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Abstract

In this paper, we present an approach aiming at full

functional deductive verification of concurrent Java pro-

grams, based on symbolic execution. We define a Dy-

namic Logic and a deductive verification calculus for a re-

stricted fragment of Java with native concurrency prim-

itives. Even though we cannot yet deal with non-atomic

loops, employing the technique of symmetry reduction al-

lows us to verify unbounded systems.

The calculus has been implementedwithin theKeY sys-

tem, and we demonstrate it by verifying a central method

of the StringBuffer class from the Java standard li-

brary.

1. Introduction

1.0.1. Motivation and Goals Verification of con-

current programs has traditionally been—with a few
exceptions—the domain of model checking tools. This
holds also for Java program verification, where sev-
eral very successful model checking frameworks have
been established [13, 7]. Nonetheless, for verification
problems that are data-centric or that involve an un-
bounded number of threads, deductive verification of-
fers advantages. In general, the properties we deal with
in this paper can neither be expressed in temporal logic
nor verified with a model checker.

In this paper, we present a Dynamic Logic and a
deductive verification calculus for a fragment of the
JAVA language, which includes concurrency. Our aim
has been to design a logic that (1) reflects the proper-
ties of Java concurrency in an intuitive manner (2) has
a sound and (relatively) complete calculus (3) requires
no intrinsic abstraction, no bounds on the state space
or thread number (4) allows reasoning about proper-
ties of the scheduler within the logic, but does not re-
quire such reasoning for program verification.

To achieve our goal, we currently have to make three
important restrictions. First, we do not consider thread
identities in programs. Second, we do not handle dy-
namic thread creation (but systems with an unbounded
number of threads). Third, we require that all loops
are executed atomically. These restrictions allow us to

employ very efficient symmetry reductions and thus
symbolically execute programs in the presence of un-
bounded concurrency. We will discuss their significance
in the next section.

Our calculus has been implemented in the KeY sys-
tem [2, 3], which has been successfully used for verifica-
tion of non-concurrent Java programs. An application
of our method to verify one of the most common pieces
of production Java code in presence of unbounded con-
currency is described towards the end.

1.0.2. The Achieved Java Coverage On the se-
quential side, we benefit from the KeY system’s 100%
Java Card coverage, which includes full support for dy-
namic object creation (with static initialization), effi-
cient aliasing treatment, full handling of exceptions and
method calls, Java-faithful arithmetics, etc. All of these
features can be used in concurrent programs. On the
concurrent side, we have to restrict the program frag-
ment as stated. Also, like all Java verification systems
known to us, we assume an intuitive, sequentially con-
sistent memory model, where updates to shared state
are immediately visible to all threads. In reality, the
Java Memory Model provides much weaker guaran-
tees. We believe that our calculus could be extended
to reflect these. Apart from this, our calculus faithfully
models Java’s concurrency.

One concurrency limitation concerns the use of ex-
plicit thread identities in programs. These are usually
manifested by invocations of methods from the class
Thread, the most important being t.interrupt() and
t.join(). Since our calculus is strongly based on sym-
metry reduction such programs are not allowed. We
believe, though, that this limitation precludes us from
verifying only a small fraction of interesting code.
In particular, it does not forbid the use of mutexes
(synchronized blocks) or condition variables (wait()/
notify()).

The only thread creation mechanism we currently
provide is the possibility for the programmer to specify
the initial thread configuration of a program (together
with the initial local variable assignment). Note that
the configuration values can be symbolic (“k threads”).
While this limitation is indeed unfortunate, it does not
impair the usefulness of the calculus much. It is in the
nature of concurrent Java applications that most ob-



jects are passive entities. They are unaware of thread
creation and can (and indeed have to) be verified for an
arbitrary number of threads accessing them. The most
prominent expression of this fact is library code, which
has to be thread-safe for any number of client threads.

Finally, we require all loops to be atomic. This
means that the programmer has to ensure that no (sig-
nificant) interleavings occur while the loop runs. This
property can be checked by our method as described
later on. We are working on overcoming this limita-
tion by developing a more elaborated algebraic model
of the scheduler.

1.0.3. Related Work Several deductive calculi for
(fragments of) sequential Java exist, while not much
work has been done to extend these calculi to cover
concurrency. A notable exception is the Verger tool [1],
a deductive verification system for a Java-like language
with concurrency, based on Hoare Logic. The system
requires the programs to be augmented with auxil-
iary variables and annotated with Hoare-style asser-
tions. From these, verification conditions are generated,
which have to be discharged in PVS. The system has a
good concurrent language coverage, including dynamic
thread creation. It does, however, not serve our goal
of focussing on symbolic execution of concurrent pro-
grams.

A huge body of work is available on verifying tem-
poral properties of concurrent software. This includes
model checkers and even deductive proof systems (e.g.,
by Manna and Pnueli [10]). In contrast to using tem-
poral logic though, a proof system for dynamic logic
allows functional verification, i.e., full reasoning about
data. This way verification tasks can be tackled where
not only safety or liveness but the input-output rela-
tion of a concurrent program is of interest.

The only dynamic logic for a programming language
incorporating concurrency is—to our knowledge—the
Concurrent Dynamic Logic (CDL) described by David
Peleg in [12]. He notes, however, that this particular
logic “suffers from the absence of any communication
mechanisms; processes of CDL are totally independent
and mutually ignorant”. In [11], Peleg gives two ex-
tensions of CDL with interprocess communication: one
with channels and one with shared variables. In both
works cited, the focus is on studying concerns of ex-
pressivity and decidability of the logics (communica-
tion renders the logic highly undecidable, in short). The
issue of a calculus or program verification in general is
not touched.

A comprehensive control flow model of Java concur-
rency is given in [4]. The authors use a variant of Petri
nets to model the concurrent “skeletons” of programs
with a particular extension to treat the “partially
non-blocking rendez-vous” nature of Java’s wait()/
notify() mechanism. As far as the basic representa-
tion formalism is concerned, this is closely related to
our work, although we use full programs. The cited

work describes a model checker, which verifies program
models for safety properties expressed in terms of con-
trol flow. The framework does not cover functional ver-
ification.

Another class of verification tools for concurrent pro-
grams are static verifiers. A prominent example is the
SPEC# system, which incorporates a static verifier for
a concurrent object-oriented language [8]. Static veri-
fiers are very good at detecting race conditions, but do
not offer full functional verification.

It is known that the efficiency of a verification sys-
tem is bounded to a great degree by the composition-
ality of reasoning it offers. This aspect is currently not
the target of our work though. Suggestions for mod-
ularizing reasoning about concurrent Java programs
have been made in [5, 15]. This research indicates that
programmers use dedicated “serializability techniques”
(mostly locking protocols and reference confinement)
to ensure correctness of programs. We believe that the
proposed specifications developed for model checking
resp. static analysis can be put to efficient use in a de-
ductive framework. We have already shown how cer-
tain serializability properties can be verified deduc-
tively in [9].

2. A Logic for Concurrent Java

2.0.4. Design of the Program Logic The logic
we present in this paper is an instance of Dynamic
Logic (DL) [6], and the proof system is a sequent-style
symbolic execution calculus, which ensures good un-
derstandability.

DL can be seen as a modal logic with a modality
〈p〉 for every program p, which refers to the succes-
sor states that are reachable by running p. The for-
mula 〈p〉φ expresses that the program p terminates in
a state in which φ holds. A formula ψ → 〈p〉φ is valid
if for every state s satisfying pre-condition ψ a run of
the program p starting in s terminates, and in the ter-
minating state the post-condition φ holds. In standard
DL there can be several such states because the pro-
grams can be non-deterministic; in DL for sequential
Java, programs are deterministic, and there is exactly
one such world (if p terminates) or there is no such
world (if p does not terminate). Facing the choice of se-
mantics for our logic for concurrent programs, we wish
to argue (surprisingly maybe) for a deterministic se-
mantics.

The main reason for this choice is the much stronger
control over granularity of reasoning. With indetermin-
istic scheduling, we have no choice but to perform (a
prohibitively large number of) case distinctions. Un-
sightly meta-level efforts would then be necessary to
prune the proof search space and get a grip on the com-
plexity. Instead, we start with an underspecified deter-
ministic scheduler, and express its decisions explicitly
on the object level by means of a partially specified
scheduling function. Thus we can tackle simple prob-
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lems with relatively little effort, but still have the power
to get into the “gory details” for demanding cases. Fur-
thermore, we retain beneficial logical properties, like
〈p〉φ→ [p]φ.

2.0.5. Concurrent Programs The programs we
consider are Java programs with the inherent restric-
tions posed in Section 1.0.1.

Several threads can execute a program concurrently.
Thus, a program is a passive template “without life”
unless a thread configuration is added, i.e., a de-
scription of which threads are executing the program.
Threads are given a number, conventionally called
thread id (tid); they are in fact identified with this num-
ber.

In this paper we only feature programs with a sin-
gle code template or thread class. Our implementation
supports multiple thread classes as this requires sim-
ply an additional case distinction.

2.0.6. Positions We number all state-changing
statements in a program (i.e., assignments; later also
locking primitives and native method calls) from
left to right, starting with one. We call these num-
bers the positions of the program. Their intuitive
meaning is that if a thread is at a certain posi-
tion, it is about to execute the corresponding state-
ment when it is next scheduled to run. In addition,
we consider the end of a program to be a posi-
tion, which is reached when a thread has completed
the execution of the program.

2.0.7. Configurations A thread configuration spec-
ifies the threads waiting to execute at every position
of a given program. A configuration (of size n) is an
n-tuple of pairwise disjoint sets of tids. For example,
({3, 17, 5}, {}, {2}) is a configuration. A configuration
of size n is compatible with programs that have n po-
sitions, i.e., that have n− 1 statements.

We write (compatible) pairs c|p of thread config-
urations and programs by inlining the components of
the configuration within the program. For example, the
program

v=(x<10); if (v) {a=10; x=a+1}

together with the configuration ({5}, {3, 4}, {1}, {2}),
where four threads are active and one has already ter-
minated, is written as

{5}v=(x<10); if (v) {{3,4}a=x;{1}x=a+1;}{2}

A position pos is enabled in a configuration c iff its
tid set is not empty and it is not the last position, which
is reserved for threads that have run to completion. We
define enabled(c, pos) ≡ (c(pos) 6= ∅) ∧ (pos < size(c)),
where size(c) is the length of the configuration tuple.

2.0.8. The Scheduler The scheduler is (modeled
by) the rigid function sched . That is, different models
may interpret this function differently and, thus, have
different schedulers. But within a model the scheduler

is rigid. It does not depend on the state. Intuitively,
we assume the scheduling to be data-independent; it is
not affected by the current values of variables and ob-
ject attributes.

To model the fact that a scheduler may not al-
ways run the same thread for a given thread config-
uration, we make it dependent on a seed : sched(r, c) is
the id of the thread scheduled to run next in configu-
ration c given the seed r. If no position is enabled in c,
sched(r, c) = 0. Fairness or other scheduler properties
are not built into our model. Our scheduler may select
an arbitrary thread id provided it occurs in the config-
uration c and is not already at the last position. Prop-
erties such as fairness can, however, be specified by
adding axioms restricting the function sched . It should
be noted that Java itself is only “statistically fair”.

2.0.9. Signatures and Variables The formulas of
our logic are built over a set V of logical (quantifi-
able) variables and a signature Σ of function and predi-
cate symbols. Function symbols are either rigid or non-

rigid. Rigid function symbols have a fixed interpreta-
tion for all states (e.g., addition on integers). In con-
trast, the interpretation of non-rigid function symbols
may differ from state to state.

Logical variables are rigid in the sense that if a log-
ical variable has a value, it is the same for all states.
They cannot be assigned to in programs. Everything
that is subject to assignment during program execu-
tion (variables, object attributes, arrays) is modeled
by non-rigid functions. We will call these functions
program variables. In particular, arrays and object at-
tributes give rise to functions with arity n > 0.

We now further sub-divide the bulk of program vari-
ables. Every thread has its own private copy of each
local variable, such that assignments to these are not
visible in other threads. We give non-rigid functions
used to model thread-local variables another argument,
which is the thread id, such that the local copies can
be distinguished. For example, l(k) denotes the copy
of variable l used by the thread with id k. This dis-
tinction, though, is unavailable within concurrent pro-
grams, as one thread is unaware of other threads’ copies
of the same local variable. As a peculiar consequence a
thread-local variable (which is, again, a non-rigid func-
tion) of arity n appears with n − 1 arguments in the
concurrent program.

Shared state manipulation can arise when these lo-
cal variables are dereferenced. Whether o(13).a refers
to the same memory location as o(17).a depends on
the values of o in the threads 13 and 17. This is a stan-
dard aliasing question, which is resolved just like in
the sequential KeY calculus. On the other hand, our
logic also has explicit shared variables, which are used
to model static fields. Shared variables exist only once
and assignments changing their value are immediately
visible to all threads.
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2.0.10. Formulas The set of formulas is defined as
common in first-order dynamic logic. That is, they are
built using the connectives ∧,∨,→,¬ and the quanti-
fiers ∀, ∃ (first-order part). If p is a program, c is a con-
figuration, r is a scheduling seed, and φ a formula, then
〈r|c|p〉φ (the “diamond” modality) and [r|c|p]φ (the
“box” modality, which is a shorthand for ¬〈r|c|p〉¬φ)
are formulas. In the examples, we omit the schedul-
ing seed r where it is not relevant.

Intuitively, a diamond formula 〈r|c|p〉φ means that
all threads from the configuration c for a program p

and random seed r must terminate normally (run to
completion) and afterwards φ has to hold. The mean-
ing of a box formula is the same, but termination is not
required, i.e., φ must only hold if the program termi-
nates.

Furthermore, {lhs:=rhs}φ is a formula. The expres-
sion {lhs:=rhs} is called a state update. Note that, un-
like assignments, state updates can refer to the local
copies of local variables. They cannot be used within
programs and, as opposed to programs, their evaluation
does not require a thread configuration or a schedul-
ing seed. State updates (together with an update sim-
plification calculus, which is a standard part of KeY)
are used to handle assignments, resolve aliasing, and
also relate logical and program variables.

2.0.11. Semantics of Terms, Programs, and

Formulas The semantic domains used to inter-
pret DL formulas are Kripke structures K = (S, ρ),
where S is the set of program states and ρ is the tran-
sition relation interpreting programs (to be more pre-
cise: programs with a given thread configuration and a
given scheduling seed). Since we use deterministic pro-
grams and the scheduling is deterministic (for a given
configuration and a given seed), ρ is a (partial) func-
tion, i.e., for every program p, configuration c, and
seed r, ρ(r, c, p) : S → S.

The states s ∈ S provide interpretations of functions
(including program variables) via first-order structures
for the signature Σ. We work under the constant do-
main assumption, i.e., for any two states s1, s2 ∈ S the
universes of s1 and s2 are the same set U . We refer
to U as the universe of K. Rigid function symbols have
a fixed interpretation for all states, while the interpre-
tation of non-rigid function symbols may differ from
state to state. We assume that the set S of states of
any Kripke structure consists of all first-order struc-
tures with signature Σ over some fixed universe and
for some fixed interpretation of the rigid symbols.

Since the transition relation ρ (by definition) corre-
sponds to the fixed semantics of our programming lan-
guage, the only things that can change from one model
(Kripke structure) to the other are: the signature, the
universe, and the interpretation of the rigid symbols
(including that of the scheduler function sched).

The valuation vals,β of terms w.r.t. a given state s
and a given logical variable assignment β is as usual

in first-order logic. The semantics ρβ(r, c, p) of a pro-
gram p reflects the behavior of the corresponding Java
program. Algebraically it is a relation between initial
and final states, which is parameterized by a schedul-
ing seed r and a thread configuration c. The seman-
tics of modal formulas is as usual for first-order modal
logic, i.e., vals,β(〈r, c, p〉φ) = true iff (s, s′) ∈ ρ(r, c, p)
for some state s′ with vals′,β(φ) = true. For for-
mulas with updates, vals,β({lhs:=rhs}φ) = true iff
vals′,β(φ) = true for some state s′, which is identical to
s except that the value of lhs is changed to vals,β(rhs).

A Kripke structure is a model of a formula φ iff φ is
true in all states of that structure. A formula φ is valid

if all Kripke structures are a model of φ.

2.0.12. A Deductive Calculus We employ a se-
quent calculus that consists of the rules for symbolically
executing concurrent programs presented in the follow-
ing, together with standard structural first-order rules,
rules for integers and other datatypes (which include
induction) and rules for update simplification. All the
latter rules are inherited from the standard KeY calcu-
lus and are not shown here.

A sequent is of the form Γ ⊢ ∆, where Γ and ∆ are
sets of formulas. Its informal semantics is the same as
that of the formula

∧

φ∈Γ φ →
∨

ψ∈∆ ψ. As common
in sequent calculus, the direction of entailment in the
rules is from premisses (sequents above the bar) to the
conclusion (sequent below), while reasoning in practice
happens the other way round: by matching the conclu-
sion to the goal.

The invariant rule in Section 5 has to be applied
exactly as shown. From all other rules we have omitted
the usual context Γ and ∆, as well as a sequence of
updates U , which can preceed the formulas involved.
The modality 〈[·]〉 can mean both a diamond and a box,
as long as this choice is consistent within a rule.

3. Symbolic Execution of Concurrent

Programs

3.1. Extending Symmetry Reduction

Symmetry reduction is a well-known idea that differ-
ent threads with the same properties (which boil down
to local data and program counter) need not be dis-
tinguished. Most model checking frameworks use some
sort of symmetry reduction to prune the state space.
This is described prominently in [14] (the Bogor tool)
and [16] (on-the-fly model-checking with TVLA).

Due to their nature, these approaches only detect
symmetry between threads with exactly the same con-
crete local data. In a deductive verification system we
can give this idea a new twist. We know that proofs
about a program have significantly fewer cases than the
program possible inputs. In other words, even threads
with different local data will exhibit the same behav-
ior in terms of their execution path through the code.
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Furthermore, there is only a finite and relatively small
number of different paths; this number is dictated by
the shape of the program. Since we are executing pro-
grams symbolically (and have already paid a price for
that in form of case distinctions), we can reap higher
benefits and, as a start, identify threads with differ-
ent local data as long as they follow the same path.

Furthermore, we can achieve even stronger symme-
try reduction by forcing a separation of thread schedul-
ing and control flow. To obtain symmetry between
threads with different paths through the program, we
assume each thread to linearly traverse the program:
There is no jumping back (except within an atomic
loop), and each thread visits each position exactly
once. This means, however, that threads can end up
in “wrong” parts of if-then-else code. To preserve the
original semantics of the program, we assume that the
state is not changed by the program while its control
flow is in the wrong place. For this small additional
price, all thread traces are now completely symmet-
ric.

Thus, we have completely eliminated the necessity
to consider different orderings of threads that have
reached the same position within the program. To-
gether with exploiting atomic and independent code,
this makes deductive verification of real concurrent sys-
tems feasible.

3.2. Expressing Unbounded Concurrency

As we have mentioned above, we force each thread
to visit each program position exactly once. As-
suming threads with tids 1, . . . , n, it is clear that
for every position pos , there is a permutation
ppos : {1 . . . n} → {1 . . . n}, which describes the or-
der in which the threads are scheduled at this posi-
tion.

Given these permutations, it is sufficient to know
how many threads are at each position. Then, the
exact configuration is fixed as well. That allows us
to write configurations with r positions in the form
(p1 : k1, . . . , pr : kr), where p1, . . . , pk are terms repre-
senting the permutations and k1, . . . , kr are terms rep-
resenting the number of threads at the positions. Us-
ing this notation, the next thread scheduled at posi-
tion pos is the (Post(pos) + 1)th thread, which has the
tid ppos(Post(pos) + 1) where Post(pos) is the num-
ber of threads already beyond pos in the current con-
figuration: Post(pos) = kpos+1 + · · · + kr.

Consider a configuration of size 4 with 2, 3,
5 and 7 threads waiting at each position respec-
tively. With the four permutation functions p1, . . . , p4

from above, we can write this configuration
as (p1 : 2, p2 : 3, p3 : 5, p4 : 7). If we now concentrate
on position 2, we can see that Post(2) = 5 + 7 = 12
threads have already passed this position and the next
one to execute it will be the 13th in count. But ex-
actly which one? Here the permutation functions come

into play. The exact tid of the thread scheduled to run
next at position 2 is given by p2(Post(2)+1) = p2(13).
This way we can talk concisely about thread order-
ings even if we don’t know them exactly.

The same way we can also write configurations
where the number of threads is not a concrete num-
ber but a variable. This very expressive form of writ-
ing allows us to formulate rules that do not take the
scheduling order into account, as it is hidden inside the
permutation functions. What we need for a complete
calculus are then the usual algebraic properties of per-
mutations and axioms of their interplay.

Altogether, our calculus works by reducing asser-
tions about programs to assertions about arithmetics,
which contain permutation functions encapsulating the
scheduler decisions. In the desirable case that the pro-
gram is scheduling-independent the permutation func-
tions can be removed from the correctness assertions
by application of standard algebraic lemmas. Schedul-
ing independence means that the relevant part of a pro-
gram’s final result is always the same, in spite of possi-
bly different intermediate states that it can assume in
different runs. Scheduling independence is an impor-
tant part of program correctness. When also the re-
maining assertions (now without permutations) can be
discharged, then the program is fully correct w.r.t. its
functional specification.

3.3. Pre-Processing Complex Sequen-

tial Program Parts

The rules of our calculus that symbolically execute
programs (i.e., treat state changes and concurrency;
they are explained in the following section), assume a
certain normal form of the program. That is, complex
sequential program parts must first be completely “un-
folded”.

This process results in a program that is trace-
equivalent to the original, but each occurring expres-
sion is now simple and each assignment atomic. The
program has more of each now in exchange. A version
of this transformation is already a part of the sequen-
tial KeY calculus (see [3]), and we have in fact reused
the bulk of the corresponding rules.

The only constructs in the resulting unfolded pro-
grams are assignments, conditionals and loops. We will
extend these to locking primitives and certain native
method calls later. Everything else, including object
creation, exceptions, etc., is reduced to these ingre-
dients. Moreover, the programs get normalized such
that (a) the evaluation of assignment expressions can-
not have side-effects, (b) the conditions of if-statements
and loops are local variables not occurring in the body
of the statement. The latter property greatly simplifies
the rules of our calculus. The fact that these variables—
once set—cannot change their value eliminates techni-
cal difficulties when specifying execution path condi-
tions.
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During the simplification process, the KeY cal-
culus introduces fresh local variables. For in-
stance, KeY unfolds Java’s o.a=u.a++; into
v=u.a+1; u.a=v; o.a=v; (v is a fresh local vari-
able). Java’s if (o.a>1){α} else {β} unfolds to
v=o.a>1;if (v) {α′} else {β′} and, slightly more in-
volved, the Java program while(o.a>1){α} expands
to v=o.a>1; while (v) {α′ v=o.a>1;}.

Method calls are handled by inlining method imple-
mentations and possibly adding conditionals for simu-
lating dynamic binding. Remember, modular verifica-
tion is not the goal of our current effort.

3.4. The Concurrency-Related Rules

3.4.1. Configuration Skolemization The follow-
ing rule replaces concrete thread configurations by a
compact permutation-based representation, while im-
plying no particular knowledge of the introduced per-
mutations as they are represented by new (Skolem)
constants.

⊢ 〈[r|cp|p]〉φ

⊢ 〈[r|c|p]〉φ
conf

where c is a thread configuration of the form
({i11, . . . , i

1
l1
},. . . , {ir1, . . . , i

r
lr
}); and cp is a configura-

tion of the form (p1 : l1, . . . , pr : lr), where p1, . . . , pr
are fresh unary permutation functions.

3.4.2. Position Choice Symbolic execution starts
with the choice of an enabled position in the given con-
figuration. For this we employ the function P , which
is a projection of the scheduling function. For a con-
figuration c and a seed r, P (r, c) returns the position
from which the next thread will be scheduled—or 0 if
no enabled positions remain. Again, enabled(c, pos) =
(c(pos) 6= ∅) ∧ (pos < size(c)).

It is a rule of the calculus that the following axioms
describing properties of P may at any time be added
to the left side (the antecedent) of a sequent:

• The axiom 0 ≤ P (r, c) < size(c) effectively
amounts to a disjunction over the positions of c,
which during the proof gives rise to a case dis-
tinction.

• The values of P are of course restricted to
the positions enabled in a given configura-
tion: P (r, c) 6= 0 → enabled(c, P (r, c)).

• P may only return 0 if no position is enabled,
which is expressed by the following axiom:

P (r, c) = 0 →
∀pos .(1 ≤ pos < size(c) → ¬enabled(c, pos))

3.4.3. The Rule for Concurrent Execution Fig-
ure 1 shows the concurrent symbolic execution rule of
our calculus. π and ω denote unchanged program parts.
pos is the position of the executed assignment lhs=rhs
in the program p. The condition path(pos , p) is the path
condition of this assignment (which is at position pos)

in the program p. It is a conjunction of all if-conditions
on the path from the beginning of the program to
the assignment. Each if-condition appears as given
if the path goes through the then-part, and negated
if the path goes through the else-part. For example,
the path condition of the statement v=t; in the pro-
gram if (a) {if (b) {} else {v=t;}} else {} is
b = FALSE ∧ a = TRUE .

Furthermore, {lhs∗(pos):=rhs∗(pos)} is a state up-
date built by replacing every occurrence of a local vari-
able v in lhs and rhs, by v(ppos(Post(pos) + 1) using
the configuration of p (cf. definition of Post(·) in 3.2).
This way, the update represents a “sequential instan-
tiation” of the concurrent assignment template for the
thread given by the appropriate permutation and the
current configuration.

For example, if we consider the assignment v=o.a;
at position one in some program, and the configura-
tion before execution is (p1 : 2, p2 : 5, p3 : 7), then the
generated update is {v(p1(13)):=o(p1(13)).a}. The up-
date will be tackled by the update simplification rules,
after the program has been completely executed. This
will happen at some point, since the rule reduces the
general measure of enabledness in the system.

3.4.4. The Rule for Empty Programs In case no
position is enabled in a configuration, the program does
nothing and the modality can be removed altogether.
The following rule applies:

⊢ P (r, c) = 0 ⊢ φ

⊢ 〈[r|c|p]〉φ
empty-program

3.4.5. Reasoning About Permutations For the
calculus to be complete, we need to add standard ax-
ioms that characterize permutations. We do not present
these axioms here. It is a rule of the calculus that ax-
ioms can be added to the left side of any sequent at
any time.

Together with the following permutation interplay
axiom

pi+1(Post(i+ 1) + 1) ∈ {pi(1) . . . pi(Post(i))}\
{pi+1(1) . . . pi+1(Post(i+ 1))}

the calculus is sound and complete. This axiom ex-
presses the fact that exactly the threads can be sched-
uled at a given position that have already passed the
previous position, but not yet the next.

3.4.6. Treating Concurrency Primitives At this
point we add rules for reasoning about synchronized
methods and blocks. Synchronized code offers a way to
ensure mutual exclusion of threads by structured ac-
quisition and release of locks associated with objects.
To make this process explicit, we extend the Object

class with a pair of “ghost” methods <lock>() and
<unlock>(). Code marked as synchronized is automat-
ically surrounded by invocations of these methods dur-
ing the unfolding stage. The locking methods manip-
ulate the ghost integer fields <lockedby> (identity of
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⊢ P (r, c) = pos

path(pos , p) ⊢ {lhs∗(pos):=rhs∗(pos)}〈[r|π {ppos :n−1}lhs=rhs{ppos+1:k+1} ω]〉φ

¬path(pos , p) ⊢ 〈[r|π {ppos :n−1}lhs=rhs{ppos+1:k+1} ω]〉φ

⊢ 〈[r| π {ppos :n}lhs = rhs{ppos+1:k}

︸ ︷︷ ︸

at position pos in p

ω]〉φ
step

Figure 1. The concurrent symbolic execution rule

the thread holding the lock) and <lockcount> (lock-
ing depth), which are also introduced into every ob-
ject.

The lock acquisition method is symbolically exe-
cuted by applying the rule:

lock

⊢ P (r, c) = pos

path(pos , p) ⊢
{o.<lockcount>:=o.<lockcount>+1}
{o.<lockedby>:=Post(pos)+1}

〈[r|π {ppos :n−1}o.<lock>{ppos+1:k+1} ω]〉φ
¬path(pos , p) ⊢

〈[r|π {ppos :n−1}o.<lock>{ppos+1:k+1} ω]〉φ

⊢ 〈[r| π {ppos :n}o.<lock>{ppos+1:k}

︸ ︷︷ ︸

at position pos in p

ω]〉φ

The structure of this rule is similar to the step rule
for handling normal assignments. Execution is success-
ful if the path condition is satisfied and the state-
ment is enabled (remember, P (r, c) = pos implies
enabled(c, pos)).

In addition, we also amend the enabledness predi-
cate in order to capture the mutual exclusion seman-
tics of locking. The new definition is:

enabled(c, pos) ≡ (c(pos) 6= ∅) ∧ (pos < size(c))∧
(<lockcount> = 0 ∨ <lockedby> = Post(pos) + 1)

The added second line means that either the lock has
to be available or it has been previously acquired by
the thread requesting it (reentrant locking). A simi-
lar rule exists for the <unlock>() method, which de-
creases the lock count and clears the locked by status
when the count reaches zero. All other rules can re-
main the same.

The presence of locking opens a possibility for dead-
lock. Just as the sequential KeY calculus maps abrupt
termination onto non-termination, we have decided to
model deadlock logically as termination. It is still easy
to discern a deadlocked state from normal termina-
tion by considering the final program configuration. Be-
sides, the desired postcondition would still hold, even
if the program becomes prematurely disabled.

Another important feature of Java’s concurrency
mechanism is condition variables. It allows threads to
suspend execution until an external signal is received.
Condition variables can be modeled in a similar man-
ner, since their usage does not involve thread identi-
ties. On the other hand, it requires a (special kind of)

non-atomic loop for correctness. We are currently work-
ing on adding support for this mechanism.

4. A Simple Example

Consider a financial transaction system that pro-
cesses concurrent incoming payments for an account.
We wish to establish that all payments end up de-
posited, regardless of their number and the order in
which the threads are scheduled. This can be expressed
by the following proof obligation, where sum is a shared
variable and e is a local variable whose thread-local
copies contain the payments. Which scheduling seed r
is chosen is irrelevant, and p is an arbitrary permuta-
tion of {1, . . . , n}:

{sum:=0}〈{p:n}sum = sum+e;{}〉(sum =
∑n

i=1 e(i))

Note that for the sake of the example we have abused
the programming language by writing an atomic as-
signment with two occurrences of a shared vari-
able. In reality, the assignment would be unfolded to
v=sum+e;sum=v; (with v a fresh local variable) and
locking would be necessary to avoid a race condi-
tion.

The proof of the property boils down to a simple in-
duction argument. Let n be arbitrary but fixed, then
the induction hypothesis is that n−k transactions have
been completed correctly, while k remain:

{sum:=
∑n−k

i=1 e(p(i))}

〈{p:k}sum = sum+e;{n−k}〉(sum =
∑n

i=1 e(p(i)))

Now we have to prove that the above holds for k + 1
transactions, i.e.:

{sum:=
∑n−k−1
i=1 e(p(i))}

〈{p:k+1}sum = sum+e;{n−k−1}〉(sum =
∑n

i=1 e(p(i)))

Applying the step rule to the above formula once, we
obtain (there is only one position, and thus one per-
mutation function, namely p):

{sum:=
∑n−k−1
i=1 e(p(i))}{sum:=sum+e(p(n− k))}

〈{p:k}sum = sum+e;{n−k}〉(sum =
∑n

i=1 e(p(i)))

Where the updates can be combined to:

{sum:=
∑n−k

i=1 e(p(i))}

〈{p:k}sum = sum+e;{n−k}〉(sum =
∑n

i=1 e(p(i)))
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Now, the induction hypothesis for k applies, and the
step case of the induction is closed. The base case k = 0
is trivially valid. By this argument we have established
the hypothesis for any k ≤ n. Instantiating k with n

yields:

{sum:=
∑0
i=1 e(p(i))}

〈{p:n}sum = sum+e;{0}〉(sum =
∑n

i=1 e(p(i)))

The sum in the update is empty, and rewriting the
postcondition with the lemma

∑n

i=1 e(p(i)) =
∑n

i=1 e(i)

we can derive the original conjecture. The lemma does
not depend on the particular program but expresses
properties of permutations (p is a permutation from
1 . . . n) and the commutativity of integer addition.

Thus, we have verified the transaction mechanism
for an arbitrary number of threads. This is important,
since it is easy to devise code that works for n but not
for n + 1 threads, as we will see later. The state ex-
plosion caused by the potentially different ordering of
transactions is efficiently controlled, even without fur-
ther knowledge of concrete data.

5. An Invariant Rule

For systems with a high number of potentially simul-
taneously enabled positions, applying induction may be
unwieldy. In the following we present an additional in-
variant rule, which allows tackling each potentially en-
abled statement separately. Instead of an induction hy-
pothesis, the user has to state (and then prove) a suit-
able invariant INV of the system.

invariant

⊢ UINV (r, c0)
INV (r, c�) ⊢ φ

INV (r, c), path(1, p), enabled(c, 1)

⊢ {lhs
∗(1)
1 :=rhs

∗(1)
1 }INV (r, c1)

...
INV (r, c), path(q, p), enabled(c, q)

⊢ {lhs
∗(q)
q :=rhs

∗(q)
q }INV (r, cq)

⊢ U〈[r|c0|p]〉φ

We assume that the program p has q + 1 posi-
tions. c0 is here the initial configuration (n, 0, 0, . . . , 0).
From c0 the final configuration c� is eventually
reached where all n threads have run to comple-
tion: c� = (0, 0, . . . , 0, n). The generic configuration c

is a tuple of variables (t1, . . . , tq+1). The configura-
tions ci are the same as c except that ci(i) = c(i) − 1
and ci(i+1) = c(i+1)+1 (i.e., ci is c with one thread
having moved from position i to i+ 1).

The first premiss of the rule states that the systems
satisfies the invariant in its initial configuration. The
second premiss states that the invariant implies the
desired property, once all threads have completed their

private 
har value[];private int count;publi
 syn
hronized StringBuffer append(
har c) {int newcount = count + 1;if ( newcount > value.length)
expandCapacity(newcount );

value[count ++] = c;return this;
}private void expandCapacity(int minimumCapacity) {int newCapacity = ( value.length + 1) * 2;if ( newCapacity < 0) {

newCapacity = Integer .MAX_VALUE;

} else if (minimumCapacity > newCapacity) {
newCapacity = minimumCapacity;

}
har newValue [] = new 
har[newCapacity];
System.arraycopy(value , 0, newValue , 0, count);
value = newValue ;

shared = false;
}

Figure 2. StringBuffer source code (excerpt)

work. What follows are q premisses—one for each po-
sition in the program but the last—stating that the
execution of the statement at this position preserves
the invariant. More precisely, we show INV to be in-
variant under updates originating from every position i
(1 ≤ i ≤ q) in the program. For each such position we
can assume its enabledness and the corresponding path
condition.

Compared to the standard loop invariant rule, the
following becomes apparent. First, while a loop only
has one degree of freedom (the execution of the loop
body), a concurrent program has one degree of freedom
for each potentially enabled position. Every statement
executed brings the system into a new state, and, thus,
has to be shown as invariant-preserving. Second, the in-
variant formula takes a configuration as a parameter.
This is necessary, since the configuration corresponds
to the loop counter, but it is not part of the data (the
state) in our logic. Third, our invariant rule is sound
for the diamond modality even without a special ter-
mination argument, since the only potential sources of
non-termination are loops, which we assume as atomic,
and the sequential calculus fragment is sound and com-
plete for these. For this reason, the above invariant rule
is also not needed for the completeness of the concur-
rent calculus.

An example for using the invariant rule is given in
the next section.

6. A Real-World Example

We have applied our method to verify the full func-
tional correctness of a method of the StringBuffer

class in presence of unbounded concurrency. The
class java.lang.StringBuffer represents a muta-
ble character sequence. It is a key class of the stan-
dard Java library. A central method of the class

8



strb.<lock >();

newcount =strb.count +1;

j_1=strb.value.length;
b=newcount >j_1;if (b) {

j_2=strb.value.length;
j_3=j_2+1;
newCapacity=j_3*2;

b_1=newCapacity_ <0;if (b_1) {
newCapacity=Integer .MAX_VALUE;

} else {

b_2=newcount >newCapacity;if (b_2) {

newCapacity=newcount ;
}

}

b_3=newCapacity <0;if (b_3) throw new NegativeArraySizeException();

newObject=new 
har[newCapacity];
src_1=strb.value;

len_2=strb.count;

System.arraycopy(src_1 ,0,newObject ,0,len_2);

strb.value=newObject;
}

val_1=strb.value;
j_4=strb.count;

strb.count=j_4+1;
val_1[j_4]=c;

strb.<unlock >();

Figure 3. Source code after unfolding

is append(char c), which appends the charac-
ter c to the end of the sequence.

We have used the original source code, which is
shipped by SUN with the JDK 1.4.2 (shown in Fig-
ure 2). The StringBuffer implementation is backed by
a char array that is initially 16 elements long. Should
the array become full, a new, longer array is allocated
and the contents copied. This happens transparently
for the user.

A functional specification of the append method can
be given as:

strb.<lockcount>= 0 ∧ ¬strb = null∧
strb.count = 0 → ∀n. n > 0 →

〈{p1:n}strb.append(c);{0}〉strb.count = n∧
∀k. 0 ≤ k < n→ strb.value[k] = c(p1(k + 1))

where strb is a shared reference of type StringBuffer.

Plainly speaking: if n threads are concurrently per-
forming an append on a shared (and initially empty)
StringBuffer object, then all threads will eventually
run to completion and the StringBuffer will contain ex-
actly the characters deposited by the threads. Further-
more, the characters will fill the backing array in the
order induced by the thread scheduling.

We now describe the shape of the proof, which has
three major parts.

6.0.7. Unfolding First, we have “unfolded” the im-
plementation. The expandCapacity() method has
been inlined, and fresh local variables have been in-
troduced to eliminate side effects and make ex-
plicit the atomicity granularity of the code. The result
is shown in Figure 3, though exceptions and array cre-
ation are still in their folded state for brevity.

The code also shows a call to System.arraycopy(),
which cannot be unfolded. This native method
call can be seen as one big parallel assign-
ment. This viewpoint is sound under the atom-
icity proviso proven below. During symbolic ex-
ecution, the KeY system translates a call like
arraycopy(src, srcPos, dest, destPos, len) to a
so called quantified update

{for 1 ≤ l ≤ len;

dest[srcDest+ l − 1] := src[srcPos+ l − 1]}

which is a concise way to express a number of updates
at once. We also use quantified updates to state the
induction hypothesis later on.

6.0.8. Establishing Atomicity We then used the
invariant rule to establish atomicity of the append
method. This greatly simplifies further proof. We wish
to show that the method can only be executed by one
thread at a time (on the same object). This property
can be stated as the invariant

N ≤ 1,where N =
∑q

i=2 ci

i.e., the configuration never has more than one thread
between its second and the last but one position. Before
the rule can be applied, the above has to be strength-
end to the following invariant

INV (r, c) ≡ N ≤ 1 ∧ (N > 0 ↔ <lockcount>> 0)

This invariant clearly holds in the initial state, since N
as well as <lockcount> are both zero.

Statements at positions 2 . . . q preserve the invariant
since they cannot increase the value of N , as only the
statement at position 1 can.

Finally, the locking statement at position 1 also pre-
serves the invariant. If the lock is available then N = 0
before the locking per the second conjunct. After the
execution, both N and <lockcount> are equal to 1. If
the lock is not available, then the locking statement is
disabled.

Thus, the method is atomic, and we can assume the
following simplification lemma in the proof:

pi(k) = pj(k) for 1 ≤ i, j ≤ q

Once a thread has entered the method it will run to
completion without interference.

6.0.9. Establishing Functional Correctness At
this point we know that the method is correctly syn-
chronized (there are no race conditions), but is it also
functionally correct? Since we used a JAVA-faithful
bounded integer semantics, we have, of course, discov-
ered that the specification shown above is not quite
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right, as it holds true only for n ≤ 232 − 1. Trying
to insert more characters into a StringBuffer results
in an ArrayIndexOutOfBoundsException. This bound
may seem of little practical importance, but it is just
an instance of a general problem. Concurrent access
to bounded data structures is likely to result in sub-
tle bugs, even in presence of proper synchronization. It
is easy to write code that works for k but not for k+ 1
threads, even for k = 1.

Since there is no way to fix the method, we amended
the conjecture with a pre-condition limiting the initial
value of n. After that it was easy to establish by induc-
tion. The induction hypothesis I(k) we used is:

k ≤ n0 → {count:=n0 − k}
{for 0 ≤ l ≤ n0 − k; strb.value[l] := c(p1(l + 1))}

〈{p1:k}strb.append(c);{n0−k}〉strb.count = n0∧
∀k. 0 ≤ k < n0 → strb.value[k] = c(p1(k + 1))

It summarizes the state of the system after n0 − k

threads have run to completion. n0 is the skolem sym-
bol introduced after eliminating the quantifier in the
conjecture.

The induction base case k = 0 is trivial, since it cor-
responds to a system with no enabled threads. The step
case I(k0) → I(k0 + 1) requires performing an “itera-
tion” of the system with k0 + 1 threads waiting, i.e., a
symbolic execution of the append by the (n0 − k0)th
scheduled thread. The execution has a choice between
three relevant program paths: (1) b is false (2) b is true
and b 2 is false or (3) b is true and b 2 is true. All of
these can be discharged without complications. At last,
instantiating k in the hypothesis with n0 yields the con-
jecture.

In total the proof comprises 14622 proof steps in 238
branches. User interaction was required in two steps:
specifying an induction hypothesis and instantiating
the resulting quantifier. Proof search took about one
minute on an average desktop computer.

7. Conclusion

We have defined a Dynamic Logic for reasoning
about input-output behavior of a subset of concurrent
Java programs. For this logic we have presented a de-
ductive calculus that is based on efficient symbolic ex-
ecution. This was made possible by a significant exten-
sion of the technique of symmetry reduction.

We have performed a machinized proof of full func-
tional correctness of a piece of real production code.
The proof demonstrates how multi-threading can re-
sult in subtle bugs even in correctly synchronized pro-
grams. Currently, we are working on extending the cov-
ered Java fragment.
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