An Extension of Dynamic Logic
for Modelling OCL’s @Qpre Operator

Thomas Baar, Bernhard Beckert, and Peter H. Schmitt

Universitat Karlsruhe, Fakultat fiir Informatik
Institut fiir Logik, Komplexitdt und Deduktionssysteme
Am Fasanengarten 5, D-76128 Karlsruhe
Fax: +49 721 608 4211, Email: {baar,beckert,pschmitt}@ira.uka.de

Abstract. We consider first-order Dynamic Logic (DL) with non-rigid
functions, which can be used to model certain features of programming
languages such as array variables and object attributes. We extend this
logic by introducing an operator @Qpre on functions that makes a func-
tion after program execution refer to its old value before program ex-
ecution. We show that formulas with this operator can be transformed
into equivalent formulas of the non-extended logic. We briefly describe
the motivation for this extension coming from a related operator in the
Object Constraint Language (OCL).

1 Introduction

Since the Unified Modeling Language (UML) has been adopted as a standard of
the Object Management Group (OMG) in 1997, many efforts have been made
to underpin the UML—and the Object Constraint Language (OCL), which is an
integral part of the UML, —with a formal semantics. Most approaches are based
on providing a translation of UML/OCL into a language with a well-understood
semantics, e.g., BOTL [3] and the Larch Shared Language (LSL) [4].

Within the KeY project (see the web site at i12www.ira.uka.de/ key for de-
tails), we follow the same line, translating UML/OCL into Dynamic Logic (DL).
This choice is motivated by the fact that DL can cope with both the dynamic
concepts of UML/OCL and real world programming languages used to imple-
ment UML models (e.g. Java Card [2]).

The OCL allows to enrich a UML model with additional constraints, e.g.,
invariants for UML classes, pre-/post-conditions for operations, guards for tran-
sitions in state-transition diagrams, etc. Although, at first glance, OCL is sim-
ilar to an ordinary first-order language, closer inspection reveals some unusual
concepts. Among them is the @Qpre operator. In OCL, this unary operator is
applicable to attributes, associations, and side-effect-free operations (these are
called “properties” in the OCL context [9, p. 7-11ff]). The @pre operator may
only be used in post-conditions of UML operations. A property prop followed by
@pre in the post-condition of an operation m() evaluates to the value of prop
before the execution of m().



Dynamic Logic [5-8] can be seen as an extension of Hoare logic [1]. It is a
first-order modal logic with modalities [p] and (p) for every program p. These
modalities refer to the worlds (called states in the DL framework) in which the
program p terminates when started in the current world. The formula [p]¢ ex-
presses that ¢ holds in all final states of p, and (p)¢ expresses that ¢ holds in
some final state of p. In versions of DL with a non-deterministic programming
language there can be several such final states (worlds). Here we use a determinis-
tic while programming language. For deterministic programs there is exactly one
final world (if p terminates) or there is no final world (if p does not terminate).
The formula ¢ — (p)t is valid if, for every state s satisfying pre-condition ¢, a
run of the program p starting in s terminates, and in the terminating state the
post-condition ¢ holds. The formula ¢ — [p]y) expresses the same, except that
termination of p is not required, i.e., ¥» must only hold if p terminates. Thus,
¢ — [p]¢ is similar to the Hoare triple {¢}p{¢}.

Here, we consider a version of first-order DL with non-rigid functions, i.e.,
functions whose interpretation can be changed by programs and, thus, can differ
from state to state. Such non-rigid functions can be used to model features of
real-world programming languages such as array variables and object attributes.

Moreover, to ease the translation of OCL into DL, we extend DL with an
operator corresponding to OCL’s @pre. The DL @pre operator makes a non-
rigid function after program execution refer to its old value before program
execution. This allows to easily express the relation between the old and the
new interpretation. For example, [p](c = c¢®P¢) expresses that the interpretation
of the constant c¢ is not changed by the program p.

The main contribution of this paper is to show that formulas with the @Qpre
operator can be transformed into equivalent formulas without @Qpre.

The @pre construct of OCL has already been investigated by other authors,
e.g., for the purpose of translating OCL into BOTL [3]. However, to our knowl-
edge, the work reported in this paper is the first treatment of @Qpre in the DL
framework.

In Section 2, we briefly introduce DL with non-rigid functions. Section 3
extends DL with the @pre operator and gives its semantics formally. In Sections
4 resp. 5 we present two transformations of DL with @pre into DL without @pre.
We close with a summary and a short discussion of possible extensions to non-
deterministic programming languages in Section 7. The proofs are omitted from
the main part of the paper; they are given in Appendix A.

2 Dynamic Logic with Non-rigid Functions

Although non-rigid functions are mostly ignored in the literature, the more spe-
cific concept of array assignments has been investigated in [5, 7]. In both papers
their semantics is handled by adding to each state valuations of second-order
array variables. We introduce, instead, non-rigid function symbols. This shift of
attention comes naturally when we want to axiomatise the semantics of object-



oriented languages in DL. In this setting non-static attributes of a class are best
modelled by non-rigid functions.

Let X = X, U X, be a signature, where X, contains the non-rigid function
symbols and Y. contains the rigid function symbols and the predicate symbols,
which are all rigid (X, always contains the equality relation =). The set Term(X)
of terms and the set Fmlror,(X) of first-order formulas are built as usual from
X’ and an infinite set Var of object variables.

A term is called non-rigid if (a) it is a variable or (b) its leading function
symbol is in X,,,.. The programs in our DL are while programs with a generalised
assignment command, reflecting the presence of non-rigid terms.

Definition 1. The sets Fmlpr(XY) of DL-formulas and Progpr(X) of pro-
grams are simultaneously defined as follows:

- leFOL(E) g leDL(E)

= If ¢1,¢2 are in Fmipr(Y), then so are —¢1, ¢1 A2, ¢1V d2, d1 — @2,
Yz ¢1 and Iz ¢y for all x € Var.

— If ¢ is in Fmlpr(X) and p is in Progpr,(X), then (p)¢ and [p]é are in
leDL(Z)-

— If t is a non-rigid term and s is a term, then t :== s is in Progpr(X).

— fail and skip are in Progpr,(X).

— If p1,p2 are in Progpr,(X), then so is their sequential composition pi;pa.

— If 9 is a quantifier-free first-order formula and p,q are in Progpr.(X), then
if ) thenpelseqfi and whiley dopod are in Progpr,(X).

In the following, we often do not differentiate between the modalities (p)
and [p], and we use {p)} to denote that it may be of either form.

The Kripke structures used to evaluate formulas from Fmlpy(X) and pro-
grams from Progpyr(X) are called DL-Kripke structures. The set of states of
a DL-Kripke structure K is obtained as follows: Let Ay be a fixed first-order
structure for the rigid signature X, and let A denote the universe of Ag. An
n-ary function symbol f € X, is interpreted as a function f4°: A" — A and
every n-ary relation symbol r € X, is interpreted as a set RA4° C A” of n-tuples.
A wvariable assignment is a function u : Var — A. We use u[z/b] (where b € A
and z € Var) to denote the variable assignment such that u[z/b](y) =bif z =y
and u[z/b](z) = u(y) otherwise; moreover, if V' is a set of variables, then wy
denotes the restriction of u to V. The set S of all states of K consists of all
pairs (A, u), where u is a variable assignment and A is a first-order structure for
the signature ¥, whose reduction to X, denoted with A x, , coincides with Ay.
We are now ready to define for each program p its interpretation p(p), which is
a relation on S. Simultaneously, we define when a formula ¢ is true in a state
(A, u), denoted by (A, u) = ¢.

Definition 2. The interpretation p(p) of programs p and the relation = be-
tween S and Fmlpr(X) are simultaneously defined as follows:

1. (A u) | ¢ is defined as usual in classical logic if ¢ is an atomic formula or
its principal logical operator is one of the classical operators A, V, —, =, or



one of the quantifiers ¥V, 3. Also, the evaluation t“4 of terms t is defined
as usual.
2. (A,u) = (p)¢ iff there exists a pair ((A,u), (B,w)) of states in p(p) such
that (B, w) = ¢.
(A, u) [= [plo iff (B,w) = ¢ for all pairs ((A,u), (B, w)) of states in p(p).
If = is a variable, then p(z = s) = {((A,u), (A, u[z/sAW])) | (A,u) € S}.
Ift = f(t1,... ,tn) is a non-rigid term, then p(t := s) consists of all pairs
((A,u), (B,u)) such that B coincides with A except for the interpretation
of f, which is given by

Au) if (b, by) = (A A

3

(

B - I8
bi,....by

fo(by, ,bn) {fA(b1,--- ,bn) otherwise

6. plskip) = {((A,u), (A, ) | (A,u) € S}, and p(fail) = 0.
7. p(whiley dopod) and p(if vy thenpelseqfi) are defined as usual, e.g. [7].

The particular choice of programs in Progpy,(X) (Def. 1) is rather arbitrary.
The results being proved in this paper hold true for any choice of Progpr,(X),
as long as Lemma 1 is guaranteed. Furthermore, we assume that all programs p
are deterministic, i.e., (s,s1) € p(p) and (s, s2) € p(p) implies s; = $a.

Lemma 1. Let K = (S, p) be a DL-Kripke structure over a signature X, let p
be a program, and let V), be the set of all variables occurring in p.

1. The program p only changes variables in V,; that is, if u(x) # w(x) then
x €V for all (A, u), (B,w)) € p(p).

2. The domain of the relation p(p) is closed under changing variables not in V,
in the sense that, if ((A,u), (B,w)) € p(p) and u'|y, = uy,, then there is a
pair ((A,u'), (B,w')) € p(p) with w'\y, = wyy, and u'|y.m\v, = W' \var\v,-

3 Dynamic Logic with the Operator @Qpre

We now define syntax and semantics of DL extended with the @pre operator,
which can be attached to non-rigid function symbols. Intuitively, the semantics
of f@Pr¢ within the scope of a modal operator {p)} is that of f before execution
of p. If a formula contains nested modal operators, it may not be clear, to which
state the @pre operator refers. To avoid confusion, we only allow @Qpre to be
used in the Hoare fragment of DL, where formulas contain at most one modal
operator.

Definition 3. The set Term®(Y) of extended terms over ¥ = X, U %, con-
sists of all terms t® that can be constructed from some t € Term(X) by attaching
Q@pre to arbitrarily many occurrences of function symbols from X, in t. Accord-
ingly, the set Form%OL(E) of extended first-order formulas over X consists of
all formulas ¢© that can be constructed from some ¢ € Fmlpor(X) by attaching
Q@pre to arbitrarily many occurrences of function symbols from Xy, in ¢.



Definition 4. The Hoare fragment H(X) C Fmipr(X) over a signature X
consists of all formulas of the form ¥z, .. . Vz4(é — {p)y) where p € Progpr,(X),
¢, € Fmlpor(X) and z1,... ,zq4 € Var (d>0).

The extended Hoare fragment H®(X) consists of all formulas of the form
V21 ...Vza(p — (ph)) with p € Progpr(X), ¢ € Fmlpor(X), v € Fmi%,. (X)
and z1,... ,2q4 € Var (d>0).

Definition 5. Let K be a DL-Kripke structure, let (¢ — (p)p) € H®, and let
(A, u) be a state of K. The relation (A, u) = ¢ — [pl is defined in the same way
as in Def. 2 for formulas without @pre, except that, for any pair ((A,u), (B, w))
in p(p), the interpretation tB%) of the non-rigid terms in Term®©(X) is given
by:

(FOmelte, b)) B = AP B

U 3%
In the following, we use notation like (B,w) = ¢ and (B for formulas ¢ resp.
terms ¢ containing the @pre operator if it is clear from the context which struc-
ture A is to be used for the interpretation of @pre.

4 Eliminating @pre Using Additional Functions

After the pre-requisites we now define a translation function 7r on the extended
Hoare fragment that eliminates the @pre operator (the subscript f indicates
that 7r uses new function symbols). The idea of 7r is to introduce, for each
function f; that occurs with the @pre operator, an associated new function

symbol f,fm and to ensure that f,fm is interpreted in the right way. For example,

the translation of (p)r(f 27" (a)) is Va( Lre() = fi(x)) = (P)r(fi..(a)) (a more
complex example is shown in Section 6). This (rather naive) translation preserves

universal validity of formulas (Theorem 1).

Definition 6. Let X' = ¥/ U X, be an extension of the signature ¥ where
X =X, UZXp and Xpye is disjoint from X and, for every f € Xy, contains
a function symbol fpr. of the same arity as f. Then, the result of applying the
translation 77 : H®(X) — H(X') to some m = Vzi1...Yzq(d — {ph) is

Vz1...Vzy
(¢ AN Vot Ve, fhe (et o ay) = filet,o2),)) = [pl!)
where
— f1.---, fr € Xnr are the function symbols occurring in 1 with attached Qpre,
= forer-- e zlfre are the corresponding function symbols in Xp,.,

— the CU; are pairwise distinct variables not occurring in the original formula 7,
— )’ is the result of replacing all occurrences of fi@pre in by fi.. (1<i<k)

Theorem 1. Let 7 € H®(X). Then, Ex 7 iff s me(r).



Note, that the practical consequences of Theorem 1 are rather limited. Assume
that I' is a DL formula without free variables and 7 =Vz; ...Vz4(¢ — (p)t))
is a formula in the Hoare fragment for which we want to prove that I' =5 .
Because of the deduction theorem, that is equivalent to =y I' — w. Now, we
would like to apply our translation 7¢ to transform I" — 7 into a formula without
@pre and, making use of Theorem 1, prove the resulting non-extended formula
instead. The translation 7¢, however, is only applicable if I' — 7 is in the Hoare
fragment, which requires I" to be a pure first-order formula. This problem is
avoided with our second translation presented in the following section.

5 Eliminating @pre Without Using Additional Functions

The translation 7, does not only preserve validity but leads to a formula that is
fully equivalent to the original one. Instead of introducing new function symbols,
it solely relies on introducing new variables.

The basic idea of 7, is to “flatten” all terms in a formula containing Qpre.
For example, {p}r(f©P ¢ (a)) is equivalent to {p}Vy(y = f@P"¢(a) — r(y)). This in
turn is equivalent to {p}Vy1Vya((y1 = f@P ¢(y2) Aya = a) = 7(y1)). Since y1,y2
are new variables and do not occur in p, the quantification can be moved
to the front, and we get Yy Vyop)((y1 = FP"(y2) Aya = a) = r(y1)). For the
() modality, this is only possible if the program p is deterministic (cf. Section 7).
Finally, we have arrived at a point where we can eliminate the occurrence of @pre
by moving the “definition” y; = f@P"¢(ys) of y; in front of the modal operator:
Yyi1Vya(y1 = f(y2) = ({p)(y2 = a — r(y1))). Note, that the “definition” y = a
of y2 remains behind the modal operator because no @pre is attached to a.

The idea that has been illustrated with this small example is generalised in
the following definition of the translation 7, (a more complex example for the
application of 7 is shown in Section 6).

Definition 7. The result of applying the translation 7, : H®(Y) — H(X) to
some formula © = Vz1...Vzq(éd — {ph)) from H®(X) is defined as follows: Let
tyooo sty sty oot € Term®(X) (1 <1< m < k) be all (sub-)terms occur-
ring in 1, where for 1 <i <[ the term t; = fi@pre(s’i, ..., 8%.) is not a variable
and has the Qpre operator attached to its leading function symbol, for |l <i <m
the term t; = fi(si,. .. ,sﬁl) is not a variable and does not have the Qpre oper-

ator attached to its leading function symbol, and for m < i < k the term t; is a
variable. Then,

(7)) = Vz1...V2qVy1 ... Vyu
(@ A Ny i = filal, - al,) =
WAy vi = filah, e VAN oy = ) = ") !

where

! If one of the variables y; occurs in 7,(7) on only one side of {p}, then 7,(7) can be
simplified by omitting the equality “defining” y; and replacing all occurrences of y;
by the right side of that equality.



— for all 1 <i<m and 1 < j <n;, the variable CU; is identical to y;nq where
ind € {1,... ,k} is the index such that t;g = s;-,

— o' is the result of replacing all occurrences of terms t; in 1 on the top-level
(i.e., not the sub-term occurrences) by y; (1 <i <k).

Theorem 2. Let 1 € H®(X). Then, |= T < 1,(7).

Theorem 2 states the strongest result one could wish for. It implies that = can
be substituted by 7,(7) in any context. However, 7, is only defined on the Hoare
fragment. To eliminate occurrences of @pre from more complex DL formulas,
one has to translate the Hoare fragment sub-formulas. For instance, even if " is
not a pure first-order formula, I' — 7 can be translated into I' — 7(7).

6 An Illustrating Example

The UML class diagram on the right Bank || |
models the following scenario: To
better serve their customers, a bank m() employment
. E—
names for every customer one of its *
employees as a personal assistant. * - Assi : T
Now assume, the bank moves to Customer Ssistan

pa| phone: Integer

a new building. The phone numbers
may change and also the association
of the customers with their personal assistants is reconsidered on this occasion.
Operation m() effects all these changes but must ensure that for every customer
the phone number of his or her personal assistant does not change. In OCL this
constraint is expressed as:

context Bank::m()
post: customer->forAll(c| c.pa.phone = c.pa@pre.phone@pre)

By converting this constraint into extended DL, we get the following Hoare
fragment formula, assuming that the program p,, implements m():

™ = Vz(customer(z) = (pm) phone(pa(z)) = phone®?(pa®*™*(z)))
The application of 7¢ resp. 7, to m yields:
m(m) = Vz((customer(z) A
Vzl papre(z}) = pa(zt) A Vi phonepy.(z?) = phone(x?)
) = (pm) phone(pa(2)) = phonepre(papre(2)))
Tv(m) = V2Vy;.. .Vys(
(customer(z) A y1 = phone(yz) A ya = pa(ys)) —
(pm) ((ys = phone(ys) Ays = palys) Ays = 2) = y3 = 1))

7 Summary

This paper demonstrates how the semantics of the OCL construct @pre can be
integrated into an extended DL with non-rigid function symbols. Since the @pre



operator is rather unusual, for practical reasons, it is useful to translate formulas
with @pre into formulas without @pre. Our first translation 7 only preserves
validity of formulas, which in practice is often not sufficient. The second transla-
tion 7y is more complex but leads to a fully equivalent formula. Both translations
stay within the Hoare fragment, i.e., transform Hoare fragment formulas into
Hoare fragment formulas. The translation 7, can also be used to remove Qpre
from a non-Hoare formula 7 by applying it to all Hoare sub-formulas of 7.

Both translations are independent of the actual form of the program p that
is part of the translated formula; it remains unchanged and can be anonymous.
Only the variables occurring in p have to be known, as they may be affected by
program execution.

The correctness proofs for 7r and 7, make use of the fact that the programs
are deterministic. Nevertheless, we assert that the translation 7 works just as
well for non-deterministic programming languages. For 7, the situation is more
difficult. Intuitively, 7 moves a universal quantification from behind the modal
operator {p} to the front of {p}. That is not a problem as long as the programs
are deterministic. If the programs are non-deterministic, however, {p} contains an
implicit quantification over states. If {p} = [p], that quantification is universal,
and 7, should still work. If, however, {p} = (p), the translation 7, intuitively
moves a universal quantification over an implicit existential quantification, which
is not correct. Appendix B contains an example demonstrating that Theorem 2
(which states the correctness of 7,,) does not hold for non-deterministic programs
and the (-) modality. Nevertheless, even if p is non-deterministic, 7, can be used
to remove the @pre operator from a formula 7 of the form ¢ — (p)1 because 7 is
equivalent to ¢ — —[p]— and, thus, to ¢ — -7, (true — [p]—1). Then, however,
the resulting formula is not in the Hoare fragment.

References

1. K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM Transactions on
Programming Languages and Systems, 1981.

2. B. Beckert. A Dynamic Logic for Java Card. In Proceedings, 2nd ECOOP Workshop
on Formal Techniques for Java Programs, Cannes, France, 2000.

3. D. Distefano, J.-P. Katoen, and A. Rensink. Towards model checking OCL. In
Proceedings, ECOOP Workshop on Defining a Precise Semantics for UML, 2000.

4. A. Hamie, J. Howse, and S. Kent. Interpreting the Object Constraint Language. In
Proceedings, Asia Pacific Conference in Software Engineering. IEEE Press, 1998.

5. D. Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, Volume II: Extensions of Classical Logic. Reidel, 1984.

6. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

7. D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 14, pages 89-133. Elsevier, 1990.

8. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings, 18th
Annual IEEE Symposium on Foundation of Computer Science, 1977.

9. Rational Software Corp. et al. Unified Modelling Language Semantics, version 1.3,
June 1999. Available at: www.rational.com/uml/index.jtmpl.



A Appendix: Proofs for the Correctness Theorems

For the purpose of proving the theorems it is useful to introduce the notion of a
restriction of a DL-Kripke structure:

Definition 8. Let K' = (S',p') be a DL-Kripke structure for a signature X'.
Let X be a signature obtained from X' by omitting some rigid function symbols.
We define the restriction K'\x = K = (S, p) of K' to X:

1.8 ={(A5,u) | (A,u) € S}
2. p(p) = {((A" 1z, u), (B' 15, w)) | (A", u),(B",w)) € p'(p)}

Lemma 2. We use the notation from Definition 6. For all (sub-)terms t of v,
let T7er™(t) be the result of replacing all occurrences of f*"° in t by five
(1<i<k).

Moreover, let K' = (S',p') be a Kripke structure over X', let (A',u) and
(B',w) be states of K', and let p € Progpr,(X) be a program.

Then, for all (sub-)terms t of v, the following holds: If

1. (A u) Ex Vel Vel fIo(af, .. ah) = f(x,...,a),) for every non-

rigid function symbol f; that occurs in t with attached Qpre, and
2. ((A",w), (B',w)) € p'(p),
then

(TfTerm (t))(B',w) — t(B,w)
where B = B'|x.

Proof. First, we derive from clause 1 that (fi,.)* = (f)*. By clause 2 and
applying Definition 5, we obtain

@ B/ . AI
(f:7)7 = (fre) (1)
Now, the proof proceeds by induction on the complexity of the term ¢.

Induction base. In the base case, ¢ is of form ¢ or ¢®?"¢ where ¢ € X is a constant
symbol or of form x where z € Var.

Case 1: t = x.

’ /

(Tg"erm(w))(B w) — (B w) — (Bw) — ’w(CU)

Case 2: t = c.

(TfTerm (C))(B’,w) — CB’ =B

Remember, that c € ¥ and B = B'5.



Case 3: t = coPre.
(Tzerm(c@pre))(8'7w) — B

as Cpre € Ly is rigid
@pre)B' by (1)
c®rre)B asc€ Y and B=B'x

I
A~~~ 0 0
(@)

Induction step.
Case 1: t = f(t1,... ,t,). Trivial, by applying the definition of r7¢™™.
Case 2 (t = fOP"(s1,... ,5y).

(FTerm (s, 5a)))
= (Fpre (T ™ (51), 5 77 ™ (8))) 5 )
=GB (e ) B, (e (5,) (5 )
= fﬁe(s§8’w), . ,S%Bﬂu)) by the induction hypothesis
= z;;t’e(sf’”), o siB as fpre € Ypre is rigid
= (fOrre)B (s> s by (1)
= (forre)B(s{Bw) gBw)) as f € ¥and B=B'|5
= fOrre(sy, ..., 5,) B

ad

Lemma 3. We use the same notation as in Definition 6 and Lemma 2; and we
assume that the same pre-conditions as in Lemma 2 are true. Then

(B w') Ex ¢ iff (Bw) Ex
Proof. Simple, by applying the definition of ¢’ and Lemma 2. O
Theorem 1. Let 1 € H®(X). Then
Exmoaff s ()

Proof. We use the same notation as in Definition 6. Since the variables zy, ... , z4
are universally quantified in both 7 and 7¢(r), it suffices to show that

Fs o=l it =x (oA prefir) = [p}y'

where
k
prefic = /\ Vay .. Vo, foe (@), my,,) = fi(xy, . ox,)
i=1

Let K = (S, p) be a DL-Kripke structure for the signature X, and let (A, u)
and (B, w) be states in S. Analogous definitions are made for K'.



First part. We assume

=x ¢ — [ph)

and aim at showing

(A u) =0 (¢ A prefiz) — [ply' .

The argument is only non-trivial if
(A" u) Ex ¢ A prefiz . (1)

It remains to be shown that

(A" u) Es {ply" (2)
Since =5 ¢ — [p}, we have in particular for K = k', and A = A’y that
(Au) Fx ¢ = {pl - (3)
By construction and (1), (A,u) =5 ¢. Thus, by (3),
(Au) =5 [Pl (4)

Case 1: The program p does not terminate when started in (A, u). In this case,
the only way that (4) can hold is that {p} = [p]. Since (A, u) and (A’,u) only
differ in the interpretation of symbols that do not occur in p, the program p does
also not terminate when started in (A’,u). Therefore, (2) holds.

Case 2: The program p terminates when started in (A,u). Because our pro-
gramming language is deterministic, there is exactly one state (B,w)) with

((A,u), (B,w)) € p(p) and
(B,w) Fs ¢ . (5)
By Definition 8, Clause 2, there exists a B’ such that
B=B's and ((Au),(B",w))€p'(p) .
Lemma 3 and (5) yield
(B',w) =5 4!
which finally proves (2).

Second part. We assume

Fx (¢ A prefiz) — {p)¢’ (6)

and aim at showing

(Au) Fx¢— )Y -



The argument is only non-trivial if
(Au) =5 ¢ (7)
It remains to be shown that
(A u) =5 {pl - (8)
Since (6), we have for every K’ and (A’,u) that
(A" u) =0 (6 Aprefiz) — [pl)" . (9)
We choose K’ and (A’, u) in such a way that

Klg=K, Ag=A, (fl,)"=1" (1<i<h) .

pre

Lemma 1 implies that that this choice is possible. Thus,
(A", u) Fxr ¢ A prefiz
and by (9) we get

(A'su) o {p)" (10)

Case 1: The program p does not terminate when started in (A',u). In this case,
the only way that (10) can hold is that {p} = [p]. Since (A, u) and (A',u) only
differ in the interpretation of symbols that do not occur in p, the program p does
also not terminate when started in (A, u). Therefore, (8) holds.

Case 2: The program p terminates when started in (A’',u). Because our pro-
gramming language is deterministic, there is exactly one state (B',w) with

((A',u), (B',w)) € p'(p) and
(B' w) Esr (11)

Thus, ((A,u),(B,w)) € p(p) by the choice of K' (see Def. 8, Clause 2, where
B =B'|s). Lemma 3 and (11) yield

(B,w) Fx ¢ .
which finally proves (8). O
Theorem 2. Let 7 € H®(X). Then = 7 ¢ 7,(7).

Proof. We use the same notation as in Definition 7. Since the variables zy, ... , 24
are universally quantified in both 7 and 7, (7), it suffices to show that

E (¢ = {pl)) < Yyi.. Vyr(prefiz, — {p)(prefiz, — "))



where

prefiz; = ¢ A /\yz filah, ...z :11))

/\yz fi(zl, ... 2h) /\y,_t

i=l+1 i=m+1

prefiz,

First part. We first consider the easier implication from left to right.
Let K = (S, p) be a Kripke structure for X, and let (A4, u) € S such that

(A u) = ¢ = [ply (1)
We have to show that
(A, u) =Yy ... Yyr(prefiz, — [p)(prefiz, — ")) .
Let aq,...,ay arbitrary elements of the universe of A, and let
u' =ulyi/a,. .., yk/ax] -
Now, it suffices to show that
(A,u') [ prefiz, — {p)(prefiz, — ') .

The argument is only non-trivial if

(A,u') = prefiz, . (2)
We therefore obtain
(A,u) = {ply (3)
using (1) and the fact that y;,... ,yr do not occur in ¢.

Case 1: The program p does not terminate when started in (A, u). In this case,
the only way that (3) can hold is that {p} = [p]. Since v and u’ only differ in the
assignment of values to variables not occurring in p, the program p does also not
terminate when started in (A, u'). Therefore,

(A, u) = {p)(prefizy, — ¢')
holds trivially.

Case 2: The program p terminates when started in (A, u). Because our program-
ming language is deterministic, there is exactly one state (B, w) with

(A, u), (B,w)) € p(p)

and

(B,w) =1 (4)



Since y1, ... ,yx do not occur in p that implies

(B,w') =1 (5)

where w' = wlyy /a1, ... ,yx/ax], and ((A,u'), (B,w")) € p(p). It remains to be
shown that

(B,w') &= prefizy = ¥' .
Again, the argument is only non-trivial in case

(B, w') |= prefiz, . (6)
Now, by (5) and the definition of ¢’, it suffices to prove

(B,w") (B,w")

t; =y, for1<i<k . (7)

We prove (7) by induction on the complexity of ;.
Case 1: t; is a variable. We get from (6) that

Therefore, (7) holds trivially.

Case 2: t; = f(s},...,sh. ). We get from (6) that
(B.0) =y = flad, )

Thus, it suffices to show that

() B) = (@) B) for 1< j <my 8)

Because 2% = ying and s} = tinq for some 1 < ind <k, (8) follows from the in-
duction hypothesis as s; = tinq is of lesser complexity than ;.

Case 3:t; = f""(si,. .. , st ). In this case, we get from (2) that

(A=ul) |: Yi = fl(xll :mfu) .

Since

(F)h = (f577)"

and, by Lemma 1, the variable assignments v’ and w' do not differ in the valu-
ation of the variables y; resp. z] (recall that each 2! is identical to some y; ), it
again suffices to show (8), which can be done in the same way as in Case 2.

Second part. Now, we consider the implication from right to left.
We assume

(A u) |= 7o(m) (9)



and aim to show

(Au) .
Thus, we assume
(Au) = o (10)
and aim to prove
(A, u) = {pk (11)
Case 1: The program p does not terminate when started in state (A,u). Since
(a) each of the variables y;, ... ,y; occurs in prefiz, exactly once on the left side

i

of an equation y; = f;(z},...,2% ), and (b) if one of the argument variables xz
is identical to some y; then the term ¢; is of lesser complexity than ¢;, it is
possible to inductively define a variable assignment u' that differs from u only
on the variables y1, ... ,y; and has the property that

!
(A u') = /\ yi = fi(z,...,2h)
i=1

Since u and u' differ only on the variables yi,...,¥;, which do not occur in ¢,
we also have

(-’47 ul) =¢
and, thus,

(A, ') = prefiz, .

From this and (9) we obtain

(A, u) = {p)(prefiz, —¢') . (12)

Now, since the variables y1,...,yr do not occur in p, the program p does also
not terminate when started in u'. Only if {p} = [p] does this not contradict (12).
Then, however, (11) holds trivially.

Case 2: The program p terminates when started in state (A, u). Because our
programming language is deterministic, there is a single state (B, w) with

((A,u), (B,w)) € p(p) -

As in the previous case, we can inductively define values for the variables in
Y ={y1,...,yr} in such a way that we get variable assignments u’ and w’ with

Uyar\y = U var\y  and  wyan\y = W' vany (13)
u'lyy =w')y 14

(A, '), (B,w")) € p(p) 15

(A) = Nicy v = fileloo b)) 16

(B,w') = /\Z’il+1 yi = fi(zl, ... ,wizz) A /\i’c:erl yi =t 17

(14)
(15)
(16)
(17)



Moreover, since u and u' differ only on the variables y1,... ,yx, which do not
occur in ¢, we have

(A ) = ¢ (18)
Therefore, and by (16) we have
(A, ) = prefiz, (19)
By (19) and (9) we obtain
(A,u') = [p)prefizy — ")
and, thus, by (15)
(B,w') [= prefizy — 4",
which finally with (17) gives us
(B.w') =y (20)
By induction on the complexity of the term ¢;, we prove that
(Bw') _ 4(Bw')

Yi =t; (21)

2

Case 1: t; is a variable. We get from (17) that
(B.w') by =t
which trivially implies (21).
Case 2: t; = fi(s},... ,s..). We get from (17) that
(B,w') Eyi = fi(al, ..., 2p,) -
Thus, it suffices to show that

(sj-)(B’“”) = (a:;)(B’“”) for1<j<mn; . (22)

Because ‘T; = Yinqg and 53'. = ting for some 1 <ind <k, (22) follows from the
induction hypothesis as s§ = tinq is of lesser complexity than ;.

Case 3: t; = fiP"(st,... ,si ). In this case, we get from (16) that

3 9n;

(A=ul) |: Yi = fl(xll :mfu) .

Since

(f)h = (f577)"



and u' and w' do not differ in the valuation of the variables y; resp. z (recall
that each z! is identical to some y; ), it again suffices to show (22), which can
be done in the same way as in Case 2.

Now, since w and w' only differ on the variables y1,... ,yx, which do not occur
in ¢;, we get from (21) that

yo = (23)
By (20) and (23) and the construction of ¢’ from 1, we get
(B,w) =1

Therefore, and since ((A,u), (B,w)) € p(p), (11) holds.

B Appendix: Counterexample

We present a counterexample to Theorem 2 for non-deterministic programs and
the modal operator (-). Consider the formula

T = true - (p)r(fO(0))

over the signature ¥ = {r,=, ¢} U {f}. The result of applying the translation 1,
is:

To(m) = Yy Vya((true Ays = f(y2)) = (p)(y2 =c = r(y1))) -

We consider the DL-Kripke structure K = (S, p), an arbitrary state (A4,u),

and stipulate that {a1,as} is the universe of A. Furthermore, the relation sym-
bol r is interpreted by the empty set in every state. Thus,

(Au)Er .

Let p be a program that, when started in (A, u), non-deterministically changes
the interpretation of ¢ to a; or as and does not change the state in any other way.
Thus, there are states (By,u) and (Ba,u) in S such that ((A,u), (B;,u)) € p(p)
for i = 1,2. We stipulate ¢®' = a; and ¢B> = as. The interpretation of the func-
tion symbol f does not matter, say f3' = f52 is the identity function.

Now, for every a € {a1,as}, the condition y2 = c is false in one of the states
(B1,uly2/a]) and (B2, ulyz/a]). Thus, y2 = ¢ — r(y1) is true in one of the two
states, and so (p)(y2 = ¢ — r(y1)) is true in (A, u[y2/a]) (as y2 is not affected
by p). Therefore, (A, u) = 7y(7), contradicting Theorem 2.

Acknowledgement

We thank Wolfgang Ahrendt for fruitful discussions on the topic of this paper.



