
An Extension of Dynami
 Logi
for Modelling OCL's �pre OperatorThomas Baar, Bernhard Be
kert, and Peter H. S
hmittUniversit�at Karlsruhe, Fakult�at f�ur InformatikInstitut f�ur Logik, Komplexit�at und DeduktionssystemeAm Fasanengarten 5, D-76128 KarlsruheFax: +49 721 608 4211, Email: fbaar,be
kert,ps
hmittg�ira.uka.deAbstra
t. We
onsider �rst-order Dynami
 Logi
 (DL) with non-rigidfun
tions, whi
h
an be used to model
ertain features of programminglanguages su
h as array variables and obje
t attributes. We extend thislogi
 by introdu
ing an operator �pre on fun
tions that makes a fun
-tion after program exe
ution refer to its old value before program ex-e
ution. We show that formulas with this operator
an be transformedinto equivalent formulas of the non-extended logi
. We brie
y des
ribethe motivation for this extension
oming from a related operator in theObje
t Constraint Language (OCL).1 Introdu
tionSin
e the Uni�ed Modeling Language (UML) has been adopted as a standard ofthe Obje
t Management Group (OMG) in 1997, many e�orts have been madeto underpin the UML|and the Obje
t Constraint Language (OCL), whi
h is anintegral part of the UML, |with a formal semanti
s. Most approa
hes are basedon providing a translation of UML/OCL into a language with a well-understoodsemanti
s, e.g., BOTL [3℄ and the Lar
h Shared Language (LSL) [4℄.Within the KeY proje
t (see the web site at i12www.ira.uka.de/~key for de-tails), we follow the same line, translating UML/OCL into Dynami
 Logi
 (DL).This
hoi
e is motivated by the fa
t that DL
an
ope with both the dynami

on
epts of UML/OCL and real world programming languages used to imple-ment UML models (e.g. Java Card [2℄).The OCL allows to enri
h a UML model with additional
onstraints, e.g.,invariants for UML
lasses, pre-/post-
onditions for operations, guards for tran-sitions in state-transition diagrams, et
. Although, at �rst glan
e, OCL is sim-ilar to an ordinary �rst-order language,
loser inspe
tion reveals some unusual
on
epts. Among them is the �pre operator. In OCL, this unary operator isappli
able to attributes, asso
iations, and side-e�e
t-free operations (these are
alled \properties" in the OCL
ontext [9, p. 7-11�℄). The �pre operator mayonly be used in post-
onditions of UML operations. A property prop followed by�pre in the post-
ondition of an operation m() evaluates to the value of propbefore the exe
ution of m().

Dynami
 Logi
 [5{8℄
an be seen as an extension of Hoare logi
 [1℄. It is a�rst-order modal logi
 with modalities [p℄ and hpi for every program p. Thesemodalities refer to the worlds (
alled states in the DL framework) in whi
h theprogram p terminates when started in the
urrent world. The formula [p℄� ex-presses that � holds in all �nal states of p, and hpi� expresses that � holds insome �nal state of p. In versions of DL with a non-deterministi
 programminglanguage there
an be several su
h �nal states (worlds). Here we use a determinis-ti
 while programming language. For deterministi
 programs there is exa
tly one�nal world (if p terminates) or there is no �nal world (if p does not terminate).The formula �! hpi is valid if, for every state s satisfying pre-
ondition �, arun of the program p starting in s terminates, and in the terminating state thepost-
ondition holds. The formula �! [p℄ expresses the same, ex
ept thattermination of p is not required, i.e., must only hold if p terminates. Thus,�! [p℄ is similar to the Hoare triple f�gpf g.Here, we
onsider a version of �rst-order DL with non-rigid fun
tions, i.e.,fun
tions whose interpretation
an be
hanged by programs and, thus,
an di�erfrom state to state. Su
h non-rigid fun
tions
an be used to model features ofreal-world programming languages su
h as array variables and obje
t attributes.Moreover, to ease the translation of OCL into DL, we extend DL with anoperator
orresponding to OCL's �pre. The DL �pre operator makes a non-rigid fun
tion after program exe
ution refer to its old value before programexe
ution. This allows to easily express the relation between the old and thenew interpretation. For example, [p℄(
 :=
�pre) expresses that the interpretationof the
onstant
 is not
hanged by the program p.The main
ontribution of this paper is to show that formulas with the �preoperator
an be transformed into equivalent formulas without �pre.The �pre
onstru
t of OCL has already been investigated by other authors,e.g., for the purpose of translating OCL into BOTL [3℄. However, to our knowl-edge, the work reported in this paper is the �rst treatment of �pre in the DLframework.In Se
tion 2, we brie
y introdu
e DL with non-rigid fun
tions. Se
tion 3extends DL with the �pre operator and gives its semanti
s formally. In Se
tions4 resp. 5 we present two transformations of DL with �pre into DL without �pre.We
lose with a summary and a short dis
ussion of possible extensions to non-deterministi
 programming languages in Se
tion 7. The proofs are omitted fromthe main part of the paper; they are given in Appendix A.2 Dynami
 Logi
 with Non-rigid Fun
tionsAlthough non-rigid fun
tions are mostly ignored in the literature, the more spe-
i�

on
ept of array assignments has been investigated in [5, 7℄. In both paperstheir semanti
s is handled by adding to ea
h state valuations of se
ond-orderarray variables. We introdu
e, instead, non-rigid fun
tion symbols. This shift ofattention
omes naturally when we want to axiomatise the semanti
s of obje
t-

oriented languages in DL. In this setting non-stati
 attributes of a
lass are bestmodelled by non-rigid fun
tions.Let � = �nr [�r be a signature, where �nr
ontains the non-rigid fun
tionsymbols and �r
ontains the rigid fun
tion symbols and the predi
ate symbols,whi
h are all rigid (�r always
ontains the equality relation :=). The set Term(�)of terms and the set FmlFOL(�) of �rst-order formulas are built as usual from� and an in�nite set Var of obje
t variables.A term is
alled non-rigid if (a) it is a variable or (b) its leading fun
tionsymbol is in �nr. The programs in our DL are while programs with a generalisedassignment
ommand, re
e
ting the presen
e of non-rigid terms.De�nition 1. The sets FmlDL(�) of DL-formulas and ProgDL(�) of pro-grams are simultaneously de�ned as follows:{ FmlFOL(�) � FmlDL(�).{ If �1; �2 are in FmlDL(�), then so are :�1, �1 ^ �2, �1 _ �2, �1 ! �2,8x�1 and 9x�1 for all x 2 Var.{ If � is in FmlDL(�) and p is in ProgDL(�), then hpi� and [p℄� are inFmlDL(�).{ If t is a non-rigid term and s is a term, then t := s is in ProgDL(�).{ fail and skip are in ProgDL(�).{ If p1; p2 are in ProgDL(�), then so is their sequential
omposition p1; p2.{ If is a quanti�er-free �rst-order formula and p; q are in ProgDL(�), thenif then p else q � and while do pod are in ProgDL(�).In the following, we often do not di�erentiate between the modalities hpiand [p℄, and we use [hpi℄ to denote that it may be of either form.The Kripke stru
tures used to evaluate formulas from FmlDL(�) and pro-grams from ProgDL(�) are
alled DL-Kripke stru
tures. The set of states ofa DL-Kripke stru
ture K is obtained as follows: Let A0 be a �xed �rst-orderstru
ture for the rigid signature �r, and let A denote the universe of A0. Ann-ary fun
tion symbol f 2 �r is interpreted as a fun
tion fA0 : An ! A andevery n-ary relation symbol r 2 �r is interpreted as a set RA0 � An of n-tuples.A variable assignment is a fun
tion u : Var ! A. We use u[x=b℄ (where b 2 Aand x 2 Var) to denote the variable assignment su
h that u[x=b℄(y) = b if x = yand u[x=b℄(x) = u(y) otherwise; moreover, if V is a set of variables, then ujVdenotes the restri
tion of u to V . The set S of all states of K
onsists of allpairs (A; u), where u is a variable assignment and A is a �rst-order stru
ture forthe signature �, whose redu
tion to �r, denoted with Aj�r ,
oin
ides with A0.We are now ready to de�ne for ea
h program p its interpretation �(p), whi
h isa relation on S. Simultaneously, we de�ne when a formula � is true in a state(A; u), denoted by (A; u) j= �.De�nition 2. The interpretation �(p) of programs p and the relation j= be-tween S and FmlDL(�) are simultaneously de�ned as follows:1. (A; u) j= � is de�ned as usual in
lassi
al logi
 if � is an atomi
 formula orits prin
ipal logi
al operator is one of the
lassi
al operators ^, _, !, :, or

one of the quanti�ers 8, 9. Also, the evaluation t(A;u) of terms t is de�nedas usual.2. (A; u) j= hpi� i� there exists a pair ((A; u); (B; w)) of states in �(p) su
hthat (B; w) j= �.3. (A; u) j= [p℄� i� (B; w) j= � for all pairs ((A; u); (B; w)) of states in �(p).4. If x is a variable, then �(x := s) = f((A; u); (A; u[x=s(A;u)℄)) j (A; u) 2 Sg.5. If t = f(t1; : : : ; tn) is a non-rigid term, then �(t := s)
onsists of all pairs((A; u); (B; u)) su
h that B
oin
ides with A ex
ept for the interpretationof f , whi
h is given byfB(b1; : : : ; bn) = �s(A;u) if (b1; : : : ; bn) = (t(A;u)1 ; : : : ; t(A;u)n)fA(b1; : : : ; bn) otherwise6. �(skip) = f((A; u); (A; u)) j (A; u) 2 Sg, and �(fail) = ;.7. �(while do pod) and �(if then p else q �) are de�ned as usual, e.g. [7℄.The parti
ular
hoi
e of programs in ProgDL(�) (Def. 1) is rather arbitrary.The results being proved in this paper hold true for any
hoi
e of ProgDL(�),as long as Lemma 1 is guaranteed. Furthermore, we assume that all programs pare deterministi
, i.e., (s; s1) 2 �(p) and (s; s2) 2 �(p) implies s1 = s2.Lemma 1. Let K = (S; �) be a DL-Kripke stru
ture over a signature �, let pbe a program, and let Vp be the set of all variables o

urring in p.1. The program p only
hanges variables in Vp; that is, if u(x) 6= w(x) thenx 2 Vp for all ((A; u); (B; w)) 2 �(p).2. The domain of the relation �(p) is
losed under
hanging variables not in Vpin the sense that, if ((A; u); (B; w)) 2 �(p) and u0jVp = ujVp, then there is apair ((A; u0); (B; w0)) 2 �(p) with w0jVp = wjVp and u0jV arnVp = w0jV arnVp .3 Dynami
 Logi
 with the Operator �preWe now de�ne syntax and semanti
s of DL extended with the �pre operator,whi
h
an be atta
hed to non-rigid fun
tion symbols. Intuitively, the semanti
sof f�pre within the s
ope of a modal operator [hpi℄ is that of f before exe
utionof p. If a formula
ontains nested modal operators, it may not be
lear, to whi
hstate the �pre operator refers. To avoid
onfusion, we only allow �pre to beused in the Hoare fragment of DL, where formulas
ontain at most one modaloperator.De�nition 3. The set Term�(�) of extended terms over � = �r [�nr
on-sists of all terms t� that
an be
onstru
ted from some t 2 Term(�) by atta
hing�pre to arbitrarily many o

urren
es of fun
tion symbols from �nr in t. A

ord-ingly, the set Form�FOL(�) of extended �rst-order formulas over �
onsists ofall formulas �� that
an be
onstru
ted from some � 2 FmlFOL(�) by atta
hing�pre to arbitrarily many o

urren
es of fun
tion symbols from �nr in �.

De�nition 4. The Hoare fragment H(�) � FmlDL(�) over a signature �
onsists of all formulas of the form 8z1 : : :8zd(�! [hpi℄) where p 2 ProgDL(�),�; 2 FmlFOL(�) and z1; : : : ; zd 2 Var (d � 0).The extended Hoare fragment H�(�)
onsists of all formulas of the form8z1 : : :8zd(�! [hpi℄) with p 2 ProgDL(�), � 2 FmlFOL(�), 2 Fml�FOL(�)and z1; : : : ; zd 2 Var (d � 0).De�nition 5. Let K be a DL-Kripke stru
ture, let (�! hpi) 2 H�, and let(A; u) be a state of K. The relation (A; u) j= �! [hpi℄ is de�ned in the same wayas in Def. 2 for formulas without �pre, ex
ept that, for any pair ((A; u); (B; w))in �(p), the interpretation t(B;w) of the non-rigid terms in Term�(�) is givenby: (f�pre(t1; : : : ; tn))(B;w) = fA(t(B;w)1 ; : : : ; t(B;w)n) :In the following, we use notation like (B; w) j= � and t(B;w) for formulas � resp.terms t
ontaining the �pre operator if it is
lear from the
ontext whi
h stru
-ture A is to be used for the interpretation of �pre.4 Eliminating �pre Using Additional Fun
tionsAfter the pre-requisites we now de�ne a translation fun
tion �f on the extendedHoare fragment that eliminates the �pre operator (the subs
ript f indi
atesthat �f uses new fun
tion symbols). The idea of �f is to introdu
e, for ea
hfun
tion fi that o

urs with the �pre operator, an asso
iated new fun
tionsymbol f ipre and to ensure that f ipre is interpreted in the right way. For example,the translation of hpir(f�prei (a)) is 8x(f ipre(x) := fi(x))! hpir(f ipre(a)) (a more
omplex example is shown in Se
tion 6). This (rather naive) translation preservesuniversal validity of formulas (Theorem 1).De�nition 6. Let �0 = �0r [�nr be an extension of the signature � where�0r = �r [�pre and �pre is disjoint from � and, for every f 2 �nr,
ontainsa fun
tion symbol fpre of the same arity as f . Then, the result of applying thetranslation �f : H�(�) �! H(�0) to some � = 8z1 : : :8zd(�! [hpi℄) is8z1 : : :8zd�(� ^ Vki=1 8xi1 : : :8xinif ipre(xi1; : : : ; xini) := fi(xi1; : : : ; xini))! [hpi℄ 0�where{ f1; : : : ; fk 2 �nr are the fun
tion symbols o

urring in with atta
hed �pre,{ f1pre; : : : ; fkpre are the
orresponding fun
tion symbols in �pre,{ the xij are pairwise distin
t variables not o

urring in the original formula �,{ 0 is the result of repla
ing all o

urren
es of f�prei in by f ipre (1 � i � k).Theorem 1. Let � 2 H�(�). Then, j=� � i� j=�0 �f(�).

Note, that the pra
ti
al
onsequen
es of Theorem 1 are rather limited. Assumethat � is a DL formula without free variables and � = 8z1 : : :8zd(�! hpi)is a formula in the Hoare fragment for whi
h we want to prove that � j=� �.Be
ause of the dedu
tion theorem, that is equivalent to j=� � ! �. Now, wewould like to apply our translation �f to transform � ! � into a formula without�pre and, making use of Theorem 1, prove the resulting non-extended formulainstead. The translation �f, however, is only appli
able if � ! � is in the Hoarefragment, whi
h requires � to be a pure �rst-order formula. This problem isavoided with our se
ond translation presented in the following se
tion.5 Eliminating �pre Without Using Additional Fun
tionsThe translation �v does not only preserve validity but leads to a formula that isfully equivalent to the original one. Instead of introdu
ing new fun
tion symbols,it solely relies on introdu
ing new variables.The basi
 idea of �v is to \
atten" all terms in a formula
ontaining �pre.For example, [hpi℄r(f�pre(a)) is equivalent to [hpi℄8y(y := f�pre(a)! r(y)). This inturn is equivalent to [hpi℄8y18y2((y1 := f�pre(y2) ^ y2 := a)! r(y1)). Sin
e y1; y2are new variables and do not o

ur in p, the quanti�
ation
an be movedto the front, and we get 8y18y2[hpi℄((y1 := f�pre(y2) ^ y2 := a)! r(y1)). For theh�i modality, this is only possible if the program p is deterministi
 (
f. Se
tion 7).Finally, we have arrived at a point where we
an eliminate the o

urren
e of �preby moving the \de�nition" y1 := f�pre(y2) of y1 in front of the modal operator:8y18y2(y1 := f(y2)! ([hpi℄(y2 := a! r(y1))). Note, that the \de�nition" y2 := aof y2 remains behind the modal operator be
ause no �pre is atta
hed to a.The idea that has been illustrated with this small example is generalised inthe following de�nition of the translation �v (a more
omplex example for theappli
ation of �v is shown in Se
tion 6).De�nition 7. The result of applying the translation �v : H�(�) �! H(�) tosome formula � = 8z1 : : :8zd(�! [hpi℄) from H�(�) is de�ned as follows: Lett1; : : : ; tl; : : : ; tm; : : : ; tk 2 Term�(�) (1 � l � m � k) be all (sub-)terms o

ur-ring in , where for 1 � i � l the term ti = f�prei (si1; : : : ; sini) is not a variableand has the �pre operator atta
hed to its leading fun
tion symbol, for l < i � mthe term ti = fi(si1; : : : ; sini) is not a variable and does not have the �pre oper-ator atta
hed to its leading fun
tion symbol, and for m < i � k the term ti is avariable. Then,�v(�) = 8z1 : : :8zd 8y1 : : :8yk�(� ^ Vli=1 yi := fi(xi1; : : : ; xini)) ![hpi℄((Vmi=l+1 yi := fi(xi1; : : : ; xini) ^Vki=m+1 yi := ti) ! 0)� ; 1where1 If one of the variables yi o

urs in �v(�) on only one side of [hpi℄, then �v(�)
an besimpli�ed by omitting the equality \de�ning" yi and repla
ing all o

urren
es of yiby the right side of that equality.

{ for all 1 � i � m and 1 � j � ni, the variable xij is identi
al to yind whereind 2 f1; : : : ; kg is the index su
h that tind = sij ,{ 0 is the result of repla
ing all o

urren
es of terms ti in on the top-level(i.e., not the sub-term o

urren
es) by yi (1 � i � k).Theorem 2. Let � 2 H�(�). Then, j= � $ �v(�).Theorem 2 states the strongest result one
ould wish for. It implies that �
anbe substituted by �v(�) in any
ontext. However, �v is only de�ned on the Hoarefragment. To eliminate o

urren
es of �pre from more
omplex DL formulas,one has to translate the Hoare fragment sub-formulas. For instan
e, even if � isnot a pure �rst-order formula, � ! �
an be translated into � ! �v(�).6 An Illustrating ExampleThe UML
lass diagram on the right Bankm()Customer Assistantphone:Integer1* pa** 1 *employmentmodels the following s
enario: Tobetter serve their
ustomers, a banknames for every
ustomer one of itsemployees as a personal assistant.Now assume, the bank moves toa new building. The phone numbersmay
hange and also the asso
iationof the
ustomers with their personal assistants is re
onsidered on this o

asion.Operation m() e�e
ts all these
hanges but must ensure that for every
ustomerthe phone number of his or her personal assistant does not
hange. In OCL this
onstraint is expressed as:
ontext Bank::m()post:
ustomer->forAll(
|
.pa.phone =
.pa�pre.phone�pre)By
onverting this
onstraint into extended DL, we get the following Hoarefragment formula, assuming that the program pm implements m():� = 8z�
ustomer(z)! hpmi phone(pa(z)) := phone�pre(pa�pre(z))�The appli
ation of �f resp. �v to � yields:�f(�) = 8z� (
ustomer(z) ^8x11 papre(x11) := pa(x11) ^ 8x21 phonepre(x21) := phone(x21)) ! hpmi phone(pa(z)) := phonepre(papre(z))��v(�) = 8z8y1 : : :8y5�(
ustomer(z) ^ y1 := phone(y2) ^ y2 := pa(y5))!hpmi ((y3 := phone(y4) ^ y4 := pa(y5) ^ y5 := z) ! y3 := y1) �7 SummaryThis paper demonstrates how the semanti
s of the OCL
onstru
t �pre
an beintegrated into an extended DL with non-rigid fun
tion symbols. Sin
e the �pre

operator is rather unusual, for pra
ti
al reasons, it is useful to translate formulaswith �pre into formulas without �pre. Our �rst translation �f only preservesvalidity of formulas, whi
h in pra
ti
e is often not suÆ
ient. The se
ond transla-tion �v is more
omplex but leads to a fully equivalent formula. Both translationsstay within the Hoare fragment, i.e., transform Hoare fragment formulas intoHoare fragment formulas. The translation �v
an also be used to remove �prefrom a non-Hoare formula � by applying it to all Hoare sub-formulas of �.Both translations are independent of the a
tual form of the program p thatis part of the translated formula; it remains un
hanged and
an be anonymous.Only the variables o

urring in p have to be known, as they may be a�e
ted byprogram exe
ution.The
orre
tness proofs for �f and �v make use of the fa
t that the programsare deterministi
. Nevertheless, we assert that the translation �f works just aswell for non-deterministi
 programming languages. For �v the situation is morediÆ
ult. Intuitively, �v moves a universal quanti�
ation from behind the modaloperator [hpi℄ to the front of [hpi℄. That is not a problem as long as the programsare deterministi
. If the programs are non-deterministi
, however, [hpi℄
ontains animpli
it quanti�
ation over states. If [hpi℄ = [p℄, that quanti�
ation is universal,and �v should still work. If, however, [hpi℄ = hpi, the translation �v intuitivelymoves a universal quanti�
ation over an impli
it existential quanti�
ation, whi
his not
orre
t. Appendix B
ontains an example demonstrating that Theorem 2(whi
h states the
orre
tness of �v) does not hold for non-deterministi
 programsand the h�i modality. Nevertheless, even if p is non-deterministi
, �v
an be usedto remove the �pre operator from a formula � of the form �! hpi be
ause � isequivalent to �! :[p℄: and, thus, to �! :�v(true! [p℄:). Then, however,the resulting formula is not in the Hoare fragment.Referen
es1. K. R. Apt. Ten years of Hoare logi
: A survey { part I. ACM Transa
tions onProgramming Languages and Systems, 1981.2. B. Be
kert. A Dynami
 Logi
 for Java Card. In Pro
eedings, 2nd ECOOP Workshopon Formal Te
hniques for Java Programs, Cannes, Fran
e, 2000.3. D. Distefano, J.-P. Katoen, and A. Rensink. Towards model
he
king OCL. InPro
eedings, ECOOP Workshop on De�ning a Pre
ise Semanti
s for UML, 2000.4. A. Hamie, J. Howse, and S. Kent. Interpreting the Obje
t Constraint Language. InPro
eedings, Asia Pa
i�
 Conferen
e in Software Engineering. IEEE Press, 1998.5. D. Harel. Dynami
 Logi
. In D. Gabbay and F. Guenthner, editors, Handbook ofPhilosophi
al Logi
, Volume II: Extensions of Classi
al Logi
. Reidel, 1984.6. D. Harel, D. Kozen, and J. Tiuryn. Dynami
 Logi
. MIT Press, 2000.7. D. Kozen and J. Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Handbookof Theoreti
al Computer S
ien
e,
hapter 14, pages 89{133. Elsevier, 1990.8. V. R. Pratt. Semanti
al
onsiderations on Floyd-Hoare logi
. In Pro
eedings, 18thAnnual IEEE Symposium on Foundation of Computer S
ien
e, 1977.9. Rational Software Corp. et al. Uni�ed Modelling Language Semanti
s, version 1.3,June 1999. Available at: www.rational.
om/uml/index.jtmpl.

A Appendix: Proofs for the Corre
tness TheoremsFor the purpose of proving the theorems it is useful to introdu
e the notion of arestri
tion of a DL-Kripke stru
ture:De�nition 8. Let K0 = (S 0; �0) be a DL-Kripke stru
ture for a signature �0.Let � be a signature obtained from �0 by omitting some rigid fun
tion symbols.We de�ne the restri
tion K0j� = K = (S; �) of K0 to �:1. S = f(A0j�; u) j (A0; u) 2 S 0g2. �(p) = f((A0j�; u); (B0j�; w)) j ((A0; u); (B0; w)) 2 �0(p)gLemma 2. We use the notation from De�nition 6. For all (sub-)terms t of ,let �Termf (t) be the result of repla
ing all o

urren
es of f�prei in t by f ipre(1 � i � k).Moreover, let K0 = (S 0; �0) be a Kripke stru
ture over �0, let (A0; u) and(B0; w) be states of K0, and let p 2 ProgDL(�) be a program.Then, for all (sub-)terms t of , the following holds: If1. (A0; u) j=�0 8xi1 : : :8xinif ipre(xi1; : : : ; xini) := f(xi1; : : : ; xini) for every non-rigid fun
tion symbol fi that o

urs in t with atta
hed �pre, and2. ((A0; u); (B0; w)) 2 �0(p),then (�Termf (t))(B0 ;w) = t(B;w)where B = B0j�.Proof. First, we derive from
lause 1 that (f ipre)A0 = (f i)A0 . By
lause 2 andapplying De�nition 5, we obtain(f�prei)B0 = (f ipre)A0 (1)Now, the proof pro
eeds by indu
tion on the
omplexity of the term t.Indu
tion base. In the base
ase, t is of form
 or
�pre where
 2 � is a
onstantsymbol or of form x where x 2 Var .Case 1: t = x. (�Termf (x))(B0 ;w) = x(B0;w) = x(B;w) = w(x)Case 2: t =
. (�Termf (
))(B0;w) =
B0 =
BRemember, that
 2 � and B = B0j�.

Case 3: t =
�pre.(�Termf (
�pre))(B0;w) =
B0pre=
A0pre as
pre 2 �pre is rigid= (
�pre)B0 by (1)= (
�pre)B as
 2 � and B = B0j�= (
�pre)(B;w)Indu
tion step.Case 1: t = f(t1; : : : ; tn). Trivial, by applying the de�nition of �Termf .Case 2 (t = f�pre(s1; : : : ; sn).(�Termf (f�pre(s1; : : : ; sn)))(B0;w)= (fpre(�Termf (s1); : : : ; �Termf (sn)))(B0;w)= fB0pre((�Termf (s1))(B0 ;w); : : : ; (�Termf (sn))(B0;w))= fB0pre(s(B;w)1 ; : : : ; s(B;w)n) by the indu
tion hypothesis= fA0pre(s(B;w)1 ; : : : ; s(B;w)n) as fpre 2 �pre is rigid= (f�pre)B0(s(B;w)1 ; : : : ; s(B;w)n) by (1)= (f�pre)B(s(B;w)1 ; : : : ; s(B;w)n) as f 2 � and B = B0j�= f�pre(s1; : : : ; sn)(B;w) utLemma 3. We use the same notation as in De�nition 6 and Lemma 2; and weassume that the same pre-
onditions as in Lemma 2 are true. Then(B0; w0) j=�0 0 i� (B; w) j=� :Proof. Simple, by applying the de�nition of 0 and Lemma 2. utTheorem 1. Let � 2 H�(�). Thenj=� � i� j=�0 �f(�)Proof. We use the same notation as in De�nition 6. Sin
e the variables z1; : : : ; zdare universally quanti�ed in both � and �f(�), it suÆ
es to show thatj=� �! [hpi℄ i� j=�0 (� ^ pre�x)! [hpi℄ 0where pre�x = k̂i=1 8xi1 : : :8xinif ipre(xi1; : : : ; xini) := fi(xi1; : : : ; xini)Let K = (S; �) be a DL-Kripke stru
ture for the signature �, and let (A; u)and (B; w) be states in S. Analogous de�nitions are made for K0.

First part. We assume j=� �! [hpi℄ and aim at showing (A0; u) j=�0 (� ^ pre�x)! [hpi℄ 0 :The argument is only non-trivial if(A0; u) j=�0 � ^ pre�x : (1)It remains to be shown that (A0; u) j=�0 [hpi℄ 0 : (2)Sin
e j=� �! [hpi℄ , we have in parti
ular for K = K0j� and A = A0j� that(A; u) j=� �! [hpi℄ : (3)By
onstru
tion and (1), (A; u) j=� �. Thus, by (3),(A; u) j=� [hpi℄ : (4)Case 1: The program p does not terminate when started in (A; u). In this
ase,the only way that (4)
an hold is that [hpi℄ = [p℄. Sin
e (A; u) and (A0; u) onlydi�er in the interpretation of symbols that do not o

ur in p, the program p doesalso not terminate when started in (A0; u). Therefore, (2) holds.Case 2: The program p terminates when started in (A; u). Be
ause our pro-gramming language is deterministi
, there is exa
tly one state (B; w)) with((A; u); (B; w)) 2 �(p) and (B; w) j=� : (5)By De�nition 8, Clause 2, there exists a B0 su
h thatB = B0j� and ((A0; u); (B0; w)) 2 �0(p) :Lemma 3 and (5) yield (B0; w) j=�0 0whi
h �nally proves (2).Se
ond part. We assume j=�0 (� ^ pre�x)! [hpi℄ 0 (6)and aim at showing (A; u) j=� �! [hpi℄ :

The argument is only non-trivial if(A; u) j=� � : (7)It remains to be shown that (A; u) j=� [hpi℄ : (8)Sin
e (6), we have for every K0 and (A0; u) that(A0; u) j=�0 (� ^ pre�x)! [hpi℄ 0 : (9)We
hoose K0 and (A0; u) in su
h a way thatK0j� = K ; A0j� = A ; (f ipre)A0 = fA0 (1 � i � k) :Lemma 1 implies that that this
hoi
e is possible. Thus,(A0; u) j=�0 � ^ pre�x ;and by (9) we get (A0; u) j=�0 [hpi℄ 0 : (10)Case 1: The program p does not terminate when started in (A0; u). In this
ase,the only way that (10)
an hold is that [hpi℄ = [p℄. Sin
e (A; u) and (A0; u) onlydi�er in the interpretation of symbols that do not o

ur in p, the program p doesalso not terminate when started in (A; u). Therefore, (8) holds.Case 2: The program p terminates when started in (A0; u). Be
ause our pro-gramming language is deterministi
, there is exa
tly one state (B0; w) with((A0; u); (B0; w)) 2 �0(p) and (B0; w) j=�0 0 : (11)Thus, ((A; u); (B; w)) 2 �(p) by the
hoi
e of K0 (see Def. 8, Clause 2, whereB = B0j�). Lemma 3 and (11) yield(B; w) j=� :whi
h �nally proves (8). utTheorem 2. Let � 2 H�(�). Then j= � $ �v(�).Proof. We use the same notation as in De�nition 7. Sin
e the variables z1; : : : ; zdare universally quanti�ed in both � and �v(�), it suÆ
es to show thatj= (�! [hpi℄) $ 8y1 : : :8yk(pre�x 1 ! [hpi℄(pre�x 2 ! 0))

where pre�x1 = � ^ l̂i=1 yi := fi(xi1; : : : ; xini))pre�x2 = m̂i=l+1 yi := fi(xi1; : : : ; xini) ^ k̂i=m+1 yi := tiFirst part. We �rst
onsider the easier impli
ation from left to right.Let K = (S; �) be a Kripke stru
ture for �, and let (A; u) 2 S su
h that(A; u) j= �! [hpi℄ (1)We have to show that(A; u) j= 8y1 : : :8yk(pre�x 1 ! [hpi℄(pre�x 2 ! 0)) :Let a1; : : : ; ak arbitrary elements of the universe of A, and letu0 = u[y1=a1; : : : ; yk=ak℄ :Now, it suÆ
es to show that(A; u0) j= pre�x 1 ! [hpi℄(pre�x 2 ! 0) :The argument is only non-trivial if(A; u0) j= pre�x 1 : (2)We therefore obtain (A; u) j= [hpi℄ (3)using (1) and the fa
t that y1; : : : ; yk do not o

ur in �.Case 1: The program p does not terminate when started in (A; u). In this
ase,the only way that (3)
an hold is that [hpi℄ = [p℄. Sin
e u and u0 only di�er in theassignment of values to variables not o

urring in p, the program p does also notterminate when started in (A; u0). Therefore,(A; u0) j= [hpi℄(pre�x 2 ! 0)holds trivially.Case 2: The program p terminates when started in (A; u). Be
ause our program-ming language is deterministi
, there is exa
tly one state (B; w) with((A; u); (B; w)) 2 �(p)and (B; w) j= (4)

Sin
e y1; : : : ; yk do not o

ur in p that implies(B; w0) j= (5)where w0 = w[y1=a1; : : : ; yk=ak℄, and ((A; u0); (B; w0)) 2 �(p). It remains to beshown that (B; w0) j= pre�x2 ! 0 :Again, the argument is only non-trivial in
ase(B; w0) j= pre�x 2 : (6)Now, by (5) and the de�nition of 0, it suÆ
es to provet(B;w0)i = y(B;w0)i for 1 � i � k : (7)We prove (7) by indu
tion on the
omplexity of ti.Case 1: ti is a variable. We get from (6) that(B; w0) j= yi := ti :Therefore, (7) holds trivially.Case 2: ti = f(si1; : : : ; sini). We get from (6) that(B; w0) j= yi := fi(xi1; : : : ; xini) :Thus, it suÆ
es to show that(sij)(B;w0) = (xij)(B;w0) for 1 � j � ni : (8)Be
ause xij = yind and sij = tind for some 1 � ind � k, (8) follows from the in-du
tion hypothesis as sij = tind is of lesser
omplexity than ti.Case 3: ti = f�prei (si1; : : : ; sini). In this
ase, we get from (2) that(A; u0) j= yi := fi(xi1; : : : ; xini) :Sin
e (fi)A = (f�prei)Band, by Lemma 1, the variable assignments u0 and w0 do not di�er in the valu-ation of the variables yi resp. xji (re
all that ea
h xji is identi
al to some yi0), itagain suÆ
es to show (8), whi
h
an be done in the same way as in Case 2.Se
ond part. Now, we
onsider the impli
ation from right to left.We assume (A; u) j= �v(�) (9)

and aim to show (A; u) j= � :Thus, we assume (A; u) j= � (10)and aim to prove (A; u) j= [hpi℄ : (11)Case 1: The program p does not terminate when started in state (A; u). Sin
e(a) ea
h of the variables y1; : : : ; yl o

urs in pre�x 1 exa
tly on
e on the left sideof an equation yi := fi(xi1; : : : ; xini), and (b) if one of the argument variables xijis identi
al to some yi0 then the term ti0 is of lesser
omplexity than ti, it ispossible to indu
tively de�ne a variable assignment u0 that di�ers from u onlyon the variables y1; : : : ; yl and has the property that(A; u0) j= l̂i=1 yi := fi(xi1; : : : ; xini)Sin
e u and u0 di�er only on the variables y1; : : : ; yl, whi
h do not o

ur in �,we also have (A; u0) j= �and, thus, (A; u0) j= pre�x 1 :From this and (9) we obtain(A; u0) j= [hpi℄(pre�x 2 ! 0) : (12)Now, sin
e the variables y1; : : : ; yk do not o

ur in p, the program p does alsonot terminate when started in u0. Only if [hpi℄ = [p℄ does this not
ontradi
t (12).Then, however, (11) holds trivially.Case 2: The program p terminates when started in state (A; u). Be
ause ourprogramming language is deterministi
, there is a single state (B; w) with((A; u); (B; w)) 2 �(p) :As in the previous
ase, we
an indu
tively de�ne values for the variables inY = fy1; : : : ; ykg in su
h a way that we get variable assignments u0 and w0 withujVarnY = u0jVarnY and wjVarnY = w0jVarnY (13)u0jY = w0jY (14)((A; u0); (B; w0)) 2 �(p) (15)(A; u0) j= Vli=1 yi := fi(xi1; : : : ; xini) (16)(B; w0) j= Vmi=l+1 yi := fi(xi1; : : : ; xini) ^Vki=m+1 yi := ti (17)

Moreover, sin
e u and u0 di�er only on the variables y1; : : : ; yk, whi
h do noto

ur in �, we have (A; u0) j= � (18)Therefore, and by (16) we have(A; u0) j= pre�x 1 (19)By (19) and (9) we obtain(A; u0) j= [hpi℄(pre�x 2 ! 0)and, thus, by (15) (B; w0) j= pre�x2 ! 0 ;whi
h �nally with (17) gives us (B; w0) j= 0 : (20)By indu
tion on the
omplexity of the term ti, we prove thaty(B;w0)i = t(B;w0)i (21)Case 1: ti is a variable. We get from (17) that(B; w0) j= yi := ti ;whi
h trivially implies (21).Case 2: ti = fi(si1; : : : ; sini). We get from (17) that(B; w0) j= yi := fi(xi1; : : : ; xini) :Thus, it suÆ
es to show that(sij)(B;w0) = (xij)(B;w0) for 1 � j � ni : (22)Be
ause xij = yind and sij = tind for some 1 � ind � k, (22) follows from theindu
tion hypothesis as sij = tind is of lesser
omplexity than ti.Case 3: ti = f�prei (si1; : : : ; sini). In this
ase, we get from (16) that(A; u0) j= yi := fi(xi1; : : : ; xini) :Sin
e (fi)A = (f�prei)B

and u0 and w0 do not di�er in the valuation of the variables yi resp. xji (re
allthat ea
h xji is identi
al to some yi0), it again suÆ
es to show (22), whi
h
anbe done in the same way as in Case 2.Now, sin
e w and w0 only di�er on the variables y1; : : : ; yk, whi
h do not o

urin ti, we get from (21) that y(B;w0)i = t(B;w)i (23)By (20) and (23) and the
onstru
tion of 0 from , we get(B; w) j= :Therefore, and sin
e ((A; u); (B; w)) 2 �(p), (11) holds.B Appendix: CounterexampleWe present a
ounterexample to Theorem 2 for non-deterministi
 programs andthe modal operator h�i. Consider the formula� = true! hpir(f�pre(
))over the signature � = fr; :=;
g [ffg. The result of applying the translation �vis: �v(�) = 8y18y2((true ^ y1 := f(y2))! hpi(y2 :=
! r(y1))) :We
onsider the DL-Kripke stru
ture K = (S; �), an arbitrary state (A; u),and stipulate that fa1; a2g is the universe of A. Furthermore, the relation sym-bol r is interpreted by the empty set in every state. Thus,(A; u) 2 � :Let p be a program that, when started in (A; u), non-deterministi
ally
hangesthe interpretation of
 to a1 or a2 and does not
hange the state in any other way.Thus, there are states (B1; u) and (B2; u) in S su
h that ((A; u); (Bi; u)) 2 �(p)for i = 1; 2. We stipulate
B1 = a1 and
B2 = a2. The interpretation of the fun
-tion symbol f does not matter, say fB1 = fB2 is the identity fun
tion.Now, for every a 2 fa1; a2g, the
ondition y2 :=
 is false in one of the states(B1; u[y2=a℄) and (B2; u[y2=a℄). Thus, y2 :=
! r(y1) is true in one of the twostates, and so hpi(y2 :=
! r(y1)) is true in (A; u[y2=a℄) (as y2 is not a�e
tedby p). Therefore, (A; u) j= �v(�),
ontradi
ting Theorem 2.A
knowledgementWe thank Wolfgang Ahrendt for fruitful dis
ussions on the topi
 of this paper.

