Program Verification Using Change Information

Bernhard Beckert and Peter H. Schmitt
Universitat Karlsruhe
Institute for Logic, Complexity, and Deduction Systems
D-76128 Karlsruhe, Germany
i12www.ira.uka.de/"key

Abstract gon is callednodifies clauses
A typical problem of program verification reads as fol-
We propose an extension of the design-by-contract ap-lows: whenever program is executed in a program state
proach. In addition to preconditions, postconditions, and satisfying conditiod” then conditionp will be true after ter-
invariants as the basis for proving properties of a program, mination ofp, wherel and¢ are arbitrary formulas of first-
also information is provided on which parts of the state are order logic. The KeY system uses Dynamic Logic (DL) as
not changed by running the program. This is done in the its underlying program logic. In DL the above statement is
form of modifier sets We present a precise semantics of written aslI' — [p]¢. In Section 7 we will show a small ex-
modifier sets and theorems on how to use them in program-ample of a verification task that cannot be proved on the ba-
correctness proofs. This technique has been implementedis of the given pre- and postconditions alone. But, adding
as part of the KeY system. the modifier set a proof becomes possible.
In this paper, we concentrate on the theoretical under-
pinnings of modifier sets. Based on this theory, proof rules

1. Introduction have been formulated and implemented within the KeY sys-
tem. The details of that implementation will be described
in [4].

The work reported in this paper has been carried out as
part of the KeY project. The goal of this project is to de-
velop a tool supporting formal specification and verificatio Related work. The ESC/Java tool (Extended Static Che-
of JAva CARD programs within a commercial platform for cker for Java) [6] uses a subset of JML as assertion lan-
UML based software development, see [1, 2] for details. guage; an extension of ESC/Java for checking iidifies
This approach is based on the design-by-contract paradignelausess described in [5]. Despite the undisputed useful-
as pioneered by Bertrand Meyer [11]. Contracts are verified ness of this tool its results are still very preliminarylifag
statically in KeY using a (partly automated) interactivedh assertions of a rather simple kind go undetected and failure
rem prover. Experiments with the KeY system suggest thatare reported, where in reality the assertion is correct.rA su
the performance of the prover could be greatly enhancedvey of other JIML-oriented tool projects is given in [10]. An
if in addition to the terms of the contract, i.e., precondi- extension of the expressivity of JML is investigated in [13]

tions, postconditions, and invariants, additional infation In [12], a static analysis algorithm is proposed that checks
was available. We concentrate here on change informationmodifies clauses for a simple object-oriented in vitro lan-
More precisely, we associate with avd programp (typi- guage. Correctness is proved via abstract interpretatien o

cally a method) a sé¥lod, of terms (or expressions), called a trace semantics.

the modifier set (fop), with the understanding thdod, is

part of the specification of. Its semantics is that those Plan of this paper. After reviewing the necessary pre-
parts of a program state that anet mentioned inMod, requisites in Section 2, we define a precise semantics for
will never be changed by executing(a state element is modifier sets in Section 3. As a second contribution, we de-
mentioned inMod, if there is a term inMod, referringto fine a transformation on first-order formulas based on mod-

this element). We took the general idea for this set-up from ifier sets (Section 4). In Section 5, we prove that validity
the Java Modeling Language (JML) [8, 9]. JML is a be- of

havioural interface specification language faval, which
allows to express change information via what in JML jar- ' = dmodg

implies validity of The semantic domains in whidbL ; formulas are inter-
preted are Kripke structurds = (.5, p), whereS is the set
I'—[plo , of states fork andp is the transition relation interpreting
programs. Since we consider deterministic progranisa
where ¢poq is the transformation of using the modifier (partial) function, i.e., for every program p(p) : S — S.
setModthat is part of the specification pf We show that, The states € S are typed first-order structuresfor some
under certain additional assumptions, the reverse implica fixeq signatureS. We work under the constant domain as-
tion holds as well (Section 6). How to apply the transfor- sumption, i.e., for any two states, s» € S the universes
mation in software verification is discussed in Section 7. In ¢ s, ands, are the same séf. We sometimes refer t&/
Section 8 we discuss extensions and future work. asthe universe ofKC. Furthermore we assume that the set
of statesS of any Kripke structureC consists ofall first-
Acknowledgement. We gratefully acknowledge assistan- order structures with signatukeover some fixed universe.
ce from Bastian Katz, Rajeev Goré, and Kerry Trentelman, Variations, in which some symbols of the signature are de-
both in writing and in personal discussions. Also we thank claredrigid and have a fixed interpretation for alle S,
Richard Bubel, Martin Giese, Andreas Roth, and Steffen are possible and indeed for practical purposes essential. F
Schlager for useful comments on earlier versions of this pa-example, addition on integers cannot be changed by ex-
per. Moreover, we thank an anonymous referee for his de-ecuting a program and will therefore be declarigitd. For

tailed review and valuable suggestions. the sake of a clear presentation we do not consiidga
symbols inX. Their inclusion poses no difficulty.
2. Program Logic We restrict attention to purely functional signatudes

The relation betweenaJa constructs and signature ele-
ments is as follows: Classes give rise to types, (local) pro-
gic as its program logic foraVa CARD. See e.g. [7] for gram varlgbles occur dsary function symbols (constants)
o . . . in X, attributes occur as unary function symbols (where
a general exposition of Dynamic Logic and [3] for details ;
obj.attr is the same astir(obj)), andn-dimensional ar-

on DL ;. For our theoretical investigations in this paper, rays are represented by @+ 1)-ary function symbol (i.e
we also assume that the underlying programming language Y P y Y y o

is JAva CARD. The results being proved, however, hold objfio, ... ,in-1] S the same agrr(obj, o, . . . ,in-1)). If

o . all constructs of a program occur in this sense i, we
true for all deterministic programming languages whose se-)
. - . . call p aX-program A signature> may, however, also con-
mantics can be described by Kripke structures in terms of . A
Definition 1 tain symbols not occurring in programs such as, for exam-

. ple, user defined abstract data types. The interpretatian of
Besides concreteaya CARD programs, we allowab- . . . s
) function symbolf in a states is denoted byf*.
stractmethods (resp. method calls) to occur, for which no)]) ’]
implementation is given, but for which a specification exist _-0dical variables, which are different from program vari-

that may be used to formally reason about their behadiour. P!€S, never occur in programs. They are rigid in the sense
Dynamic Logic is a modal logic with a modalify] for that if a value is assigned to a logical variable, it is thesam

every programp (in DL ;, for every sequence of legal oF all states.

The KeY system uses the instarige ; of Dynamic Lo-

JAvA CARD statements). The formula]¢ expresses that, From what we have said it follows that onZeand the

if the prograny terminates in a state theng holds ins. A universel are fixed, the sef of states is also fixed. Thus,
formu'aw — [p]¢ expresses that, for every Statﬁsatisfy- our Kl’lpke structures will Only differ in the state tranetti
ing pre-conditiony, if a run of the progranp starting ins, functionp interpreting programs. In addition, when a pro-

terminates ins;, then the post-condition holds ins,. For ~ gramming language is chosen (in this case\JCARD), the
deterministic programs, there is exacﬂy one such W@fld pOSSibIe choices qu have to be restricted as We", such that
(if p terminates) or there is no such world fifdoes not the constructs of the programming language are interpreted
terminate). The formulay — [p]¢ is thus equivalent to the in the right way. If only concreteAVa programs are al-
Hoare triple{y)}p{#}. In contrast to Hoare logic, the set of lowed (i.e.,abstractmethods are not considered), then only
formulas of DL is closed under the usual logical operators. One unique choice fop is possible. If abstract methods
1The main restrictions of AVA CARD w.r.t. full Java are (1) there are US(?d, on the other hand, their d-lﬁerem poss!ble !mple—
S A mentations lead to a multitude of different possible inter-
are not threads (no concurrency), (2) no floating-pointharétics, and . . . B
(3) GUIs are not supported. pretations, i.e., transition functiops Note, that a program
2Abstract methods are similar aomic programsi.e., programs that with different possible interpretations has an unknalea

are just represented by a single symbol and do not have ayabistruc- terministicbhehaviour (as opposed to a non-deterministic be-
ture. Atomic programs are the basic notion in propositiayalamic logic. haviour)
An atomic program abstracts from concrete programs in theesaay '

atoms of propositional logic abstract from first-order fotes. In the logics considered in [7], the only items that may

change during program execution are program variables. In3. Modifier Sets
our logicDL ; we cannot maintain this restriction. Since we

are dealing with an object-oriented programming language, Below, we define the syntax of modifier sets and which

we need to consider Kripke structurEs= (.S, p) and pro-
gramsp such that states;, sy occur with (s1, s2) € p(p)
andf®: # f52 for some function symbof. Because of this

transitions from a state to states, satisfya given modifier
setMod, i.e., are allowed bod.

generality some of the familiar tautologies and proof rules Definition 3 A modifier setMod (over signature) is a set

are not available for our version of DL, e.g.,

[z =c]p & dlc/a] ,

wherec is a constant. More precisely, fer = [p]y the
equivalence

[z =cllply & [plle/x]

may not be true, since could change the meaning af
Most familiar tautologies are, fortunately, still truege.

([plp1 A [pl(d1 — #2)) — [pldb2.

Since we deal only with deterministic programs, we also

have

([Pl(¢1 V ¢2)) < ([pldr V [plg2) -

From now on, we assume that a fixed Bat of Kripke

structuredC = (S, p) is given that, as described above, de-

pends (only) on the signatude, the universd/, and the
restrictions ory, i.e., the semantics ofala CARD (resp.
the chosen programming language). TheSeff states is
the same for all elements &s..

Definition 1 Let S be the set of all first-order structures
over signaturex with some fixed univerdé. Then, these-
mantics of the programming languaigagiven by a seKy,
of Kripke structures that all shar€ as their set of states.

Definition 2 A X-formula¢ is calledvalid if

s,0F ¢

for every states € S of every Kripke structurés, p) € Ks,
and every variable assignmefif(i.e., function from the set
of logical variables to the fixed univergg). .

Note: In the rest of this paper, we suppress any mention-

ing of variable assignmengs but they should be considered
to be implicitly present. Since logical variables are rifpd

all programs, variable assignments never play a crucial rol

of groundX-terms (i.e., terms without logical variables).
Let S be the set of states &x.. A pair (s, s2) of states
from S satisfiesMod, denoted by

(s1,52) F Mod ,
iff, for
(a) all n-ary function symbolg € ¥ (n > 0),
(b) all n-tuplesoy, ... , o, from the universe oKy,

the following holds:

fSI(Ola"' ,On) # fsz(ola"' ,On)
implies that there is a terrhe Mod of the form
t=f(tr,...,tn)

with
oj=t' (1<i<n).

Note, that the termsin a modifier set are evaluated in
the pre-states;. Consequently, ibbj.attr ¢ Mod (where
obj is a constant resp. a program variabighen Defini-
tion 3 implies

obj®t.attr’' = obj®'.attr®* .
By contrast, it doesotimply
(obj.attr)® = (obj.attr)®>.

Now we proceed to define the relation between modifier
sets and programs.

Definition 4 Let Mod be a modifier set over signatuye
let p be a¥-program, and lefC = (5, p) € Ky, be a Kripke
structure. Then,

K E (Mod, p)
iff
(81,82) '= Mod

for all state pairs(sy, s2) € p(p).
If £ = (Mod, p) for all K € Ky, then Mod is called a

in the arguments of this paper. Showing them would only modifier set forp. .

clutter the notation.

SRemember thatbj.attr is just a different notation fouttr (oby).

p | Mod, |

1 =1+1;
w.count = w.count + 1;
w = v;w.count = w.count + 1;

{i}
{w.count}
{w, v.count}

Table 1. Example modifier sets.

Example 1 Table 1 shows some simplavAa programsp
and modifier sets Mggfor these programs.

Note that the progranp; in the third row changes the
value ofv.count and not that ofv.count (except ifw = v).
That is,

v*t.count® # v°t.count®?
but
(if w # v),

wheres; is the intial state and, is the state after run-
ning ps3. This explains whyw.count does not occur in the
modifier set ops. .

w*' .count®’ = w®'.count®?

To determine the smallest modifier 9éod, for a JawvA

progranyp is, of course, undecidable. Also, not all programs
have dinitemodifier set. Experience so far shows, however,
that useful approximations can be obtained for many useful

cases.

Similarly to pre- and postconditions, modifier sets can
contain thethis reference and names of the arguments used
in the method declaration. These have to be instantiated t

construct the modifier set for a concrete method call.

The modifier seMod that we assume to be part of the
specification of programp restricts the possible transition
functionsp. This is reflected by the following definition
introducing the notion ofMod, p)-Kripke structures, which
are Kripke structures satisfying the restriction imposgd b
Mod on the possible interpretations mf

Definition 5 Let Mod be a modifier set over signatuyg
and letp be aX-program. A Kripke structurd € Ky is a
(Mod, p)-Kripke structurdf K = (Mod, p) (Def. 4).

A X-formula¢ is (Mod, p)-validif it is true in every state
s € S of every(Mod, p)-Kripke structure(S, p) € Ks. =

4. The Modifier Transformation

Before we come to the core of this section, we introduce

conditional termsas an auxiliary syntactical construct.

Definition 6 If ¢1, ¢, are terms andp is a formula, then

if ¢ then t; else t5

(0]

is aconditional termIts in a structures is defined by:

t5 if ° = true

. s __
(if ¢ then t; else t5)° = { t5 otherwise

Conditional terms are a device for writing formulas more
succinctly. In first-order formulas they can be eliminated:

Lemma 1 For every first-order formulap there is a logi-
cally equivalent formulag* without conditional terms.

Proof: For an atomic formula and an occurrencecc of
the conditional ternif ¢ then ¢, else t5 in ¢, let ¢; be ob-
tained frome¢ by replacingoce by t; and ¢, by replacing
occ by t2. Theng is equivalent to

(YA V (= Ad2) .

Applying this observation repeatedly we obtgih For ar-
bitrary non-atomiap we obtaing* by an easy induction on
the complexity ofp. .

To motivate the following definitions, consider a speci-
fication for a progranp consisting of a preconditiofi, a
postconditionp, and a modifier setMod. The transformed
formula ¢meg, to be defined below, is intended to have the
same value in the initial state thathas in the final state af-
ter execution op. Roughly speaking, symbols not Mod
remain unchanged and symbgisn Mod are replaced by
new corresponding symbats (i.e.,cy represents the value
of f after runningp). Since the interpretation of the new
symbolc; is unknown, the impact af in logical deduc-
tions mimics the impact of after an unknown change by
programp. The general idea seems very intuitive, but the
details are surprisingly subtle.

Definition 7 For any signature® let
Emod:EU{Cf|f€E} R

where allcy (1) have the same signature #s(2) are not
in X, and (3) are different from each other.

Definition 8 Let Mod be a modifier set. Then, thedifier
transformations defined as follows.

For termst, we define the transformed terifg,g induc-
tively:

1. Iftis a logical variable, then

tMod =1 .

2. Otherwise, it = f(t!,...,t"), let
G 1 T TSR 10
be all terms in Mod with leading function symbgl
Then,
tmoa = if Vi A?:l(tK/Iod = s})
then cf(tyod - - - » thiog)
else f(thod - - - » thiod)

wherecy € X,,04 (Def. 7).

For first-order formulasp (not containing any program),
the transformed formulaywog is obtained by replacing all
occurrences of atomic subformulagt!,... ,t") in ¢ by
P(toq -

° ’trMOd)'
Example 2 Letw be a constant. I € Mod, then

if true then ¢, else v

UMod

(note that the empty conjunction is identicalitae), which
can be simplified te, .
If v € Mod, then

UMod if false then ¢, else v

(the empty disjunction is identical tfalse), which can be
simplified tov.
If Mod = {v.a}, then(v.a)moq iS

1)

Sincev € Mod, one can reduceyeq to v. Thus, term (1)
can be reduced to.c,.
If Mod = {v,w.a}, then(v.a)mod IS

if Unmod = v then vpog.c, else Vyvog.a -

(2)

Since, in this casey € Mod, one can reduceygg to c,.
Thus, term (2) can be reduced to

if UMod = w then vpog.cq else Vpmog.a -

if ¢, = w then ¢,.c, else ¢y.a .

A further reduction is not immediately possible as the value
¢, may or may not be equal to the valuewaf

5. Correctness of the Transformation

Our strategy to prove the main theorem (Theorem 1 be-

low) resembles in spirit what is usually called thabstitu-
tion lemma Take a syntactical iter, perform some syn-
tactic change to obtaify,angeq, and evaluateé,sgngeq iN an
appropriate structure, i.e., compute?® Now, look

A changed* .
for a change t@ to obtains ,.ngeqs SUCh that evaluating the

unchanged syntactical item in the changed structure yields
the same result, i.et3;,,,,,.q = 7.

In our present contextyoq defined in Definition 8 will
play the role of .;4ngeq- The role ofs pangeq Will be filled
by smoq introduced in the next definition.

Definition 9 Let s be aX,,4-structure, and let Mod be a
modifier set ovek.

Then,suoq is the structure arising from by the following
changes. For every function symhbE ¥, let

57) (1<i<k)
be all terms in Mod with leading function symbpl We

define for every-tupleoy, .. . , 0, of objects in the universe

of s:
[0, ...,0,) =
ci(o1,...,0,) ifthereis ani with
0j =(s7)" (1<j<n)
fé(o1,...,0,) otherwise

Lemma 2 For all ¥,,,,4-structuress, all modifier sets Mod
overy, all ¥-termst, and all first-orderX-formulasy, the
following are true:

1. (tMod)s = {*Mod

2.5 ': Ymod Iff Smod ': (%

Proof:
1. By structural induction om.

1.0. Base caset = v with v a logical variable is trivially
true, sincevypg = v and the transition from to syog does
not effect variable assignments.

1.1. Simple step casé:= a with a a constant symbol. This
is the special instance of the next caserfor 0. It might
however help the reader to see it spelled out separately.

If a € Mod thenapmog reduces ta:,, otherwiseapoq re-
duces toa. On the other handy®¢ = ¢f if a € Mod and
a®Md = qf otherwise.

1.2. Step caset = f(t!,... ,t") for somen-ary functions
symbol f € ¥. Let, as abovef(s;,...,s?) (1 <i<k)

be all terms inMod with leading function symbof. We
organise the proof into two cases:

1.2.1. Case AThere exists ai such that

(Hhoo)* = (1) (1<j<n) .

Then:
(tMOd)s Y (if \/i=1 /\;}21 (tlj\/lod = 53)
def. OftMOd/ then Cf gt%/lod, e 7t7’\])|0d)
else f(tyods - - - > thiod))°
case>= (cf (t%ﬂodv s vt&od))s
assumption
— c;((tl{/lod)sa ey (trl\ﬁlod)s)
standar \ o
=T Yo ((thod) s - - - (Fiod)®)
def. of smog)
—_ SMo SMo o]
_ = foea((t) e, L (87) M)
ind. hyp.
= (f(th, ... t"))swe
standard Y
— tsMod
def. ot

1.2.2. Case BNegation of Case A:

Y (If Vf=1 /\;}21 (tK'AOd = SZ)

tﬁ/lod
def. OftMoO/

then ¢y gt,{,lod, e tod)
else f(tyods - - - > thiod))”
case>= (f(twods -+ »thiod))’
assumption
/Y_ (f (tMOd)). ’(tﬁod)s
standard N W v
= (f(tod)®s - - 5 (thiod)
def. of smod
= (), ()
ind. hyp.
= ()
standaﬁy
— tSMod
def. off
2. Follows immediately from part 1. .

Theorem 1 Let Mod be a modifier set over signaturg
and letp be aX-program. Moreover, lef” and ¢ be first-
order formulas over signaturg.

Then, validity of theZ,,,,4-formula

r— ¢Mod

implies(Mod, p)-validity of theX-formula

T — [plo .

(The reverse implication does not hold in general.)

Proof: Let £ = (5, p) € Kx be a(Mod, p)-Kripke struc-
ture, lets € S be a state withs =T, and let(s,s’) be a
state pair inp(p). It remains to be shown that = ¢ is
true.

4We use the justificatiostandardfor steps that only involve basic def-

initions of predicate logic.

Let s; be theX,,,4s-expansion that coincides withex-
cept for the interpretation of the new symbols:

,On) = fs’(Ol,...

Sinces ands; coincide on the symbols &f, we gets; =T
The validity of ' — ¢moq Yields s; = dmod. By Lemma 2
this implies(s1)mod = ¢. We will argue thats;)mod =5 s
i.e., that both structures agree on the symbols fforSince
¢ is aX-sentence we will then get |= ¢ as desired.

We now set out to provés;)mea =s s'. According to
Definition 9, f(s1)ved (o, ,0,) is defined by the follow-
ing case distinction.

Case A:There exists ansuch that

c}l(ol,... ,0n) -

oj=(s)™ (1<j<n),
wheref(s},...,s?) (1 <i < k) are all terms irMod with
leading function symbof. Then:
flmea(o (01, .. ,0n)
def. Of 51 Mod/: f 01,..., n)
def. of 51

Case B:Negation of Case A. There is ricuch that
0j= (s (1<j<n).

As all 57 areS-terms there is also nissuch thab; = (s7)*
(1 <j<n). AsK = (S, p)is a(Mod, p)-Kripke structure

and(s, s") € p(p), this implies

’

flor,...,on)=f°(01,...,0n) .
Thus:
fGmes(o 0 0,) = 5 (01,... ,00)
def. of(sl)Mod/: fe(o1,... ,0n)
def. ofs;—== f*(01,...,0n)

as observed/

In the following examples, we list a modifier skbd
for a programp, the formulal’ — [p]¢, and the formula
' — ¢dmoq (We use simplifications afyg, such as those de-
tailed in Example 2, without mentioning). Also, we discuss
the consequences of Theorem 1.

Example 3
Mod = {i}
Foplg = i=0=[i=i+1;](i=0)
F—)(bMod = iZO—)CiZO

The formulal’ — ¢meq is certainly not valid. No claim on
the validity of' — [p]¢ can be derived. As it should be

Example 4

Mod = {i}
F—=pl¢ = (>0Ai=0)—=[i=i+75]({>0)
F'sémd = (j>0Ai=0)—=5>0

Now the formuld® — ¢moq is valid, and Theorem 1 implies

validity of " — [p]¢, which is again correct. .
Example 5
Mod = {w,v.n}
'>pl¢ = vn=5—

[w=v;wn =wmn+1)(v.n =5)

= vn=5—->v.c,=5

r— ¢Mod

The formulal’ — ¢wmoeqg IS Not valid. This conforms to our
intentions since.n = 5 — [p](v.n = 5) isnotvalid. =

Example 6
Mod = {w.n}
F—pl¢ = vn=5—
[w.n =w.n + 1](v.n = 5)
' > Mg = vn=5—

(if v = w then v.c, elsev.n) =5

Here, the formuld™ — ¢moq is true provided that we have
v # w as an additional premiss. Otherwise, again nothing
can be derived. .

6. Completeness of the Transformation

The modifier transformation is not only correct as shown

state pair(sy, s2) with ¢*2 # 0 and¢®* = t°2 for ¢ # ¢ sat-
isfiesMod althoughe = 0; obviously cannot cause a transa-
tion to a states, in which ¢ # 0.

Definition 10 A modifier set Mod (over signatuie) fully
specifiesa X-programp if, for every sep, C S x S of state
pairs with

1. all (s1, s2) € p, satisfy Mod,

2. {s1|3s2 (s1,82) € pp} = S (i.e., the domain of the
partial functionp, is the whole state spacg

there is a Kripke structurésS, p) € Kx with p(p) = pp.

This definition allows us to formulate the following com-
pleteness theorem, which reverses the implications of The-
orem 1.

Theorem 2 Letp be aX-program, and let Mod be a modi-

fier set (over signatur&) that fully specifiep w.rt. Kx., ,

(Def. 10). Moreover, lel' and ¢ be first-order:-formulas.
Then,(Mod, p)-Validity of theX,,,,4-formula

I — [pl¢

implies validity of the®,,,,4-formula

r— ¢Mod .

Proof: We first observe thdf — ¢wmoq iS @ statement about
first-order logical consequence ¥Bf,,,;-formulas only.
Let the sep, of state pairs be defined by

pp = {(s, 5mod) | 5 € S}

whereS is the state space &y By definition ofspyq it

mod *

in the previous section but also complete (i.e., the reverseis clear that all state pairs ip, satisfy Mod. Thus, since

of the implication in Theorem 1 holds), provided that the
modifier setMod fully specifieshe progranp. That is, if
some state paifs;, s2) satisfiesMod, then it must be possi-
ble according to AvA's semantics thgbt causes a transition
from sy t0 ss.

To see that this is not always the case eveMdd is
a modifier set forp (Def. 4), consider the following ex-
ample: IfMod contains a local program variabtea state
pair (s1, s2) satisfyingMod may differ in the interpretation
of ¢. But if, moreover,p is a method call, thep cannot
change local variables (according tavd’s semantics)—

Mod fully specifiesp (Def. 10), there is a Kripke struc-
ture = (S, p) € Ky, with p(p) = p,. By construction
of p,, K is a(Mod, p)-Kripke structure.

Now, we consider an arbitray,, ,4-Structures satisfy-
ing s = I with the aim to show |= ¢mod. By assumption,
I' — [p]¢ is true in all(Mod, p)-Kripke structures iKs,_,,
thus this formula holds in particular in the statef struc-
ture . That impliessmod E ¢. And now Lemma 2 yields

5 = dmod- n

In practice, we have fully specifying modifier sets only

whatever its (unknown) implementation may be. In that for abstract methods with unknown implementation (and
case, one could argue that a too large modifieMs&t has not for arbitrary programs as the examples at the begin-
been chosen and thashould be omitted frorMod, which ning of this section demonstrate). However, in [4] we show
solves the problem. Using a minimal modifier set is indeed how the completeness theorem can be extended for the case
a solution to this problem wheneveis an abstract method where a modifier clause fully specifies a program in combi-
(call). Consider, however, the program= 0;. A modi- nation with a pre-/postcondition pair, which can be achieve

fier setMod for this program must contain But then, any for a much wider range ofa¥a programs.

7. Applying the Transformation This formula can be simplified to

Theorem 1 allows to derivE — [p]¢ from T' = Guoq. (i=5Aj=1)— _
That is, we can use the rule ((cz=i+iNi>0)=ec:+j>2),
' = dmod and this is obviously a valid formula.
' — [plo Generalising from the example, we can use the rule
to prove a property of program without analysingp—or L = Gpre T = (dpost = ®)Mod
even without knowing the implementation pf(in casep T — [plo

is a method call). This will in general not be very useful,
since we need to take alse pre- and post-conditiopsrtb to prove properties gf making use of all parts of its speci-

account. fication. The right premiss of the above rule can be simpli-
Consider, as an example, a programith pre- and post- fied to (I' A (¢post)Mod) — dMmod- NOte that both the post-
conditions conditionandthat part ofl" which remains unchanged ac-
cording to the modifier set are available to pr .
bpre = i>0Aj>0 g P
post = z=i+iANi>0 .

8. Extensions and Future Work
In DL this is expressed ag,-e — [p]¢post- Furthermore let

Mod, = {z}. Now assume that we want to show There are two obvious extensions to the work presented

in this paper. The formul& to which the modifier trans-
formation is applied should be allowed to include tgre

The usual technique (without modifier sets) is to apply the construct known, for example, from OCL (see e.g. [14]).

(i=5Aj=1)>[plz+j>2.

rule Second, the restriction o to be a first-order formula
should be lifted. That is important because, currently, to
L = ¢pre Ppost = ¢ prove, e.g.I' — [p][q]¢, one has to find a formulaé such
L' — [plo that ()T — [p]y and (b — [¢]¢ hold, which then allows

to apply the transformation and prove formulas (a) and (b)
by showingl — tmeq @andy) — dmog to be valid. In prac-
1. (i=5A7=1) = ¢pre,and tice it can be difficult to come up with an appropriate for-
mulaz.

In both cases we know in which directions to look for a

The first implication is certainly true, but the second canno Selution, but the details might be thorny.

i.e., to prove

2. ¢post —>Z+] 22

be proved. Moreover, an algorithm to compute (approximations for)
Let us now try a different line of attack, making use of & modifier set for a givena¥a CARD programp should be
the modifier set. Since we aleady know defined and implemented.
The KeY system uses UML as its specification language.
(i=5Nj=1)—= [plopost » It is intended to define an extension of UML's constraint
language OCL with mechanisms to express change infor-
we could try to prove mation.

Finally, it may be worthwhile to extend the expressive-

((=5nj=1) = [pl(¢post = 2+j 22) . ness of modifier sets such that programs for which currently

Since no (finite) modifier set exists can also be handled.
((C = [pl4) A (C = [pl(A = B))) = (C — [p]B) References

is a DL tautology, this would indeed prove our goal. By

Theorem 1 the validity of [1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hahnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,

(i=5A=1)— [p](¢post —z+5>2) and P. H. Schmitt. The KeY tool. Technical Report in Com-

puting Science No. 2003-5, Department of Computing Sci-

is equivalent to the validity of ence, Chalmers University and Goteborg University, Gote

borg, Sweden, Feb. 2003. Availabletuitp://i12www.
(i=5ANj=1) = (Ppost = 2+ J > 2)mod - ira.uka.de/"beckert/pub/key03.pdf

(2]

(3]

(4]

(5]

(6]

(7]
(8]

9]

(10]

(11]

(12]

(13]

(14]

W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz,
R. Hahnle, W. Menzel, and P. H. Schmitt. The KeY ap-
proach: Integrating object oriented design and formal-veri
fication. In M. Ojeda-Aciego, I. P. d. Guzman, G. Brewka,
and L. M. Pereira, editor®roceedings, Logics in Artificial
Intelligence (JELIA), Malaga, Spail.NCS 1919. Springer,
2000.

B. Beckert. A dynamic logic for the formal verification
of Java Card programs. In I. Attali and T. Jensen, editors,
Java on Smart Cards: Programming and Security. Revised
Papers, Java Card 2000, International Workshop, Cannes,
France LNCS 2041, pages 6-24. Springer, 2001.

B. Beckert and B. Katz. Using change information in
the verification of Java programs with OCL specifications,
2003. Forthcoming.

N. Catafio and M. Huisman. Chase: A static checker
for JML'’s assignable clause. IRroceedings, Verifica-
tion, Model Checking and Abstract Interpretation (VMCAI)
LNCS 2575, pages 26—40. Springer, 2003.

D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Research Report 159, Compaq
Systems Research Center, 1998.

D. Harel, D. Kozen, and J. TiurynDynamic Logic The
MIT Press, 2000.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation
for detailed design. In H. Kilov, B. Rumpe, and I. Sim-
monds, editorsBehavioral Specifications of Businesses and
Systemschapter 12, pages 175-188. Kluwer Academic Pub-
lisher, 1999.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary desig
of JML: A behavioral interface specification language for
Java. TR 98-06t, Department of Computer Science, lowa
State University, 2002.

G. T. Leavens, K. R. M. Leino, E. Pall, C. Ruby, and B. Ja-
cobs. JML: notations and tools supporting detailed design
in Java. TR 00-15, Department of Computer Science, lowa
State University, 2000.

B. Meyer. Object-Oriented Software ConstructioRrentice
Hall, 2nd edition, 1997.

F. Spoto and E. Poll. Static analysis for JML’s assidaab
clauses. InProceedings, Foundations of Object-Oriented
Languages (FOOL10QR003.

K. Trentelman and M. Huisman. Extending JML speci-
fications with temporal logic. IrfProceedings, Algebraic
Methodology and Software Technology (AMASOINCS
2422, pages 334-348. Springer, 2002.

J. Warmer and A. Kleppelhe Object Constraint Language:
Precise Modelling with UML Object Technology Series.
Addison-Wesley, Reading/MA, 1999.

