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Preface

The International Workshop on Precise Modelling and Deduction for Object-oriented
Software Development is held on June 18, 2001 in Siena (Ttaly) as part of IJCAR 2001,
the International Joint Conference on Automated Reasoning.

The workshop aims at closing the gap between automated deduction and one of its
most important applications: formal methods in software engineering. It tries to bring
together the precise modelling and the automated reasoning communities interested
in object-oriented software development.

The meeting consists of an invited talk, five contributed papers, and a tool demo
session. More information, including these proceedings, is available at the PMD web
site at 112www.ira.uka.de/ beckert/PMD.

We sincerely thank those who contributed to make this workshop possible: The
authors and participants, and in particular Johann Schumann for his invited talk. We
also thank the organisers of IJCAR 2001, who were responsible for all local arrange-
ments.
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Automatic Synthesis of UML Designs from
Requirements in an Iterative Process

Johann Schumann! and Jon Whittle?
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2 QSS/NASA Ames

email:schumann, jonathw@ptolemy.arc.nasa.gov

The Unified Modeling Language (UML) is gaining wide popularity for the de-
sign of object-oriented systems. UML [6] combines various object-oriented graphical
design notations under one common framework. A major factor for the broad ac-
ceptance of UML is that it can be conveniently used in a highly iterative, Use Case
(or scenario-based) process (although the process is not a part of UML). Here, the
(pre-)requirements for the software are specified rather informally as Use Cases and
a set of scenarios. A scenario can be seen as an individual trace of a software artifact.
Besides first sketches of a class diagram to illustrate the static system breakdown,
scenarios are a favorite way of communication with the customer, because scenar-
ios describe concrete interactions between entities and are thus easy to understand.
Scenarios with a high level of detail are often expressed as sequence diagrams.

Later in the design and implementation stage (elaboration and implementation
phases), a design of the system’s behavior is often developed as a set of statecharts.
From there (and the full-fledged class diagram), actual code development is started.
Current commercial UML tools support this phase by providing code generators for
class diagrams and statecharts.

In practice, it can be observed that the transition from requirements to design to
code is a highly iterative process. This means that initial versions of requirements have
to be modified and refined to meet additional (customer) wishes and constraints. Also
modifications of the code can lead to revisions in design. This iterative behavior is
strongly supported by most modern processes, because it facilitates early detection of
inconsistencies and bugs. Fixing a bug which is detected late in the software lifecycle
can cost approximately 60-100 times more than one which is detected early [3].

However, current UML tools do not support the transition from requirements to
design in a comfortable and consistent way. Often, a considerable amount of time is
spent to write down the requirements in great detail. Then the requirements tend to
be “forgotten” until test cases have to be set up. At this point of time, it is usually
detected that those requirements are hopelessly out of date and require a major
overhaul.

Our work [7] addresses these issues and tries to close the gap between requirements
and design. In this talk, we present a set of algorithms which perform reasonable
synthesis and transformations between different UML notations (sequence diagrams,
OCL constraints, statecharts). Our overall aim with respect to reasonable synthesis
is centered around the following concepts: detection of inconsistencies and ambigui-
ties in sequence diagrams, merging of similar or duplicated behaviors from different
sequence diagrams, the production of highly readable (structured) statechart, and
the support for iterative refinements. More specifically, we will discuss the following
transformations.



2 J. Schumann and J. Whittle

Statechart synthesis. From a set of sequence diagrams with object O (as an in-
stance of a class C') as a participant, we automatically synthesize a statechart which
reflects C’s behavior given in the sequence diagrams. Because the standard seman-
tics of sequence diagrams is very weak, almost no duplicate or similar behavior can
be merged. In order to overcome this problem, we allow the designer to specify a
set of OCL constraints, describing pre- and postconditions over a vector of “state-
variables” for messages in the sequence diagrams. These state-variables (currently
of type boolean) and the constraints are used by our algorithm to detect conflicts
between a sequence diagram and the OCL constraints (the domain model) using
unification and a version of the frame axiom. Furthermore, potential loops can be de-
tected. Our state variables also form the basis for constructing the (flat) statechart.
In contrast to other approaches (e.g., that used in the SCED tool [2]), the domain
model allows a justified merge of sequence diagrams. Because OCL constraints need
to be defined only for few (possibly important or ambiguous) messages, we believe
that the additional burden for the designer is kept to a reasonable level.

Introduction of hierarchy. As soon as the design gets more complex (i.e., a stat-
echart contains more than approx. 5 nodes), things usually get out of hand, because
the design cannot be read by the designer/developer in a reasonable manner. D. Harel
[1] tackled this problem by introducing hierarchy and orthogonality in his statecharts.
Nodes can be grouped into supernodes, increasing readability and avoiding an explo-
sion of states when new functionality is added.

In order to produce useful designs, our algorithm is capable of synthesizing hi-
erarchical statecharts. Thereby, the initial flat statechart is partitioned recursively
according to a given strategy, usually based upon information in the class diagram,
a given ordering of the state-variables, and user preferences. Because hierarchy is
transparent with respect to statechart semantics, multiple different hierarchies (or
“views”) can exist in the system at the same time.

Consistency of modifications. In most software projects, requirements scenarios
only cover a (hopefully important) fragment of the intended system behavior. There-
fore, the synthesized statechart can only be a first design sketch which needs to be
generalized and modified by the designer. A hierarchical structure (see above) is an
important prerequisite for such activities. However, transformations or modifications
easily can invalidate the requirements. Therefore, we have developed a “backwards
direction” algorithm which checks consistency of the modified statechart with the
original requirements and the domain model. In case an original sequence diagram
has been violated, our algorithm proposes a set of revised (added/modified/deleted
messages) according to given criteria.

“Design-Debugging”. Despite the well-known “fact” that every programmer al-
ways writes error-free code, debugging of a software artifact is an extremely impor-
tant (and unfortunately time-consuming and costly) task. Our algorithms support
debugging of UML diagrams on various levels [5]. Early checking of consistency in the
requirements is one way of debugging during very early stages of the development, i.e.,
already before the actual design starts. Our backwards-direction algorithm facilitates
finding bugs in modifications of the original design. Here, the user is not required to
manually go through (lengthy) execution traces. All the user has to do is to check the
proposed modifications (which are usually much smaller) of the sequence diagrams
whether or not they are consistent with the intended system behavior.
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A popular method for debugging is the so-called “printf-debugging”. Here, the
programmer instruments the code with statements which write trace information and
variable values into a log-file. After the program execution, the trace in analyzed. In
practice, however, annotation of larger program to detect a certain behavior is far
from trivial. Usually, a lot of distant and seemingly unrelated parts of the code have
to be annotated. Here, our algorithm for the introduction of hierarchy can be of great
help. Combined with the automatic code generation facilities of commercial UML
tools, such an instrumentation can be accomplished easily. The developer changes
the hierarchy of the statechart(s) in such a way that all states which are of interest
for the current debugging session are grouped together in one (or a few) superstates
on the top of the hierarchy. Then, all important parts are clearly visible and can be
instrumented easily (e.g., by adding specific debugging actions). The change of the
hierarchy can be initiated by giving additional constraints over the state variables.

Our entire set of algorithms is based upon a logic-based semantics of the different
UML notations. We are currently only using a subset of the sequence diagram and
statechart notation, for which there is a straightforward, undisputed semantics. In
future, we will work on the incorporation of additional elements of the statechart
notation and extensions of sequence diagrams (see [8] for details) into our framework.

We have developed a prototype of these algorithms in Java. Integration into a
UML tool (using XMI) is currently in progress. We have tried out our algorithm with
various small examples, like the ATM machine and a cruise-control system. Future
work includes NASA-internal case studies on space shuttle software and software for
advanced air traffic control.

However, there is much work still to be done. Our overall goal is to have an in-
tegrated UML support tool which is concise and accurate, but hides the underlying
formal techniques (unification, constraint solving, tree searches) as much as possible.
By integration of the algorithms into commercial UML tools we aim at “invisible
formal methods” as proposed by J. Rushby [4]. The incorporation of additional do-
main information in the form of OCL constraints allows concise consistency checks
and justified merging of sequence diagrams with minimal overhead for the software
designer and developer. It is thus expected that such tools will increase productivity
and quality of object oriented software systems.
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Handling Java’s Abrupt Termination in a
Sequent Calculus for Dynamic Logic
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Abstract. In JAva, the execution of a statement can terminate abruptly (besides
terminating normally and terminating not at all). Abrupt termination either leads to a
redirection of the control flow after which the program execution resumes (for example
if an exception is caught), or the whole program terminates abruptly (if an exception
is not caught). Within the KeY project, a Dynamic Logic for Java Card has been
developed, as well as a sequent calculus for that logic, which can be used to verify Java
CARD programs. In this paper, we describe how abrupt termination is handled in that
calculus. The ideas behind the rules we present can easily be adapted to other program
logics (in particular Hoare logic) for JAVA.

1 Introduction

In JAVA, the execution of a statement can terminate abruptly (besides terminating
normally and terminating not at all). Possible reasons for an abrupt termination are
for instance (a) that an exception has been thrown, (b) that a loop or a single loop
iteration is terminated with the break resp. the continue statement, and (c) that the
execution of a method is terminated with the return statement. Abrupt termination
of a statement either leads to a redirection of the control flow after which the program
execution resumes (for example if an exception is caught), or the whole program
terminates abruptly (if an exception is not caught).

In [2] a Dynamic Logic for JAVA CARD (JAVA CARD DL) has been presented,
as well as the basic rules of a sequent calculus for JAVA CARD DL that can be used
to verify JAVA CARD programs. In this paper, we give a detailed description of how
abrupt termination is handled in that calculus. The basic principles of the rules we
present can easily be adapted to other program logics (in particular Hoare logic) for
JAVA.

The basic idea of our approach, which helps to keep the calculus’s rules simple,
is to give an abruptly terminating statement the same semantics as that of a non-
terminating statement. As usual in Dynamic Logics, the semantics of a program is
a partial functions between states. Neither the fact that an abrupt termination has
occurred nor the reason for the abrupt termination are made part of the states. Thus,
to define the semantics of DL formulas, we do not need to provide additional constructs
for handling abrupt termination. Nevertheless, our calculus can handle programs that
make use of abrupt termination to redirect control flow during execution.

We work according to the principle that the program states should not include
information about control flow: they do not contain a program counter, nor the value
of the condition in an if-else statement that has just been evaluated, nor the reason
for the termination of a statement.



6 B. Beckert and B. Sasse

A different approach is used in [3], where the semantics of a program is not a
function between states but from states to pairs consisting of a state and a reason
for termination, making the reason for completion effectively part of the final state
of a statement. Other related work includes [6] and [8], where program logics for
(subsets of) JAVA are described.

The structure of this paper is as follows: In Section 2, we shortly describe the
background and motivation of our work. Syntax and semantics of JAvA CARD DL are
introduced in Section 3; for details, the reader is referred to [2]. The rules for handling
abrupt termination are given in Section 4. In Section 5, we present an example for
the application of these rules.

2 Background

The work reported here has been carried out as part of the KeY project [1]. The
goal of KeY is to enhance a commercial CASE tool with functionality for formal
specification and deductive verification and, thus, to integrate formal methods into
real-world software development processes. Accordingly, the design principles for the
software verification component of the KeY system are:

— The programs that are verified should be written in a “real” object-oriented pro-
gramming language (we decided to use JAVA CARD).

— The logical formalism should be as easy as possible to use for software developers
(who do not have years of training in formal methods).

Since JAVA CARD is a “real” object-oriented language, it has features which are
difficult to handle in a software verification system, such as dynamic binding, aliasing,
object initialisation, and—the topic of this paper—abrupt termination. On the other
hand, JAVA CARD lacks some crucial complications of the full JAVA language such as
threads and dynamic loading of classes. Moreover, JAVA smart cards are an extremely
suitable target for software verification, as the applications are typically security-cri-
tical but rather small.

We use an instance of Dynamic Logic (DL) [5]—which can be seen as an exten-
sion of Hoare logic—as the logical basis of the KeY system’s software verification
component, because deduction in DL is based on symbolic program execution and
simple program transformations and is close to a programmer’s understanding of
Java CARD. Also, DL has successfully been applied in practice to verify software
systems of considerable size. It is used in the software verification systems KIV [7]
and VSE [4] (for a programming language that is not object-oriented).

3 Dynamic Logic for Java Card

3.1 Overview

Dynamic Logic can be seen as a modal predicate logic with a modality (p) for every
program p (we allow p to be any sequence of legal JAVA CARD statements); (p)
refers to the successor worlds (called states in the DL framework) that are reachable
by running the program p. In standard DL there can be several of these states (worlds)
because the programs can be non-deterministic; but here, since JAVA CARD programs
are deterministic, there is exactly one such world (if p terminates) or there is no
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such world (if p does not terminate). The formula (p )¢ expresses that the program p
terminates in a state in which ¢ holds. A formula ¢ — (p ) is valid if for every state s
satisfying the pre-condition ¢, a run of the program p starting in s terminates, and
in the terminating state the post-condition ¢ holds.

Thus, the formula ¢ — (p )t is similar to the Hoare triple {¢}p {+/}. But in con-
trast to Hoare logic, the set of formulas of DL is closed under the usual logical opera-
tors: In Hoare logic, the formulas ¢ and 1 are pure first-order formulas. DL allows to
involve programs in the descriptions ¢ resp. 1 of states. For example, using a program,
it is easy to specify that a data structure is not cyclic, which is impossible in pure
first-order logic. Because all JAVA constructs are available in DL for the description of
states (including while loops and recursion) it is not necessary to define an abstract
data type state and to represent states as terms of that type; instead DL formulas
can be used to give a (partial) description of states, which is a more flexible technique
and allows to concentrate on the relevant properties of a state.

3.2 Syntax of Java Card DL

As said above, a dynamic logic is constructed by extending some non-dynamic logic
with modal operators of the form (p). The non-dynamic base logic of our DL is a
typed first-order predicate logic. We do not describe in detail what the types of our
logic are (basically they are identical with the JAVA types) nor how exactly terms and
formulas are built, as this is not relevant for the handling of abrupt termination. The
definitions can be found in [2]. Note, that terms (which we often call “logical terms”
in the following) are different from JAVA expressions; they never have side effects.

In order to reduce the complexity of the programs occurring in DL formulas, we
introduce the notion of a program context. The context can consist of any legal JAvA
CARD program, i.e., it is a sequence of class and interface definitions. Syntax and
semantics of DL formulas are then defined with respect to a given context; and the
programs in DL formulas are assumed not to contain class definitions.

A context must not contain any constructs that lead to a compile-time error or
that are not available in JAVA CARD.!

The programs in DL formulas are basically executable JAVA CARD code; as said
above, they must not contain class definitions but can only use classes defined in
the program context. We introduced two additional constructs that are not available
in plain JAVA CARD but are necessary for certain rule applications: Programs can
contain a special construct for method invocation (see below), and they can contain
logical terms. These extensions are not used in the input formulas, they occur only
within proofs, i.e., we prove properties of pure JAVA CARD programs.

Ezample 1. The statement i=0; may be used as a program in a DL formula although
i is not declared as a local variable.

The statement break 1; is not a legal program because such a statement is only
allowed to occur inside a block labelled with 1. Accordingly, 1:{break 1;} is a legal
program and can be used in a DL formula.

! An additional restriction is that a program context must not contain inner classes (this restriction
is “harmless” because inner classes can be removed with a structure-preserving program transfor-
mation and are rarely used in JAvA CARD anyway).
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The purpose of our first extension is the handling of method calls. Methods are
invoked by syntactically replacing the call by the method’s implementation. To handle
the return statement in the right way, it is necessary (a) to record the object field
or variable z that the result is to be assigned to, (b) to record the old value old
of this, and (c¢) to mark the boundaries of the implementation prog when it is
substituted for the method call. For that purpose, we allow statements of the form
call(old,z){prog} to occur in DL programs.

The second extension is to integrate logical terms in programs contained in DL
formulas (not in the program context). This is necessary to be able to replace JAVA
expressions with possible side effects by a logical term of the same type. However,
since the value of logical terms cannot and must not be changed by a program, a
logical term can only be used in positions where a final local variable could be used
according to the JAVA language specification (the value of local variables that are
declared final cannot be changed either). In particular, logical terms cannot be used
as the left hand side of an assignment.

3.3 Semantics of Java Card DL

The semantics of a program p is a state transition, i.e., it assigns to each state s the
set of all states that can be reached by running p starting in s. Since JAVA CARD
is deterministic, that set either contains exactly one state (if p terminates normally)
or is empty (if p does not terminate or terminates abruptly). The set of states of
a model must be closed under the reachability relation for all programs p, i.e., all
reachable states must exist in a model (other models are not considered).

The semantics of a logical term ¢ occurring in a program is the same as that of a
JAVA expression whose evaluation is free of side-effects and gives the same value as ¢.

For formulas ¢ that do not contain programs, the notion of ¢ being satisfied by a
state is defined as usual in first-order logic. A formula (p)¢ is satisfied by a state s
if the program p, when started in s, terminates normally in a state s’ in which ¢ is
satisfied. A formula is satisfied by a model M, if it is satisfied by one of the states
of M. A formula is valid in a model M if it is satisfied by all states of M; and a
formula is valid if it is valid in all models.

As mentioned above, we consider programs that terminate abruptly to be non-
terminating. Thus, for example, (throw x;)¢ is unsatisfiable for all ¢. Nevertheless,
it is possible to express and (if true) prove the fact that a program p terminates
abruptly. For example, the formula

e =null — (try{pl}catch(Exception e){})(— (e =null))

is true in a state s if and only if the program p, when started in s, terminates abruptly
by throwing an exception (as otherwise no object is bound to e).
Sequents are notated following the scheme

qsla"' 71)[)777, + 1111»--- awn )

which has the same semantics as the formula

(Vxl)(ka)((gbl /\.../\Q/Jm) — (1/)1 VVzpn)) ,

where z1,... ,xz; are the free variables of the sequent.
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4 Sequent Calculus Rules for Handling Abrupt Termination

4.1 Notation

The rules of our calculus operate on the first active command p of a program 7p w. The
non-active prefix m consists of an arbitrary sequence of opening braces “{”, labels,
beginnings “try{” of try-catch-finally blocks, and beginnings “call(...){” of
method invocation blocks. The prefix is needed to keep track of the blocks that the
(first) active command is part of, such that the abruptly terminating statements
throw, return, break, and continue can be handled appropriately.? The postfix w
denotes the “rest” of the program, i.e., everything except the non-active prefix and
the part of the program the rule operates on. For example, if a rule is applied to the
following JAVA block operating on its first active command i=0;, then the non-active
prefix m and the “rest” w are the marked parts of the block:

1:{try{ i=0; j=0; }finally{ k=0; }}
SN— . — J/

™ w

4.2 Loop Rules

Due to space restrictions, we present only one specific rule for while loops to demon-
strate the properties of loop rules. for and do-while loops are handled analogously.

The following rule “unwinds” while loops. Its application is the prerequisite for
symbolically executing the loop body. These “unwind” rules allow to handle while
loops if used together with induction schemata for the primitive and the user defined
types (see the example in Section 5).

rF ((mif(e)V:{1":{p'} 11:-- 1,:while(c){p}} w)9)
'+ ((m ly:- lp:while(e){p} w)9)

(R1)

where

— 1" and 1" are new labels,
— p' is the result of (simultaneously) replacing in p
(a) every break I; (for 1 <i <n) and every break (with no label) that has the
while loop as its target by break 1’, and
(b) every continue 1; (for 1 <i < n) and every continue (with no label) that
has the while loop as its target by break 1”.?

The list 11:,...,1l,: usually has only one element or is empty, but in general a loop
can have more than one label.

In the “unwound” instance p’ of the loop body p, the label 1’ is the new target for
break statements and 1” is the new target for continue statements, which both had

2 In DL versions for simple artificial programming languages, where no prefixes are needed, any
formula of the form (p q)¢ can be replaced by (p)(q)¢. In our calculus, splitting of (rpqw)¢ into
(mp){qw)¢ is not possible (unless the prefix w is empty) because wp is not a valid program; and
the formula (7pw)(mqw)¢ cannot be used either because its semantics is in general different from
that of (mpquw)e.

® The target of a break or continue statement with no label is the loop that immediately encloses
it.
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the while loop as target before. This results in the desired behaviour: break abruptly
terminates the whole loop, while continue abruptly terminates the current instance
of the loop body.

A continue with or without label is never handled by a rule directly, because it
can only occur in loops, where it is always transformed into a break by the loop rules.

4.3 Rules for the Abruptly Terminating Statements

Possible Combinations of Prefix and Abruptly Terminating Statement. In
the following, we present rules for combinations of prefix type (beginning of a block,
method invocation or try) and abruptly terminating statement (break, return or
throw). Due to restrictions of the language specification, the combination method
invocation/break does not occur. Also, switch statements, which may contain a
break, are not considered here; they are transformed into a sequence of if statements.

Evaluation of Arguments. The arguments ezc and val of statements throw ezc
resp. return wal must already be evaluated (they must be logical terms) before the
appropriate rule for redirecting the control flow can be applied to the abruptly termi-
nating statement. Otherwise, a rule such as the following (rule (R2)) has to be used
first, which then allows the application of other rules that evaluate the expression ezc.

I' v (m {z=ezc; throw z;} w)¢
I' + (m throw ezc; w)¢p

(R2)

where z is a new variable of the same type as the expression ezc. Since, in this paper
we focus on the handling of abrupt termination here and not on the evaluation of
expressions, we assume in the following that this has already been done.

We also do not consider the problem of undefined expressions in this paper, whose
evaluation results in an exception being thrown (e.g., the expression o.a if the value
of 0 is null). If an expression e occurs that may be undefined, the rules have a further
premiss I' F isdef(e) in the full version of the calculus.

Rule for Method Call/return. The rule for this combination symbolically executes
every step the virtual machine does when a method invocation is terminated: The
return value is assigned to the location recorded in the method call prefix and this
is restored to the value it had before method invocation.

I' v (r z=y; this=old; w)¢

(R3)
I' - (m call(old, z):{return y; pgm}w)d

In pure JAVA it is not possible to explicitly assign a value to this. Our assignment
rule, however, can handle such a statement and produces the desired effect. The “rest”
program pgm of the method body, which is not executed, may be empty.

Rule for Method Call/throw. In this case, the method is terminated and this
is restored to its old value, but no return value is assigned. The throw statement



Handling Java’s Abrupt Termination in a Sequent Calculus for Dynamic Logic 11

remains unchanged (i.e., the exception is handed up to the invoking program).

I' = (m this=old; throw ezc; w)¢
I' + (r method call(old, z):{throw ezc; pgm}w)¢p

(R4)

Again, the “rest” pgm of the method body, which is not executed, may be empty.

Rules for try/throw. The following rules allow to handle try-catch-finally blocks
and the throw statement. These are simplified versions of the actual rules that apply
to the case where there is exactly one catch clause and one finally clause.

I' + instanceof (ezc, T) I' = ((m try{e=ezc;q}finally{r} w)¢
I' = ((m try{throw exc; p}catch(T e){g}finally{r} w)¢)

(R5)

I' = —instanceof (exzc, T) I' - ({(m r; throw ezc; w)¢)
I' - ((rm try{throw ezc; p}catch(T e){g}finally{r} w)¢)

(R6)

Rule (R5) applies if an exception ezc is thrown that is an instance of exception
class T, i.e., the exception is caught; otherwise, if the exception is not caught, rule (R6)
applies.

Rules for try/break and try/return. A return or a break statement within a
try-catch-finally statement causes the immediate execution of the finally block.
Afterwards the try statement terminates abnormally with the break resp. the return
statement (a different abruptly terminating statement in the finally block takes
precedence). This behaviour is simulated by the following two rules:

I' - (m r break 1; w)¢

R7
I' - (7 try{break 1; pl}catch(T ezc){q}finally{r} w)¢ (RT)

I'' - (m r return v; w)¢o
I' - (m try{return v; p}catch(T ezc){g}finally{r} w)¢

(R8)

Rules for block/break, block/return, and block/throw. Rules (R9) and (R10)
apply to blocks which are terminated by a break statement without label resp. with
a label 1 matching one of the labels 14,..., 1 of the block (k > 0).

I+ (rm w)¢
't (m 1y:--- lp:{break; pgm} w)¢

It (rm w)o
't (m 1y:---lp:{break 1; pgm} w)¢

where 1 € {11,..., 1t} (R10)
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The following rules handle labelled and unlabelled blocks that are abruptly ter-
minated by a break statement with a label I not matching any of the labels of the
block (Rule (R11)), or by a return or throw statement (Rules (R12) resp. (R13)).

I' + (7 break 1l; w)¢
't (m 1y:---lp:{break 1; pgm} w)¢

where 1 ¢ {1,...,1x} (RI11)

I' F (m return v; w)¢

(R12)
I' - (m 1y: - lp:{return v; pgm} w)¢

I' + (r throw e; w)¢
' (m 1y: - lp:{throw e; pgm} w)¢

(R13)

In all the rules above, the program pgm (that is not executed) may be empty.

Rules for Empty Blocks. Rule (R14) applies to empty try blocks, which terminate
normally. There are similar rules for empty blocks and empty method invocations.

Itk ((mr r w))
I' - ((r try{}catch(T e){q}finally{r} w)¢)

(R14)

5 Example

As an example, we use the calculus presented in the previous section to verify that,
if the program

while (true) {
if (i==10) break;
i++;
}
is started in a state in which the value of the variable i is between 0 and 10, then it

terminates normally in a state in which the value of i is 10.* That is, we prove that
the sequence

0<ini<10 (pwhi1e>i =10 (1)

is valid, where pyhile is an abbreviation for the above while loop. Instead of proving (1)
directly, we first use induction to derive the sequence

F (Yn)((n <10A1 =10 —n) = (pwhile)i = 10) (2)

as a lemma. It basically expresses the same as (1), the difference is that its form
allows a proof by induction on n. The introduction of this lemma is the only step in
the proof where an intuition for what the JAVA CARD program pyhie actually does
is needed and where a verification tool may require user interaction.

* This example program was presented in [3].
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1=10F1=10 (8) [induction hypothesis]
t . |
i=10 F <>1 =10 (7) (pvvhile)i =10
break (710
i=10 + (6) n<9i=10—-n F
(11:{break 11; i++; pynile})i = 10 (11:{12:{} puwnie})i =10
break (11
i=10 F (5) n<9i=9-ntF
(11:{12:{break 11; i++;}pwnie})i =10 (11:{12: {i++;}pwhile )i = 10
i=10 F n<9i=9-nkF
(11:{12:{if (i==10) break 11; ... })i =10 (11:{12:{if (i==10) Hi=10
i=10 F (4) n<9,i=9-nkF
(if (true) 11:{12:{ ... })i =10 (if (true) 11:{12:{ ... })i =10
while (R1) while (R1)
1 =10 F (pwnile)i =10 (3) n<9i=9—n F (puhite)i =10
Base case: Step case:
n=20 n—n+1

= (Vn)((n <10A1i=10-— n) — (Pwhile)i = 10) (2)

Fig. 1. Structure of the proof for sequent (1).

The derivation of (2) is shown schematically in Figure 1. In the following, we
describe the base case n = 0 of the induction in detail. The step case is similar (the
main difference is that it closes with an application of the induction hypothesis while
the base case closes with an axiomatic sequent).

The first sequent which appears in the base case after applying the induction rule
and some simplifications is

i =10 + (while (true) {if (i==10) break; i++;})i =10 (3)
An application of the rule for while loops (R1) results in the new proof obligation

i=10 F (4)
(if (true) 11:{12:{if (i==10) break 11; i++;} pynie})i = 10

Here, two new labels are introduced: 11 is the target for break statements in the loop
body and 12 is the target for continue statements (the latter does not occur in this
example).

The next step is to use the rule for if statements twice. After the second appli-
cation, we get the sequent

i=10 F (11:{12:{break 11; i++} pypie})i = 10 (5)
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in which the next executable statement is break 11. Now, the rule for labelled break
statements in a block with a non-matching label (R11) has to be applied, which
eliminates the block labelled with 12:

i =10 F (11:{break 11; pynile})i = 10 (6)

Then, the rule for labelled break statements in a block with a matching label (R10)
is used. The result is

i=10 F ()(i =10) (7)
This simplifies with the rule for the empty program to
i=10F i=10 (8)

and can thus be shown to be valid.

After the lemma (2) has been proved by induction, it can be used to prove the
original proof obligation (1). First, we use a quantifier rule to instantiate n with
10 — i. The result is

0<iAi<10F (10—1i<10Ai=10— (i—10)) = ((Pwhile)i = 10)
which can be simplified to
0<iAi<10Ai=1iF ({pwhie)i = 10) (9)

And, since (9) is derivable, the original proof obligation (1) is derivable as well, because
the trivial equality i = i can be omitted.
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Abstract. In this paper’ we formalize UML class diagrams in terms of a logic be-
longing to Description Logics, which are subsets of First-Order Logic that have been
thoroughly investigated in Knowledge Representation. The logic we have devised is
specifically tailored towards the high expressiveness of UML information structuring
mechanisms, and allows one to formally model important properties which typically can
only be specified by means of qualifiers. The logic is equipped with decidable reason-
ing procedures which can be profitably exploited in reasoning on UML class diagrams.
This makes it possible to provide computer aided support during the application design
phase in order to automatically detect relevant properties, such as inconsistencies and
redundancies.

1 Introduction

The Unified Modeling Language (UML) is the de facto standard formalism for object-
oriented modeling [2, 14]. There is a vast consensus on the need for a precise semantics
for UML [12,17], in particular for UML class diagrams. Indeed, several types of for-
malization of UML class diagrams have been proposed in the literature [11-13,9].
Many of them have been proved very useful with respect to the task of establishing
a common understanding of the formal meaning of UML constructs. However, to the
best of our knowledge, none of them has the explicit goal of building a solid basis for
allowing automated reasoning techniques, based on algorithms that are sound and
complete wrt the semantics, to be applicable to UML class diagrams.

In this paper, we propose a new formalization of UML class diagrams in terms of
a particular formal logic of the family of Description Logics (DLs). DLs? have been
proposed as successors of semantic network systems like KL-ONE, with an explicit
model-theoretic semantics. The research on these logics has resulted in a number
of automated reasoning systems [18, 19, 15, 16], that have been successfully tested in
various application domains (see e.g., [21, 22, 20]). Our goal is to exploit the deductive
capabilities of DL systems, and show that effective reasoning can be carried out
on UML class diagrams, so as to provide support during the specification phase of
software development.

In DLs, the domain of interest is modeled by means of concepts and relations,
which denote classes of objects and relation between objects, respectively. Generally
speaking, a DL is formed by three basic components:

L A full version of this paper can be found in [3].
2 See http://dl.kr.org for the home page of Description Logics.
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A description language, which specifies how to construct complex concept and

relationship expressions (also called simply concepts and relationships), by starting

from a set of atomic symbols and by applying suitable constructors,

— a knowledge specification mechanism, which specifies how to construct a DL knowl-
edge base, in which properties of concepts and relationships are asserted, and

— a set of automatic reasoning procedures, which are sound, complete and terminat-

ing.

The set of allowed constructors characterizes the expressive power of the descrip-
tion language. Various languages have been considered by the DL community, and
numerous papers investigate the relationship between expressive power and compu-
tational complexity of reasoning (see [10] for a survey).

Several works point out that DLs can be profitably used to provide both formal
semantics and reasoning support to formalisms in areas such as Natural Language,
Configuration Management, Database Management, Software Engineering. For exam-
ple, [7, 8] illustrates the use of DLs for database modeling. However, DLs have not been
applied to the Unified Modeling Language (UML) (with the exception of [5]). In this
work we concentrate on UML class diagrams for the conceptual perspective. Hence,
we do not deal with those features that are relevant for the implementation perspec-
tive, such as public, protected, and private qualifiers for methods and attributes. For
such UML class diagrams we present a formalization of UML in terms of DLs. In
particular, we show how to capture the constructs of UML class diagrams by using
a Description Logic that is equipped with n-ary relations. The DL we have adopt is
specifically tailored towards the high expressiveness of UML information structuring
mechanisms, and allows one to formally model important additional properties, such
has disjointness of classes, or partitions of classes into subclasses, that are typically
specified by means of constraints in UML class diagrams. In spite of the expressive-
ness required, the logic proposed admits decidable reasoning procedures. Overall, the
formalization in DLs of UML class diagrams provides us with a rigorous logical frame-
work for representing and automatically reasoning on UML class specifications. Such
a formalization can be considered as the basic steps towards developing intelligent
tools that provide computer aided reasoning support during the application design
phase, in order to automatically detect relevant properties, such as inconsistencies
and redundancies.

The paper is organized as follows: in Section 2 we give an overview of the Descrip-
tion Logic we use, called DLR. In Sections 3, 4, 5 and 6, we illustrate the formalization
of UML class diagrams in terms of DLR, focusing on classes, associations, general-
ization, and constraints, respectively. In Section 7 we discuss the use of the reasoning
procedures associated to DLR in order to support the specification of UML class
diagrams. Section 8 concludes the paper.

2 The Description Logic DLR

In this paper we adopt a DL, here called DLR, presented in [6], which is a variant
of logic originally introduced in [4]. The basic elements of DLR are concepts (unary
relations), and n-ary relations. We assume to deal with a finite set of atomic relations
and atomic concepts, denoted by P and A, respectively. Arbitrary relations (of given
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arity between 2 and ny,,,), denoted by R, and arbitrary concepts, denoted by C, are
built according to the following syntax:

R:=T, ‘ P ‘ (z/nC) | -R ‘ R M Ry
CumTy | A| =C | CiNCy | (<k[iIR)

where 7 denotes a component of a relation, i.e., an integer between 1 and ng,u., n
denotes the arity of a relation, i.e., an integer between 2 and 7,4, and k denotes
a non-negative integer. We consider only concepts and relations that are well-typed,
which means that (i) only relations of the same arity n are combined to form expres-
sions of type Ry M Ry (which inherit the arity n), and (ii) 4 < n whenever i denotes a
component of a relation of arity n.

We also make use of the following abbreviations:

CiuCy for —(=CyMN-Cy)
Ci=Cy for —C1UCy
(> k[]R) for (< k—1[i]R)
AR for (> 1[i]R)
V[i]R for —3[i]-R

Moreover, we abbreviate (i/n:C) with (i: C), when n is clear from the context.
A DLR knowledge base (KB) is constituted by a finite set of inclusion assertions,
where each assertion has one of the forms:

RlERQ CIEC2

with R; and Ry of the same arity.

Besides inclusion assertions, DLR KBs allow for assertions expressing identifica-
tion constraints and functional dependencies.

An identification assertion on a concept has the form:

(id C [i1] Ry, ..., [in] Rp)

where C'is a concept, each R; is a relation, and each ¢; denotes one component of R;.
Intuitively, such an assertion states that no two different instances of C' agree on the
participation to Ry,... , Rj. In other words, if a is an instance of C' that is the i;-th
component of a tuple t; of R;, for j € {1,... ,h}, and b is an instance of C that is
the i;-th component of a tuple s; of R;, for j € {1,...,h}, and for each j, t; agrees
with s; in all components different from i, then a and b coincide.

A functional dependency assertion on a relation has the form:

(de’il,... ,’ih—>j)

where R is a relation, h > 2, and 41, ... ,i,,j denote components of R. The assertion
imposes that two tuples of R that agree on the components i1,... ,7, agree also on
the component 7.

Note that unary functional dependencies (i.e., functional dependencies with A = 1)
are ruled out in DLR, since these lead to undecidability of reasoning [6]. Note also that
the right hand side of a functional dependency contains a single element. However, this
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T C(Ah)" Ti=4%
PTCTI AT C AT
(i/n:0)F ={te TL|tli]eCT} (-C)% = AT\ C7
(-R)* =T\ R* (CyNCy)T = 0T nCE
(RiMR2)" = RIN RS (SKHEIR)T = {a € AT | ¢{t € RT | #[i] = a} < k}

Fig. 1. Semantic rules for DLR (P, R, R1, and R> have arity n)

is not a limitation, because any functional dependency with more than one element
in the right hand side can always be split into several dependencies of the above form.

The semantics of DLR is specified through the notion of interpretation. An in-
terpretation T = (AT, T) of a DLR KB K is constituted by an interpretation domain
AT and an interpretation function T that assigns to each concept C a subset C* of
AT and to each relation R of arity n a subset R of (AT)", such that the conditions
in Figure 1 are satisfied. (In the figure, ¢[i] denotes the i-th component of tuple ¢.)
We observe that T denotes the interpretation domain, while T,,, for n > 1, does not
denote the n-Cartesian product of the domain, but only a subset of it, that covers
all relations of arity n. It follows, from this property, that the “—” constructor on
relations is used to express difference of relations, rather than complement.

To specify the semantics of a KB we first define when an interpretation satisfies
an assertion as follows:

— An interpretation Z satisfies an inclusion assertion Ry C Ry (resp. Cy C Cy) if
RT C RI (vesp. CT C CT).

— An interpretation Z satisfies the assertion (id C [i1]Ry, ... ,[is|Rp) if for all a,b €
CT and for all t,s; € R,... ty,s;, € R% we have that:
a=tifi] = = ta[in],
b= s1]i1] = splin), implies a = b

tili] = s;i], forjE{l,... ,h}, and for i # i;

— An interpretation T satisfies the assertion (fd R iy,... ,i, — j) if for allt,s € R,
we have that:

tli1] = sfi1], ..., t[in) = s[in] implies t[j] = s[j]

An interpretation that satisfies all assertions in a KB K is called a model of K.

Several reasoning services are applicable to DLR KBs. The most important ones
are KB satisfiability and logical implication. A KB K is satisfiable if there exists a
model of IC. A concept C' is satisfiable in a KB K if there is a model Z of K such that
C7T is nonempty. A concept Cy is subsumed by a concept Cy in a KB K if C¥ C CZ
for every model Z of K. An assertion « is logically implied by K if all models of I
satisfy «. One can easily verify that logical implication and KB unsatisfiability are
mutually reducible.

One of the distinguishing features of DLR is that it is equipped with reasoning
algorithms that are sound and complete wrt to the semantics. Such algorithms allow
one to decide all the above reasoning tasks in deterministic exponential time [6].
Indeed, the proposed algorithms are computationally optimal, since reasoning in DLR
is EXPTIME-complete [4].
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Person

-~
class name

name: String
phoneNumber[1..*]: String

operations
age(Datetime): Int /

acceptsSalary(Int): Bool

-~ attributes

Fig. 2. Representation of a class in UML

3 Classes

A class in an UML class diagram denotes a sets of objects with common features.
A class is graphically rendered as a rectangle divided into three parts, as shown for
example in Figure 2. The first part contains the name of the class, which has to be
unique in the whole diagram. The second part contains the attributes of the class, each
denoted by a name (possibly followed by the multiplicity, between square brackets)
and with an associated class, which indicates the domain of the attribute values. For
example, the attribute phoneNumber[1..*]: String means that each instance of the class
has at least one phone number, and possibly more, and that each phone numbers is
an instance of String. If not otherwise specified, attributes are single-valued. The third
part contains the operations of the class, i.e., the operations associated to the objects
of the class. An operation definition has the form:

operation-name(parameter-list): (return-list)

Observe that an operation may return a tuple of objects as result.

An UML class is represented by a DLR concept. This follows naturally from the
fact that both UML classes and DLR concepts denote sets of objects.

An UML attribute a of type C' for a class C associates to each instance of C,
zero, one, or more instances of a class C'. An optional multiplicity [i..j] for a specifies
that a associates to each instance of C, at least i and most j instances of C'. When
the multiplicity is missing, [1..1] is assumed, i.e., the attribute is mandatory and
single-valued.

To formalize attributes we have to think of an attribute a of type C' for a class
C as a binary relation between instances of C' and instances of C’. We capture such
a binary relation by means of a binary relation a of DLR. To specify the type of the
attribute we use the assertion:

C C V[l(a=(2:C")

Such an assertion specifies precisely that, for each instance ¢ of the concept C, all
objects related to ¢ by a, are instances of C’. Note that an attribute name is not
necessarily unique in the whole schema, and hence two different classes could have
the same attribute, possibly of different types. This situation is correctly captured by
the formalization in DLR.

To specify the multiplicity [i..7] associated to the attribute we add the assertion:

C C (>ilta) N (< j[1la)

Such an assertion specifies that each instance of C' participates at least ¢ times and
at most 7 times to relation a via component 1. If 7+ = 0, i.e., the attribute is optional,
we omit the first conjunct, and if j = * we omit the second one.



20 A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini

An operation of a class is a function from the objects of the class to which the
operation is associated, and possibly additional parameters, to tuples of objects. In
class diagrams, the code associated to the operation is not considered and typically,
what is represented is only the signature of the operation.

In DLR, we model operations by means of DLR relations. Let

f(Pl,... ,Pm) : (Rl,... ,Rn)

be an operation of a class C' that has m parameters belonging to the classes Py, ... , P,
respectively and n return values belonging to Ry, ..., R, respectively. We formalize
such an operation as a DLR relation, named opy(p,,... p,):(Ry,...,Rn)» Of arity m+n+1
among instances of the DLR concepts C, Py,... , Py, Ry, ... . Ry,. On such a relation
we enforce the following assertions:

— An assertion imposing the correct types to parameters and return values:

C C V[(OPf(P,,... Pu):(Riye Re) =
(2:P)M---MM(m+1:Pp)N(m+2:R)MN---TT(m+n+1:Ry,))

— Assertions imposing that invoking the operation on a given object with given
parameters determines in a unique way each return value (i.e., the relation corre-
sponding to the operation is in fact a function from the invocation object and the
parameters to the returned values):

(fd opf(Pla“-st):(Rlz"'9Rn) 1’ R + 1 - m+ 2)

(fd °Pf(P1,...,Pm):(Rl,...,Rn) ]., ,m-l— 1—=m+n+ ].)

These functional dependencies are determined only by the number of parame-
ters and the number of result values, and not by the specific class for which the
operation is defined, nor by the types of parameters and result values.

The owverloading of operations does not pose any difficulty in the formalization
since an operation is represented in DLR by a relation having as name the whole
signature of the operation, which consists not only the name of the operation but also
the parameter and return value types. Observe that the formalization of operations
in DLR correctly allows one to have operations with the same name or even with the
same signature in two different classes.

4 Associations and Aggregations

An association in UML, graphically rendered as in Figure 3, is a relation between the
instances of two or more classes. An association often has a related association class
that describes properties of the association such as attributes, operations, etc. An
aggregation in UML, graphically rendered as in Figure 4, is a binary relation between
the instances of two classes, denoting a part-whole relationship, i.e., a relationship
that specifies that each instance of a class is made up of a set of instances of another
class.

Observe that names of associations and names of aggregations (as names of classes)
are unique. In other words there cannot be two associations/aggregations with the
same name.
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Fig. 3. Association in UML
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Fig. 4. Aggregation in UML

We first concentrate on the formalization of aggregations, which are simpler to
model than general associations. An aggregation A, saying that instances of the class
C1 have components that are instances of the class Cs, is formalized in DLR by means
of a binary relation A together with the following assertion:

A E (101)“(202)

Note that the distinction between the contained class and the containing class is not
lost. Indeed, we simply use the following convention: the first argument of the relation
18 the containing class.

As we have seen for class attributes, the multiplicity of an aggregation can be easily
expressed in DLR. For example, the multiplicities shown in Figure 4 are formalized
by means of the assertions:

Cy
Cs

(
(

We can use a similar assertion for a multiplicity on the participation of instances of
C for each given instance of Cs.

Observe that, in the formalization in DLR of aggregation, role names do not play
any role. If we want to keep track of them in the formalization, it suffices to consider
them as convenient abbreviations for the components of the DLR relation modeling
the aggregation.

The decision of representing an aggregation by a binary DLR;s relation leads
some implications; first of all, we note that role names are lost. In our framework role
names are replaced by an integer i (whose value can be only 1 or 2), which specifies
whether the corresponding argument is the first or the second in the aggregation.

Now, we want to preserve the role names in our framework. Therefore we take
advantage of the set of role names N introducing, for each atomic relation R of arity
k, a role name function

ng[1JA) T1(< ny [1]4)
my [2]A) 1T (< my, [2]A)

I
v v

fR: {1, ,k} — NU{S}.

The function fr returns, given an integer i between 1 and k (the arity of the relation),
the role name associated to the i-th role, if it has one, ¢ if the role has no name.
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Fig. 5. Binary association in UML

When we compose two relations with the the operator M (we recall that the rela-
tions have got to have the same arity), role name are preserved if both overlapping
roles have the same name in N; otherwise, the role names are lost. Formally:

fR1HR2 ('L) — {le (Z)a if le (l) = fRQ(i)

e, otherwise

The negation of a relation R of arity k retains all the role names of the original relation.
This choice could seem insensible at a first glance, but it ensures for example that
matching role names are preserved when we do the union of relations (like Ry Ll Ry =
—(=R; M =Ry)). Formally we have:

f-r(i) = fr(i) for each i € {1,... |k} (1)

We impose fr to be injective for every relation R; instead, we would have the same
name for more than one role, within the same relation.

Next we focus on associations. Since associations have often a related association
class, we formalize associations in DLR by reifying each association A into a DLR
concept A with suitable properties. We represent an association among n classes
Ci,...,C,, as shown in Figure 3, by introducing a concept A and n binary relations
T1,...,Tn, one for each component of the association A 3. Each binary relation r;
has C; as its first component and A as its second component. Then we enforce the
following assertion:

Tl 1 (< 1 [Ur) ML = (2:C))

where J[1]r; (with 7 € {1,... ,n}) specifies that the concept A must have all compo-
nents rq,... ,r, of the association A, (< 1[1]r;) (with i € {1,... ,n}) specifies that
each such component is single-valued, and V[1](r; = (2:C;)) (with i € {1,... ,n})
specifies the class each component has to belong to. Finally, we use the assertion

(id A [1)r1, ..., [1rn)

to specify that each instance of the concept A indeed represents a distinct tuple of
the corresponding association.

We can easily represent a multiplicity on a binary UML association, by imposing
suitable number restrictions on the DLR relations modeling the components of the
% These relations may have the name of the roles of the association if available in the UML diagram,

or an arbitrary name if role names are not available. In any case, we preserve the possibility of
using the same role name in different associations.
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C

C1 Cs . Ch

Fig. 6. A class hierarchy in UML

association. Differently from aggregation, however, the names of such relations (which
correspond to roles) are unique wrt to the association only, not the entire diagram.
Hence we have to state such constraints in DLR in a slightly different way.

The multiplicities shown in Figure 5 are captured as follows:

Cy
Cs

(= ng [1](r1 T1(2: A))) T (< g [1](r1 11 (21 A)))

C
C (Zme[1](r21(2: A))) N (< my [1](r2 11(2: 4)))

5 Generalization and Inheritance

In UML one can use generalization between a parent class and a child class to specify
that each instance of the child class is also an instance of the parent class. Hence,
the instances of the child class inherit the properties of the parent class, but typically
they satisfy additional properties that do not hold for the parent class.

Generalization is naturally supported in DLR. If an UML class Cy generalizes a
class C1, we can express this by the DLR assertion:

Ci C Oy

Inheritance between DLR concepts works exactly as inheritance between UML
classes. This is an obvious consequence of the semantics of C which is based on
subsetting. Indeed, in DLR, given an assertion Cy C (b, every tuple in a relation
having C5 as i-th argument type may have as i-th component an instance of Cf,
which is in fact also an instance of Cy. As a consequence, in the formalization, each
attribute or operation of Cy, and each aggregation and association involving C is
correctly inherited by Cy. Observe that the formalization in DLR also captures di-
rectly inheritance among association classes, which are treated exactly as all other
classes, and multiple inheritance between classes (including association classes).

Moreover in UML, one can group several generalizations into a class hierarchy,
as shown in Figure 6. Such a hierarchy is captured in DLR by a set of inclusion
assertions, one between each child class and the parent class:

C; CC foreach i € {1,... ,n}

In UML it is possible to override attributes or operations of a superclass. That
is, it is possible to specialize an attribute or an operation for the subclass. From
the conceptual point of view such a specialization needs to remain compatible with
the original definition of the attribute/operation, i.e., the attribute/operation of the
subclass can only be a restriction of the corresponding attribute/operation belonging
to the superclass. For attributes, this means that one can restrict the type of the
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attribute to be a subclass of the original type, or restrict the multiplicity wrt to the
one specified for the superclass. For operations, while keeping the same signature,
one may restrict (by means of constraints) the return types and possibly also the
argument types to be subclasses of the original ones®*.

We illustrate by means of an example how one can correctly model such forms
of overriding in DLR. Let C be an UML class that has an operation f(Cy,C3) : Cs,
and C’ be a subclass of C' (and hence inherits the operation). In DLR, we model the
situation by introducing a concept C' and a relation opy(c,,c,).c, and a concept C’
with suitable assertions including C' C C. As a consequence instances of the concept
C' inherits the properties that hold for instances of C' including the participation in
the relation opy(c, c,).c;- Suppose now that in the UML class diagram C' we override
the method f(C4, Cy) : C5 by requiring that the result value belongs to a subclass C}
of C5. We can capture this in DLR by adding the assertion:

C" T V[1](opy(cy,ch):cs = (4:C3))

6 Constraints

In UML it is possible to add information to a class diagram by using constraints. In
general, constraints are used to express in an informal way information which cannot
be expressed by other constructs of UML class diagrams. We discuss here common
types of constraints that occur in UML class diagrams and how they can be taken
into account when formalizing class diagrams in DLR.

Generally, in UML class diagrams, unless specified otherwise by a constraint, two
classes may have common instances, i.e., they are not disjoint. If a constraint imposes
the disjointness of two classes, say C and C’, this can be formalized in DLR by means
of the assertion

c Cc -

Observe that disjointness constraints are often used in class hierarchies. For example,
consider a class hierarchy formed by a class C' and n subclasses of C, C4,... ,C,.
We may want to require that Cy,... ,C, are mutually disjoint. In DLR, this can be
expressed by the assertions

C; C —Cj for each i,7 € {1,... ,n} withi #j

Disjointness of classes is just one example of negative information. Again, by exploiting
the expressive power of DLR, we can express additional forms of negative information,
usually not considered in UML, by introducing suitable assertions. For example, we
can enforce that no instance of a class C' has an attribute a by means of the assertion

C C —3J[l]a

Analogously, one can assert that no instance of a class is involved in a given association
or aggregation.

4 Observe that restricting the argument types corresponds, in the implementation of the operation,
to restrict the preconditions for the applicability of the operation.
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Turning again the attention to generalization hierarchies, by default, in UML a
generalization hierarchy is open, in the sense that there may be instances of the su-
perclass that are not instances of any of the subclasses. This allows for extending
the schema more easily, in the sense that the introduction of a new subclass does
not change the semantics of the superclass. However, in specific situations, it may
happen that in a generalization hierarchy, the superclass C' is a covering of the sub-
classes C, ... ,C,. We can represent such a situation in DLR by simply including
the additional assertion

C CGuU---uG,

The above assertion models a form of disjunctive information: each instance of C' is
either an instance of C7, or an instance of Cy, ... or an instance of C,. Other forms of
disjunctive information can be modeled by exploiting the expressive power of DLR.
For example, that an attribute a is present only for a specified set Cy,...,C, of
classes can be modeled by suitably using union of classes as follows:

J1la T C1U---UC,

Keys are a modeling notion that is very common in databases, and they are
used to express that certain attributes uniquely identify the instances of a class. We
can exploit the expressive power of DLR in order to associate keys to classes. If an
attribute a is a key for a class C this means that there is no pair of instances of C'
that have the same value for a. We can capture this in DLR by means of the assertion
(id C [1]a). More generally, we are able to specify that a set of attributes {a1,... ,a,}
is a key for C; in this case we use the assertion: (id C [1]ay,... , [1]ay)

As already seen, constraints that correspond to the specialization of the type of
an attribute or its multiplicity can be represented in DLR. Similarly, consider the
case of a class C participating in an aggregation A with a class D, and where C and
D have subclasses C’ and D’ respectively, related via an aggregation A’. A subset
constraint from A’ to A can be modeled correctly in DLR by means of the assertion
A C A’ involving the two binary relations A and A’ that represent the aggregations.

In general, one can exploit the expressive power of DLR to formalize several types
of constraints that allow one to better represent the application semantics and that
are typically not dealt with in a formal way. Observe that this allows one to take such
constraints fully into account when reasoning on the class diagram.

7 Reasoning on Class Diagrams

Traditional CASE tools support the designer with a user-friendly graphical environ-
ment and provide powerful means to access different kinds of repositories that store
information associated to the elements of the developed project. However, no sup-
port for higher level activities related to managing the complexity of the design is
provided. In particular, the burden of checking relevant properties of class diagrams,
such as consistency or redundancy, is left to the responsibility of the designer. Thus,
the formalization in DLR of UML class diagrams, and the fact that properties of
inheritance and relevant types of constraints are perfectly captured by the formal-
ization in DLR and the associated reasoning tasks, provide the ability to reason on
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class diagrams. This represents a significant improvement and it is a first step towards
the development of modeling tools that offer an automated reasoning support to the
designer in his modeling activity. By exploiting the DLR reasoning services various
kinds of checks can be performed on the class diagram.

A class diagram is consistent, if its classes can be populated without violating
any of the constraints in the diagram. Observe that the interaction of various types of
constraints may make it very difficult to detect inconsistencies. A class is consistent if
it can be populated without violating any of the constraints in the class diagram. The
inconsistency of a class may be due to a design error or due to over-constraining. In
any case, the designer can be forced to remove the inconsistency, either by correcting
the error, or by relaxing some constraints, or by deleting the class, thus removing
redundancy from the schema. By exploiting the formalization in DLR, class consis-
tency can be checked by verifying satisfiability of the corresponding concept in the
DLR KB representing the class diagram. Similarly, consistency of the class diagram
corresponds to consistency of the DLR KB.

Two classes are equivalent if they denote the same set of instances whenever the
constraints imposed by the class diagram are satisfied. Determining equivalence of
two classes allows for their merging, thus reducing the complexity of the schema. A
class C] is subsumed by a class Cs if, whenever the constraints imposed by the class
diagram are satisfied, the extension of (' is a subset of the extension of C5. Such a
subsumption allows one to deduce that properties for C; hold also for Cs. It is also
the basis for a classification of all the classes in a diagram. Such a classification, as in
any object-oriented approach, can be exploited in several ways within the modeling
process [1]. Class equivalence, subsumption, and hence classification, can be checked
by verifying equivalence and subsumption in DLR.

A property is a logical consequence of a class diagram if it holds whenever all
constraints specified in the diagram are satisfied. As an example, consider a class
C generalizing classes C',...,C,, and assume that a constraint specifies that it is
complete. If an attribute a is defined as mandatory for all classes C1,... ,C),, then
it follows logically that the same attribute is mandatory also for class C, even if
not explicitly present in the schema. Determining logical consequence is useful on
the one hand to reduce the complexity of the schema by removing those constraints
that logically follow from other ones, and on the other hand it can be used to make
properties explicit that are implicit in the schema, thus enhancing its readability.
Logical consequence can be captured by logical implication in DLR, and determining
logical implication is at the basis of all types of reasoning that a DLR reasoning
system can provide. In particular, observe that all reasoning tasks we have considered
above can be rephrased in terms of logical consequence.

8 Conclusions

We have proposed a new formalization of UML class diagrams in terms of a particu-
lar formal logic of the family of Description Logics. Notably such a logic has sound,
complete and decidable reasoning procedures. These reasoning procedures can be fa-
vorably exploited for developing intelligent system that support automated reasoning
on UML class diagrams, so as to provide support during the specification phase of
software development. We have already started experimenting such systems. In partic-
ular, we have represented UML diagrams in DLR and used DL reasoners, specifically
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FACT [18] and RACER [16], for reasoning on UML class diagrams. Although such
DL reasoners do not yet incorporate all features required by our formalization (e.g.,
support for identifiers), the first results are encouraging.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Sonia Bergamaschi and Bernhard Nebel. Acquisition and validation of complex object database

schemata supporting multiple inheritance. Applied Intelligence, 4(2):185-203, 1994.

. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide.

Addison Wesley Publ. Co., Reading, Massachussetts, 1998.

Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A formal frame-
work for reasoning on UML class diagrams. Submitted for publication, 2001.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS’98), pages 149-158, 1998.

. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in expressive de-

scription logics with fixpoints based on automata on infinite trees. In Proc. of the 16th Int. Joint
Conf. on Artificial Intelligence (IJCAI’99), pages 84-89, 1999.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification constraints and
functional dependencies in description logics. In Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), 2001. To appear.

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for conceptual data
modeling. In Jan Chomicki and Giinter Saake, editors, Logics for Databases and Information
Systems, pages 229-264. Kluwer Academic Publisher, 1998.

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199-240, 1999.

Tony Clark and Andy S. Evans. Foundations of the Unified Modeling Language. In David Duke
and Andy Evans, editors, Proc. of the 2nd Northern Formal Methods Workshop. Springer-Verlag,
1997.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning in
description logics. In Gerhard Brewka, editor, Principles of Knowledge Representation, Studies
in Logic, Language and Information, pages 193-238. CSLI Publications, 1996.

Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a formal model-
ing notation. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Proc. of the OOP-
SLA’97 Workshop on Object-oriented Behavioral Semantics, pages 75-81. Technische Universitat
Miinchen, TUM-19737, 1997.

Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-modelling semantics of
UML. In H. Kilov, editor, Behavioural Specifications for Businesses and Systems, chapter 2.
Kluwer Academic Publisher, 1999.

Andy S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on Industrial
Strength Formal Specification Techniques (WIFT’98). IEEE Computer Society Press, 1998.
Martin Fowler and Kendall Scott. UML Distilled — Applying the Standard Object Modeling
Laguage. Addison Wesley Publ. Co., Reading, Massachussetts, 1997.

Volker Haarslev and Ralf Moller. High performance reasoning with very large knowledge bases: A
practical case study. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAT 2001),
2001.

Volker Haarslev and Ralf Méller. RACER system description. In Proc. of the Int. Joint Conf.
on Automated Reasoning (IJCAR 2001), 2001.

David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics and all that stuff.
Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel, 2000.

Tan Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 636—647, 1998.
Tan Horrocks and Peter F. Patel-Schneider. Optimizing description logic subsumption. J. of
Logic and Computation, 9(3):267-293, 1999.

Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The Information Manifold.
In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from Heterogeneous,
Distributed Enviroments, pages 8591, 1995.



28 A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini

21. D. McGuinness and J. Wright. Conceptual modelling for configuration: A description logic-based
approach. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing Journal,
12:333-344, 1998.

22. Ulrike Sattler. Terminological Knowledge Representation Systems in a Process Engineering Ap-
plication. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, 1998.



1

Development of Formally Verified Object-Oriented
Systems with Perfect Developer

David Crocker

Escher Technologies Ltd.
3 Archipelago Business Park, Lyon Way, Frimley, Camberley GU16 5ER, UK

Web: www.eschertech.com Email: dcrocker@eschertech.com

Abstract. Perfect Developer (formerly known as the Escher Tool) is a highly pro-
ductive system for developing reliable software systems using object-oriented methods.
Dynamic binding and aliasing are carefully controlled to make the verification problem
tractable.

Background

Formal methods have been used for many years in the development of safety-critical
software but have yet to make it to mainstream software development. Barriers to
wider use of formal methods include the requirement for users of formal methods tools
to have extensive mathematical knowledge, the labour associated with assisting tools
in discharging proof obligations, and the lack of support in most tools for object-
oriented methods. These issues are addressed by Perfect Developer.

2 Limitations of existing O-O languages

The use of existing object-oriented program languages to develop formally verified
software runs into both technical and practical difficulties.

The primary technical difficulties we have identified are:

Unconstrained polymorphism. Variables, parameters and return values with non-
primitive types are typically all polymorphic (i.e. an object of any class derived
from the declared type is acceptable). This greatly increases the potential for
dynamic binding and makes specifications and code very hard to reason about.
Default reference semantics. The use of reference semantics as the default or only
semantics for assignment and parameter passing of class variables greatly increases
the potential for aliasing. When combined with polymorphism and dynamic bind-
ing, this leads to many situations in which it is impossible to prove that parameters
to a class method (including the ‘self’ or ‘this’ parameter) are all distinct, which
typically makes it impossible to prove correctness of methods that change their
parameters or ‘self’. We have observed that unintentional aliasing also makes a
significant contribution towards software errors.

The practical difficulties are:

— Syntax for preconditions, postconditions, invariants and many other constructs

needed for specification are not provided in the language. The usual solution is to
insert these constructs as specially-formatted comments. This apparent demoting
of specifications conveys the wrong message to developers.
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— To make formal methods of software development acceptable to the mass market,
the additional time spent writing specifications must be balanced by time savings
elsewhere. The obvious solution is to generate code automatically from specifi-
cations; however, this also requires the language to be extended (by providing a
syntax for an omitted code body).

— Programming languages do not support data refinement, which is a key tool in
object-oriented software development using formal methods.

These difficulties mean that the most that can be achieved using existing pro-
gramming languages is extended static checking (e.g. ESC/Java [1]). Such tools may
be a useful bridge between existing software development practice and true verified
software development; but even if the user can be persuaded to annotate the program
with preconditions, invariants etc., complete formal verification is far from possible.

3 Perfect Developer

Perfect Developer (a development system for producing perfect software) takes the
approach that the notation must resemble typical programming notations (i.e. avoid
mathematical notation) but that code must take second place to specifications. Ac-
cordingly, it uses its own notation [2]. Concepts that can be expressed in the Perfect
language include:

— Classes with single inheritance and dynamically bound methods

— Parametric polymorphism

— Class invariants and type constraints

— Method preconditions, postconditions, variants and post-assertions
Quantification over sets, bags and sequences

Expected behaviour of the system as a whole and of subsystems, including ‘what if’
scenarios

To avoid excessive use of unconstrained polymorphism, we distinguish between the
type T and the type from T, where T is any non-final class (Ada 95 makes a similar
distinction). Thus the user indicates explicitly where polymorphism is required.

In order to reduce the aliasing problem, Perfect uses value semantics by default
for assignment and parameter passing. To avoid excessive copying, value semantics
are simulated using reference semantics; copying is avoided wherever possible and
where copying is necessary, typically only some part or parts of an object need to be
copied. Reference types are provided for those situations in which intentional aliasing
is required.

To develop a software system or component with Perfect Developer, a set of re-
quired properties of the system or component is specified. Hardware devices and other
subsystems with which the software will interact may also be described and relevant
behaviour specified. An assembly of classes is then designed to model and encapsulate
the stored data and perform the required operations. Contracts are written for the
class methods. Perfect Developer will attempt to generate code to satisfy the con-
tracts where none has been provided. The developer may refine both class data and
method code in order to meet performance targets.

Proof obligations are generated asserting that all contracts are honoured by both
parties, that required properties will be observed, that all constructs will terminate
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and that refinements are valid. Perfect Developer attempts to discharge them using a
fully automatic theorem prover, on the grounds that most software developers have
neither the skill nor the time to assist in discharging proof obligations.

Final code is generated in C++ (code generation in Java and Ada 95 is under
development).

4 Handling inheritance and dynamic binding

Dynamic binding continues to be a potential problem in that calls to dynamically
bound methods cannot be expanded during verification.

If the software system is to be validated without regard to extensibility, it would
be possible to enumerate the set of possible types of each polymorphic variable and
perform validation with respect to all possible types of all polymorphic variables. We
do not currently do this but may offer it as an option in the future.

A better solution is to recognise that in any family of classes with a common
ancestor, for any method declared in the common ancestor and defined or redefined
in each class, all the method declarations implement some common purpose. In some
cases the method represents the definition of some property of the class; in other cases,
the method modifies the class so as to make it satisfy some property. In the latter
case, a non-compiled or ‘ghost’ dynamically bound function can be defined to express
the property and the original method specified in terms of this function. Although
this places a greater burden on the user, it helps greatly in clarifying the specification
of dynamically bound methods as well as making them amenable to validation.

We note in passing that most class methods must be validated separately in each
non-abstract class into which they are inherited without being overridden, since it is
frequently the case that a method definition is valid in the class in which it is defined
but is invalid in the context of a derived class (e.g. because it does not take account
of additional variables in the derived class).

5 A large case study: Perfect Developer itself

Perfect Developer is itself implemented in Perfect apart from the user interface func-
tions in the IDE module.

At the time of writing (May 2001), the source for the compiler/verifier comprises
105000 lines of Perfect (including comments) from which 176000 lines of C++ (with-
out comments) are generated.

When validation of the entire system is performed, 115000 proof obligations are
generated. Using default settings, the theorem prover discharges 87.6% of these in
under 5 days. The success rate is currently increasing by between 1 and 2% per
month as we improve the prover and eliminate specification and coding errors, while
at the same time the average time spent on each obligation has decreased in the last
few months from 5 seconds down to 3.5.

Analysis of unproven obligations indicates that about half are the result of in-
completely specified contracts (due in part to the bootstrap process used to develop
Perfect Developer) and most of the rest are provable in principle but beyond the
capability of our present prover within a reasonable time limit. However, failed proof
obligations do occasionally reveal incorrect coding or an inconsistent specification and
did in one case reveal an error in the Perfect language definition itself.
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6 Conclusions and future work

We have shown that formal methods can be used to develop a large and complex
application in an object-oriented style with high productivity. Despite the relative
immaturity of our prover, we have achieved a substantial degree of automated vali-
dation.

Perfect Developer is currently available in a teaching and evaluation edition. Com-
mercial release is due in September, by which time we expect to support exceptions
and multithreading in the language. Work continues on the theorem prover and we
expect that the use of term indexing techniques and better unification algorithms will
significantly improve the speed and success rate of validation.
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Abstract. The specification of object-oriented frameworks has to fulfill several re-
quirements. It should document the behavior of the classes in an abstract, implemen-
tation independent way. It should be formally founded so that the correctness of imple-
mentations can be proved w.r.t. it. Last but not least, it should provide an appropriate
basis for the verification of programs using the framework. In this paper, we present a
case study that focuses on the first two requirements. It shows an abstract specifica-
tion of a linked list implementation with shared objects, sketches the underlying formal
framework, and explains the necessary proof steps.

1 Introduction

The specification of an object-oriented program framework has to fulfill several re-
quirements. It should document the classes of the framework in an abstract, im-
plementation independent way. Implementation independency is necessary to hide
implementation aspects that should not be exploited by a user of the framework.
Abstraction is needed to raise the level of specification. As a second requirement, a
specification should be verifiable, i.e. a specification technique should be embedded
into a formal setting and complemented with verification rules and proof techniques.
Formalization helps to clarify the semantics of the specification language. Verification
is needed to establish the correctness of code. As a third requirement, the specifica-
tion of a module M should provide an appropriate basis to verify the correctness of a
module N that uses M.

Most of the work that was done about specification and verification of OO-
programs has focussed either on specification or on verification. In the area of specifica-
tion, the main goals were the development of easy to use and expressible specification
languages; the precise formal relationship between specifications and programs — a
prerequisite of formal verification — was of minor interest. In the area of verification,
the focus was on the formal proof rules and techniques. The remaining interesting
challenge is to apply the verification techniques to prove the correctness not only of
some isolated properties, but of complete interface specifications.

Contents. This paper investigates the relation between specification and verification.
It presents the interesting parts of a case study, in which we verified the specification
of a list implementation consisting of three classes (cf. [LMMPHO0] for a complete
report). The goal of the presentation is to describe important aspects and problems
that have to be dealt with when verification techniques are applied to realistic specifi-
cations. In particular, we illustrate how abstraction can be handled and demonstrate
the complexity that results from aliasing. To our knowledge, it is the first time that
an OO-program with complex aliasing is proved correct. In Section 2, we present and
discuss the specification. Section 3, sketches the proof technique.
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Relation to Other Work. The work is related to interface specification techniques
for OO-programs. In particular, the used technique builds on the two tiered Larch
approach (cf. [GH93,Lea97]). That is we use a general specification language to express
abstract properties — in our case the specification language of PVS — and an interface
specification language to describe program interfaces. In this presentation, only some
constructs of the interface specification language will be illustrated.

For verification, we use a Hoare logic (see [PHM99]) and an interactive program
prover that communicates with PVS ([MPHO0]). Recently a number of different ap-
proaches to the verification of Java-like OO-programs have been investigated. The
LOOP group developed a translator that generates PVS theories from a given Java
program ([JvdBH'98]). The theories capture the program behavior and can be used
to verify program properties in PVS ([Hui00]). In his thesis, David von Oheimb for-
malized a Java subset and a corresponding Hoare logic in Isabelle. His work focuses
on meta-theory, in particular type safety and correctness and completeness properties
of the logic (see [vO01]). A dynamic logic for a Java subset is presented in [Bec00].

For brevity, we can’t treat modularity properties in this extended abstract, al-
though we consider them very important. The interested reader is refered to [Miil01]
for this topic.

2 Specifying Object-oriented Programs

In this section, we describe the specification technique along with parts of an imple-
mentation for doubly linked lists. We start with the abstract interface specification.
Then we show how specification and implementation are related.

2.1 The Specification of Class DList

A class specification consists of a list of invariants (keyword inv) and a list of method
specifications. A method specification consists of an optional requires clause (keyword
req) and a list of pre-post-pairs. The meaning of such a specification is given by
desugaring it into Hoare triples. Each invariant has to be maintained by all public
methods of the program'. The condition stated in the requires clause, if any, may be
assumed in the prestate. In addition, each pre-post-pair constitutes a Hoare triple;
again the requires clause, if any, is conjoined to the precondition. To keep things
simple, we do not use more elaborate specification constructs like e.g. old-expressions.

The example we consider here is centered around the class DList. The specification
is given along with the external visible parts of the class declaration. We present only
those parts that are needed in the following. The syntax of formulas follows the syntax
of the PVS language (see [CORT95]). Capital letters denote logical variables holding
values of PVS builtin or user defined types. Logical variables are used to relate variable
values in preconditions to those in postconditions. result is used as a special variable
representing the value returned by a method:

! We use modularity techniques to decrease the number of methods for which the invariant has to
be shown (see [Miil01]), but this is beyond the scope of this abstract.
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class DList public int first()
{ req ADList(this,$) /= null;
inv X: wfDList(X,$); pre ADList(this,$)=L;

post aI(result) = car(L);
public static DList empty() pre $=S; post $=S;
pre TRUE;
post ADList(result,$) = null; public boolean isempty()
pre alive(X,$) AND $=S; pre ADList(this,$) = L;
post ($==8) (X); post aB(result) = null?(L);

pre $=S; post $=S;
public DList rest()

req ADList(this,$) /= null; public void app(int i)

pre ADList(this,$) = L; pre ADList(this,$)=L AND

post ADList(result,$) = cdr(L); I=aI(i) AND T=this;

pre alive(X,$) AND $=S; post ADList(T,$)

post ($==5) (X); = append(L,cons(I,null));
}

To express interface properties of OO-programs in an abstract way, three ingredients
are necessary. (1.) We have to be able to refer to the object store. (2.) We need
a functional vocabulary to express the behavior of the methods. (3.) Abstraction
functions are necessary to relate the implementation to the abstract behavior.

To refer to the object store, we use the global program variable § of type Store.
As we will show later, Store is an abstract data type. The predicate alive checks
for an object whether it is allocated in a given store. As shown by the specification
above, the methods first and isempty do not modify the object store. The methods
empty and rest do not modify objects that are alive in the prestate; (S1==52) (X) is
a derived predicate on stores saying that every location (= instance field) reachable
from object X holds the same value in stores S1 and S2. The frame behavior of method
append is not specified.

To express the functional method behavior in the example, we used the data
type list[int] of PVS with constant null, functions car, cdr, cons, append, and
predicate null?. In other examples, specific data types have to be designed to describe
the abstract behavior of a class or framework. The relation between the abstract level
and the implementation level is captured by abstraction functions and predicates. The
predicate wfDList expresses the fact that the link structure of a list is well formed in
a given store. The function ADList maps the given object and objects referenced by
it in a given store to a PVS list. For technical reasons, we use abstraction functions
as well for the basic data types boolean and int to map Java values to PVS values
(aB and al). For instance, the specification of append reads as follows: Abstracting
the this-object in the poststate yields a list with new last element I. Again, we like
to point out that the specification does not refer to any implementation detail.

2.2 The DList Implementation

In the following, we relate the above specification to the implementation of class DList
and two auxiliary classes. The subsection focuses on those aspects that are needed to
make an interface specification verifiable.

In the example, doubly linked lists are implemented by a DList-object as list
header and a sequence of NodeL-objects as shown in Figure 1. The class NodeL is a
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subclass of a class Node. This separation into two classes was done to illustrate some
aspects of inheritance.

class DList

{

protected Nodel. firstNode;
protected NodelL lastNode;

firstNode[ , |

public static DList empty() {...} LastNodof 37

public DList rest() { ... }

public int first() { ( NodeL Y [ NodeL Y\ [ nNodeL Y\ [ NodeL
Node f = this.firstNode; pred[ ] [0 preni= ] pre pre
K succ succ succ succ [nul |
int k = f-getElem(); el em[ 34 | \ el em[22 ] elem 3 | el em[ 19 ]
return k;

}

public boolean isempty() { ... }

public void app(int i) { ... }

}

Fig. 1. Store Layout of a Doubly Linked List

Objects of class Node can be used in a very general way to create linked data
structures, where each node holds a value of type int. The abstraction function
ANode yields the int-value of the instance variable elem.

class Node pre $=S AND T=this;

{ post result =

protected int elem; S@01loc(T,Node?pred) ;

protected Node pred, succ; pre $=S; post $=S;

public int getElem() public Node getSucc()

pre $=S AND T=this; pre $=S AND T=this;

post al(result) = ANode(T,S); post result =

pre $=S; post $=S; SQ@Q@loc(T,Node?succ) ;
pre $=S; post $=S;

public Node getPred() }

The specification of method getPred shows how the object store can be accessed:
S@0@loc(T,Node?pred) denotes the value held by instance variable Node?elem of ob-
ject T in store S. All functions and predicates concerning the object store are for-
malized in PVS. In particular, Node7elem is a constant. Type Store represents the
abstract data type of object stores, Location is the set of instance variables, Value is
a common type for all values and references occurring in the programming language.
The following functions are provided: Let 1 be a location, s be a value of type store,
id be a type identifier of a non-abstract class, and v be of type Value:

— update(s,1l,v) returns the store, where 1 in s is updated with v.
— new(s,id) returns a reference to a fresh object allocated in s.
— s##id returns the store after allocating an object of type id in store s.
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— s@@1 returns the value stored in location 1 in store s.
— alive(v,s) returns true if the object (value) refered by v is allocated in s, false
otherwise.

The semantics of the object store is specified by fourteen axioms. We present two of
them to give an impression:

storel: AXIOM L1 /= L2 => update(S, L1, X)QQL2 = SQQL2
storel0: AXIOM NOT alive(new(S, T), S)

Axiom storel describes that an update of some location does not affect other locations.
Axiom storelO describes that some newly allocated object in a certain store was not
alive in that store before allocation.

Based on class Node, we define a class NodeL. It contains an additional method
and has a specification that guarantees the specific structure of the NodeL-objects
implementing doubly linked lists (cf. the grey shaded area in Fig. 1).

class Nodel extends Node
inv X: wfNodeL (X, $);

{

public static NodelL initNodeL(int i)
pre I=aI(i);

post ANodeL(result,$) = cons(I,null);
pre $=S;

post result = new(S,NodeL) AND
$=update (S##NodelL, loc(result,Node?elem), i);

public int appback(NodelL n)
req n/=null AND n/=this AND lstNode?(this,$)
AND fstNode?(n,$) AND 1lstNode?(n,$);
pre succn(X,$,N)=this AND ANodeL(X,$)=L AND ANodeL(n,$) = M;
post ANodeL(X,$) = append(L,M);
pre $=S AND T=this AND X=n;
post $=update(update(S, loc(T,Node?succ), X), loc(X,Node?pred), T);

public NodeL getLast()
pre T=this AND $=S;
post $=S5 AND result/=null AND
(EXISTS (N:nat): succn(T,S,N)=result AND succn(T,S,N+1)=null);
}

To formalize the link structure for NodeL-objects, the following declarations and pred-
icates are used. They should give an impression of what has to be available in a
verification framework. For a detailed understanding, we assume that the reader is
familiar with PVS syntax. By <= we denote the subtype relation on Java types which
are represented by the constructor ct applied to their name:

NodeLObj?(X): bool = typeof(X) <= ct(NodeL)
NodeLObj?(X): TYPE = (NodeQObj?)

fstNode?(X,S) :bool
1stNode?(X,S) :bool

NodeLObj?(X) AND X/=null => S@@loc(X,Node?pred)=null
NodeLObj?(X) AND X/=null => S@@loc(X,Node?succ)=null

predn((X: NodeObj), S, (n: nat)): RECURSIVE NodeLObj =
IF X=null OR n=0 THEN X ELSE predn(S@@loc(X, Node?pred), S, n-1)
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ENDIF MEASURE n

sucen ((X: NodeObj), S, (n: nat)): RECURSIVE NodelLObj =
IF X=null OR n=0 THEN X ELSE succn(S@@loc(X, Node?succ), S, n-1)
ENDIF MEASURE n

wfNodeL ((X: NodeLObj), S): bool =

(EXISTS (i: nat): predn(X, S, i) = null) AND %(1)
(EXISTS (k: nat): succn(X, S, k) = null) AND %(2)
(NOT fstNode?(X,S) => typeof (S@@loc(X,Node?pred)) <= ct(NodeL) AND %(3)
S@Q@loc(S@Qloc (X,Node?pred), Node?succ) = X) AND %(4)
(NOT 1stNode?(X,S) => typeof (S@Qloc (X,Node?succ)) <= ct(NodeL) AND %(5)
S@@loc(S@@loc (X,Node?succ), Node?pred) = X) %(6)

The predicate £stNode?(1lstNode?) holds for a NodeL-object X, if X has no prede-
cessor (successor). predn(succn) yields the n-th predecessor (successor) of a NodeL-
object. This allows us to formulate a wellformed condition for X using the predi-
cate wfNodeL: X is well formed, if there exists a predecessor(successor)-object, whose
pred(succ)-location is null (1+2). This guarantees NodeL-structures to be non cyclic.
(3+5) describe that if X has a predecessor(successor) Y then Y is of type NodeL. (4+6)
guarantee that inner objects of a NodeL-structure are correctly linked, by reaching it-
self via its predecessor(successor).

Wellformedness of NodeL-structures is a prerequisite for a correct method exe-
cution and abstraction. The wellformed condition wfNodeL constitutes the invariant
for objects of the NodeL class. As expressed by the invariant clause of the interface
specification of class NodeL, each method has to preserve this invariant.

To specify the functional behavior of NodeL’s methods an abstraction is needed to
capture functional list properties. Therefore we use the following abstraction function
with signature Value, Store -> list[int], which abstracts NodeL-structures to
the generic PVS list data-type list with type parameter int:

ANodeLn((X: NodeObj), (S: Store), (n: nat)):
RECURSIVE list[int] = IF X=null OR n=0 THEN null
ELSE cons(aI(S@@loc(X,Node?elem)),

ANodeLn(S@Q@loc (X,Node?succ), S, n-1))
ENDIF MEASURE n

Class NodeL extends class Node and adds a method public int appback (NodeL n),
which concatenates a NodeL-structure and a NodeL-object, referred by this and n.
By this method we demonstrate the implementation dependency of a specification in
contrast to the specification of class DList. The implementation dependency enables
verification but is therefore not suitable for documentation and reuse. A basic require-
ment for a successful execution is that n refers a single NodeL-object and that this/=n
holds. Furthermore appending is only allowed at the last object of a NodeL-structure.
These requirements are summarized in the req-clause of method appback:

req n/=null AND n/=this AND lstNode?(this,$)
AND fstNode?(n,$) AND lstNode?(n,$);

Furthermore appback has (1) a functional and (2) an environment behavior specifica-
tion. (1) guarantees that appback does in fact let n become the new successor of this
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and all possible tails of the NodeL-structure with this at the end stay unchanged.
(2) specifies that the store is changed by two location updates.

The specification techniques shown above are as well applicable to Java’s inter-
face types. To specify interface types, i.e. types without implementations, abstraction
techniques can be exploited. Another interesting specification aspect occurs together
with inheritance. A class S inherits a method m from class T' without overriding the
implementation. Nevertheless, a refined specification can be needed in the subclass.
In our example, class NodeL inherits method getSucc from class Node and refines
its specification. In addition to the specification given above class NodeL requires
from its implementation that pre ANodeL(this,$) = L; post ANodeL(result,$)
= cdr (L) ; holds.

Abstraction Functions for Class DList. Equipped with the datatypes and spec-
ification primitives above, we now present the rest of the specification of class DList,
i.e. the wellformed condition and the abstraction. Both are needed to verify the imple-
mentation of DList. The wellformed condition used in the invariant looks as follows.
A list is considered to be empty, if firstNode refers null. The abstraction ADList:
[Value, Store -> list[int]] reuses the abstraction of NodeL and is equal to the
abstraction of the NodeL object referred by firstNode.

wfDList ((X: DListRef), S): bool =
S@0@loc (X,DList?firstNode)=null OR
S@Q@loc(X,DList?firstNode) /=null AND
cS0@0@loc(X,DList?lastNode)/=null AND
EXISTS (n:nat): succn(S@@loc(X,DList?firstNode),S,n)=
S@@loc (X,DList?lastNode)

ADList_ax: AXIOM DListRef?(X) =>
ADList (X, S)=ANodeL(S@0@loc(X,DList?firstNode),S)

3 A logical Framework for Proof Construction

Within this section we give an overview of the formal framework used for specification
and verification. As shown in the specification we have to express program indepen-
dent and program dependent properties. Using PVS allows us to use the following
technique: Theories containing formalizations of type identifiers, attribute-identifiers,
and lemmata containing the subtype hierarchy are generated for all used classes.
Program independent theories are generic w.r.t. the generated theories. Both parts
together provide the formal background for specification and verification.

The used verification technique is based on a Hoare logic for the programming
language we use. Partial correctness of programs w.r.t. their specification is shown
by translating interface specifications into Hoare triples and proving them using the
programming logic. Remaining implications which arise from the use of strengthening
or weakening rules are proved by using PVS.

Figure 2 shows the result of the Hoare logic proof of the method first of class
DList, where the functional property of first is proven. The use of some of the
Hoare rules is displayed (formula parts touched by rules are underlayed grey): The
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var-rule allows to replace logical variables by local program variables, if they do not
occur on the left hand side of an assignment; the inv-rule allows to conjoin formulas
F' to the pre- and postcondition of a triple, if F' does not contain program variables
or the variable $ for the object store; the ex-rule allows to add existential quanti-
fiers for logical variables, which do not occur in the postcondition. A proof outline
embeds the information of a proof tree into the program text, which allows a flat
representation of the proof tree. It can be read as follows. At the line containing the
invocation of getElem the invocation statement is instantiated with the functional
specification triple of that method, i.e. formal parameters within the specification are
replaced by actual parameters. Above the method invocation, the axiom for location
reads is instantiated. f, which is assigned a new value, is replaced by the term reading
the location this.firstNode in store $ in the postcondition and used as new pre-
condition. The use of Hoare logic rules is displayed using the horizontal lines. Arrows
point to the antecedent triple. The triple of the consequence is displayed outside the
line-brackets. Strengthening and weakening steps are simply denoted by —.

In the proof outline example, the program proof part is complete. It remains
to show the implications, marked by =. The proof that the implications hold is
obvious in this example. This results directly from expanding the definitions of the
abstraction functions and the axioms of the store formalization. The example shows,
that in addition to the specification part, abstraction plays an important role during
verification. Because of this degree of complexity, a theorem prover supporting these
data type mechanisms is indispensable.

The complete proof for the example used in the case study was constructed with
the JIVE environment. The JIVE-prover combines an interactive program prover with
the general purpose theorem prover PVS to perform the program independent proof
tasks.

4 Conclusion

In this extended abstract we showed some hot spots of a case study concerning the
specification and verification of object-oriented programs. We demonstrated, how
properties of object oriented programs can be described in a program independent
abstract way. This allows for (1.) precise documentation of object-oriented programs
and frameworks for reuse, and (2.) specifications, which can be directly used to prove
the specified program properties. We presented specifications of non trivial program
properties for the used list example, which are difficult to express precisely with op-
erational specification techniques. Furthermore we gave a short sketch of the proof
techniques, which are implemented within the JIVE proof environment. The JIVE sys-
tem was used to construct the complete program proof of the case study coupled with
the PVS prover.

Acknowledgments Marcel Labeth contributed to this work by constructing the pro-
gram proof with the JIVE-System and proving all program independent proof obliga-
tions with PVS. We also thank Peter Miiller for his important contributions to this
work.



Towards Verifiable Specifications of Object-oriented Frameworks 41

References

[Bec00]

[COR™95]
[GHO3]
[Hui00)

[JvdBH" 98]

[Lead7]

Bernhard Beckert. A dynamic logic for java card. In Proc. 2nd ECOOP Workshop on
Formal Techniques for Java Programs, Cannes, France. TR 269, Fernuniversitit Hagen,
2000. Available from www.informatik.fernuni-hagen.de/pi5/publications.html.

J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction to
PVS, April 1995.

J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

M. Huisman. Reasoning about Java programs in higher order logic Using PVS and
Isabelle. PhD thesis, University of Nijmegen, 2000.

B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews.
Reasoning about Java classes. In Proceedings of Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA), 1998. Also available as TR CSI-R9812,
University of Nijmegen.

G. T. Leavens. Larch/C++ reference manual. Available from
http://www.cs.iastate.edu/"leavens/larchc++manual/lcpp_toc.html, July 1997.

[LMMPH00] M. Labeth, J. Meyer, P. Miiller, and A. Poetzsch-Heffter. Formal Verification of a

[MPHO0]

[Miil01]
[PHM99]

[vOO01]

Doubly Linked list implementation: A case study using the JIVE system. Technical
Report 270, FernUniversitat Hagen, 2000.

J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers. In
S. Graf and M. Schwartzbach, editors, TACAS00, Tools and Algorithms for the Con-
struction and Analysis of Software, volume 276 of Lecture Notes in Computer Science,
pages 63-77, 2000.

P. Miiller. Modular Specification and Verification of Object-Oriented Programs. PhD
thesis, FernUniversitdt Hagen, 2001.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In D. Swier-
stra, editor, ESOP 99, LNCS 1576. Springer-Verlag, 1999.

D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare
Logic. PhD thesis, Technische Universitat Miinchen, 2001.



42 J. Meyer and A. Poetzsch-Heffter

{ this # null AN ADList (this,$) # null A ADList(this,$) = L}
public int first() {
{ this # null A ADList (this,$) # null A ADList(this,$) = L}
=
{this # null A $QQloc (this, DList?firstNode ) # null A ADList (this,$) = L}

EIS T : S =$AT =$QQloc (this, DList?firstNode ) A this # null A
$Q@@loc (this, DList? firstNode ) # null AN ADList (this, S )= LA T # null

l-[ex-rule]

h # null A $QQloc (this, DList?firstNode ) # null AT # null /\
=S AT = $QQIloc (this, DList?firstNode ) N ADList (this,S) =

thzs # null A $QQloc (this, DList?firstNode ) # null AN$ =S A
= $Q@QQloc (this, DList?firstNode) A

ADL’LSt this ,S) = L ANT = SQQloc ( this , DList?firstNode ) AT # null

l-[var-rule]

$ = S AT = $QQloc (this, DList?firstNode ) A Ty # null A
ADList(Ty,S) = L AT = SQQloc (T1, DList?firstNode ) AT # null

J—[inv-rule]
this # null A $QQIloc (this, DList? firstNode ) # null A
$ = S AT = $Q@Iloc (this, DList?firstNode ) }
= this.firstNode;
nu ll AN$=SAT=f}
k = f.getElem();
(k) = ANode (T, S) }

£5
7&

t—[inv-rule]

{ this # null A $QQloc (this, DList?firstNode ) # null A
Node

{

nt

{ T = SQQloc (T, DList? firstNode ) AT # null

= ANode (T, S) ATy # null A ADList (T, S) =L A }

t—[var-rule]
= ANode (T, S) A this # null N ADList (this,S) = A
T S@@loc this, DList?firstNode ) AT # null

= car(L) }
return k

{ al(result) = car (L) }

t—[ex-rule]
X { al(result) = car (L) }
{ al(result) = car (L) }

Fig. 2. Example for a Proof Outline of a Hoare-logic Proof
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Abstract. This paper proposes a model theoretic semantics of the Object Constraint
Language (OCL), observing the OMG standard as close as possible

1 Introduction

The Unified Modeling Language, UML, has gained widespread acceptance as a stan-
dard for modelign object-oriented systems. The Object Constraint Language, OCL, is
a part of UML used to add constraints to UML diagrams that can cannot be expressed
in the visual models. The available descriptions, the OMG standard document [8] and
the book [16], fall short of giving a rigorous semantic, and even syntactic description
of the language. Deficiencies have been pointed out e.g. in [11,4, 5, 7]. The purpose of
this paper is to give a systematic definition of syntax and semantics of the OCL.

One way to provide OCL with a precise semantics is via a translation into a known,
well understood specification language. This approach has been pursued e.g. in [6, 3].
As an additional advantage of this approach the translated expressions may be used
as input to existing tools. The disadvantage is that those not familiar with the target
language will gain nothing.

We describe here a semantics of OCL in an informal yet mathematically rigorous
way, making use of naive set theory only. We believe that this is a common ground for
all specification languages, like Z, Abstract Machine Notation, CASL, Isabelle or HOL,
to name just a few. Formalizing our semantics in any of these will be straightforward
complicated only by the requirement to get around the restrictions imposed by the
chosen framework.

This research is supported by DFG within the KeY project, see the web page
http://il2www.ira.uka.de/ key.

2 The UML Context

OCL expressions only make sense with respect to a given UML model. For the time
being OCL expressions may only be attached to class diagrams. Figure 1 shows more
precisely how syntax and semantics of OCL depend on their counterparts in UML.
From a given UML class diagram we read off a set of model types Sp. These will in
Subsection 3.1 be extended to obtain the set SgCL of all OCL types. The class diagram
also provides a subtype ordering <p on Sp, which is in Definition 6 again extended
to a subtype relation on all OCL types. The vocabulary that is used to built up OCL
expressions also comes in two parts: the symbols in Fp that arise from the diagram
D, and pre-defined OCL operation symbols. OCL constraints occur as additions to
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S9CL OCL types

Lo |

Fig. 1. Syntactic and semantic dependance of OCL on UML

<gCL

FFYE OCL vocabulary

OCL constraint

MEEE OCL model

UML diagrams in the form of invariants, preconditions and postconditions. But there
is also information in D that goes beyond what is coded in Sp, <p, and Fp. A
typical example are multiplicities of association ends. This information can easily be
expressed by OCL expressions. For lack of space we do not pursue this here.

It is essential to distinguish between a class diagram D and a snapshot, or valid
instance D of D, see e.g. [13, pages 59-60] for a concise explanation. The class diagram
completely determines the syntax of OCL-expressions over D, while a snapshot D is
needed to determine the meaning of an OCL expression. First a snapshot D gives
rise to a many-sorted algebra Mp which will then be extended to an OCL-algebra
M%CL as depicted in the lower part of Figure 1. For the rest of the paper we assume
that D is a fixed class diagram and D a valid instance of it.

2.1 The vocabulary of a UML diagram

The signature Xp consists of the set Sp of sorts, the set Fp of functions, and a subsort
relation <gp on Sp as detailed in the following definitions.

Definition 1 (Sp, <p).

1. The set Sp of model types consists of all class symbols in D.

2. The subtype relation Sy <p So holds if and only if type Sy is declared a subtype of
Sy in D.

3. Kp denotes the transitive, reflexive closure of <p .

In particular, Sp contains symbols for all classes with the stereotype
< enumeration > that happen to occur in D.

The functions in Fp arise from various sources in D as detailed in the following
definition.

Definition 2 (Fp).

1. For every association v in D and every two different association ends ey, ea of r
there is a function symbol f, ¢, e, € Fp.
If e; is attached to the class S; for i = 1,2 then the function symbol receives the
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corresponding signature: fre, e, : S1 — Set(S2).

In case the multiplicity at the end ey is 1 the signature is: fr ¢, e, : S1 — So.
If the es-end has stereotype <K ordered > then the signature is:

frieies 1 S1 — Sequence(Sy).

2. For every attribute a of a class S in D there is a function symbol f, € Fp. If S,
is the value type of a specified in D then f, is given the signature
fa S = Sp. If a is a class attribute, (sometimes this is also called a static
attribute), then f, is a constant symbol of type S;.

3. For every operation c¢ of a class S with parameters of type Si,...,Sk and result
type S there is a function symbol f. € Fp with signature
fe:Sx Sy x...x8, — 8.

We will require that ¢ has no side effects, i.e. ¢ satisfies the property isQuery ()
(see [9, p.2-25]).

4. For every association class C attached to an association r, where r associates the
classes S1 and Sy there are symbols for the unary projection functions prg, with
signature C — Sy, and prg, with signature C' — Ss.

We will restrict attention to binary relations. More than binary associations are
rare anyway. The extension to associations with m association ends can be easily
obtained by introducing m unary functions.

It is not clear if the es-end is allowed to be of multiplicity 1 and of stereotype
& ordered >. If this case is possible we would suggest that the multiplicity takes
precedence and the function have signature f, ., ., : S1 — S2 in clause 1 of Definition
2.

The explanations in [13, page 166ff] allow to attach a multiplicity different from 1
to attributes, including the exceptional case of multiplicity 0. This seems to have not
been widely accepted. In [2] e.g. this possibility is not even mentioned. We will thus
consider for each attribute a the associated function f, to be total and single-valued.

From the point of view of abstract syntax the names of the symbols in Xp are
irrelevant. But for all practical purposes it helps to stick to the following naming
conventions:

Definition 3 (Naming Conventions).

1. Sorts in Sp will be given the same name as the corresponding class. Sort names
begin with an uppercase letter.

2. The function symbol fy ¢, o, will be referred to by the role name of r at the asso-
ciation end es. If no role name is given, the name of the class attached to eq will
be used. Function names start with a lowercase letter.

3. Function symbols arising from attributes or operations will carry the name of the

attribute or operation. If attr is a static attribute of class C' then the concrete
syntaz of the constant fqy will be C.attr. This is in accordance with common
usage, see e.g. [16, Section 3.5.3]. Here the dot is not used to indicate application
of a property, but is simply part of a name.
In Java it is possible to apply a static attribute of a class C' to instances of class
C. If we wanted to allow the same behaviour on the OCL level we would have to
introduce a static attribute attr in addition to the constant C.attr a unary function
symbol farr : C — S, where S is the value type of attr.
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4. The projection functions prg, and prs, for an association class C' are considered
as implicit attributes of C' and denoted by lowercase class names s; and so. In case
we want to also include n-ary associations we would, of course, have n projection
functions.

2.2 Semantics of UML diagrams

For any snapshot D of the UML class diagram D we will now define an associated
many-sorted algebra Mp = (Mp, Ip) of signature Xp. For ease of reading we will
write M instead of M p and [ instead of Ip when there is no danger of confusion.

M may be viewed as a second-order algebra since function values will not always
be elements of the universe of M, but sometimes sets of elements. M is only the first
step towards the OCL model MZCL to be given in Section 4.

Definition 4 (Mp).

1. For each sort symbol S € Sp the domain I(S) consists of all objects in the class
S of the snapshot D plus one new element 1 reserved to stand for the wvalue
of otherwise undefined terms. The universe Mp of Mp is the union of all type
universes I(S).

2. If S is a sort symbol arising from an association class attached to an association
r between the classes S1 and So, then I(S) is the cartesian product of 1(S1) and
I1(Ss).

3. For sort symbols S1,Ss € Sp with S1 Kp So we stipulate 1(S1) C I(Ss). For sort
symbols S1, Sy € Sp satisfying neither S1 <Kp S9 nor Sy Kp S the sort universes
I(S1), 1(S2) are disjoint.

4. The function symbol f, ¢, e, € Fp with signature Sy — Set(S2) will be interpreted
by the function I(fye,e,). For an arbitrary object a € 1(S1) I(fr.e1er)(a) will be
the set of all objects b in I(Sy) that are in D linked to a via association r.

5. For function symbols f, : S — S, arising from an attribute a, the function value
I(fa)(b) is the value of the attribute a of the object b of type S as given by the
snapshot D.

6. For function symbols f. € Fp arising from query operations, the interpretation
I(f.) is defined analogously to the previous clause. Query operations are not ex-
plicitly required to terminate. If operation ¢ on the object b does not terminate
then we set I(f.)(b) =L.

7. The value of I(f) for argument tuples containing one entry outside the required
sort or one entry equal to L equals L.

Comments

1. If in clause 1 of the previous definition S is an abstract class, then S has no
instances in D. In this case I(S) is the set-theoretic union I(S7) U ... U I(Sy)
where S1,... .S, are all immediate subclasses of S. This contradicts the position
taken in [16, 4.3.1], which would imply I(S) = 0 for an abstract class S. Our
position is, however, in accordance with the semantics of an abstract class in [13,
p. 117]:

An abstract class may not have direct instances. It may have indirect in-
stances through its concrete descendents.
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2. If a is in particular a static attribute of class C' then I(C.a) is interpreted as
an element of I(T), where T is the type of a. If also a unary function f, was
introduced for the static attribute (see Definition 3 item 3), then we require in
addition I(C.a) = I(f,)(0) for every o € I(C).

3. The approach just outlined treats association classes as classes, i.e. as sets of
objects. In the above semantics an association class is not an association. Note
that this does not contradict the UML metamodel. It is stated in [9, pages 2-20/2-
21] that

AssociationClass is a subclass of both Association and Class (i.e., each
AssociationClass is both an Association and a Class); therefore, an Asso-
ciationClass has both AssociationEnds and Features.
The meta-model describes how to build syntactically correct diagrams, and gives
restrictions on which model elements may be combined in which way. It has no
effect on the semantics of diagrams.

3 The Syntax of OCL

The grammar for OCL in [8] is hard to understand. It is our goal to give here a human-
oriented definition. We make use of the papers [12] which contains a description of the
OCL syntax at the level of the UML metamodel, and [11] which gives a first account
of a semantics for OCL.

We will present the syntax of OCL in two steps. In the first part the OCL type
system will be explained. The second part contains a human-oriented description of
the OCL grammar.

3.1 The OCL type system
Syntax of Type Expressions

Definition 5 (Type expressions). Let D be a fized class diagram. The type ex-
pressions with respect to D are as follows:

1. Integer, Real, Boolean, String
are type expressions. These are refered to as the simple OCL type expressions.
2. OclType, OclAny, OclExpression, OclState
are type expressions. We call these meta type expressions.
3. Any s € Sp, i.e. any class occuring in D is a type expression.
Following [16] we call these model types.
4. If T is a type expression that is not itself of the form Collection(T"), Set(T'),
Bag(T'"), or Sequence(T'), then

Collection(T), Set(T), Bag(T), Sequence(T')

are type expressions. The types denoted by these expressions are usually refered to
as collection types.

We will use TEp, or simply TE if no confusion is possible, to refer to the set of type
expressions with respect to D. In accordance with [10, Section 7.8.1] we refer to the
types from clauses 1 and 2 as basic types.
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Comments

1. We consider the sentence “Collection, Set, Bag and Sequence are basic types as
well.” on [10, Page 7-7] contradicting the above stipulation of basic types as a
plunder that will be remedied in a future release.

2. Unlike [12], we adhere to the standard and do not allow nesting of collection type
constructors, i.e. Set(Set(Integer)) is not a legal type expression.

3. The accepted issue #3143 of the UML RTF proposes to drop the special OCL
syntax for enumerations and use instead UML classes with stereotype
< enumeration >>. This also makes the OCL type Enumeration superfluous, so
we did omit it. Following [1] one might reintroduce it as the common supertype
of all model types with stereotype < enumeration >>. But this remains to be
decided.

4. Set(OclType), Set(OclAny), Set(OclExpression), Set(OclState) are legal type
expressions.

Definition 6 (Direct Subtypes). For type expressions Ty, Ty € TEp the subtype
relation T <gCL Ty is the least relation satisfying the following conditions:

1. If Ty, T are model types and Ty is a subtype of Ty in the UML model, i.e. T1 <p T,
then T} <gCL Ts.

2. Integer <1O)CL Real.

3. For all type expressions T, not denoting a collection type,
(a) Set(T) <YL Collection(T)
(b) Bag(T) <$CT Collection(T)
(¢) Sequence(T) <3¢T Collection(T)

4. If T is a model type or a basic type different from OCLAny, then
T <9°L OCLAny.

5. If Ty <gCL Ty and C is any of the type constructors Collection, Set, Bag,
Sequence, then C(Ty) <9°F O(Ty).

Definition 7 (Type conformance). The transitive, reflexive closure of the subtype
relation <gCL s denoted by <<gCL. If Ty <<gCL T holds, we say that Ty conforms
to T2.

Semantics of Types The constructions explained in this subsection are performed
with respect to a fixed snapshot D of a UML class diagram D. As described in
Section 2 we associate with D a many-sorted structure Mp = (Mp,I) consisting of
the universe Mp and the interpretation function I. Let Sp denote the model types in
D, see Definition 1. Then every C' € Sp is interpreted via I as a subset of the universe
Mp, i.e. I(C) C Mp.

The objective is to define the structure MYCL = (MYCL, 19CL) extending M p
such that for every OCL expression E the interpretation I9¢L(E) is defined in MPE.
In this subsection we define MgCL and the interpretation 7°C% on all type expres-
sions. The definition of T9¢” will then be continued in Section 4.

When no confusion is possible we will supress the superscript OC'L.

The universe of M%CL is the union of all sort universes. Sort universes corre-
spond to certain types. With the type Integer, for example, there is a sort universe
I(Integer) that consists of all integers plus the additional symbol L. For each model
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sort C there is the sort universe I(C), as already explained in Definition 4, Clause 1.
Remember that the special symbol L for undefinied values is also an element of 1(C).
In addition there are sort universes for Set(C), Bag(C) and Sequence(C) and the
universe for Collection(C) will be the disjoint union of them. The sort universes for
Set(C), Bag(C) and Sequence(C') consist of abstract objects o, representing subsets,
bags (multisets) or sequences of the sort universe of C' respectively. The sort universe
for OclType will consist of objects that are in one-to-one correspondance with the set
consisting of model types and all basic OCL types, except OclType.

For example, for the pre-defined type Integer there will be an object orpieger in
M(OclType). In [10, Subsection 8.8.1.1] we read the somewhat mysterious sentence
“All types defined in a UML model, or pre-defined within OCL, have a type.” In
our setting this now makes perfect sense: For every type S there is an object og in
M(OclType). We will refer to og as the type object of S.

Real Collection(Real)
Collection(Integer) |
Boolean Collection(Boolean)

String Collection(String)
OclEzxpression Collection(Ocl Expression)
OclType Collection(OclType)

model instances collections of instances
= OclAny

|m0de1 instances | = |C1 | .. .|Ck |

Fig. 2. Sort universes of MG°”

Figure 2 shows the sort universes of M@¢E.

Definition 8. 1. For the OCL type expressions S € {Integer, Real, Boolean, String}
the obvious universes M'(S) are the integers, reals, booleans and all strings over
a fixed alphabet A, respectively.
I(S)=M(S)=M'"(S)u{L}
Here 1 is a new element denoting an undefined value. The sets M'(S) are con-
sidered disjoint with the exception of M'(Integer) being a subset of M'(Real).

2. — I(OclType) = a set of objects in one-to-one correspondance with all basic or

model types with the exception of OclType itself.

— I(OclAny) = U{I(S) | S a basic or model type}
— I(OclExpression) = TEp
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— I(OclState) is not treated here.
3. for S € Sp I9¢(S) = I(S) U {L}, see Definition 4, Clause 1.
4. — I(Set(T)) = set of all subsets of I(T'),
— I(Bag(T)) = set of all multisets of elements from I(T),
— I(Sequence(T)) = set of all sequences of elements from I(T),
— I(Collection(T)) = I(Set(T)) U I(Bag(T)) U I(Sequence(T))

The universe of the structure MY is now taken to be the union of all I(S).

Comments

1. While the standard [8] is precise on the meaning of OclAny the intended meaning
of OclType is less clear. The definition adopted here seems a reasonable extrapola-
tion. A more fundamental change which raises OclType to a class in the metamodel
is proposed in [1].

2. We did not introduce type objects for collection types. The standard seems not
to exclude this. But consider the following difficulty: Let o be the type object for
type Set(Integer) what is o.allInstances supposed to be?

3. It would probably not harm to have a type object for OclType itself, but it will
on the other hand not be of much help and certainly hard to swallow.

3.2 The Syntax of OCL Constraints

A constraints starts with a header fixing the context in which it is to be understood.
Headers come in two forms, one for the classifier context, and one for the operator
context. We start with the classifier context:

context ( ¢ :)? typeName inv expressionName? : OclExpression

The trailing question mark ? indicates optional elements; OCL keywords are set
in boldface. 'typeName’ could for example be the name of a class in the fixed UML
diagram. In general we allow all type expressions that are not collection expressions
as context type. It is possible to introduce a name for easy referencing of expressions.
The optional parameter ¢ will act very much like a variable of the type given by
typename in the following OCL expression. Variable is here to be understood in the
way it is used in formal logic. A header may define more than one expression:

context ( ¢ :)? typeName

inv expressionName;? : OclExpression;

inv expressionName,? : OclExpression,,
Constraints for an operator context look like this:

context ( ¢ :)? typeName ::opName(p1: typer; ... ;pi: typeg ):rtype
{pre ,post } expressionName? : OclExpression
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Here opName is meant to be the name of an operator defined on the given type.
The list of parameters p;...p; may be empty and the return type, rtype, may be
missing or both. As above, an operator constraint may contain more than one expres-
sion.

In the headers just shown OCL expressions have to be of type Boolean. Also the
stereotype inv can only appear in a classifier context while the stereotypes pre and
post can only show up in operator contexts.

We have added the optional parameter( ¢ :)? also in the operator context to set
it on equal footing with classifier contexts, though we have seen no example of this
in the literature.

The definition of OCL expressions to be given presently depends on a fixed class
diagram D. More precisely, D uniquely determines the set Sp of model types and
the set Fp of functions together with their sorting signature. Model types and type
expressions for OCL have been introduced in Subsection 3.1 already.

Definition 9 (OCL function symbols). The set FgCL of function symbols admit-
ted in forming OCL expressions for diagram D is

1. Fp (see Definition 2) plus

2. For any basic or model type S there is a constant symbol S in F with type(S) =
OclType,

3. All properties of the pre-defined OCL types as detailed in the standard [8, Section
7.8] plus

4. The constant symbol result. This is only needed for expressions within the context
of an operator opname. The type of result will then be the return type of opname.

Definition 10 (OCL expressions). The set OCLExp of OCL expressions is the
smallest set satisfying the following recursive conditions. At the same time we define
for every OCL expression e its unique type type(e).

1. For every model type t € Sp there is an unlimited number of variables vi. Each
variable vy is in OCLExp with type(v}) = t. The parameters of an operator con-
straint are special instances of variables of the type specified in their declaration.

2. self is a special variable, where type(self) is given by context information.

3. result is in OCLEzxp.

This is only allowed if the expression occurs in the context of an operator m in
the stereotype post. Then type(result) = return type of m.

4. There are constant symbols for integers, reals, and strings, for example 15, 7.88,
'Peter’. The precise syntax for these constants is given by the OCL grammar,
where they are called literals. In addition there are constants for the two Boolean
values, true and false.

5. If f is a function symbol in F with argument types ty,... . lx and result type t,
and ey, ... ,ex are OCL expressions with type(e;) <<gCL t; for all 1 <i <k (see
Definition 7) then
fler,... ex) € OCLExzp with type(f(e,...  er)) = tr.

6. If f is a function symbol in F with argument types ti,... ,tr and result type t,
where f is not the name of an operation and ey, ... ,ex are OCL expressions with
type(e;) QL t; for all 1 <i <k (see Definition 7) then
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fQpre(ey, ... ex) € OCLEzp with type(f(eq,... ,ex)) = ty.
OCL expressions containing Qpre may only occur under the post stereotype.

7. If e1,es are OCL expression of the same type, them e = eq, e <> ey are OCL
expressions of type Boolean.

8. If e is an OCL expression of type Boolean, e1,es are expressions of type t1 and
to respectively and either t1 < ta or t1 > to then
if e then e; else ey
is an OCL expression.

ty ift1 < to

type(if e then ey else ey) = {t1 it > t

If need arises we will write more precisely OC LExpp instead of OCLEzp.

Comments

1. We allow the shorthand notation for collect as stated in the standard [10, Section
7.6.2] and also in [16, Subsection 3.6.11].
Assume e is an OCL expression with type Set(T), and attr is an attribute of
type T. Then e.attr is a shorthand for e — collect(c | c.attr). The same applies
to functions arising from associations. Consider as an example the UML class
diagram in Figure 3.

€1 €9 €3 €4

Fig. 3. Composition of navigation

The OCL expression self.ey in the context T} has type Set(T;). The expression
self.es.e4 in the same context is short for self.es — collect(c | c.eq) and has type
Bag(Ts).

2. We have in clause 4 of the previous definition blurred the distinction between
syntax and semantics. Adhering strictly to this distinction we should have intro-
duced a constant symbol ¢, for every integer a with the semantic interpretation
I(cy) = a. This seemed too much trouble for too little reason.

3. In Definition 10 we have used the functional notation as concrete syntax. This
does not imply that we consider it superior to the concrete navigation syntax
used in the OCL standard. We will in fact feel free to use both. Some remarks on
the comparision of OCL notation to the notation used in the modeling language
Alloy may be found in [15].
function syntax navigation syntax
9(Fe)) et
oclIsKindOf(sel f,Class) sel f.oclIsKindO f(Class)
forAll(c,z,e) ¢ — forAll(z | e)
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Definition 11 (Free variables). For an OCL expression e we denote by FV(e) the
set of free variables in e. The expression self is counted as a free variable.

We trust that the notion of free variable, and of its counterpart bound variable,
are intuitively clear. Here is an example:

FV(iterate(e,v; : t,vy, :t1 =e1 | f)) =FV(e) U(FV(f) \ {vg, 04, })
Definition 12 (OCL expressions in context).

1. An OCL expression e may occur in the context
context (c:)? typeName inv expressionName? : e

only if

(a) the postfiz Qpre and result do not occur in e

(b) FV(e) = {self} if the parameter c is not specified. If c is specified, then we
insist that self does not occur in e and FV(e) = {c}.

(¢) type(e) = Boolean.

2. An OCL expression e may occur in the context

context (c:)? typeName

2 opname(py: typers ... pr: typey ):rtype
{pre , post } expressionName? : e

only if
(a) FV(e) = {p1,... ,pr} U {self} if ¢ is not specified, and
FV(e) ={p1,... ,pr} U{c} if ¢ is specified.
(b) in the case of the pre stereotype, Qpre and result do not occur in e.
(c) type(e) = Boolean.

Comments and examples

1. OCL constraints have so far in the literature been considered with respect to a
fixed context class, say S. Inspecting Definition 10 reveals that this information
is only needed in determining the type of self. The same observation applies to
[11, Definition 5]. Replacing self by the optional parameter ¢ : S specified in the
context header we arrive at a definition of OC'LFExp not depending on context
information.

The notion of context is helpful, so we introduce it in Definition 12, thus arriving
at a clear separation of concerns.

The approach adopted here also solves another problem that has been kept under
the rug in previous publications. Assume that e is an OCL expression in context
¢ with type(e) = Sequence(t) and we form the new expression

e — iterate(v, : t,vy, 1ty =€ | f)

What should be the context of f7 In most published examples it is not ¢, sometimes
it is ¢, sometimes it is ¢y.

The above definitions at least give a clear answer, which we hope will also prove
useful and in keeping with the spirit of OCL.
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2. OCL allows as a shortcut to omit self. We assume in Definition 12 that this, and
all similar shortcuts, have been removed.

3. Here are some examples for OCL expressions according to clause 5.
If f =+ and type(e1) = type(es) = Integer then e; + e is an expression of type
Integer.
There are two ways to derive the expression e; + eo within the OCL grammar in
the standard [9]: first as a built-in operation on the type Integer and second via
the grammer rule for additiveExpression. This shows that one could simplify
the grammar.
If T is a class in D, e an expression of type T and f an attribute for the class
T with value type T} then f(e) is in OCLEzp with type(f(e)) = Ti. In concrete
OCL syntax this expression would be written as e.f.
Let f = frp.b, (see Definition 2) be a function symbol associated with the associ-
ation ends b; and by of an association r in D. Assume that b; is attached to class
t; and e is an OCL expression with type(e) = Ty. Then f(e) is an OCL expression
with type(f(e)) = Ty if by has multiplicity 1 and type(f(e)) = Set(t2) otherwise.
In concrete OCL syntax this expression would be written as e.by or e.ts.
If e is an expression with type(e) = Set(T) then size(e) is an OCL expression of
type Integer, because size is a built-in operator. In concrete syntax: e — size.

4. If the type of ey, e in clause 7 is neither a meta type nor a collection type, then
equality and inequality are built-in operations of the type OCLAny. Because of
the restriction of the subtype relation in Definition 6 this does not cover equality
between collection and meta types. Thus we have added clause 7 here.

5. Let e be an OCL expression of type Sequence(T), let vr, vy, be variables of type
T and T4 respectively, e; and f expressions of type Ti, then

iterate(e,vp : T,ur, : Ty = €1 | f)

is an OCL expression of type Ti. iterate is a built-in operation for all collection
types. It is most natural for sequences but also applicable on sets and bags. Its
concrete syntax is e — iterate(vy : T,vp, : Ty = ey | f).

6. The usual let construct for introducing abbreviations may be freely used in OCL
expressions. In the formal treatment we assume that all abbreviations have been
resolved.

7. We do not exclude, that within an expression e occuring as a pre or post condition
in the context of an operator opname, the function symbol fopneme attached to
opname does occur.

4 Semantics of OCL

We will now continue the definition of M3“E = (ML T9C¢L) begun in Subsection
3.1. Remember that we assume a fixed snapshot D of a UML class diagram D. From D
we read off the set of sort and function symbols, Sp and Fp, while D may be described
by the many-sorted structure Mp = (Mp,I). We will again take the liberty to omit
the superscript OCL, when no confusion can arise. In Subsection 3.1 I(e) was defined
for all OCL type expressions. The OCL expression e may contain free variables. The
meaning of e then depends on the values assigned to these free variables. This is the
job of the function (: for every variable v in e of type S we require 3(v) to be an
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element in I(S) and we will explain how to calculate recursively the value of I3(e).
The initial cases (Clause 1 to 4) in Definition 10 are easy to deal with and likewise
the induction steps for clauses 7 and 8 are obvious. We concentrate here on clause 5
and postpone clause 6 for later.

Definition 13 (Semantics of model properties).

1. Let fo in Fp be the function symbol attached to an attribute a of the class T (see
Definition 4). Let further e be an OCL expression with type(e) <3 T. Then
15(f(e)) = I(f)Ix(e).

2. Let f = fre e, be a function symbol in Fp attached to the association r and
the association ends ey, es with argument type T and e an OCL expressions with

type(e) <" T. Then Ig(f(€)) = I(frerer) (I5(€))-

Next we should give the semantics for all pre-defined operations of OCL. We
restrict ourselves to a few typical cases.

Definition 14 (Semantics of model properties).

1. Consider the expression e = e; — collect(c | e2) (in functional notation collect(eq,c,ez)).

(a) type(es) is not a collection type.
In case type(e1) = Set(S) or Bag(S):

Is(e) = the bag of elements Iga(ez) for all a € Ig(e1)
In case type(e) = Sequence(S):
Ig(e) = (g (€2),... , Iga (e2)) with Ig(er) = (c1,... ;cp)

(b) type(es) = Set(T) or Bag(T)

Is(e) = | J{Ise (e2) | @ € Ig(er)}

In any case the union |J will result in a bag, i.e. multiple occurences will not
be eliminated. The information what kind of a collection type ey did possess is
lost, even in the case type(e1) = Sequence(S).

(c) type(es) = Sequence(T)
If type(er) = Set(S) or Bag(S) the definition of the previous item applies
where Iga(ez) is treated as the bag of elements occuring in the sequence.
If type(e1) = Sequence(S) then Ig(e) is the concatenation of the sequences
I (e2), with 1 <i <k and Ig(e1) = (c1,... , k).

In these definitions we have used 5¢(x) = {aﬁ(ﬂﬁ) Zi fi

Definition 15. Let v be the only free variable that may occur in e, and (B, the vari-
able assignment with Gy, (v) = m.

The constraint context ¢ inv : e
is true in MYCL = (Mp, I) if for every m € I(T): Ig,, () = true.
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The meaning of constraints on methods is defined with respect to a pair of snapshots
Dy, D5 for the same diagram D. These lead to a pair of structures of the form:
(M%?L,MgfL) = ((Mp,, I),(Mp,, I)). We will further assume that Mp, C Mp,.
This amounts to the stipulation that instances once created cannot be removed.

Definition 16. The constraint

context (¢ :) typeName :: opname(py: typer; ... ;px: typeg ):rtype
pre : e;
post : es

is true in (M%?L,M%SL) if for every (3
I, g(e1) = true implies I3 g(ez) = true

Here (3 ranges over all functions from the set {c,p1,... ,pr} of variables into the
universe Mp, satisfying the typing restrictions.

It is in Definition 14 clause 2 and 3 that flattening takes place and the creation of
sets of sets or sequences of sequences is avoided.

The standard [8, Subsection 7.5.5] allows to access association ends of multiplicity
[0..1] both as sets and as elements. There is no clear way in our setting to mimick
this overloading. We even doubt its practicality.

5 Future Research

We are presently working on a translation of OCL into Dynamic Logic, which is
the input language of the theorem prover in the KeYproject. Special care has to be
taken in the translation of the @pre suffix. It is quite easy to use partial functions
in a semantics description, as we have done here. A deduction calculus for reasoning
about partial functions in the OCL framework still has to be decided on.
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