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Abstract

We propose an extension of the design-by-contract ap-
proach. In addition to preconditions, postconditions, and
invariants as the basis for proving properties of a program,
also information is provided on which parts of the state are
not changed by running the program. This is done in the
form of modifier sets. We present a precise semantics of
modifier sets and theorems on how to use them in program-
correctness proofs. This technique has been implemented
as part of the KeY system.

1. Introduction

The work reported in this paper has been carried out as
part of the KeY project. The goal of this project is to de-
velop a tool supporting formal specification and verification
of JAVA CARD programs within a commercial platform for
UML based software development, see [1, 2] for details.
This approach is based on the design-by-contract paradigm
as pioneered by Bertrand Meyer [11]. Contracts are verified
statically in KeY using a (partly automated) interactive theo-
rem prover. Experiments with the KeY system suggest that
the performance of the prover could be greatly enhanced
if in addition to the terms of the contract, i.e., precondi-
tions, postconditions, and invariants, additional information
was available. We concentrate here on change information.
More precisely, we associate with a JAVA programp (typi-
cally a method) a setModp of terms (or expressions), called
the modifier set (forp), with the understanding thatModp is
part of the specification ofp. Its semantics is that those
parts of a program state that arenot mentioned inModp
will never be changed by executingp (a state element is
mentioned inModp if there is a term inModp referring to
this element). We took the general idea for this set-up from
the Java Modeling Language (JML) [8, 9]. JML is a be-
havioural interface specification language for JAVA , which
allows to express change information via what in JML jar-

gon is calledmodifies clauses.
A typical problem of program verification reads as fol-

lows: whenever programp is executed in a program state
satisfying condition� then condition� will be true after ter-
mination ofp, where� and� are arbitrary formulas of first-
order logic. The KeY system uses Dynamic Logic (DL) as
its underlying program logic. In DL the above statement is
written as�! [p℄�. In Section 7 we will show a small ex-
ample of a verification task that cannot be proved on the ba-
sis of the given pre- and postconditions alone. But, adding
the modifier set a proof becomes possible.

In this paper, we concentrate on the theoretical under-
pinnings of modifier sets. Based on this theory, proof rules
have been formulated and implemented within the KeY sys-
tem. The details of that implementation will be described
in [4].

Related work. The ESC/Java tool (Extended Static Che-
cker for Java) [6] uses a subset of JML as assertion lan-
guage; an extension of ESC/Java for checking JMLmodifies
clausesis described in [5]. Despite the undisputed useful-
ness of this tool its results are still very preliminary: failing
assertions of a rather simple kind go undetected and failures
are reported, where in reality the assertion is correct. A sur-
vey of other JML-oriented tool projects is given in [10]. An
extension of the expressivity of JML is investigated in [13].
In [12], a static analysis algorithm is proposed that checks
modifies clauses for a simple object-oriented in vitro lan-
guage. Correctness is proved via abstract interpretation over
a trace semantics.

Plan of this paper. After reviewing the necessary pre-
requisites in Section 2, we define a precise semantics for
modifier sets in Section 3. As a second contribution, we de-
fine a transformation on first-order formulas based on mod-
ifier sets (Section 4). In Section 5, we prove that validity
of �! �Mod



implies validity of �! [p℄� ;
where�Mod is the transformation of� using the modifier
setMod that is part of the specification ofp. We show that,
under certain additional assumptions, the reverse implica-
tion holds as well (Section 6). How to apply the transfor-
mation in software verification is discussed in Section 7. In
Section 8 we discuss extensions and future work.
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both in writing and in personal discussions. Also we thank
Richard Bubel, Martin Giese, Andreas Roth, and Steffen
Schlager for useful comments on earlier versions of this pa-
per. Moreover, we thank an anonymous referee for his de-
tailed review and valuable suggestions.

2. Program Logic

The KeY system uses the instanceDLJ of Dynamic Lo-
gic as its program logic for JAVA CARD.1 See e.g. [7] for
a general exposition of Dynamic Logic and [3] for details
on DLJ . For our theoretical investigations in this paper,
we also assume that the underlying programming language
is JAVA CARD. The results being proved, however, hold
true for all deterministic programming languages whose se-
mantics can be described by Kripke structures in terms of
Definition 1.

Besides concrete JAVA CARD programs, we allowab-
stract methods (resp. method calls) to occur, for which no
implementation is given, but for which a specification exists
that may be used to formally reason about their behaviour.2

Dynamic Logic is a modal logic with a modality[p℄ for
every programp (in DLJ , for every sequencep of legal
JAVA CARD statements). The formula[p℄� expresses that,
if the programp terminates in a states, then� holds ins. A
formula ! [p℄� expresses that, for every states0 satisfy-
ing pre-condition , if a run of the programp starting ins0
terminates ins1, then the post-condition� holds ins1. For
deterministic programs, there is exactly one such worlds1
(if p terminates) or there is no such world (ifp does not
terminate). The formula ! [p℄� is thus equivalent to the
Hoare triplef gpf�g. In contrast to Hoare logic, the set of
formulas of DL is closed under the usual logical operators.

1The main restrictions of JAVA CARD w.r.t. full JAVA are (1) there
are not threads (no concurrency), (2) no floating-point arithmetics, and
(3) GUIs are not supported.

2Abstract methods are similar toatomic programs, i.e., programs that
are just represented by a single symbol and do not have any internal struc-
ture. Atomic programs are the basic notion in propositionaldynamic logic.
An atomic program abstracts from concrete programs in the same way
atoms of propositional logic abstract from first-order formulas.

The semantic domains in whichDLJ formulas are inter-
preted are Kripke structuresK = (S; �), whereS is the set
of states forK and� is the transition relation interpreting
programs. Since we consider deterministic programs,� is a
(partial) function, i.e., for every programp, �(p) : S ! S.
The statess 2 S are typed first-order structuress, for some
fixed signature�. We work under the constant domain as-
sumption, i.e., for any two statess1; s2 2 S the universes
of s1 ands2 are the same setU . We sometimes refer toU
as the universe ofK. Furthermore we assume that the set
of statesS of any Kripke structureK consists ofall first-
order structures with signature� over some fixed universe.
Variations, in which some symbols of the signature are de-
claredrigid and have a fixed interpretation for alls 2 S,
are possible and indeed for practical purposes essential. For
example, addition+ on integers cannot be changed by ex-
ecuting a program and will therefore be declaredrigid. For
the sake of a clear presentation we do not considerrigid
symbols in�. Their inclusion poses no difficulty.

We restrict attention to purely functional signatures�.
The relation between JAVA constructs and signature ele-
ments is as follows: Classes give rise to types, (local) pro-
gram variables occur as0-ary function symbols (constants)
in �, attributes occur as unary function symbols (whereobj:attr is the same asattr(obj)), andn-dimensional ar-
rays are represented by an(n+1)-ary function symbol (i.e.,obj[i0; : : : ; in�1℄ is the same asarr(obj; i0; : : : ; in�1)). If
all constructs of a programp occur in this sense in�, we
call p a�-program. A signature� may, however, also con-
tain symbols not occurring in programs such as, for exam-
ple, user defined abstract data types. The interpretation ofa
function symbolf in a states is denoted byfs.

Logical variables, which are different from program vari-
ables, never occur in programs. They are rigid in the sense
that if a value is assigned to a logical variable, it is the same
for all states.

From what we have said it follows that once� and the
universeU are fixed, the setS of states is also fixed. Thus,
our Kripke structures will only differ in the state transition
function� interpreting programs. In addition, when a pro-
gramming language is chosen (in this case JAVA CARD), the
possible choices for� have to be restricted as well, such that
the constructs of the programming language are interpreted
in the right way. If only concrete JAVA programs are al-
lowed (i.e.,abstractmethods are not considered), then only
one unique choice for� is possible. If abstract methods
are used, on the other hand, their different possible imple-
mentations lead to a multitude of different possible inter-
pretations, i.e., transition functions�. Note, that a program
with different possible interpretations has an unknownde-
terministicbehaviour (as opposed to a non-deterministic be-
haviour).

In the logics considered in [7], the only items that may



change during program execution are program variables. In
our logicDLJ we cannot maintain this restriction. Since we
are dealing with an object-oriented programming language,
we need to consider Kripke structuresK = (S; �) and pro-
gramsp such that statess1; s2 occur with (s1; s2) 2 �(p)
andfs1 6= fs2 for some function symbolf . Because of this
generality some of the familiar tautologies and proof rules
are not available for our version of DL, e.g.,[x = 
; ℄� $ �[
=x℄ ;
where
 is a constant. More precisely, for� = [p℄ the
equivalence [x = 
; ℄[p℄ $ [p℄ [
=x℄
may not be true, sincep could change the meaning of
.

Most familiar tautologies are, fortunately, still true, e.g.,([p℄�1 ^ [p℄(�1 ! �2))! [p℄�2:
Since we deal only with deterministic programs, we also
have ([p℄(�1 _ �2))$ ([p℄�1 _ [p℄�2) :

From now on, we assume that a fixed setK� of Kripke
structuresK = (S; �) is given that, as described above, de-
pends (only) on the signature�, the universeU , and the
restrictions on�, i.e., the semantics of JAVA CARD (resp.
the chosen programming language). The setS of states is
the same for all elements ofK�.

Definition 1 Let S be the set of all first-order structures
over signature� with some fixed universeU . Then, these-
mantics of the programming languageis given by a setK�
of Kripke structures that all shareS as their set of states.

Definition 2 A�-formula� is calledvalid ifs; � j= �
for every states 2 S of every Kripke structure(S; �) 2 K�
and every variable assignment� (i.e., function from the set
of logical variables to the fixed universeU ).

Note: In the rest of this paper, we suppress any mention-
ing of variable assignments�, but they should be considered
to be implicitly present. Since logical variables are rigidfor
all programs, variable assignments never play a crucial role
in the arguments of this paper. Showing them would only
clutter the notation.

3. Modifier Sets

Below, we define the syntax of modifier sets and which
transitions from a states1 to states2 satisfya given modifier
setMod, i.e., are allowed byMod.

Definition 3 A modifier setMod (over signature�) is a set
of ground�-terms (i.e., terms without logical variables).

LetS be the set of states ofK�. A pair (s1; s2) of states
fromS satisfiesMod, denoted by(s1; s2) j= Mod ;
iff, for

(a) all n-ary function symbolsf 2 � (n � 0),

(b) all n-tupleso1; : : : ; on from the universe ofK�,

the following holds:fs1(o1; : : : ; on) 6= fs2(o1; : : : ; on)
implies that there is a termt 2 Mod of the formt = f(t1; : : : ; tn)
with oi = ts1i (1 � i � n) :

Note, that the termst in a modifier set are evaluated in
the pre-states1. Consequently, ifobj:attr 62 Mod (whereobj is a constant resp. a program variable),3 then Defini-
tion 3 impliesobjs1 :attrs1 = objs1 :attrs2 :
By contrast, it doesnot imply(obj:attr)s1 = (obj:attr)s2 :

Now we proceed to define the relation between modifier
sets and programs.

Definition 4 Let Mod be a modifier set over signature�,
let p be a�-program, and letK = (S; �) 2 K� be a Kripke
structure. Then, K j= (Mod; p)
iff (s1; s2) j= Mod

for all state pairs(s1; s2) 2 �(p).
If K j= (Mod; p) for all K 2 K�, then Mod is called a

modifier set forp.
3Remember thatobj:attr is just a different notation forattr(obj).



p Modpi = i+ 1; figw:
ount = w:
ount+ 1; fw:
ountgw = v;w:
ount = w:
ount+ 1; fw; v:
ountg
Table 1. Example modifier sets.

Example 1 Table 1 shows some simpleJAVA programsp
and modifier sets Modp for these programs.

Note that the programp3 in the third row changes the
value ofv:
ount and not that ofw:
ount (except ifw = v).
That is, vs1 :
ounts1 6= vs1 :
ounts2
but ws1 :
ounts1 = ws1 :
ounts2 (if w 6= v);
wheres1 is the intial state ands2 is the state after run-
ning p3. This explains whyw:
ount does not occur in the
modifier set ofp3.

To determine the smallest modifier setModp for a JAVA

programp is, of course, undecidable. Also, not all programs
have afinitemodifier set. Experience so far shows, however,
that useful approximations can be obtained for many useful
cases.

Similarly to pre- and postconditions, modifier sets can
contain thethis reference and names of the arguments used
in the method declaration. These have to be instantiated to
construct the modifier set for a concrete method call.

The modifier setMod that we assume to be part of the
specification of programp restricts the possible transition
functions�. This is reflected by the following definition
introducing the notion of(Mod; p)-Kripke structures, which
are Kripke structures satisfying the restriction imposed by
Modon the possible interpretations ofp.
Definition 5 Let Mod be a modifier set over signature�,
and letp be a�-program. A Kripke structureK 2 K� is a(Mod; p)-Kripke structureif K j= (Mod; p) (Def. 4).

A�-formula� is (Mod; p)-valid if it is true in every states 2 S of every(Mod; p)-Kripke structure(S; �) 2 K�.

4. The Modifier Transformation

Before we come to the core of this section, we introduce
conditional termsas an auxiliary syntactical construct.

Definition 6 If t1; t2 are terms and is a formula, thenif  then t1 else t2

is aconditional term. Its in a structures is defined by:(if  then t1 else t2)s = � ts1 if  s = truets2 otherwise

Conditional terms are a device for writing formulas more
succinctly. In first-order formulas they can be eliminated:

Lemma 1 For every first-order formula� there is a logi-
cally equivalent formula�� without conditional terms.

Proof: For an atomic formula� and an occurrenceo

 of
the conditional termif  then t1 else t2 in �, let �1 be ob-
tained from� by replacingo

 by t1 and�2 by replacingo

 by t2. Then� is equivalent to( ^ �1) _ (: ^ �2) :
Applying this observation repeatedly we obtain��. For ar-
bitrary non-atomic� we obtain�� by an easy induction on
the complexity of�.

To motivate the following definitions, consider a speci-
fication for a programp consisting of a precondition�, a
postcondition�, and a modifier setMod. The transformed
formula�Mod, to be defined below, is intended to have the
same value in the initial state that� has in the final state af-
ter execution ofp. Roughly speaking, symbols not inMod
remain unchanged and symbolsf in Mod are replaced by
new corresponding symbols
f (i.e.,
f represents the value
of f after runningp). Since the interpretation of the new
symbol
f is unknown, the impact of
f in logical deduc-
tions mimics the impact off after an unknown change by
programp. The general idea seems very intuitive, but the
details are surprisingly subtle.

Definition 7 For any signature� let�mod = � [ f
f j f 2 �g ;
where all
f (1) have the same signature asf , (2) are not
in �, and (3) are different from each other.

Definition 8 Let Mod be a modifier set. Then, themodifier
transformationis defined as follows.

For termst, we define the transformed termtMod induc-
tively:

1. If t is a logical variable, thentMod = t :



2. Otherwise, ift = f(t1; : : : ; tn), letf(s11; : : : ; sn1 ); : : : ; f(s1k; : : : ; snk )
be all terms in Mod with leading function symbolf .
Then, tMod = if Wki=1Vnj=1(tjMod = sji )then 
f (t1Mod; : : : ; tnMod)else f(t1Mod; : : : ; tnMod)
where
f 2 �mod (Def. 7).

For first-order formulas� (not containing any program),
the transformed formula�Mod is obtained by replacing all
occurrences of atomic subformulasp(t1; : : : ; tr) in � byp(t1Mod; : : : ; trMod).
Example 2 Letv be a constant. Ifv 2 Mod, thenvMod = if true then 
v else v
(note that the empty conjunction is identical totrue), which
can be simplified to
v .

If v 62 Mod, thenvMod = if false then 
v else v
(the empty disjunction is identical tofalse), which can be
simplified tov.

If Mod = fv:ag, then(v:a)Mod isif vMod = v then vMod:
a else vMod:a : (1)

Sincev 62 Mod, one can reducevMod to v. Thus, term (1)
can be reduced tov:
a.

If Mod = fv; w:ag, then(v:a)Mod isif vMod = w then vMod:
a else vMod:a : (2)

Since, in this case,v 2 Mod, one can reducevMod to 
v .
Thus, term (2) can be reduced toif 
v = w then 
v:
a else 
v:a :
A further reduction is not immediately possible as the value
v may or may not be equal to the value ofw.

5. Correctness of the Transformation

Our strategy to prove the main theorem (Theorem 1 be-
low) resembles in spirit what is usually called thesubstitu-
tion lemma: Take a syntactical itemt, perform some syn-
tactic change to obtaint
hanged , and evaluatet
hanged in an
appropriate structures, i.e., computets
hanged . Now, look
for a change tos to obtains
hanged such that evaluating the

unchanged syntactical item in the changed structure yields
the same result, i.e.,ts
hanged = ts
hanged .

In our present context,tMod defined in Definition 8 will
play the role oft
hanged . The role ofs
hanged will be filled
by sMod introduced in the next definition.

Definition 9 Let s be a�mod -structure, and let Mod be a
modifier set over�.

Then,sMod is the structure arising froms by the following
changes. For every function symbolf 2 �, letf(s1i ; : : : ; sni ) (1 � i � k)

be all terms in Mod with leading function symbolf . We
define for everyn-tupleo1; : : : ; on of objects in the universe
of s: fsMod(o1; : : : ; on) =8<: 
sf (o1; : : : ; on) if there is ani withoj = (sji )s (1 � j � n)fs(o1; : : : ; on) otherwise

Lemma 2 For all �mod -structuress, all modifier sets Mod
over�, all �-termst, and all first-order�-formulas , the
following are true:

1. (tMod)s = tsMod

2. s j=  Mod iff sMod j=  
Proof:
1. By structural induction ont.
1.0. Base case:t = v with v a logical variable is trivially
true, sincevMod = v and the transition froms to sMod does
not effect variable assignments.

1.1. Simple step case:t = a with a a constant symbol. This
is the special instance of the next case forn = 0. It might
however help the reader to see it spelled out separately.

If a 2 Mod thenaMod reduces to
a, otherwiseaMod re-
duces toa. On the other hand,asMod = 
sa if a 2 Mod andasMod = as otherwise.

1.2. Step case:t = f(t1; : : : ; tn) for somen-ary functions
symbolf 2 �. Let, as above,f(s1i ; : : : ; sni ) (1 � i � k)
be all terms inMod with leading function symbolf . We
organise the proof into two cases:

1.2.1. Case A:There exists ani such that(tjMod)s = (sji )s (1 � j � n) :



Then: (tMod)s
def. of tMod

= ( if Wki=1Vnj=1(tjMod = sji )then 
f (t1Mod; : : : ; tnMod)else f(t1Mod; : : : ; tnMod) )s
case

assumption
= (
f (t1Mod; : : : ; tnMod))s

standard4
= 
sf ((t1Mod)s; : : : ; (tnMod)s)

def. ofsMod

= fsMod((t1Mod)s; : : : ; (tnMod)s)
ind. hyp.

= fsMod((t1)sMod; : : : ; (tn)sMod)
standard

= (f(t1; : : : ; tn))sMod

def. of t = tsMod

1.2.2. Case B:Negation of Case A:tsMod

def. of tMod

= (if Wki=1Vnj=1(tjMod = sji )then 
f (t1Mod; : : : ; tnMod)else f(t1Mod; : : : ; tnMod))s
case

assumption
= (f(t1Mod; : : : ; tnMod))s

standard
= (fs(t1Mod)s; : : : ; (tnMod)s

def. ofsMod

= (fsMod(t1Mod)s; : : : ; (tnMod)s
ind. hyp.

= (fsMod((t1)sMod; : : : ; (tn)sMod)
standard

= (f(t1; : : : ; tn))sMod

def. of t = tsMod

2. Follows immediately from part 1.

Theorem 1 Let Mod be a modifier set over signature�,
and letp be a�-program. Moreover, let� and� be first-
order formulas over signature�.

Then, validity of the�mod -formula�! �Mod

implies(Mod; p)-validity of the�-formula�! [p℄� :
(The reverse implication does not hold in general.)

Proof: Let K = (S; �) 2 K� be a(Mod; p)-Kripke struc-
ture, lets 2 S be a state withs j= �, and let(s; s0) be a
state pair in�(p). It remains to be shown thats0 j= � is
true.

4We use the justificationstandardfor steps that only involve basic def-
initions of predicate logic.

Let s1 be the�mod -expansion that coincides withs ex-
cept for the interpretation of the new symbols:
s1f (o1; : : : ; on) = fs0(o1; : : : ; on) :
Sinces ands1 coincide on the symbols of�, we gets1 j= �.
The validity of�! �Mod yieldss1 j= �Mod. By Lemma 2
this implies(s1)Mod j= �:We will argue that(s1)Mod =� s0,
i.e., that both structures agree on the symbols from�. Since� is a�-sentence we will then gets0 j= � as desired.

We now set out to prove(s1)Mod =� s0: According to
Definition 9,f (s1)Mod(o1; : : : ; on) is defined by the follow-
ing case distinction.

Case A:There exists ani such thatoj = (sji )s1 (1 � j � n) ;
wheref(s1i ; : : : ; sni ) (1 � i � k) are all terms inMod with
leading function symbolf . Then:f (s1)Mod(o1; : : : ; on)

def. of(s1)Mod

= 
s1f (o1; : : : ; on)
def. ofs1 = fs0(o1; : : : ; on)

Case B:Negation of Case A. There is noi such thatoj = (sji )s1 (1 � j � n) :
As all sji are�-terms there is also noi such thatoj = (sji )s
(1 � j � n). AsK = (S; �) is a(Mod; p)-Kripke structure
and(s; s0) 2 �(p), this impliesfs(o1; : : : ; on) = fs0(o1; : : : ; on) :
Thus: f (s1)Mod(o1; : : : ; on)

def. of(s1)Mod

= fs1(o1; : : : ; on)
def. ofs1 = fs(o1; : : : ; on)

as observed

= fs0(o1; : : : ; on)
In the following examples, we list a modifier setMod

for a programp, the formula�! [p℄�, and the formula�! �Mod (we use simplifications oftMod, such as those de-
tailed in Example 2, without mentioning). Also, we discuss
the consequences of Theorem 1.

Example 3

Mod � fig�! [p℄� � i = 0! [i = i+ 1; ℄(i = 0)�! �Mod � i = 0! 
i = 0
The formula�! �Mod is certainly not valid. No claim on
the validity of�! [p℄� can be derived. As it should be.



Example 4

Mod � fig�! [p℄� � (j > 0 ^ i = 0)! [i = i+ j; ℄(j > 0)�! �Mod � (j > 0 ^ i = 0)! j > 0
Now the formula�! �Mod is valid, and Theorem 1 implies
validity of �! [p℄�, which is again correct.

Example 5

Mod � fw; v:ng�! [p℄� � v:n = 5![w = v;w:n = w:n+ 1℄(v:n = 5)�! �Mod � v:n = 5! v:
n = 5
The formula�! �Mod is not valid. This conforms to our
intentions sincev:n = 5! [p℄(v:n = 5) is not valid.

Example 6

Mod � fw:ng�! [p℄� � v:n = 5![w:n = w:n+ 1℄(v:n = 5)�! �Mod � v:n = 5!(if v = w then v:
n else v:n) = 5
Here, the formula�! �Mod is true provided that we havev 6= w as an additional premiss. Otherwise, again nothing
can be derived.

6. Completeness of the Transformation

The modifier transformation is not only correct as shown
in the previous section but also complete (i.e., the reverse
of the implication in Theorem 1 holds), provided that the
modifier setMod fully specifiesthe programp. That is, if
some state pair(s1; s2) satisfiesMod, then it must be possi-
ble according to JAVA ’s semantics thatp causes a transition
from s1 to s2.

To see that this is not always the case even ifMod is
a modifier set forp (Def. 4), consider the following ex-
ample: IfMod contains a local program variable
, a state
pair (s1; s2) satisfyingMod may differ in the interpretation
of 
. But if, moreover,p is a method call, thenp cannot
change local variables (according to JAVA ’s semantics)—
whatever its (unknown) implementation may be. In that
case, one could argue that a too large modifier setMod has
been chosen and that
 should be omitted fromMod, which
solves the problem. Using a minimal modifier set is indeed
a solution to this problem wheneverp is an abstract method
(call). Consider, however, the program
 = 0;. A modi-
fier setMod for this program must contain
. But then, any

state pair(s1; s2) with 
s2 6= 0 andts1 = ts2 for t 6= 
 sat-
isfiesModalthough
 = 0; obviously cannot cause a transa-
tion to a states2 in which 
 6= 0.

Definition 10 A modifier set Mod (over signature�) fully
specifiesa�-programp if, for every set�p � S � S of state
pairs with

1. all (s1; s2) 2 �p satisfy Mod,

2. fs1 j 9s2 (s1; s2) 2 �pg = S (i.e., the domain of the
partial function�p is the whole state spaceS)

there is a Kripke structure(S; �) 2 K� with �(p) = �p.

This definition allows us to formulate the following com-
pleteness theorem, which reverses the implications of The-
orem 1.

Theorem 2 Letp be a�-program, and let Mod be a modi-
fier set (over signature�) that fully specifiesp w.r.t.K�mod
(Def. 10). Moreover, let� and� be first-order�-formulas.

Then,(Mod; p)-Validity of the�mod -formula�! [p℄�
implies validity of the�mod -formula�! �Mod :
Proof: We first observe that�! �Mod is a statement about
first-order logical consequence of�mod -formulas only.

Let the set�p of state pairs be defined by�p = f(s; sMod) j s 2 Sg
whereS is the state space ofK�mod . By definition ofsMod it
is clear that all state pairs in�p satisfyMod. Thus, since
Mod fully specifiesp (Def. 10), there is a Kripke struc-
tureK = (S; �) 2 K�mod with �(p) = �p. By construction
of �p, K is a(Mod; p)-Kripke structure.

Now, we consider an arbitrary�mod -structures satisfy-
ing s j= � with the aim to shows j= �Mod. By assumption,�! [p℄� is true in all(Mod; p)-Kripke structures inK�mod ,
thus this formula holds in particular in the states of struc-
tureK. That impliessMod j= �. And now Lemma 2 yieldss j= �Mod.

In practice, we have fully specifying modifier sets only
for abstract methods with unknown implementation (and
not for arbitrary programs as the examples at the begin-
ning of this section demonstrate). However, in [4] we show
how the completeness theorem can be extended for the case
where a modifier clause fully specifies a program in combi-
nation with a pre-/postcondition pair, which can be achieved
for a much wider range of JAVA programs.



7. Applying the Transformation

Theorem 1 allows to derive�! [p℄� from �! �Mod.
That is, we can use the rule�! �Mod�! [p℄�
to prove a property of programp without analysingp—or
even without knowing the implementation ofp (in casep
is a method call). This will in general not be very useful,
since we need to take alse pre- and post-conditions ofp into
account.

Consider, as an example, a programp with pre- and post-
conditions �pre � i > 0 ^ j > 0�post � z = i+ i ^ i > 0 :
In DL this is expressed as�pre ! [p℄�post. Furthermore let
Modp = fzg. Now assume that we want to show(i = 5 ^ j = 1)! [p℄z + j � 2 :
The usual technique (without modifier sets) is to apply the
rule �! �pre �post ! ��! [p℄�
i.e., to prove

1. (i = 5 ^ j = 1)! �pre, and

2. �post ! z + j � 2.

The first implication is certainly true, but the second cannot
be proved.

Let us now try a different line of attack, making use of
the modifier set. Since we aleady know(i = 5 ^ j = 1)! [p℄�post ;
we could try to prove(i = 5 ^ j = 1)! [p℄(�post ! z + j � 2) :
Since((C ! [p℄A) ^ (C ! [p℄(A! B)))! (C ! [p℄B)
is a DL tautology, this would indeed prove our goal. By
Theorem 1 the validity of(i = 5 ^ j = 1)! [p℄(�post ! z + j � 2)
is equivalent to the validity of(i = 5 ^ j = 1)! (�post ! z + j � 2)Mod :

This formula can be simplified to(i = 5 ^ j = 1)!((
z = i+ i ^ i > 0)! 
z + j � 2) ;
and this is obviously a valid formula.

Generalising from the example, we can use the rule�! �pre �! (�post ! �)Mod�! [p℄�
to prove properties ofp making use of all parts of its speci-
fication. The right premiss of the above rule can be simpli-
fied to (� ^ (�post)Mod)! �Mod. Note that both the post-
conditionand that part of� which remains unchanged ac-
cording to the modifier set are available to prove�Mod.

8. Extensions and Future Work

There are two obvious extensions to the work presented
in this paper. The formula� to which the modifier trans-
formation is applied should be allowed to include the�pre
construct known, for example, from OCL (see e.g. [14]).

Second, the restriction on� to be a first-order formula
should be lifted. That is important because, currently, to
prove, e.g.,�! [p℄[q℄�, one has to find a formula such
that (a)�! [p℄ and (b) ! [q℄� hold, which then allows
to apply the transformation and prove formulas (a) and (b)
by showing�!  Mod and ! �Mod to be valid. In prac-
tice it can be difficult to come up with an appropriate for-
mula .

In both cases we know in which directions to look for a
solution, but the details might be thorny.

Moreover, an algorithm to compute (approximations for)
a modifier set for a given JAVA CARD programp should be
defined and implemented.

The KeY system uses UML as its specification language.
It is intended to define an extension of UML’s constraint
language OCL with mechanisms to express change infor-
mation.

Finally, it may be worthwhile to extend the expressive-
ness of modifier sets such that programs for which currently
no (finite) modifier set exists can also be handled.
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