound is
impossible; it may still be that another satisfying instance can be valid and gives a
higher loop bound. Thus, in the worst case, such a validity check requires enumerating
all possible satisfying instances, which makes the approach impractical.

14

engineer arbitrarily selects smaller loop upper bounds, not all inputs concerning
the class bounds are completely analyzed, thus the correctness of the code is not
guaranteed for the class bounds. Consequently, although this iterative approach is
successful for terminating loops in the absence of class bounds and specifications,
it is not applicable in the context of bounded program verification since the class
bounds are necessary and the confidence in the correctness of the code is not
guaranteed for the class bounds.

7 Conclusion

We have presented an approach for computing exact loop bounds of a given
loop for bounded inputs. Such an analysis is particularly useful for bounded
program verification in which the user has to provide bounds on both the size
of objects and the number of loop unrollings. Our approach provides the user
with insight on what loop bounds to consider and enhances the confidence in the
correctness of the analyzed programs. We focus on data-structure-rich programs
and support arbitrary configurations of the objects on a heap. We translate
the Java code and its JML specifications (excluding the postconditions of the
entry method) into an SMT formula and solve it using an SMT solver that
can solve optimization problems. We compared our approach with another one
that incrementally unrolls a loop and checks whether the loop condition still
holds after the last unrolled iteration. Experiments show that our method indeed
produces the exact bounds, whereas the other method computes lower and upper
bounds, which not necessarily are the exact ones. Our approach can assist the
bounded program verification engineers to obtain complete confidence in the
verification process. Although our analysis is not guaranteed to produce a definite
outcome (due to the undecidability of the target logic), our experiments show
that in practice the unknown outcome occurs for higher input bounds and not
for the small bounds that are typically used in bounded program verification.

Bounded verification techniques unroll not only loops but also recursive
methods. Currently we handle loops only; computing bounds for recursion is left
for future work. To improve scalability, we will optimize the encoding formulas
using quantify elimination techniques, e.g., symmetry breaking and pattern
matching. We will also study the application of our approach to other areas, e.g.,
worst-case execution time and dynamic heap consumption program analysis.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice, LNCS,
vol. 10001. Springer (2016)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.5. Tech.
rep., The University of Iowa (2015)

3. Bjørner, N., Phan, A.D., Fleckenstein, L.: νZ - an optimizing smt solver. In: ETAPS.
LNCS, vol. 9035, pp. 194–199. Springer (2015)

15

4. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: algebraic bound
computation for loops. In: LPAR. LNCS, vol. 6355, pp. 103–118. Springer (2010)

5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS. LNCS, vol. 7795, pp. 93–107. Springer (2013)

6. Cullmann, C., Martin, F.: Data-flow based detection of loop bounds. In: WCET.
OASICS, vol. 6. Schloss Dagstuhl (2007)

7. Dennis, G.D.: A Relational Framework for Bounded Program Verification. Ph.D.
thesis, MIT (2009)

8. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: CAV. LNCS,
vol. 5123, pp. 370–384. Springer (2008)

9. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: PLDI. pp. 375–385. ACM (2009)

10. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: POPL. pp. 127–139. ACM
(2009)

11. Günther, H., Weissenbacher, G.: Incremental bounded software model checking. In:
SPIN. pp. 40–47. ACM (2014)

12. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT (2016)
13. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral

interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

14. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL. pp. 607–618. ACM (2014)

15. Liu, T., Nagel, M., Taghdiri, M.: Bounded program verification using an SMT
solver: A case study. In: ICST. pp. 101–110. IEEE (2012)

16. Lokuciejewski, P., Cordes, D., Falk, H., Marwedel, P.: A fast and precise static loop
analysis based on abstract interpretation, program slicing and polytope models. In:
CGO. pp. 136–146. IEEE (2009)

17. Ma, F., Yan, J., Zhang, J.: Solving generalized optimization problems subject to
SMT constraints. In: FAW-AAIM. LNCS, vol. 7285, pp. 247–258. Springer (2012)

18. Michiel, M.D., Bonenfant, A., Cassé, H., Sainrat, P.: Static loop bound analysis
of C programs based on flow analysis and abstract interpretation. In: RTCSA. pp.
161–166. IEEE (2008)

19. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. LNCS, vol.
4963, pp. 337–340. Springer (2008)

20. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA (Q) cost functions. In:
IJCAR. LNCS, vol. 7364, pp. 484–498. Springer (2012)

21. Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization modulo theories.
In: CAV. LNCS, vol. 9206, pp. 447–454. Springer (2015)

22. Shkaravska, O., Kersten, R., van Eekelen, M.: Test-based inference of polynomial
loop-bound functions. In: PPPJ. pp. 99–108. ACM (2010)

23. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: CASCON. p. 13. IBM (1999)

24. Vaziri, M.: Finding Bugs in Software with a Constraint Solver. Ph.D. thesis, MIT
(2004)

25. Termination problems data base (TPDB). http://termination-portal.org/wiki/
TPDB, last accessed: June 2017.

16

http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB

	Computing Exact Loop Bounds for Bounded Program Verification

