
PMD '01
Pre
ise Modelling and Dedu
tion forObje
t-oriented Software Development
International Workshop at IJCAR 2001Sienna, June 2001

Bernhard Be
kertRobert Fran
eReiner H�ahnleBart Ja
obs(eds.)

Table of ContentsPrefa
e : vAutomati
 Synthesis of UML Designs from Requirements in an Iterative Pro
ess 1Johann S
humann, Jon WhittleHandling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 : 5Bernhard Be
kert, Bettina SasseReasoning on UML Class Diagrams in Des
ription Logi
s : : : : : : : : : : : : : : : : : : : 15Andrea Cal��, Diego Calvanese, Giuseppe De Gia
omo, Maurizio LenzeriniDevelopment of Formally Veri�ed Obje
t-Oriented Systems with Perfe
t Devel-oper : 29David Cro
kerTowards Veri�able Spe
i�
ations of Obje
t-oriented Frameworks : : : : : : : : : : : : : 33J�org Meyer, Arnd Poetzs
h-He�terA Model Theoreti
 Semanti
s of OCL : 43Peter H. S
hmitt

iv

Prefa
eThe International Workshop on Pre
ise Modelling and Dedu
tion for Obje
t-orientedSoftware Development is held on June 18, 2001 in Siena (Italy) as part of IJCAR 2001,the International Joint Conferen
e on Automated Reasoning.The workshop aims at
losing the gap between automated dedu
tion and one of itsmost important appli
ations: formal methods in software engineering. It tries to bringtogether the pre
ise modelling and the automated reasoning
ommunities interestedin obje
t-oriented software development.The meeting
onsists of an invited talk, �ve
ontributed papers, and a tool demosession. More information, in
luding these pro
eedings, is available at the PMD website at i12www.ira.uka.de/~be
kert/PMD.We sin
erely thank those who
ontributed to make this workshop possible: Theauthors and parti
ipants, and in parti
ular Johann S
humann for his invited talk. Wealso thank the organisers of IJCAR 2001, who were responsible for all lo
al arrange-ments.Sienna, ItalyJune 2001 Bernhard Be
kertRobert Fran
eReiner H�ahnleBart Ja
obs

vi

Automati
 Synthesis of UML Designs fromRequirements in an Iterative Pro
essJohann S
humann1 and Jon Whittle21 RIACS/NASA-Ames2 QSS/NASA Amesemail:s
humann,jonathw�ptolemy.ar
.nasa.govThe Uni�ed Modeling Language (UML) is gaining wide popularity for the de-sign of obje
t-oriented systems. UML [6℄
ombines various obje
t-oriented graphi
aldesign notations under one
ommon framework. A major fa
tor for the broad a
-
eptan
e of UML is that it
an be
onveniently used in a highly iterative, Use Case(or s
enario-based) pro
ess (although the pro
ess is not a part of UML). Here, the(pre-)requirements for the software are spe
i�ed rather informally as Use Cases anda set of s
enarios. A s
enario
an be seen as an individual tra
e of a software artifa
t.Besides �rst sket
hes of a
lass diagram to illustrate the stati
 system breakdown,s
enarios are a favorite way of
ommuni
ation with the
ustomer, be
ause s
enar-ios des
ribe
on
rete intera
tions between entities and are thus easy to understand.S
enarios with a high level of detail are often expressed as sequen
e diagrams.Later in the design and implementation stage (elaboration and implementationphases), a design of the system's behavior is often developed as a set of state
harts.From there (and the full-
edged
lass diagram), a
tual
ode development is started.Current
ommer
ial UML tools support this phase by providing
ode generators for
lass diagrams and state
harts.In pra
ti
e, it
an be observed that the transition from requirements to design to
ode is a highly iterative pro
ess. This means that initial versions of requirements haveto be modi�ed and re�ned to meet additional (
ustomer) wishes and
onstraints. Alsomodi�
ations of the
ode
an lead to revisions in design. This iterative behavior isstrongly supported by most modern pro
esses, be
ause it fa
ilitates early dete
tion ofin
onsisten
ies and bugs. Fixing a bug whi
h is dete
ted late in the software life
y
le
an
ost approximately 60-100 times more than one whi
h is dete
ted early [3℄.However,
urrent UML tools do not support the transition from requirements todesign in a
omfortable and
onsistent way. Often, a
onsiderable amount of time isspent to write down the requirements in great detail. Then the requirements tend tobe \forgotten" until test
ases have to be set up. At this point of time, it is usuallydete
ted that those requirements are hopelessly out of date and require a majoroverhaul.Our work [7℄ addresses these issues and tries to
lose the gap between requirementsand design. In this talk, we present a set of algorithms whi
h perform reasonablesynthesis and transformations between di�erent UML notations (sequen
e diagrams,OCL
onstraints, state
harts). Our overall aim with respe
t to reasonable synthesisis
entered around the following
on
epts: dete
tion of in
onsisten
ies and ambigui-ties in sequen
e diagrams, merging of similar or dupli
ated behaviors from di�erentsequen
e diagrams, the produ
tion of highly readable (stru
tured) state
hart, andthe support for iterative re�nements. More spe
i�
ally, we will dis
uss the followingtransformations.

2 J. S
humann and J. WhittleState
hart synthesis. From a set of sequen
e diagrams with obje
t O (as an in-stan
e of a
lass C) as a parti
ipant, we automati
ally synthesize a state
hart whi
hre
e
ts C's behavior given in the sequen
e diagrams. Be
ause the standard seman-ti
s of sequen
e diagrams is very weak, almost no dupli
ate or similar behavior
anbe merged. In order to over
ome this problem, we allow the designer to spe
ify aset of OCL
onstraints, des
ribing pre- and post
onditions over a ve
tor of \state-variables" for messages in the sequen
e diagrams. These state-variables (
urrentlyof type boolean) and the
onstraints are used by our algorithm to dete
t
on
i
tsbetween a sequen
e diagram and the OCL
onstraints (the domain model) usinguni�
ation and a version of the frame axiom. Furthermore, potential loops
an be de-te
ted. Our state variables also form the basis for
onstru
ting the (
at) state
hart.In
ontrast to other approa
hes (e.g., that used in the SCED tool [2℄), the domainmodel allows a justi�ed merge of sequen
e diagrams. Be
ause OCL
onstraints needto be de�ned only for few (possibly important or ambiguous) messages, we believethat the additional burden for the designer is kept to a reasonable level.Introdu
tion of hierar
hy. As soon as the design gets more
omplex (i.e., a stat-e
hart
ontains more than approx. 5 nodes), things usually get out of hand, be
ausethe design
annot be read by the designer/developer in a reasonable manner. D. Harel[1℄ ta
kled this problem by introdu
ing hierar
hy and orthogonality in his state
harts.Nodes
an be grouped into supernodes, in
reasing readability and avoiding an explo-sion of states when new fun
tionality is added.In order to produ
e useful designs, our algorithm is
apable of synthesizing hi-erar
hi
al state
harts. Thereby, the initial
at state
hart is partitioned re
ursivelya

ording to a given strategy, usually based upon information in the
lass diagram,a given ordering of the state-variables, and user preferen
es. Be
ause hierar
hy istransparent with respe
t to state
hart semanti
s, multiple di�erent hierar
hies (or\views")
an exist in the system at the same time.Consisten
y of modi�
ations. In most software proje
ts, requirements s
enariosonly
over a (hopefully important) fragment of the intended system behavior. There-fore, the synthesized state
hart
an only be a �rst design sket
h whi
h needs to begeneralized and modi�ed by the designer. A hierar
hi
al stru
ture (see above) is animportant prerequisite for su
h a
tivities. However, transformations or modi�
ationseasily
an invalidate the requirements. Therefore, we have developed a \ba
kwardsdire
tion" algorithm whi
h
he
ks
onsisten
y of the modi�ed state
hart with theoriginal requirements and the domain model. In
ase an original sequen
e diagramhas been violated, our algorithm proposes a set of revised (added/modi�ed/deletedmessages) a

ording to given
riteria.\Design-Debugging". Despite the well-known \fa
t" that every programmer al-ways writes error-free
ode, debugging of a software artifa
t is an extremely impor-tant (and unfortunately time-
onsuming and
ostly) task. Our algorithms supportdebugging of UML diagrams on various levels [5℄. Early
he
king of
onsisten
y in therequirements is one way of debugging during very early stages of the development, i.e.,already before the a
tual design starts. Our ba
kwards-dire
tion algorithm fa
ilitates�nding bugs in modi�
ations of the original design. Here, the user is not required tomanually go through (lengthy) exe
ution tra
es. All the user has to do is to
he
k theproposed modi�
ations (whi
h are usually mu
h smaller) of the sequen
e diagramswhether or not they are
onsistent with the intended system behavior.

Automati
 Synthesis of UML Designs from Requirements in an Iterative Pro
ess 3A popular method for debugging is the so-
alled \printf-debugging". Here, theprogrammer instruments the
ode with statements whi
h write tra
e information andvariable values into a log-�le. After the program exe
ution, the tra
e in analyzed. Inpra
ti
e, however, annotation of larger program to dete
t a
ertain behavior is farfrom trivial. Usually, a lot of distant and seemingly unrelated parts of the
ode haveto be annotated. Here, our algorithm for the introdu
tion of hierar
hy
an be of greathelp. Combined with the automati

ode generation fa
ilities of
ommer
ial UMLtools, su
h an instrumentation
an be a

omplished easily. The developer
hangesthe hierar
hy of the state
hart(s) in su
h a way that all states whi
h are of interestfor the
urrent debugging session are grouped together in one (or a few) superstateson the top of the hierar
hy. Then, all important parts are
learly visible and
an beinstrumented easily (e.g., by adding spe
i�
 debugging a
tions). The
hange of thehierar
hy
an be initiated by giving additional
onstraints over the state variables.Our entire set of algorithms is based upon a logi
-based semanti
s of the di�erentUML notations. We are
urrently only using a subset of the sequen
e diagram andstate
hart notation, for whi
h there is a straightforward, undisputed semanti
s. Infuture, we will work on the in
orporation of additional elements of the state
hartnotation and extensions of sequen
e diagrams (see [8℄ for details) into our framework.We have developed a prototype of these algorithms in Java. Integration into aUML tool (using XMI) is
urrently in progress. We have tried out our algorithm withvarious small examples, like the ATM ma
hine and a
ruise-
ontrol system. Futurework in
ludes NASA-internal
ase studies on spa
e shuttle software and software foradvan
ed air traÆ

ontrol.However, there is mu
h work still to be done. Our overall goal is to have an in-tegrated UML support tool whi
h is
on
ise and a

urate, but hides the underlyingformal te
hniques (uni�
ation,
onstraint solving, tree sear
hes) as mu
h as possible.By integration of the algorithms into
ommer
ial UML tools we aim at \invisibleformal methods" as proposed by J. Rushby [4℄. The in
orporation of additional do-main information in the form of OCL
onstraints allows
on
ise
onsisten
y
he
ksand justi�ed merging of sequen
e diagrams with minimal overhead for the softwaredesigner and developer. It is thus expe
ted that su
h tools will in
rease produ
tivityand quality of obje
t oriented software systems.Referen
es1. D. Harel. State
harts: A visual formalism for
omplex systems. S
ien
e of Computer Programming,8:231{274, 1987.2. T. M�annist�o, T. Syst�a, and J. Tuomi. SCED report and user manual. Report A-1994-5, Dept ofComputer S
ien
e, University of Tampere, 1994.3. R. Pressman. Software Engineering - a Pra
titioner's Approa
h. M
Graw-Hill, 1997.4. J. Rushby. Disappearing formal methods. In Pro
eedings of HASE: Fifth IEEE InternationalSymposium on High Assuran
e Systems Engineering, 2000. invited paper.5. J. S
humann. Automati
 debugging support for UML designs. In M. Du
asse, ed-itor, Pro
eedings of the Fourth International Workshop on Automated Debugging, 2000.http://xxx.lanl.gov/abs/
s.SE/0011017.6. Uni�ed Modeling Language Spe
i�
ation, Version 1.3, 1999. Available from Rational SoftwareCorporation, Cupertino, CA.7. J. Whittle and J. S
humann. Generating State
hart Designs From S
enarios. In Pro
eedings ofInternational Conferen
e on Software Engineeering (ICSE 2000), pages 314{323, 2000.8. J. Whittle and J. S
humann. Generating State
hart Designs From S
enarios. TOSEM, 2001.submitted.

4 J. S
humann and J. Whittle

Requirements

Design

synthesis
automaticautomatic

check and update

modifications
debugging

refinements

specification of

communication with
requirements

customer

context enter:

post: CardIn = 1;
...

pre: cardIn=0;

User ATM Consortium Bank

Display main screen

Insert card

Request password

Enter password
Verify account

Verify card with bank

Bad bank account
Bad account

Bad account message

Print receipt

Eject card

Request take card

Take card

Display main screen

Fig. 1. Automati
 synthesis of state
harts in a highly iterative software pro
ess

Handling Java's Abrupt Termination in aSequent Cal
ulus for Dynami
 Logi
Bernhard Be
kert and Bettina SasseUniversity of KarlsruheInstitute for Logi
, Complexity and Dedu
tion SystemsD-76128 Karlsruhe, Germanybe
kert�ira.uka.de, sasse�ira.uka.deAbstra
t. In Java, the exe
ution of a statement
an terminate abruptly (besidesterminating normally and terminating not at all). Abrupt termination either leads to aredire
tion of the
ontrol
ow after whi
h the program exe
ution resumes (for exampleif an ex
eption is
aught), or the whole program terminates abruptly (if an ex
eptionis not
aught). Within the KeY proje
t, a Dynami
 Logi
 for Java Card has beendeveloped, as well as a sequent
al
ulus for that logi
, whi
h
an be used to verify JavaCard programs. In this paper, we des
ribe how abrupt termination is handled in that
al
ulus. The ideas behind the rules we present
an easily be adapted to other programlogi
s (in parti
ular Hoare logi
) for Java.1 Introdu
tionIn Java, the exe
ution of a statement
an terminate abruptly (besides terminatingnormally and terminating not at all). Possible reasons for an abrupt termination arefor instan
e (a) that an ex
eption has been thrown, (b) that a loop or a single loopiteration is terminated with the break resp. the
ontinue statement, and (
) that theexe
ution of a method is terminated with the return statement. Abrupt terminationof a statement either leads to a redire
tion of the
ontrol
ow after whi
h the programexe
ution resumes (for example if an ex
eption is
aught), or the whole programterminates abruptly (if an ex
eption is not
aught).In [2℄ a Dynami
 Logi
 for Java Card (Java Card DL) has been presented,as well as the basi
 rules of a sequent
al
ulus for Java Card DL that
an be usedto verify Java Card programs. In this paper, we give a detailed des
ription of howabrupt termination is handled in that
al
ulus. The basi
 prin
iples of the rules wepresent
an easily be adapted to other program logi
s (in parti
ular Hoare logi
) forJava.The basi
 idea of our approa
h, whi
h helps to keep the
al
ulus's rules simple,is to give an abruptly terminating statement the same semanti
s as that of a non-terminating statement. As usual in Dynami
 Logi
s, the semanti
s of a program isa partial fun
tions between states. Neither the fa
t that an abrupt termination haso

urred nor the reason for the abrupt termination are made part of the states. Thus,to de�ne the semanti
s of DL formulas, we do not need to provide additional
onstru
tsfor handling abrupt termination. Nevertheless, our
al
ulus
an handle programs thatmake use of abrupt termination to redire
t
ontrol
ow during exe
ution.We work a

ording to the prin
iple that the program states should not in
ludeinformation about
ontrol
ow: they do not
ontain a program
ounter, nor the valueof the
ondition in an if-else statement that has just been evaluated, nor the reasonfor the termination of a statement.

6 B. Be
kert and B. SasseA di�erent approa
h is used in [3℄, where the semanti
s of a program is not afun
tion between states but from states to pairs
onsisting of a state and a reasonfor termination, making the reason for
ompletion e�e
tively part of the �nal stateof a statement. Other related work in
ludes [6℄ and [8℄, where program logi
s for(subsets of) Java are des
ribed.The stru
ture of this paper is as follows: In Se
tion 2, we shortly des
ribe theba
kground and motivation of our work. Syntax and semanti
s of Java Card DL areintrodu
ed in Se
tion 3; for details, the reader is referred to [2℄. The rules for handlingabrupt termination are given in Se
tion 4. In Se
tion 5, we present an example forthe appli
ation of these rules.2 Ba
kgroundThe work reported here has been
arried out as part of the KeY proje
t [1℄. Thegoal of KeY is to enhan
e a
ommer
ial CASE tool with fun
tionality for formalspe
i�
ation and dedu
tive veri�
ation and, thus, to integrate formal methods intoreal-world software development pro
esses. A

ordingly, the design prin
iples for thesoftware veri�
ation
omponent of the KeY system are:{ The programs that are veri�ed should be written in a \real" obje
t-oriented pro-gramming language (we de
ided to use Java Card).{ The logi
al formalism should be as easy as possible to use for software developers(who do not have years of training in formal methods).Sin
e Java Card is a \real" obje
t-oriented language, it has features whi
h arediÆ
ult to handle in a software veri�
ation system, su
h as dynami
 binding, aliasing,obje
t initialisation, and|the topi
 of this paper|abrupt termination. On the otherhand, Java Card la
ks some
ru
ial
ompli
ations of the full Java language su
h asthreads and dynami
 loading of
lasses. Moreover, Java smart
ards are an extremelysuitable target for software veri�
ation, as the appli
ations are typi
ally se
urity-
ri-ti
al but rather small.We use an instan
e of Dynami
 Logi
 (DL) [5℄|whi
h
an be seen as an exten-sion of Hoare logi
|as the logi
al basis of the KeY system's software veri�
ation
omponent, be
ause dedu
tion in DL is based on symboli
 program exe
ution andsimple program transformations and is
lose to a programmer's understanding ofJava Card. Also, DL has su

essfully been applied in pra
ti
e to verify softwaresystems of
onsiderable size. It is used in the software veri�
ation systems KIV [7℄and VSE [4℄ (for a programming language that is not obje
t-oriented).3 Dynami
 Logi
 for Java Card3.1 OverviewDynami
 Logi

an be seen as a modal predi
ate logi
 with a modality hp i for everyprogram p (we allow p to be any sequen
e of legal Java Card statements); hp irefers to the su

essor worlds (
alled states in the DL framework) that are rea
hableby running the program p . In standard DL there
an be several of these states (worlds)be
ause the programs
an be non-deterministi
; but here, sin
e Java Card programsare deterministi
, there is exa
tly one su
h world (if p terminates) or there is no

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 7su
h world (if p does not terminate). The formula hp i� expresses that the program pterminates in a state in whi
h � holds. A formula �! hp i is valid if for every state ssatisfying the pre-
ondition �, a run of the program p starting in s terminates, andin the terminating state the post-
ondition holds.Thus, the formula �! hp i is similar to the Hoare triple f�gp f g. But in
on-trast to Hoare logi
, the set of formulas of DL is
losed under the usual logi
al opera-tors: In Hoare logi
, the formulas � and are pure �rst-order formulas. DL allows toinvolve programs in the des
riptions � resp. of states. For example, using a program,it is easy to spe
ify that a data stru
ture is not
y
li
, whi
h is impossible in pure�rst-order logi
. Be
ause all Java
onstru
ts are available in DL for the des
ription ofstates (in
luding while loops and re
ursion) it is not ne
essary to de�ne an abstra
tdata type state and to represent states as terms of that type; instead DL formulas
an be used to give a (partial) des
ription of states, whi
h is a more
exible te
hniqueand allows to
on
entrate on the relevant properties of a state.3.2 Syntax of Java Card DLAs said above, a dynami
 logi
 is
onstru
ted by extending some non-dynami
 logi
with modal operators of the form hp i. The non-dynami
 base logi
 of our DL is atyped �rst-order predi
ate logi
. We do not des
ribe in detail what the types of ourlogi
 are (basi
ally they are identi
al with the Java types) nor how exa
tly terms andformulas are built, as this is not relevant for the handling of abrupt termination. Thede�nitions
an be found in [2℄. Note, that terms (whi
h we often
all \logi
al terms"in the following) are di�erent from Java expressions; they never have side e�e
ts.In order to redu
e the
omplexity of the programs o

urring in DL formulas, weintrodu
e the notion of a program
ontext. The
ontext
an
onsist of any legal JavaCard program, i.e., it is a sequen
e of
lass and interfa
e de�nitions. Syntax andsemanti
s of DL formulas are then de�ned with respe
t to a given
ontext; and theprograms in DL formulas are assumed not to
ontain
lass de�nitions.A
ontext must not
ontain any
onstru
ts that lead to a
ompile-time error orthat are not available in Java Card.1The programs in DL formulas are basi
ally exe
utable Java Card
ode; as saidabove, they must not
ontain
lass de�nitions but
an only use
lasses de�ned inthe program
ontext. We introdu
ed two additional
onstru
ts that are not availablein plain Java Card but are ne
essary for
ertain rule appli
ations: Programs
an
ontain a spe
ial
onstru
t for method invo
ation (see below), and they
an
ontainlogi
al terms. These extensions are not used in the input formulas, they o

ur onlywithin proofs, i.e., we prove properties of pure Java Card programs.Example 1. The statement i=0; may be used as a program in a DL formula althoughi is not de
lared as a lo
al variable.The statement break l; is not a legal program be
ause su
h a statement is onlyallowed to o

ur inside a blo
k labelled with l. A

ordingly, l:{break l;} is a legalprogram and
an be used in a DL formula.1 An additional restri
tion is that a program
ontext must not
ontain inner
lasses (this restri
tionis \harmless" be
ause inner
lasses
an be removed with a stru
ture-preserving program transfor-mation and are rarely used in Java Card anyway).

8 B. Be
kert and B. SasseThe purpose of our �rst extension is the handling of method
alls. Methods areinvoked by synta
ti
ally repla
ing the
all by the method's implementation. To handlethe return statement in the right way, it is ne
essary (a) to re
ord the obje
t �eldor variable x that the result is to be assigned to, (b) to re
ord the old value oldof this, and (
) to mark the boundaries of the implementation prog when it issubstituted for the method
all. For that purpose, we allow statements of the form
all(old,x){prog} to o

ur in DL programs.The se
ond extension is to integrate logi
al terms in programs
ontained in DLformulas (not in the program
ontext). This is ne
essary to be able to repla
e Javaexpressions with possible side e�e
ts by a logi
al term of the same type. However,sin
e the value of logi
al terms
annot and must not be
hanged by a program, alogi
al term
an only be used in positions where a final lo
al variable
ould be useda

ording to the Java language spe
i�
ation (the value of lo
al variables that arede
lared final
annot be
hanged either). In parti
ular, logi
al terms
annot be usedas the left hand side of an assignment.3.3 Semanti
s of Java Card DLThe semanti
s of a program p is a state transition, i.e., it assigns to ea
h state s theset of all states that
an be rea
hed by running p starting in s. Sin
e Java Cardis deterministi
, that set either
ontains exa
tly one state (if p terminates normally)or is empty (if p does not terminate or terminates abruptly). The set of states ofa model must be
losed under the rea
hability relation for all programs p , i.e., allrea
hable states must exist in a model (other models are not
onsidered).The semanti
s of a logi
al term t o

urring in a program is the same as that of aJava expression whose evaluation is free of side-e�e
ts and gives the same value as t.For formulas � that do not
ontain programs, the notion of � being satis�ed by astate is de�ned as usual in �rst-order logi
. A formula hp i� is satis�ed by a state sif the program p, when started in s, terminates normally in a state s0 in whi
h � issatis�ed. A formula is satis�ed by a model M , if it is satis�ed by one of the statesof M . A formula is valid in a model M if it is satis�ed by all states of M ; and aformula is valid if it is valid in all models.As mentioned above, we
onsider programs that terminate abruptly to be non-terminating. Thus, for example, hthrow x;i� is unsatis�able for all �. Nevertheless,it is possible to express and (if true) prove the fa
t that a program p terminatesabruptly. For example, the formulae := null ! htry{p}
at
h(Ex
eption e){}i(: (e := null))is true in a state s if and only if the program p , when started in s, terminates abruptlyby throwing an ex
eption (as otherwise no obje
t is bound to e).Sequents are notated following the s
heme�1; : : : ; m ` 1; : : : ; n ;whi
h has the same semanti
s as the formula(8x1) � � � (8xk)((�1 ^ : : : ^ m)! (1 _ : : : _ n)) ;where x1; : : : ; xk are the free variables of the sequent.

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 94 Sequent Cal
ulus Rules for Handling Abrupt Termination4.1 NotationThe rules of our
al
ulus operate on the �rst a
tive
ommand p of a program �p!. Thenon-a
tive pre�x �
onsists of an arbitrary sequen
e of opening bra
es \{", labels,beginnings \try{" of try-
at
h-finally blo
ks, and beginnings \
all(: : :){" ofmethod invo
ation blo
ks. The pre�x is needed to keep tra
k of the blo
ks that the(�rst) a
tive
ommand is part of, su
h that the abruptly terminating statementsthrow, return, break, and
ontinue
an be handled appropriately.2 The post�x !denotes the \rest" of the program, i.e., everything ex
ept the non-a
tive pre�x andthe part of the program the rule operates on. For example, if a rule is applied to thefollowing Java blo
k operating on its �rst a
tive
ommand i=0;, then the non-a
tivepre�x � and the \rest" ! are the marked parts of the blo
k:l:{try{| {z }� i=0; j=0; }finally{ k=0; }}| {z }!4.2 Loop RulesDue to spa
e restri
tions, we present only one spe
i�
 rule for while loops to demon-strate the properties of loop rules. for and do-while loops are handled analogously.The following rule \unwinds" while loops. Its appli
ation is the prerequisite forsymboli
ally exe
uting the loop body. These \unwind" rules allow to handle whileloops if used together with indu
tion s
hemata for the primitive and the user de�nedtypes (see the example in Se
tion 5).� ` (h� if(
)l0:{l00:{p0} l1:� � � ln:while(
){p }} !i�)� ` (h� l1:� � � ln:while(
){p } !i�) (R1)where{ l0 and l00 are new labels,{ p0 is the result of (simultaneously) repla
ing in p(a) every break li (for 1 � i � n) and every break (with no label) that has thewhile loop as its target by break l0, and(b) every
ontinue li (for 1 � i � n) and every
ontinue (with no label) thathas the while loop as its target by break l00.3The list l1:; : : : ;ln: usually has only one element or is empty, but in general a loop
an have more than one label.In the \unwound" instan
e p0 of the loop body p , the label l0 is the new target forbreak statements and l00 is the new target for
ontinue statements, whi
h both had2 In DL versions for simple arti�
ial programming languages, where no pre�xes are needed, anyformula of the form hp q i�
an be repla
ed by hp ihq i�. In our
al
ulus, splitting of h�pq!i� intoh�p ihq!i� is not possible (unless the pre�x � is empty) be
ause �p is not a valid program; andthe formula h�p!ih�q!i�
annot be used either be
ause its semanti
s is in general di�erent fromthat of h�pq!i�.3 The target of a break or
ontinue statement with no label is the loop that immediately en
losesit.

10 B. Be
kert and B. Sassethe while loop as target before. This results in the desired behaviour: break abruptlyterminates the whole loop, while
ontinue abruptly terminates the
urrent instan
eof the loop body.A
ontinue with or without label is never handled by a rule dire
tly, be
ause it
an only o

ur in loops, where it is always transformed into a break by the loop rules.4.3 Rules for the Abruptly Terminating StatementsPossible Combinations of Pre�x and Abruptly Terminating Statement. Inthe following, we present rules for
ombinations of pre�x type (beginning of a blo
k,method invo
ation or try) and abruptly terminating statement (break, return orthrow). Due to restri
tions of the language spe
i�
ation, the
ombination methodinvo
ation/break does not o

ur. Also, swit
h statements, whi
h may
ontain abreak, are not
onsidered here; they are transformed into a sequen
e of if statements.Evaluation of Arguments. The arguments ex
 and val of statements throw ex
resp. return val must already be evaluated (they must be logi
al terms) before theappropriate rule for redire
ting the
ontrol
ow
an be applied to the abruptly termi-nating statement. Otherwise, a rule su
h as the following (rule (R2)) has to be used�rst, whi
h then allows the appli
ation of other rules that evaluate the expression ex
 .� ` h� {x =ex
 ; throw x ;} !i�� ` h� throw ex
 ; !i� (R2)where x is a new variable of the same type as the expression ex
 . Sin
e, in this paperwe fo
us on the handling of abrupt termination here and not on the evaluation ofexpressions, we assume in the following that this has already been done.We also do not
onsider the problem of unde�ned expressions in this paper, whoseevaluation results in an ex
eption being thrown (e.g., the expression o.a if the valueof o is null). If an expression e o

urs that may be unde�ned, the rules have a furtherpremiss � ` isdef (e) in the full version of the
al
ulus.Rule for Method Call/return. The rule for this
ombination symboli
ally exe
utesevery step the virtual ma
hine does when a method invo
ation is terminated: Thereturn value is assigned to the lo
ation re
orded in the method
all pre�x and thisis restored to the value it had before method invo
ation.� ` h� x =y ; this=old; !i�� ` h�
all(old, x):{return y ; pgm }!i� (R3)In pure Java it is not possible to expli
itly assign a value to this. Our assignmentrule, however,
an handle su
h a statement and produ
es the desired e�e
t. The \rest"program pgm of the method body, whi
h is not exe
uted, may be empty.Rule for Method Call/throw. In this
ase, the method is terminated and thisis restored to its old value, but no return value is assigned. The throw statement

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 11remains un
hanged (i.e., the ex
eption is handed up to the invoking program).� ` h� this=old; throw ex
 ; !i�� ` h� method
all(old, x):{throw ex
 ; pgm }!i� (R4)Again, the \rest" pgm of the method body, whi
h is not exe
uted, may be empty.Rules for try/throw. The following rules allow to handle try-
at
h-finally blo
ksand the throw statement. These are simpli�ed versions of the a
tual rules that applyto the
ase where there is exa
tly one
at
h
lause and one finally
lause.� ` instan
eof (ex
 ; T) � ` (h� try{e=ex
 ;q }finally{r} !i�� ` (h� try{throw ex
; p }
at
h(T e){q }finally{r} !i�) (R5)� ` :instan
eof (ex
 ; T) � ` (h� r ; throw ex
 ; !i�)� ` (h� try{throw ex
 ; p }
at
h(T e){q }finally{r} !i�) (R6)Rule (R5) applies if an ex
eption ex
 is thrown that is an instan
e of ex
eption
lass T , i.e., the ex
eption is
aught; otherwise, if the ex
eption is not
aught, rule (R6)applies.Rules for try/break and try/return. A return or a break statement within atry-
at
h-finally statement
auses the immediate exe
ution of the finally blo
k.Afterwards the try statement terminates abnormally with the break resp. the returnstatement (a di�erent abruptly terminating statement in the finally blo
k takespre
eden
e). This behaviour is simulated by the following two rules:� ` h� r break l ; !i�� ` h� try{break l ; p }
at
h(T ex
){q }finally{r} !i� (R7)� ` h� r return v ; !i�� ` h� try{return v ; p }
at
h(T ex
){q }finally{r} !i� (R8)Rules for blo
k/break, blo
k/return, and blo
k/throw. Rules (R9) and (R10)apply to blo
ks whi
h are terminated by a break statement without label resp. witha label l mat
hing one of the labels l 1; : : : ; l k of the blo
k (k � 0).� ` h� !i�� ` h� l 1: � � � l k:{break; pgm } !i� (R9)� ` h� !i�� ` h� l 1: � � � l k:{break l ; pgm } !i� where l 2 fl 1; : : : ; l kg (R10)

12 B. Be
kert and B. SasseThe following rules handle labelled and unlabelled blo
ks that are abruptly ter-minated by a break statement with a label l not mat
hing any of the labels of theblo
k (Rule (R11)), or by a return or throw statement (Rules (R12) resp. (R13)).� ` h� break l ; !i�� ` h� l 1: � � � l k:{break l ; pgm } !i� where l 62 fl 1; : : : ; l kg (R11)� ` h� return v ; !i�� ` h� l 1: � � � l k:{return v ; pgm } !i� (R12)� ` h� throw e ; !i�� ` h� l 1: � � � l k:{throw e ; pgm } !i� (R13)In all the rules above, the program pgm (that is not exe
uted) may be empty.Rules for Empty Blo
ks. Rule (R14) applies to empty try blo
ks, whi
h terminatenormally. There are similar rules for empty blo
ks and empty method invo
ations.� ` (h� r !i�)� ` (h� try{}
at
h(T e){q }finally{r} !i�) (R14)5 ExampleAs an example, we use the
al
ulus presented in the previous se
tion to verify that,if the programwhile (true) {if (i==10) break;i++;}is started in a state in whi
h the value of the variable i is between 0 and 10, then itterminates normally in a state in whi
h the value of i is 10.4 That is, we prove thatthe sequen
e 0 � i ^ i � 10 ` hpwhileii := 10 (1)is valid, where pwhile is an abbreviation for the above while loop. Instead of proving (1)dire
tly, we �rst use indu
tion to derive the sequen
e` (8n)((n � 10 ^ i := 10� n)! hpwhileii := 10) (2)as a lemma. It basi
ally expresses the same as (1), the di�eren
e is that its formallows a proof by indu
tion on n. The introdu
tion of this lemma is the only step inthe proof where an intuition for what the Java Card program pwhile a
tually doesis needed and where a veri�
ation tool may require user intera
tion.4 This example program was presented in [3℄.

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 13

` (8n)((n � 10 ^ i := 10� n)! hpwhileii := 10) (2)indu
tionBase
ase:n := 0i := 10 ` hpwhileii := 10 (3)while (R1)i := 10 `hif(true) l1:{l2:{ : : : }ii := 10 (4)ifi := 10 `hl1:{l2:{if (i==10) break l1; : : : }ii := 10ifi := 10 `hl1:{l2:{break l1; i++;}pwhile}ii := 10 (5)break (R11)i := 10 `hl1:{break l1; i++; pwhile}ii := 10 (6)break (R10)i := 10 ` hii := 10 (7)empty prog.i := 10 ` i := 10 (8)

Step
ase:n! n+ 1n � 9; i := 9� n ` hpwhileii := 10while (R1)n � 9; i := 9� n `hif(true) l1:{l2:{ : : : }ii := 10ifn � 9; i := 9� n `hl1:{l2:{if (i==10) : : : }ii := 10ifn � 9; i := 9� n `hl1:{l2:{i++;}pwhile}ii := 10++ operatorn � 9; i := 10� n `hl1:{l2:{} pwhile}ii := 10empty blo
kn � 9; i := 10� n `hpwhileii := 10indu
tion hypothesis

Fig. 1. Stru
ture of the proof for sequent (1).The derivation of (2) is shown s
hemati
ally in Figure 1. In the following, wedes
ribe the base
ase n = 0 of the indu
tion in detail. The step
ase is similar (themain di�eren
e is that it
loses with an appli
ation of the indu
tion hypothesis whilethe base
ase
loses with an axiomati
 sequent).The �rst sequent whi
h appears in the base
ase after applying the indu
tion ruleand some simpli�
ations isi := 10 ` hwhile (true) {if (i==10) break; i++;}ii := 10 (3)An appli
ation of the rule for while loops (R1) results in the new proof obligationi := 10 `hif (true) l1:{l2:{if (i==10) break l1; i++;} pwhile}ii := 10 (4)Here, two new labels are introdu
ed: l1 is the target for break statements in the loopbody and l2 is the target for
ontinue statements (the latter does not o

ur in thisexample).The next step is to use the rule for if statements twi
e. After the se
ond appli-
ation, we get the sequenti := 10 ` hl1:{l2:{break l1; i++} pwhile}ii := 10 (5)

14 B. Be
kert and B. Sassein whi
h the next exe
utable statement is break l1. Now, the rule for labelled breakstatements in a blo
k with a non-mat
hing label (R11) has to be applied, whi
heliminates the blo
k labelled with l2:i := 10 ` hl1:{break l1; pwhile}ii := 10 (6)Then, the rule for labelled break statements in a blo
k with a mat
hing label (R10)is used. The result is i := 10 ` hi(i := 10) (7)This simpli�es with the rule for the empty program toi := 10 ` i := 10 (8)and
an thus be shown to be valid.After the lemma (2) has been proved by indu
tion, it
an be used to prove theoriginal proof obligation (1). First, we use a quanti�er rule to instantiate n with10� i. The result is0 � i ^ i � 10 ` (10� i � 10 ^ i := 10� (i� 10))! (hpwhileii := 10)whi
h
an be simpli�ed to0 � i ^ i � 10 ^ i := i ` (hpwhileii := 10) (9)And, sin
e (9) is derivable, the original proof obligation (1) is derivable as well, be
ausethe trivial equality i := i
an be omitted.Referen
es1. Wolfgang Ahrendt, Thomas Baar, Bernhard Be
kert, Martin Giese, Elmar Habermalz, ReinerH�ahnle, Wolfram Menzel, and Peter H. S
hmitt. The KeY approa
h: Integrating obje
t orienteddesign and formal veri�
ation. In M. Ojeda-A
iego, I. P. de Guzman, G. Brewka, and L. M.Pereira, editors, Pro
eedings, Logi
s in Arti�
ial Intelligen
e (JELIA), Malaga, Spain, LNCS 1919.Springer, 2000.2. Bernhard Be
kert. A Dynami
 Logi
 for the formal veri�
ation of Java Card programs. InPro
eedings, Java Card Workshop (JCW), Cannes, Fran
e, LNCS 2014. Springer, 2001. To appear.Available at i12www.ira.uka.de/~key.3. Marieke Huisman and Bart Ja
obs. Java program veri�
ation via a Hoare logi
 with abrupttermination. In Pro
eedings, Fundamental Approa
hes to Software Engineering (FASE), Berlin,Germany, LNCS 1783. Springer, 2000.4. Dieter Hutter, Bruno Langenstein, Claus Sengler, J�org H. Siekmann, and Werner Stephan. De-du
tion in the Veri�
ation Support Environment (VSE). In M.-C. Gaudel and J. Wood
o
k,editors, Pro
eedings, International Symposium of Formal Methods Europe (FME), Oxford, UK,LNCS 1051. Springer, 1996.5. Dexter Kozen and Jerzy Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Handbook ofTheoreti
al Computer S
ien
e, volume B: Formal Models and Semanti
s,
hapter 14, pages 789{840. Elsevier, Amsterdam, 1990.6. Arnd Poetzs
h-He�ter and Peter M�uller. A programming logi
 for sequential Java. In S. D.Swierstra, editor, Pro
eedings, Programming Languages and Systems (ESOP), Amsterdam, TheNetherlands, LNCS 1576, pages 162{176. Springer, 1999.7. Wolfgang Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen, editors,KORSO: Methods, Languages, and Tools for the Constru
tion of Corre
t Software { Final Report,LNCS 1009. Springer, 1995.8. Kurt Stenzel. Veri�
ation of Java Card programs. Te
hni
al Report 2001-5, Institut f�ur Informatik,Universit�at Augsburg, 2001.

Reasoning on UML Class Diagrams inDes
ription Logi
sAndrea Cal��, Diego Calvanese, Giuseppe De Gia
omo, Maurizio LenzeriniDipartimento di Informati
a e Sistemisti
aUniversit�a di Roma \La Sapienza"Via Salaria 113, I-00198 Roma, Italylastname �dis.uniroma1.itAbstra
t. In this paper1 we formalize UML
lass diagrams in terms of a logi
 be-longing to Des
ription Logi
s, whi
h are subsets of First-Order Logi
 that have beenthoroughly investigated in Knowledge Representation. The logi
 we have devised isspe
i�
ally tailored towards the high expressiveness of UML information stru
turingme
hanisms, and allows one to formally model important properties whi
h typi
ally
anonly be spe
i�ed by means of quali�ers. The logi
 is equipped with de
idable reason-ing pro
edures whi
h
an be pro�tably exploited in reasoning on UML
lass diagrams.This makes it possible to provide
omputer aided support during the appli
ation designphase in order to automati
ally dete
t relevant properties, su
h as in
onsisten
ies andredundan
ies.1 Introdu
tionThe Uni�ed Modeling Language (UML) is the de fa
to standard formalism for obje
t-oriented modeling [2, 14℄. There is a vast
onsensus on the need for a pre
ise semanti
sfor UML [12, 17℄, in parti
ular for UML
lass diagrams. Indeed, several types of for-malization of UML
lass diagrams have been proposed in the literature [11{13, 9℄.Many of them have been proved very useful with respe
t to the task of establishinga
ommon understanding of the formal meaning of UML
onstru
ts. However, to thebest of our knowledge, none of them has the expli
it goal of building a solid basis forallowing automated reasoning te
hniques, based on algorithms that are sound and
omplete wrt the semanti
s, to be appli
able to UML
lass diagrams.In this paper, we propose a new formalization of UML
lass diagrams in terms ofa parti
ular formal logi
 of the family of Des
ription Logi
s (DLs). DLs2 have beenproposed as su

essors of semanti
 network systems like kl-one, with an expli
itmodel-theoreti
 semanti
s. The resear
h on these logi
s has resulted in a numberof automated reasoning systems [18, 19, 15, 16℄, that have been su

essfully tested invarious appli
ation domains (see e.g., [21, 22, 20℄). Our goal is to exploit the dedu
tive
apabilities of DL systems, and show that e�e
tive reasoning
an be
arried outon UML
lass diagrams, so as to provide support during the spe
i�
ation phase ofsoftware development.In DLs, the domain of interest is modeled by means of
on
epts and relations,whi
h denote
lasses of obje
ts and relation between obje
ts, respe
tively. Generallyspeaking, a DL is formed by three basi

omponents:1 A full version of this paper
an be found in [3℄.2 See http://dl.kr.org for the home page of Des
ription Logi
s.

16 A. Cal��, D. Calvanese, G. De Gia
omo, and M. Lenzerini{ A des
ription language, whi
h spe
i�es how to
onstru
t
omplex
on
ept andrelationship expressions (also
alled simply
on
epts and relationships), by startingfrom a set of atomi
 symbols and by applying suitable
onstru
tors,{ a knowledge spe
i�
ation me
hanism, whi
h spe
i�es how to
onstru
t a DL knowl-edge base, in whi
h properties of
on
epts and relationships are asserted, and{ a set of automati
 reasoning pro
edures, whi
h are sound,
omplete and terminat-ing.The set of allowed
onstru
tors
hara
terizes the expressive power of the des
rip-tion language. Various languages have been
onsidered by the DL
ommunity, andnumerous papers investigate the relationship between expressive power and
ompu-tational
omplexity of reasoning (see [10℄ for a survey).Several works point out that DLs
an be pro�tably used to provide both formalsemanti
s and reasoning support to formalisms in areas su
h as Natural Language,Con�guration Management, Database Management, Software Engineering. For exam-ple, [7, 8℄ illustrates the use of DLs for database modeling. However, DLs have not beenapplied to the Uni�ed Modeling Language (UML) (with the ex
eption of [5℄). In thiswork we
on
entrate on UML
lass diagrams for the
on
eptual perspe
tive. Hen
e,we do not deal with those features that are relevant for the implementation perspe
-tive, su
h as publi
, prote
ted, and private quali�ers for methods and attributes. Forsu
h UML
lass diagrams we present a formalization of UML in terms of DLs. Inparti
ular, we show how to
apture the
onstru
ts of UML
lass diagrams by usinga Des
ription Logi
 that is equipped with n-ary relations. The DL we have adopt isspe
i�
ally tailored towards the high expressiveness of UML information stru
turingme
hanisms, and allows one to formally model important additional properties, su
hhas disjointness of
lasses, or partitions of
lasses into sub
lasses, that are typi
allyspe
i�ed by means of
onstraints in UML
lass diagrams. In spite of the expressive-ness required, the logi
 proposed admits de
idable reasoning pro
edures. Overall, theformalization in DLs of UML
lass diagrams provides us with a rigorous logi
al frame-work for representing and automati
ally reasoning on UML
lass spe
i�
ations. Su
ha formalization
an be
onsidered as the basi
 steps towards developing intelligenttools that provide
omputer aided reasoning support during the appli
ation designphase, in order to automati
ally dete
t relevant properties, su
h as in
onsisten
iesand redundan
ies.The paper is organized as follows: in Se
tion 2 we give an overview of the Des
rip-tion Logi
 we use,
alled DLR. In Se
tions 3, 4, 5 and 6, we illustrate the formalizationof UML
lass diagrams in terms of DLR, fo
using on
lasses, asso
iations, general-ization, and
onstraints, respe
tively. In Se
tion 7 we dis
uss the use of the reasoningpro
edures asso
iated to DLR in order to support the spe
i�
ation of UML
lassdiagrams. Se
tion 8
on
ludes the paper.2 The Des
ription Logi
 DLRIn this paper we adopt a DL, here
alled DLR, presented in [6℄, whi
h is a variantof logi
 originally introdu
ed in [4℄. The basi
 elements of DLR are
on
epts (unaryrelations), and n-ary relations. We assume to deal with a �nite set of atomi
 relationsand atomi

on
epts, denoted by P and A, respe
tively. Arbitrary relations (of given

Reasoning on UML Class Diagrams in Des
ription Logi
s 17arity between 2 and nmax), denoted by R, and arbitrary
on
epts, denoted by C, arebuilt a

ording to the following syntax:R ::= >n j P j (i=n :C) j :R j R1 uR2C ::= >1 j A j :C j C1 u C2 j (� k [i℄R)where i denotes a
omponent of a relation, i.e., an integer between 1 and nmax, ndenotes the arity of a relation, i.e., an integer between 2 and nmax, and k denotesa non-negative integer. We
onsider only
on
epts and relations that are well-typed,whi
h means that (i) only relations of the same arity n are
ombined to form expres-sions of type R1 uR2 (whi
h inherit the arity n), and (ii) i � n whenever i denotes a
omponent of a relation of arity n.We also make use of the following abbreviations:C1 t C2 for :(:C1 u :C2)C1)C2 for :C1 t C2(� k [i℄R) for :(� k�1 [i℄R)9[i℄R for (� 1 [i℄R)8[i℄R for :9[i℄:RMoreover, we abbreviate (i=n :C) with (i :C), when n is
lear from the
ontext.A DLR knowledge base (KB) is
onstituted by a �nite set of in
lusion assertions,where ea
h assertion has one of the forms:R1 v R2 C1 v C2with R1 and R2 of the same arity.Besides in
lusion assertions, DLR KBs allow for assertions expressing identi�
a-tion
onstraints and fun
tional dependen
ies.An identi�
ation assertion on a
on
ept has the form:(id C [i1℄R1; : : : ; [ih℄Rh)where C is a
on
ept, ea
h Rj is a relation, and ea
h ij denotes one
omponent of Rj .Intuitively, su
h an assertion states that no two di�erent instan
es of C agree on theparti
ipation to R1; : : : ; Rh. In other words, if a is an instan
e of C that is the ij-th
omponent of a tuple tj of Rj , for j 2 f1; : : : ; hg, and b is an instan
e of C that isthe ij-th
omponent of a tuple sj of Rj, for j 2 f1; : : : ; hg, and for ea
h j, tj agreeswith sj in all
omponents di�erent from ij , then a and b
oin
ide.A fun
tional dependen
y assertion on a relation has the form:(fd R i1; : : : ; ih ! j)where R is a relation, h � 2, and i1; : : : ; ih; j denote
omponents of R. The assertionimposes that two tuples of R that agree on the
omponents i1; : : : ; ih, agree also onthe
omponent j.Note that unary fun
tional dependen
ies (i.e., fun
tional dependen
ies with h = 1)are ruled out inDLR, sin
e these lead to unde
idability of reasoning [6℄. Note also thatthe right hand side of a fun
tional dependen
y
ontains a single element. However, this

18 A. Cal��, D. Calvanese, G. De Gia
omo, and M. Lenzerini>In � (�I)nP I � >In(i=n :C)I = ft 2 >In j t[i℄ 2 CIg(:R)I = >In n RI(R1 u R2)I = RI1 \RI2 >I1 = �IAI � �I(:C)I = �I n CI(C1 u C2)I = CI1 \ CI2(� k [i℄R)I = fa 2 �I j ℄ft 2 RI1 j t[i℄ = ag � kgFig. 1. Semanti
 rules for DLR (P , R, R1, and R2 have arity n)is not a limitation, be
ause any fun
tional dependen
y with more than one elementin the right hand side
an always be split into several dependen
ies of the above form.The semanti
s of DLR is spe
i�ed through the notion of interpretation. An in-terpretation I = (�I ; �I) of a DLR KB K is
onstituted by an interpretation domain�I and an interpretation fun
tion �I that assigns to ea
h
on
ept C a subset CI of�I and to ea
h relation R of arity n a subset RI of (�I)n, su
h that the
onditionsin Figure 1 are satis�ed. (In the �gure, t[i℄ denotes the i-th
omponent of tuple t.)We observe that >1 denotes the interpretation domain, while >n, for n > 1, does notdenote the n-Cartesian produ
t of the domain, but only a subset of it, that
oversall relations of arity n. It follows, from this property, that the \:"
onstru
tor onrelations is used to express di�eren
e of relations, rather than
omplement.To spe
ify the semanti
s of a KB we �rst de�ne when an interpretation satis�esan assertion as follows:{ An interpretation I satis�es an in
lusion assertion R1 v R2 (resp. C1 v C2) ifRI1 � RI2 (resp. CI1 � CI2).{ An interpretation I satis�es the assertion (id C [i1℄R1; : : : ; [ih℄Rh) if for all a; b 2CI and for all t1; s1 2 RI1 ; : : : ; th; sh 2 RIh we have that:a = t1[i1℄ = � � � = th[ih℄;b = s1[i1℄ = � � � = sh[ih℄;tj[i℄ = sj[i℄; for j 2 f1; : : : ; hg, and for i 6= ij9=; implies a = b{ An interpretation I satis�es the assertion (fd R i1; : : : ; ih ! j) if for all t; s 2 RI ,we have that: t[i1℄ = s[i1℄; : : : ; t[ih℄ = s[ih℄ implies t[j℄ = s[j℄An interpretation that satis�es all assertions in a KB K is
alled a model of K.Several reasoning servi
es are appli
able to DLR KBs. The most important onesare KB satis�ability and logi
al impli
ation. A KB K is satis�able if there exists amodel of K. A
on
ept C is satis�able in a KB K if there is a model I of K su
h thatCI is nonempty. A
on
ept C1 is subsumed by a
on
ept C2 in a KB K if CI1 � CI2for every model I of K. An assertion � is logi
ally implied by K if all models of Ksatisfy �. One
an easily verify that logi
al impli
ation and KB unsatis�ability aremutually redu
ible.One of the distinguishing features of DLR is that it is equipped with reasoningalgorithms that are sound and
omplete wrt to the semanti
s. Su
h algorithms allowone to de
ide all the above reasoning tasks in deterministi
 exponential time [6℄.Indeed, the proposed algorithms are
omputationally optimal, sin
e reasoning inDLRis EXPTIME-
omplete [4℄.

Reasoning on UML Class Diagrams in Des
ription Logi
s 19Person operationsattributes
lass namename: StringphoneNumber[1..*℄: Stringage(Datetime): Inta

eptsSalary(Int): BoolFig. 2. Representation of a
lass in UML3 ClassesA
lass in an UML
lass diagram denotes a sets of obje
ts with
ommon features.A
lass is graphi
ally rendered as a re
tangle divided into three parts, as shown forexample in Figure 2. The �rst part
ontains the name of the
lass, whi
h has to beunique in the whole diagram. The se
ond part
ontains the attributes of the
lass, ea
hdenoted by a name (possibly followed by the multipli
ity, between square bra
kets)and with an asso
iated
lass, whi
h indi
ates the domain of the attribute values. Forexample, the attribute phoneNumber[1..*℄: String means that ea
h instan
e of the
lasshas at least one phone number, and possibly more, and that ea
h phone numbers isan instan
e of String. If not otherwise spe
i�ed, attributes are single-valued. The thirdpart
ontains the operations of the
lass, i.e., the operations asso
iated to the obje
tsof the
lass. An operation de�nition has the form:operation-name(parameter-list): (return-list)Observe that an operation may return a tuple of obje
ts as result.An UML
lass is represented by a DLR
on
ept. This follows naturally from thefa
t that both UML
lasses and DLR
on
epts denote sets of obje
ts.An UML attribute a of type C 0 for a
lass C asso
iates to ea
h instan
e of C,zero, one, or more instan
es of a
lass C 0. An optional multipli
ity [i::j℄ for a spe
i�esthat a asso
iates to ea
h instan
e of C, at least i and most j instan
es of C 0. Whenthe multipli
ity is missing, [1::1℄ is assumed, i.e., the attribute is mandatory andsingle-valued.To formalize attributes we have to think of an attribute a of type C 0 for a
lassC as a binary relation between instan
es of C and instan
es of C 0. We
apture su
ha binary relation by means of a binary relation a of DLR. To spe
ify the type of theattribute we use the assertion: C v 8[1℄(a)(2 :C 0))Su
h an assertion spe
i�es pre
isely that, for ea
h instan
e
 of the
on
ept C, allobje
ts related to
 by a, are instan
es of C 0. Note that an attribute name is notne
essarily unique in the whole s
hema, and hen
e two di�erent
lasses
ould havethe same attribute, possibly of di�erent types. This situation is
orre
tly
aptured bythe formalization in DLR.To spe
ify the multipli
ity [i::j℄ asso
iated to the attribute we add the assertion:C v (� i [1℄a) u (� j [1℄a)Su
h an assertion spe
i�es that ea
h instan
e of C parti
ipates at least i times andat most j times to relation a via
omponent 1. If i = 0, i.e., the attribute is optional,we omit the �rst
onjun
t, and if j = � we omit the se
ond one.

20 A. Cal��, D. Calvanese, G. De Gia
omo, and M. LenzeriniAn operation of a
lass is a fun
tion from the obje
ts of the
lass to whi
h theoperation is asso
iated, and possibly additional parameters, to tuples of obje
ts. In
lass diagrams, the
ode asso
iated to the operation is not
onsidered and typi
ally,what is represented is only the signature of the operation.In DLR, we model operations by means of DLR relations. Letf(P1; : : : ; Pm) : (R1; : : : ; Rn)be an operation of a
lass C that hasm parameters belonging to the
lasses P1; : : : ; Pmrespe
tively and n return values belonging to R1; : : : ; Rn respe
tively. We formalizesu
h an operation as a DLR relation, named opf(P1;::: ;Pm):(R1;::: ;Rn), of arity m+n+1among instan
es of the DLR
on
epts C;P1; : : : ; Pm; R1; : : : ; Rn. On su
h a relationwe enfor
e the following assertions:{ An assertion imposing the
orre
t types to parameters and return values:C v 8[1℄(opf(P1;::: ;Pm):(R1;::: ;Rn))((2 : P1) u � � � u (m+ 1 :Pm) u (m+ 2 :R1) u � � � u (m+ n+ 1 :Rn)){ Assertions imposing that invoking the operation on a given obje
t with givenparameters determines in a unique way ea
h return value (i.e., the relation
orre-sponding to the operation is in fa
t a fun
tion from the invo
ation obje
t and theparameters to the returned values):(fd opf(P1;::: ;Pm):(R1;::: ;Rn) 1; : : : ;m+ 1! m+ 2)� � �(fd opf(P1;::: ;Pm):(R1;::: ;Rn) 1; : : : ;m+ 1! m+ n+ 1)These fun
tional dependen
ies are determined only by the number of parame-ters and the number of result values, and not by the spe
i�

lass for whi
h theoperation is de�ned, nor by the types of parameters and result values.The overloading of operations does not pose any diÆ
ulty in the formalizationsin
e an operation is represented in DLR by a relation having as name the wholesignature of the operation, whi
h
onsists not only the name of the operation but alsothe parameter and return value types. Observe that the formalization of operationsin DLR
orre
tly allows one to have operations with the same name or even with thesame signature in two di�erent
lasses.4 Asso
iations and AggregationsAn asso
iation in UML, graphi
ally rendered as in Figure 3, is a relation between theinstan
es of two or more
lasses. An asso
iation often has a related asso
iation
lassthat des
ribes properties of the asso
iation su
h as attributes, operations, et
. Anaggregation in UML, graphi
ally rendered as in Figure 4, is a binary relation betweenthe instan
es of two
lasses, denoting a part-whole relationship, i.e., a relationshipthat spe
i�es that ea
h instan
e of a
lass is made up of a set of instan
es of another
lass.Observe that names of asso
iations and names of aggregations (as names of
lasses)are unique. In other words there
annot be two asso
iations/aggregations with thesame name.

Reasoning on UML Class Diagrams in Des
ription Logi
s 21r2C2 Cn: : :A rnC1 r1
Fig. 3. Asso
iation in UMLm`: :mu n`: :nuC1 C2AFig. 4. Aggregation in UMLWe �rst
on
entrate on the formalization of aggregations, whi
h are simpler tomodel than general asso
iations. An aggregation A, saying that instan
es of the
lassC1 have
omponents that are instan
es of the
lass C2, is formalized inDLR by meansof a binary relation A together with the following assertion:A v (1 :C1) u (2 :C2):Note that the distin
tion between the
ontained
lass and the
ontaining
lass is notlost. Indeed, we simply use the following
onvention: the �rst argument of the relationis the
ontaining
lass.As we have seen for
lass attributes, the multipli
ity of an aggregation
an be easilyexpressed in DLR. For example, the multipli
ities shown in Figure 4 are formalizedby means of the assertions:C1 v (� n` [1℄A) u (� nu [1℄A)C2 v (� m` [2℄A) u (� mu [2℄A)We
an use a similar assertion for a multipli
ity on the parti
ipation of instan
es ofC1 for ea
h given instan
e of C2.Observe that, in the formalization in DLR of aggregation, role names do not playany role. If we want to keep tra
k of them in the formalization, it suÆ
es to
onsiderthem as
onvenient abbreviations for the
omponents of the DLR relation modelingthe aggregation.The de
ision of representing an aggregation by a binary DLRifd relation leadssome impli
ations; �rst of all, we note that role names are lost. In our framework rolenames are repla
ed by an integer i (whose value
an be only 1 or 2), whi
h spe
i�eswhether the
orresponding argument is the �rst or the se
ond in the aggregation.Now, we want to preserve the role names in our framework. Therefore we takeadvantage of the set of role names N introdu
ing, for ea
h atomi
 relation R of arityk, a role name fun
tion fR : f1; : : : ; kg �! N [f"g:The fun
tion fR returns, given an integer i between 1 and k (the arity of the relation),the role name asso
iated to the i-th role, if it has one, " if the role has no name.

22 A. Cal��, D. Calvanese, G. De Gia
omo, and M. LenzeriniA n`: :nur2r1C1 C2m`: :muFig. 5. Binary asso
iation in UMLWhen we
ompose two relations with the the operator u (we re
all that the rela-tions have got to have the same arity), role name are preserved if both overlappingroles have the same name in N ; otherwise, the role names are lost. Formally:fR1uR2(i) = �fR1(i); if fR1(i) = fR2(i)"; otherwiseThe negation of a relationR of arity k retains all the role names of the original relation.This
hoi
e
ould seem insensible at a �rst glan
e, but it ensures for example thatmat
hing role names are preserved when we do the union of relations (like R1 tR2 =:(:R1 u :R2)). Formally we have:f:R(i) = fR(i) for ea
h i 2 f1; : : : ; kg (1)We impose fR to be inje
tive for every relation R; instead, we would have the samename for more than one role, within the same relation.Next we fo
us on asso
iations. Sin
e asso
iations have often a related asso
iation
lass, we formalize asso
iations in DLR by reifying ea
h asso
iation A into a DLR
on
ept A with suitable properties. We represent an asso
iation among n
lassesC1; : : : ; Cn, as shown in Figure 3, by introdu
ing a
on
ept A and n binary relationsr1; : : : ; rn, one for ea
h
omponent of the asso
iation A 3. Ea
h binary relation rihas Ci as its �rst
omponent and A as its se
ond
omponent. Then we enfor
e thefollowing assertion:C v 9[1℄r1 u (� 1 [1℄r1) u 8[1℄(r1) (2 :C1)) u9[1℄r2 u (� 1 [1℄r2) u 8[1℄(r2) (2 :C2)) u...9[1℄rn u (� 1 [1℄rn) u 8[1℄(rn) (2 :Cn))where 9[1℄ri (with i 2 f1; : : : ; ng) spe
i�es that the
on
ept A must have all
ompo-nents r1; : : : ; rn of the asso
iation A, (� 1 [1℄ri) (with i 2 f1; : : : ; ng) spe
i�es thatea
h su
h
omponent is single-valued, and 8[1℄(ri) (2 :Ci)) (with i 2 f1; : : : ; ng)spe
i�es the
lass ea
h
omponent has to belong to. Finally, we use the assertion(id A [1℄r1; : : : ; [1℄rn)to spe
ify that ea
h instan
e of the
on
ept A indeed represents a distin
t tuple ofthe
orresponding asso
iation.We
an easily represent a multipli
ity on a binary UML asso
iation, by imposingsuitable number restri
tions on the DLR relations modeling the
omponents of the3 These relations may have the name of the roles of the asso
iation if available in the UML diagram,or an arbitrary name if role names are not available. In any
ase, we preserve the possibility ofusing the same role name in di�erent asso
iations.

Reasoning on UML Class Diagrams in Des
ription Logi
s 23
CnC2 : : :C1 C

Fig. 6. A
lass hierar
hy in UMLasso
iation. Di�erently from aggregation, however, the names of su
h relations (whi
h
orrespond to roles) are unique wrt to the asso
iation only, not the entire diagram.Hen
e we have to state su
h
onstraints in DLR in a slightly di�erent way.The multipli
ities shown in Figure 5 are
aptured as follows:C1 v (� n` [1℄(r1 u (2 :A))) u (� nu [1℄(r1 u (2 :A)))C2 v (� m` [1℄(r2 u (2 :A))) u (� mu [1℄(r2 u (2 :A)))5 Generalization and Inheritan
eIn UML one
an use generalization between a parent
lass and a
hild
lass to spe
ifythat ea
h instan
e of the
hild
lass is also an instan
e of the parent
lass. Hen
e,the instan
es of the
hild
lass inherit the properties of the parent
lass, but typi
allythey satisfy additional properties that do not hold for the parent
lass.Generalization is naturally supported in DLR. If an UML
lass C2 generalizes a
lass C1, we
an express this by the DLR assertion:C1 v C2Inheritan
e between DLR
on
epts works exa
tly as inheritan
e between UML
lasses. This is an obvious
onsequen
e of the semanti
s of v whi
h is based onsubsetting. Indeed, in DLR, given an assertion C1 v C2, every tuple in a relationhaving C2 as i-th argument type may have as i-th
omponent an instan
e of C1,whi
h is in fa
t also an instan
e of C2. As a
onsequen
e, in the formalization, ea
hattribute or operation of C2, and ea
h aggregation and asso
iation involving C2 is
orre
tly inherited by C1. Observe that the formalization in DLR also
aptures di-re
tly inheritan
e among asso
iation
lasses, whi
h are treated exa
tly as all other
lasses, and multiple inheritan
e between
lasses (in
luding asso
iation
lasses).Moreover in UML, one
an group several generalizations into a
lass hierar
hy,as shown in Figure 6. Su
h a hierar
hy is
aptured in DLR by a set of in
lusionassertions, one between ea
h
hild
lass and the parent
lass:Ci v C for ea
h i 2 f1; : : : ; ngIn UML it is possible to override attributes or operations of a super
lass. Thatis, it is possible to spe
ialize an attribute or an operation for the sub
lass. Fromthe
on
eptual point of view su
h a spe
ialization needs to remain
ompatible withthe original de�nition of the attribute/operation, i.e., the attribute/operation of thesub
lass
an only be a restri
tion of the
orresponding attribute/operation belongingto the super
lass. For attributes, this means that one
an restri
t the type of the

24 A. Cal��, D. Calvanese, G. De Gia
omo, and M. Lenzeriniattribute to be a sub
lass of the original type, or restri
t the multipli
ity wrt to theone spe
i�ed for the super
lass. For operations, while keeping the same signature,one may restri
t (by means of
onstraints) the return types and possibly also theargument types to be sub
lasses of the original ones4.We illustrate by means of an example how one
an
orre
tly model su
h formsof overriding in DLR. Let C be an UML
lass that has an operation f(C1; C2) : C3,and C 0 be a sub
lass of C (and hen
e inherits the operation). In DLR, we model thesituation by introdu
ing a
on
ept C and a relation opf(C1;C2):C3 and a
on
ept C 0with suitable assertions in
luding C 0 v C. As a
onsequen
e instan
es of the
on
eptC 0 inherits the properties that hold for instan
es of C in
luding the parti
ipation inthe relation opf(C1;C2):C3 . Suppose now that in the UML
lass diagram C 0 we overridethe method f(C1; C2) : C3 by requiring that the result value belongs to a sub
lass C 03of C3. We
an
apture this in DLR by adding the assertion:C 0 v 8[1℄(opf(C1;C2):C3)(4 :C 03))6 ConstraintsIn UML it is possible to add information to a
lass diagram by using
onstraints. Ingeneral,
onstraints are used to express in an informal way information whi
h
annotbe expressed by other
onstru
ts of UML
lass diagrams. We dis
uss here
ommontypes of
onstraints that o

ur in UML
lass diagrams and how they
an be takeninto a

ount when formalizing
lass diagrams in DLR.Generally, in UML
lass diagrams, unless spe
i�ed otherwise by a
onstraint, two
lasses may have
ommon instan
es, i.e., they are not disjoint. If a
onstraint imposesthe disjointness of two
lasses, say C and C 0, this
an be formalized in DLR by meansof the assertion C v :C 0Observe that disjointness
onstraints are often used in
lass hierar
hies. For example,
onsider a
lass hierar
hy formed by a
lass C and n sub
lasses of C, C1; : : : ; Cn.We may want to require that C1; : : : ; Cn are mutually disjoint. In DLR, this
an beexpressed by the assertionsCi v :Cj for ea
h i; j 2 f1; : : : ; ng with i 6= jDisjointness of
lasses is just one example of negative information. Again, by exploitingthe expressive power ofDLR, we
an express additional forms of negative information,usually not
onsidered in UML, by introdu
ing suitable assertions. For example, we
an enfor
e that no instan
e of a
lass C has an attribute a by means of the assertionC v :9[1℄aAnalogously, one
an assert that no instan
e of a
lass is involved in a given asso
iationor aggregation.4 Observe that restri
ting the argument types
orresponds, in the implementation of the operation,to restri
t the pre
onditions for the appli
ability of the operation.

Reasoning on UML Class Diagrams in Des
ription Logi
s 25Turning again the attention to generalization hierar
hies, by default, in UML ageneralization hierar
hy is open, in the sense that there may be instan
es of the su-per
lass that are not instan
es of any of the sub
lasses. This allows for extendingthe s
hema more easily, in the sense that the introdu
tion of a new sub
lass doesnot
hange the semanti
s of the super
lass. However, in spe
i�
 situations, it mayhappen that in a generalization hierar
hy, the super
lass C is a
overing of the sub-
lasses C1; : : : ; Cn. We
an represent su
h a situation in DLR by simply in
ludingthe additional assertion C v C1 t � � � t CnThe above assertion models a form of disjun
tive information: ea
h instan
e of C iseither an instan
e of C1, or an instan
e of C2, : : : or an instan
e of Cn. Other forms ofdisjun
tive information
an be modeled by exploiting the expressive power of DLR.For example, that an attribute a is present only for a spe
i�ed set C1; : : : ; Cn of
lasses
an be modeled by suitably using union of
lasses as follows:9[1℄a v C1 t � � � tCnKeys are a modeling notion that is very
ommon in databases, and they areused to express that
ertain attributes uniquely identify the instan
es of a
lass. We
an exploit the expressive power of DLR in order to asso
iate keys to
lasses. If anattribute a is a key for a
lass C this means that there is no pair of instan
es of Cthat have the same value for a. We
an
apture this in DLR by means of the assertion(id C [1℄a). More generally, we are able to spe
ify that a set of attributes fa1; : : : ; angis a key for C; in this
ase we use the assertion: (id C [1℄a1; : : : ; [1℄an)As already seen,
onstraints that
orrespond to the spe
ialization of the type ofan attribute or its multipli
ity
an be represented in DLR. Similarly,
onsider the
ase of a
lass C parti
ipating in an aggregation A with a
lass D, and where C andD have sub
lasses C 0 and D0 respe
tively, related via an aggregation A0. A subset
onstraint from A0 to A
an be modeled
orre
tly in DLR by means of the assertionA v A0, involving the two binary relations A and A0 that represent the aggregations.In general, one
an exploit the expressive power of DLR to formalize several typesof
onstraints that allow one to better represent the appli
ation semanti
s and thatare typi
ally not dealt with in a formal way. Observe that this allows one to take su
h
onstraints fully into a

ount when reasoning on the
lass diagram.7 Reasoning on Class DiagramsTraditional CASE tools support the designer with a user-friendly graphi
al environ-ment and provide powerful means to a

ess di�erent kinds of repositories that storeinformation asso
iated to the elements of the developed proje
t. However, no sup-port for higher level a
tivities related to managing the
omplexity of the design isprovided. In parti
ular, the burden of
he
king relevant properties of
lass diagrams,su
h as
onsisten
y or redundan
y, is left to the responsibility of the designer. Thus,the formalization in DLR of UML
lass diagrams, and the fa
t that properties ofinheritan
e and relevant types of
onstraints are perfe
tly
aptured by the formal-ization in DLR and the asso
iated reasoning tasks, provide the ability to reason on

26 A. Cal��, D. Calvanese, G. De Gia
omo, and M. Lenzerini
lass diagrams. This represents a signi�
ant improvement and it is a �rst step towardsthe development of modeling tools that o�er an automated reasoning support to thedesigner in his modeling a
tivity. By exploiting the DLR reasoning servi
es variouskinds of
he
ks
an be performed on the
lass diagram.A
lass diagram is
onsistent, if its
lasses
an be populated without violatingany of the
onstraints in the diagram. Observe that the intera
tion of various types of
onstraints may make it very diÆ
ult to dete
t in
onsisten
ies. A
lass is
onsistent ifit
an be populated without violating any of the
onstraints in the
lass diagram. Thein
onsisten
y of a
lass may be due to a design error or due to over-
onstraining. Inany
ase, the designer
an be for
ed to remove the in
onsisten
y, either by
orre
tingthe error, or by relaxing some
onstraints, or by deleting the
lass, thus removingredundan
y from the s
hema. By exploiting the formalization in DLR,
lass
onsis-ten
y
an be
he
ked by verifying satis�ability of the
orresponding
on
ept in theDLR KB representing the
lass diagram. Similarly,
onsisten
y of the
lass diagram
orresponds to
onsisten
y of the DLR KB.Two
lasses are equivalent if they denote the same set of instan
es whenever the
onstraints imposed by the
lass diagram are satis�ed. Determining equivalen
e oftwo
lasses allows for their merging, thus redu
ing the
omplexity of the s
hema. A
lass C1 is subsumed by a
lass C2 if, whenever the
onstraints imposed by the
lassdiagram are satis�ed, the extension of C1 is a subset of the extension of C2. Su
h asubsumption allows one to dedu
e that properties for C1 hold also for C2. It is alsothe basis for a
lassi�
ation of all the
lasses in a diagram. Su
h a
lassi�
ation, as inany obje
t-oriented approa
h,
an be exploited in several ways within the modelingpro
ess [1℄. Class equivalen
e, subsumption, and hen
e
lassi�
ation,
an be
he
kedby verifying equivalen
e and subsumption in DLR.A property is a logi
al
onsequen
e of a
lass diagram if it holds whenever all
onstraints spe
i�ed in the diagram are satis�ed. As an example,
onsider a
lassC generalizing
lasses C1; : : : ; Cn, and assume that a
onstraint spe
i�es that it is
omplete. If an attribute a is de�ned as mandatory for all
lasses C1; : : : ; Cn, thenit follows logi
ally that the same attribute is mandatory also for
lass C, even ifnot expli
itly present in the s
hema. Determining logi
al
onsequen
e is useful onthe one hand to redu
e the
omplexity of the s
hema by removing those
onstraintsthat logi
ally follow from other ones, and on the other hand it
an be used to makeproperties expli
it that are impli
it in the s
hema, thus enhan
ing its readability.Logi
al
onsequen
e
an be
aptured by logi
al impli
ation in DLR, and determininglogi
al impli
ation is at the basis of all types of reasoning that a DLR reasoningsystem
an provide. In parti
ular, observe that all reasoning tasks we have
onsideredabove
an be rephrased in terms of logi
al
onsequen
e.8 Con
lusionsWe have proposed a new formalization of UML
lass diagrams in terms of a parti
u-lar formal logi
 of the family of Des
ription Logi
s. Notably su
h a logi
 has sound,
omplete and de
idable reasoning pro
edures. These reasoning pro
edures
an be fa-vorably exploited for developing intelligent system that support automated reasoningon UML
lass diagrams, so as to provide support during the spe
i�
ation phase ofsoftware development. We have already started experimenting su
h systems. In parti
-ular, we have represented UML diagrams in DLR and used DL reasoners, spe
i�
ally

Reasoning on UML Class Diagrams in Des
ription Logi
s 27FACT [18℄ and RACER [16℄, for reasoning on UML
lass diagrams. Although su
hDL reasoners do not yet in
orporate all features required by our formalization (e.g.,support for identi�ers), the �rst results are en
ouraging.Referen
es1. Sonia Bergamas
hi and Bernhard Nebel. A
quisition and validation of
omplex obje
t databases
hemata supporting multiple inheritan
e. Applied Intelligen
e, 4(2):185{203, 1994.2. Grady Boo
h, James Rumbaugh, and Ivar Ja
obson. The Uni�ed Modeling Language User Guide.Addison Wesley Publ. Co., Reading, Massa
hussetts, 1998.3. Andrea Cal��, Diego Calvanese, Giuseppe De Gia
omo, and Maurizio Lenzerini. A formal frame-work for reasoning on UML
lass diagrams. Submitted for publi
ation, 2001.4. Diego Calvanese, Giuseppe De Gia
omo, and Maurizio Lenzerini. On the de
idability of query
ontainment under
onstraints. In Pro
. of the 17th ACM SIGACT SIGMOD SIGART Symp.on Prin
iples of Database Systems (PODS'98), pages 149{158, 1998.5. Diego Calvanese, Giuseppe De Gia
omo, and Maurizio Lenzerini. Reasoning in expressive de-s
ription logi
s with �xpoints based on automata on in�nite trees. In Pro
. of the 16th Int. JointConf. on Arti�
ial Intelligen
e (IJCAI'99), pages 84{89, 1999.6. Diego Calvanese, Giuseppe De Gia
omo, and Maurizio Lenzerini. Identi�
ation
onstraints andfun
tional dependen
ies in des
ription logi
s. In Pro
. of the 17th Int. Joint Conf. on Arti�
ialIntelligen
e (IJCAI 2001), 2001. To appear.7. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Des
ription logi
s for
on
eptual datamodeling. In Jan Chomi
ki and G�unter Saake, editors, Logi
s for Databases and InformationSystems, pages 229{264. Kluwer A
ademi
 Publisher, 1998.8. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying
lass-based representationformalisms. J. of Arti�
ial Intelligen
e Resear
h, 11:199{240, 1999.9. Tony Clark and Andy S. Evans. Foundations of the Uni�ed Modeling Language. In David Dukeand Andy Evans, editors, Pro
. of the 2nd Northern Formal Methods Workshop. Springer-Verlag,1997.10. Fran
es
o M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea S
haerf. Reasoning indes
ription logi
s. In Gerhard Brewka, editor, Prin
iples of Knowledge Representation, Studiesin Logi
, Language and Information, pages 193{238. CSLI Publi
ations, 1996.11. Andy Evans, Robert Fran
e, Kevin Lano, and Bernhard Rumpe. The UML as a formal model-ing notation. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Pro
. of the OOP-SLA'97 Workshop on Obje
t-oriented Behavioral Semanti
s, pages 75{81. Te
hnis
he Universit�atM�un
hen, TUM-I9737, 1997.12. Andy Evans, Robert Fran
e, Kevin Lano, and Bernhard Rumpe. Meta-modelling semanti
s ofUML. In H. Kilov, editor, Behavioural Spe
i�
ations for Businesses and Systems,
hapter 2.Kluwer A
ademi
 Publisher, 1999.13. Andy S. Evans. Reasoning with UML
lass diagrams. In Se
ond IEEE Workshop on IndustrialStrength Formal Spe
i�
ation Te
hniques (WIFT'98). IEEE Computer So
iety Press, 1998.14. Martin Fowler and Kendall S
ott. UML Distilled { Applying the Standard Obje
t ModelingLaguage. Addison Wesley Publ. Co., Reading, Massa
hussetts, 1997.15. Volker Haarslev and Ralf M�oller. High performan
e reasoning with very large knowledge bases: Apra
ti
al
ase study. In Pro
. of the 17th Int. Joint Conf. on Arti�
ial Intelligen
e (IJCAI 2001),2001.16. Volker Haarslev and Ralf M�oller. RACER system des
ription. In Pro
. of the Int. Joint Conf.on Automated Reasoning (IJCAR 2001), 2001.17. David Harel and Bernhard Rumpe. Modeling languages: Syntax, semanti
s and all that stu�.Te
hni
al Report MCS00-16, The Weizmann Institute of S
ien
e, Rehovot, Israel, 2000.18. Ian Horro
ks. Using an expressive des
ription logi
: FaCT or �
tion? In Pro
. of the 6th Int.Conf. on Prin
iples of Knowledge Representation and Reasoning (KR'98), pages 636{647, 1998.19. Ian Horro
ks and Peter F. Patel-S
hneider. Optimizing des
ription logi
 subsumption. J. ofLogi
 and Computation, 9(3):267{293, 1999.20. Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The Information Manifold.In Pro
eedings of the AAAI 1995 Spring Symp. on Information Gathering from Heterogeneous,Distributed Enviroments, pages 85{91, 1995.

28 A. Cal��, D. Calvanese, G. De Gia
omo, and M. Lenzerini21. D. M
Guinness and J. Wright. Con
eptual modelling for
on�guration: A des
ription logi
-basedapproa
h. Arti�
ial Intelligen
e for Engineering Design, Analysis, and Manufa
turing Journal,12:333{344, 1998.22. Ulrike Sattler. Terminologi
al Knowledge Representation Systems in a Pro
ess Engineering Ap-pli
ation. PhD thesis, LuFG Theoreti
al Computer S
ien
e, RWTH-Aa
hen, 1998.

Development of Formally Veri�ed Obje
t-OrientedSystems with Perfe
t DeveloperDavid Cro
kerEs
her Te
hnologies Ltd.3 Ar
hipelago Business Park, Lyon Way, Frimley, Camberley GU16 5ER, UKWeb: www.es
herte
h.
om Email: d
ro
ker�es
herte
h.
omAbstra
t. Perfe
t Developer (formerly known as the Es
her Tool) is a highly pro-du
tive system for developing reliable software systems using obje
t-oriented methods.Dynami
 binding and aliasing are
arefully
ontrolled to make the veri�
ation problemtra
table.1 Ba
kgroundFormal methods have been used for many years in the development of safety-
riti
alsoftware but have yet to make it to mainstream software development. Barriers towider use of formal methods in
lude the requirement for users of formal methods toolsto have extensive mathemati
al knowledge, the labour asso
iated with assisting toolsin dis
harging proof obligations, and the la
k of support in most tools for obje
t-oriented methods. These issues are addressed by Perfe
t Developer.2 Limitations of existing O-O languagesThe use of existing obje
t-oriented program languages to develop formally veri�edsoftware runs into both te
hni
al and pra
ti
al diÆ
ulties.The primary te
hni
al diÆ
ulties we have identi�ed are:{ Un
onstrained polymorphism. Variables, parameters and return values with non-primitive types are typi
ally all polymorphi
 (i.e. an obje
t of any
lass derivedfrom the de
lared type is a

eptable). This greatly in
reases the potential fordynami
 binding and makes spe
i�
ations and
ode very hard to reason about.{ Default referen
e semanti
s. The use of referen
e semanti
s as the default or onlysemanti
s for assignment and parameter passing of
lass variables greatly in
reasesthe potential for aliasing. When
ombined with polymorphism and dynami
 bind-ing, this leads to many situations in whi
h it is impossible to prove that parametersto a
lass method (in
luding the `self' or `this' parameter) are all distin
t, whi
htypi
ally makes it impossible to prove
orre
tness of methods that
hange theirparameters or `self'. We have observed that unintentional aliasing also makes asigni�
ant
ontribution towards software errors.The pra
ti
al diÆ
ulties are:{ Syntax for pre
onditions, post
onditions, invariants and many other
onstru
tsneeded for spe
i�
ation are not provided in the language. The usual solution is toinsert these
onstru
ts as spe
ially-formatted
omments. This apparent demotingof spe
i�
ations
onveys the wrong message to developers.

30 D. Cro
ker{ To make formal methods of software development a

eptable to the mass market,the additional time spent writing spe
i�
ations must be balan
ed by time savingselsewhere. The obvious solution is to generate
ode automati
ally from spe
i�-
ations; however, this also requires the language to be extended (by providing asyntax for an omitted
ode body).{ Programming languages do not support data re�nement, whi
h is a key tool inobje
t-oriented software development using formal methods.These diÆ
ulties mean that the most that
an be a
hieved using existing pro-gramming languages is extended stati

he
king (e.g. ESC/Java [1℄). Su
h tools maybe a useful bridge between existing software development pra
ti
e and true veri�edsoftware development; but even if the user
an be persuaded to annotate the programwith pre
onditions, invariants et
.,
omplete formal veri�
ation is far from possible.3 Perfe
t DeveloperPerfe
t Developer (a development system for produ
ing perfe
t software) takes theapproa
h that the notation must resemble typi
al programming notations (i.e. avoidmathemati
al notation) but that
ode must take se
ond pla
e to spe
i�
ations. A
-
ordingly, it uses its own notation [2℄. Con
epts that
an be expressed in the Perfe
tlanguage in
lude:{ Classes with single inheritan
e and dynami
ally bound methods{ Parametri
 polymorphism{ Class invariants and type
onstraints{ Method pre
onditions, post
onditions, variants and post-assertions{ Quanti�
ation over sets, bags and sequen
es{ Expe
ted behaviour of the system as a whole and of subsystems, in
luding `what if's
enariosTo avoid ex
essive use of un
onstrained polymorphism, we distinguish between thetype T and the type from T, where T is any non-�nal
lass (Ada 95 makes a similardistin
tion). Thus the user indi
ates expli
itly where polymorphism is required.In order to redu
e the aliasing problem, Perfe
t uses value semanti
s by defaultfor assignment and parameter passing. To avoid ex
essive
opying, value semanti
sare simulated using referen
e semanti
s;
opying is avoided wherever possible andwhere
opying is ne
essary, typi
ally only some part or parts of an obje
t need to be
opied. Referen
e types are provided for those situations in whi
h intentional aliasingis required.To develop a software system or
omponent with Perfe
t Developer, a set of re-quired properties of the system or
omponent is spe
i�ed. Hardware devi
es and othersubsystems with whi
h the software will intera
t may also be des
ribed and relevantbehaviour spe
i�ed. An assembly of
lasses is then designed to model and en
apsulatethe stored data and perform the required operations. Contra
ts are written for the
lass methods. Perfe
t Developer will attempt to generate
ode to satisfy the
on-tra
ts where none has been provided. The developer may re�ne both
lass data andmethod
ode in order to meet performan
e targets.Proof obligations are generated asserting that all
ontra
ts are honoured by bothparties, that required properties will be observed, that all
onstru
ts will terminate

Development of Formally Veri�ed O-O Systems with Perfe
t Developer 31and that re�nements are valid. Perfe
t Developer attempts to dis
harge them using afully automati
 theorem prover, on the grounds that most software developers haveneither the skill nor the time to assist in dis
harging proof obligations.Final
ode is generated in C++ (
ode generation in Java and Ada 95 is underdevelopment).4 Handling inheritan
e and dynami
 bindingDynami
 binding
ontinues to be a potential problem in that
alls to dynami
allybound methods
annot be expanded during veri�
ation.If the software system is to be validated without regard to extensibility, it wouldbe possible to enumerate the set of possible types of ea
h polymorphi
 variable andperform validation with respe
t to all possible types of all polymorphi
 variables. Wedo not
urrently do this but may o�er it as an option in the future.A better solution is to re
ognise that in any family of
lasses with a
ommonan
estor, for any method de
lared in the
ommon an
estor and de�ned or rede�nedin ea
h
lass, all the method de
larations implement some
ommon purpose. In some
ases the method represents the de�nition of some property of the
lass; in other
ases,the method modi�es the
lass so as to make it satisfy some property. In the latter
ase, a non-
ompiled or `ghost' dynami
ally bound fun
tion
an be de�ned to expressthe property and the original method spe
i�ed in terms of this fun
tion. Althoughthis pla
es a greater burden on the user, it helps greatly in
larifying the spe
i�
ationof dynami
ally bound methods as well as making them amenable to validation.We note in passing that most
lass methods must be validated separately in ea
hnon-abstra
t
lass into whi
h they are inherited without being overridden, sin
e it isfrequently the
ase that a method de�nition is valid in the
lass in whi
h it is de�nedbut is invalid in the
ontext of a derived
lass (e.g. be
ause it does not take a

ountof additional variables in the derived
lass).5 A large
ase study: Perfe
t Developer itselfPerfe
t Developer is itself implemented in Perfe
t apart from the user interfa
e fun
-tions in the IDE module.At the time of writing (May 2001), the sour
e for the
ompiler/veri�er
omprises105000 lines of Perfe
t (in
luding
omments) from whi
h 176000 lines of C++ (with-out
omments) are generated.When validation of the entire system is performed, 115000 proof obligations aregenerated. Using default settings, the theorem prover dis
harges 87.6% of these inunder 5 days. The su

ess rate is
urrently in
reasing by between 1 and 2% permonth as we improve the prover and eliminate spe
i�
ation and
oding errors, whileat the same time the average time spent on ea
h obligation has de
reased in the lastfew months from 5 se
onds down to 3.5.Analysis of unproven obligations indi
ates that about half are the result of in-
ompletely spe
i�ed
ontra
ts (due in part to the bootstrap pro
ess used to developPerfe
t Developer) and most of the rest are provable in prin
iple but beyond the
apability of our present prover within a reasonable time limit. However, failed proofobligations do o

asionally reveal in
orre
t
oding or an in
onsistent spe
i�
ation anddid in one
ase reveal an error in the Perfe
t language de�nition itself.

32 D. Cro
ker6 Con
lusions and future workWe have shown that formal methods
an be used to develop a large and
omplexappli
ation in an obje
t-oriented style with high produ
tivity. Despite the relativeimmaturity of our prover, we have a
hieved a substantial degree of automated vali-dation.Perfe
t Developer is
urrently available in a tea
hing and evaluation edition. Com-mer
ial release is due in September, by whi
h time we expe
t to support ex
eptionsand multithreading in the language. Work
ontinues on the theorem prover and weexpe
t that the use of term indexing te
hniques and better uni�
ation algorithms willsigni�
antly improve the speed and su

ess rate of validation.Referen
es1. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended Stati
Che
king. Resear
h Report 159, Compaq Systems Resear
h Center, De
ember 1998. Availableat http://resear
h.
ompaq.
om/SRC/es
/.2. Perfe
t Language Referen
e Manual. Es
her Te
hnologies Ltd., Mar
h 2001.

Towards Veri�able Spe
i�
ations of Obje
t-orientedFrameworksA Case StudyJ�org Meyer, Arnd Poetzs
h-He�terFernUniversit�at HagenAbstra
t. The spe
i�
ation of obje
t-oriented frameworks has to ful�ll several re-quirements. It should do
ument the behavior of the
lasses in an abstra
t, implemen-tation independent way. It should be formally founded so that the
orre
tness of imple-mentations
an be proved w.r.t. it. Last but not least, it should provide an appropriatebasis for the veri�
ation of programs using the framework. In this paper, we present a
ase study that fo
uses on the �rst two requirements. It shows an abstra
t spe
i�
a-tion of a linked list implementation with shared obje
ts, sket
hes the underlying formalframework, and explains the ne
essary proof steps.1 Introdu
tionThe spe
i�
ation of an obje
t-oriented program framework has to ful�ll several re-quirements. It should do
ument the
lasses of the framework in an abstra
t, im-plementation independent way. Implementation independen
y is ne
essary to hideimplementation aspe
ts that should not be exploited by a user of the framework.Abstra
tion is needed to raise the level of spe
i�
ation. As a se
ond requirement, aspe
i�
ation should be veri�able, i.e. a spe
i�
ation te
hnique should be embeddedinto a formal setting and
omplemented with veri�
ation rules and proof te
hniques.Formalization helps to
larify the semanti
s of the spe
i�
ation language. Veri�
ationis needed to establish the
orre
tness of
ode. As a third requirement, the spe
i�
a-tion of a module M should provide an appropriate basis to verify the
orre
tness of amodule N that uses M.Most of the work that was done about spe
i�
ation and veri�
ation of OO-programs has fo
ussed either on spe
i�
ation or on veri�
ation. In the area of spe
i�
a-tion, the main goals were the development of easy to use and expressible spe
i�
ationlanguages; the pre
ise formal relationship between spe
i�
ations and programs { aprerequisite of formal veri�
ation { was of minor interest. In the area of veri�
ation,the fo
us was on the formal proof rules and te
hniques. The remaining interesting
hallenge is to apply the veri�
ation te
hniques to prove the
orre
tness not only ofsome isolated properties, but of
omplete interfa
e spe
i�
ations.Contents. This paper investigates the relation between spe
i�
ation and veri�
ation.It presents the interesting parts of a
ase study, in whi
h we veri�ed the spe
i�
ationof a list implementation
onsisting of three
lasses (
f. [LMMPH00℄ for a
ompletereport). The goal of the presentation is to des
ribe important aspe
ts and problemsthat have to be dealt with when veri�
ation te
hniques are applied to realisti
 spe
i�-
ations. In parti
ular, we illustrate how abstra
tion
an be handled and demonstratethe
omplexity that results from aliasing. To our knowledge, it is the �rst time thatan OO-program with
omplex aliasing is proved
orre
t. In Se
tion 2, we present anddis
uss the spe
i�
ation. Se
tion 3, sket
hes the proof te
hnique.

34 J. Meyer and A. Poetzs
h-He�terRelation to Other Work. The work is related to interfa
e spe
i�
ation te
hniquesfor OO-programs. In parti
ular, the used te
hnique builds on the two tiered Lar
happroa
h (
f. [GH93,Lea97℄). That is we use a general spe
i�
ation language to expressabstra
t properties { in our
ase the spe
i�
ation language of PVS { and an interfa
espe
i�
ation language to des
ribe program interfa
es. In this presentation, only some
onstru
ts of the interfa
e spe
i�
ation language will be illustrated.For veri�
ation, we use a Hoare logi
 (see [PHM99℄) and an intera
tive programprover that
ommuni
ates with PVS ([MPH00℄). Re
ently a number of di�erent ap-proa
hes to the veri�
ation of Java-like OO-programs have been investigated. TheLOOP group developed a translator that generates PVS theories from a given Javaprogram ([JvdBH+98℄). The theories
apture the program behavior and
an be usedto verify program properties in PVS ([Hui00℄). In his thesis, David von Oheimb for-malized a Java subset and a
orresponding Hoare logi
 in Isabelle. His work fo
useson meta-theory, in parti
ular type safety and
orre
tness and
ompleteness propertiesof the logi
 (see [vO01℄). A dynami
 logi
 for a Java subset is presented in [Be
00℄.For brevity, we
an't treat modularity properties in this extended abstra
t, al-though we
onsider them very important. The interested reader is refered to [M�ul01℄for this topi
.2 Spe
ifying Obje
t-oriented ProgramsIn this se
tion, we des
ribe the spe
i�
ation te
hnique along with parts of an imple-mentation for doubly linked lists. We start with the abstra
t interfa
e spe
i�
ation.Then we show how spe
i�
ation and implementation are related.2.1 The Spe
i�
ation of Class DListA
lass spe
i�
ation
onsists of a list of invariants (keyword inv) and a list of methodspe
i�
ations. A method spe
i�
ation
onsists of an optional requires
lause (keywordreq) and a list of pre-post-pairs. The meaning of su
h a spe
i�
ation is given bydesugaring it into Hoare triples. Ea
h invariant has to be maintained by all publi
methods of the program1. The
ondition stated in the requires
lause, if any, may beassumed in the prestate. In addition, ea
h pre-post-pair
onstitutes a Hoare triple;again the requires
lause, if any, is
onjoined to the pre
ondition. To keep thingssimple, we do not use more elaborate spe
i�
ation
onstru
ts like e.g. old-expressions.The example we
onsider here is
entered around the
lass DList. The spe
i�
ationis given along with the external visible parts of the
lass de
laration. We present onlythose parts that are needed in the following. The syntax of formulas follows the syntaxof the PVS language (see [COR+95℄). Capital letters denote logi
al variables holdingvalues of PVS builtin or user de�ned types. Logi
al variables are used to relate variablevalues in pre
onditions to those in post
onditions. result is used as a spe
ial variablerepresenting the value returned by a method:
1 We use modularity te
hniques to de
rease the number of methods for whi
h the invariant has tobe shown (see [M�ul01℄), but this is beyond the s
ope of this abstra
t.

Towards Veri�able Spe
i�
ations of Obje
t-oriented Frameworks 35
lass DList{inv X: wfDList(X,$);publi
 stati
 DList empty()pre TRUE;post ADList(result,$) = null;pre alive(X,$) AND $=S;post ($==S)(X);publi
 DList rest()req ADList(this,$) /= null;pre ADList(this,$) = L;post ADList(result,$) =
dr(L);pre alive(X,$) AND $=S;post ($==S)(X);

publi
 int first()req ADList(this,$) /= null;pre ADList(this,$)=L;post aI(result) =
ar(L);pre $=S; post $=S;publi
 boolean isempty()pre ADList(this,$) = L;post aB(result) = null?(L);pre $=S; post $=S;publi
 void app(int i)pre ADList(this,$)=L ANDI=aI(i) AND T=this;post ADList(T,$)= append(L,
ons(I,null));}To express interfa
e properties of OO-programs in an abstra
t way, three ingredientsare ne
essary. (1.) We have to be able to refer to the obje
t store. (2.) We needa fun
tional vo
abulary to express the behavior of the methods. (3.) Abstra
tionfun
tions are ne
essary to relate the implementation to the abstra
t behavior.To refer to the obje
t store, we use the global program variable $ of type Store.As we will show later, Store is an abstra
t data type. The predi
ate alive
he
ksfor an obje
t whether it is allo
ated in a given store. As shown by the spe
i�
ationabove, the methods first and isempty do not modify the obje
t store. The methodsempty and rest do not modify obje
ts that are alive in the prestate; (S1==S2)(X) isa derived predi
ate on stores saying that every lo
ation (= instan
e �eld) rea
hablefrom obje
t X holds the same value in stores S1 and S2. The frame behavior of methodappend is not spe
i�ed.To express the fun
tional method behavior in the example, we used the datatype list[int℄ of PVS with
onstant null, fun
tions
ar,
dr,
ons, append, andpredi
ate null?. In other examples, spe
i�
 data types have to be designed to des
ribethe abstra
t behavior of a
lass or framework. The relation between the abstra
t leveland the implementation level is
aptured by abstra
tion fun
tions and predi
ates. Thepredi
ate wfDList expresses the fa
t that the link stru
ture of a list is well formed ina given store. The fun
tion ADList maps the given obje
t and obje
ts referen
ed byit in a given store to a PVS list. For te
hni
al reasons, we use abstra
tion fun
tionsas well for the basi
 data types boolean and int to map Java values to PVS values(aB and aI). For instan
e, the spe
i�
ation of append reads as follows: Abstra
tingthe this-obje
t in the poststate yields a list with new last element I. Again, we liketo point out that the spe
i�
ation does not refer to any implementation detail.2.2 The DList ImplementationIn the following, we relate the above spe
i�
ation to the implementation of
lass DListand two auxiliary
lasses. The subse
tion fo
uses on those aspe
ts that are needed tomake an interfa
e spe
i�
ation veri�able.In the example, doubly linked lists are implemented by a DList-obje
t as listheader and a sequen
e of NodeL-obje
ts as shown in Figure 1. The
lass NodeL is a

36 J. Meyer and A. Poetzs
h-He�tersub
lass of a
lass Node. This separation into two
lasses was done to illustrate someaspe
ts of inheritan
e.
lass DList{prote
ted NodeL firstNode;prote
ted NodeL lastNode;publi
 stati
 DList empty() {...}publi
 DList rest() { ... }publi
 int first() {Node f = this.firstNode;int k = f.getElem();return k;}publi
 boolean isempty() { ... }publi
 void app(int i) { ... }}
firstNode

lastNode

DList

pred

succ

NodeL

elem

pred

succ

NodeL

elem

null

nullpred

succ

NodeL

elem

pred

succ

NodeL

elem 334 22 19

Fig. 1. Store Layout of a Doubly Linked ListObje
ts of
lass Node
an be used in a very general way to
reate linked datastru
tures, where ea
h node holds a value of type int. The abstra
tion fun
tionANode yields the int-value of the instan
e variable elem.
lass Node{prote
ted int elem;prote
ted Node pred, su

;publi
 int getElem()pre $=S AND T=this;post aI(result) = ANode(T,S);pre $=S; post $=S;publi
 Node getPred()
pre $=S AND T=this;post result =S��lo
(T,Node?pred);pre $=S; post $=S;publi
 Node getSu

()pre $=S AND T=this;post result =S��lo
(T,Node?su

);pre $=S; post $=S;}The spe
i�
ation of method getPred shows how the obje
t store
an be a

essed:S��lo
(T,Node?pred) denotes the value held by instan
e variable Node?elem of ob-je
t T in store S. All fun
tions and predi
ates
on
erning the obje
t store are for-malized in PVS. In parti
ular, Node?elem is a
onstant. Type Store represents theabstra
t data type of obje
t stores, Lo
ation is the set of instan
e variables, Value isa
ommon type for all values and referen
es o

urring in the programming language.The following fun
tions are provided: Let l be a lo
ation, s be a value of type store,id be a type identi�er of a non-abstra
t
lass, and v be of type Value:{ update(s,l,v) returns the store, where l in s is updated with v.{ new(s,id) returns a referen
e to a fresh obje
t allo
ated in s.{ s##id returns the store after allo
ating an obje
t of type id in store s.

Towards Veri�able Spe
i�
ations of Obje
t-oriented Frameworks 37{ s��l returns the value stored in lo
ation l in store s.{ alive(v,s) returns true if the obje
t (value) refered by v is allo
ated in s, falseotherwise.The semanti
s of the obje
t store is spe
i�ed by fourteen axioms. We present two ofthem to give an impression:store1: AXIOM L1 /= L2 => update(S, L1, X)��L2 = S��L2store10: AXIOM NOT alive(new(S, T), S)Axiom store1 des
ribes that an update of some lo
ation does not a�e
t other lo
ations.Axiom store10 des
ribes that some newly allo
ated obje
t in a
ertain store was notalive in that store before allo
ation.Based on
lass Node, we de�ne a
lass NodeL. It
ontains an additional methodand has a spe
i�
ation that guarantees the spe
i�
 stru
ture of the NodeL-obje
tsimplementing doubly linked lists (
f. the grey shaded area in Fig. 1).
lass NodeL extends Nodeinv X: wfNodeL(X, $);{publi
 stati
 NodeL initNodeL(int i)pre I=aI(i);post ANodeL(result,$) =
ons(I,null);pre $=S;post result = new(S,NodeL) AND$=update(S##NodeL, lo
(result,Node?elem), i);publi
 int appba
k(NodeL n)req n/=null AND n/=this AND lstNode?(this,$)AND fstNode?(n,$) AND lstNode?(n,$);pre su

n(X,$,N)=this AND ANodeL(X,$)=L AND ANodeL(n,$) = M;post ANodeL(X,$) = append(L,M);pre $=S AND T=this AND X=n;post $=update(update(S, lo
(T,Node?su

), X), lo
(X,Node?pred), T);publi
 NodeL getLast()pre T=this AND $=S;post $=S AND result/=null AND(EXISTS (N:nat): su

n(T,S,N)=result AND su

n(T,S,N+1)=null);}To formalize the link stru
ture for NodeL-obje
ts, the following de
larations and pred-i
ates are used. They should give an impression of what has to be available in averi�
ation framework. For a detailed understanding, we assume that the reader isfamiliar with PVS syntax. By <= we denote the subtype relation on Java types whi
hare represented by the
onstru
tor
t applied to their name:NodeLObj?(X): bool = typeof(X) <=
t(NodeL)NodeLObj?(X): TYPE = (NodeObj?)fstNode?(X,S):bool = NodeLObj?(X) AND X/=null => S��lo
(X,Node?pred)=nulllstNode?(X,S):bool = NodeLObj?(X) AND X/=null => S��lo
(X,Node?su

)=nullpredn((X: NodeObj), S, (n: nat)): RECURSIVE NodeLObj =IF X=null OR n=0 THEN X ELSE predn(S��lo
(X, Node?pred), S, n-1)

38 J. Meyer and A. Poetzs
h-He�terENDIF MEASURE nsu

n((X: NodeObj), S, (n: nat)): RECURSIVE NodeLObj =IF X=null OR n=0 THEN X ELSE su

n(S��lo
(X, Node?su

), S, n-1)ENDIF MEASURE nwfNodeL((X: NodeLObj), S): bool =(EXISTS (i: nat): predn(X, S, i) = null) AND %(1)(EXISTS (k: nat): su

n(X, S, k) = null) AND %(2)(NOT fstNode?(X,S) => typeof(S��lo
(X,Node?pred)) <=
t(NodeL) AND %(3)S��lo
(S��lo
(X,Node?pred), Node?su

) = X) AND %(4)(NOT lstNode?(X,S) => typeof(S��lo
(X,Node?su

)) <=
t(NodeL) AND %(5)S��lo
(S��lo
(X,Node?su

), Node?pred) = X) %(6)The predi
ate fstNode?(lstNode?) holds for a NodeL-obje
t X, if X has no prede-
essor (su

essor). predn(su

n) yields the n-th prede
essor (su

essor) of a NodeL-obje
t. This allows us to formulate a wellformed
ondition for X using the predi-
ate wfNodeL: X is well formed, if there exists a prede
essor(su

essor)-obje
t, whosepred(su

)-lo
ation is null (1+2). This guarantees NodeL-stru
tures to be non
y
li
.(3+5) des
ribe that ifX has a prede
essor(su

essor) Y then Y is of type NodeL. (4+6)guarantee that inner obje
ts of a NodeL-stru
ture are
orre
tly linked, by rea
hing it-self via its prede
essor(su

essor).Wellformedness of NodeL-stru
tures is a prerequisite for a
orre
t method exe-
ution and abstra
tion. The wellformed
ondition wfNodeL
onstitutes the invariantfor obje
ts of the NodeL
lass. As expressed by the invariant
lause of the interfa
espe
i�
ation of
lass NodeL, ea
h method has to preserve this invariant.To spe
ify the fun
tional behavior of NodeL's methods an abstra
tion is needed to
apture fun
tional list properties. Therefore we use the following abstra
tion fun
tionwith signature Value, Store -> list[int℄, whi
h abstra
ts NodeL-stru
tures tothe generi
 PVS list data-type list with type parameter int:ANodeLn((X: NodeObj), (S: Store), (n: nat)):RECURSIVE list[int℄ = IF X=null OR n=0 THEN nullELSE
ons(aI(S��lo
(X,Node?elem)),ANodeLn(S��lo
(X,Node?su

), S, n-1))ENDIF MEASURE nClass NodeL extends
lass Node and adds a method publi
 int appba
k (NodeL n),whi
h
on
atenates a NodeL-stru
ture and a NodeL-obje
t, referred by this and n.By this method we demonstrate the implementation dependen
y of a spe
i�
ation in
ontrast to the spe
i�
ation of
lass DList. The implementation dependen
y enablesveri�
ation but is therefore not suitable for do
umentation and reuse. A basi
 require-ment for a su

essful exe
ution is that n refers a single NodeL-obje
t and that this/=nholds. Furthermore appending is only allowed at the last obje
t of a NodeL-stru
ture.These requirements are summarized in the req-
lause of method appba
k:req n/=null AND n/=this AND lstNode?(this,$)AND fstNode?(n,$) AND lstNode?(n,$);Furthermore appba
k has (1) a fun
tional and (2) an environment behavior spe
i�
a-tion. (1) guarantees that appba
k does in fa
t let n be
ome the new su

essor of this

Towards Veri�able Spe
i�
ations of Obje
t-oriented Frameworks 39and all possible tails of the NodeL-stru
ture with this at the end stay un
hanged.(2) spe
i�es that the store is
hanged by two lo
ation updates.The spe
i�
ation te
hniques shown above are as well appli
able to Java's inter-fa
e types. To spe
ify interfa
e types, i.e. types without implementations, abstra
tionte
hniques
an be exploited. Another interesting spe
i�
ation aspe
t o

urs togetherwith inheritan
e. A
lass S inherits a method m from
lass T without overriding theimplementation. Nevertheless, a re�ned spe
i�
ation
an be needed in the sub
lass.In our example,
lass NodeL inherits method getSu

 from
lass Node and re�nesits spe
i�
ation. In addition to the spe
i�
ation given above
lass NodeL requiresfrom its implementation that pre ANodeL(this,$) = L; post ANodeL(result,$)=
dr(L); holds.Abstra
tion Fun
tions for Class DList. Equipped with the datatypes and spe
-i�
ation primitives above, we now present the rest of the spe
i�
ation of
lass DList,i.e. the wellformed
ondition and the abstra
tion. Both are needed to verify the imple-mentation of DList. The wellformed
ondition used in the invariant looks as follows.A list is
onsidered to be empty, if firstNode refers null. The abstra
tion ADList:[Value, Store -> list[int℄℄ reuses the abstra
tion of NodeL and is equal to theabstra
tion of the NodeL obje
t referred by firstNode.wfDList((X: DListRef), S): bool =S��lo
(X,DList?firstNode)=null ORS��lo
(X,DList?firstNode)/=null AND
S��lo
(X,DList?lastNode)/=null ANDEXISTS (n:nat): su

n(S��lo
(X,DList?firstNode),S,n)=S��lo
(X,DList?lastNode)ADList_ax: AXIOM DListRef?(X) =>ADList(X, S)=ANodeL(S��lo
(X,DList?firstNode),S)3 A logi
al Framework for Proof Constru
tionWithin this se
tion we give an overview of the formal framework used for spe
i�
ationand veri�
ation. As shown in the spe
i�
ation we have to express program indepen-dent and program dependent properties. Using PVS allows us to use the followingte
hnique: Theories
ontaining formalizations of type identi�ers, attribute-identi�ers,and lemmata
ontaining the subtype hierar
hy are generated for all used
lasses.Program independent theories are generi
 w.r.t. the generated theories. Both partstogether provide the formal ba
kground for spe
i�
ation and veri�
ation.The used veri�
ation te
hnique is based on a Hoare logi
 for the programminglanguage we use. Partial
orre
tness of programs w.r.t. their spe
i�
ation is shownby translating interfa
e spe
i�
ations into Hoare triples and proving them using theprogramming logi
. Remaining impli
ations whi
h arise from the use of strengtheningor weakening rules are proved by using PVS.Figure 2 shows the result of the Hoare logi
 proof of the method first of
lassDList, where the fun
tional property of first is proven. The use of some of theHoare rules is displayed (formula parts tou
hed by rules are underlayed grey): The

40 J. Meyer and A. Poetzs
h-He�tervar-rule allows to repla
e logi
al variables by lo
al program variables, if they do noto

ur on the left hand side of an assignment; the inv-rule allows to
onjoin formulasF to the pre- and post
ondition of a triple, if F does not
ontain program variablesor the variable $ for the obje
t store; the ex-rule allows to add existential quanti-�ers for logi
al variables, whi
h do not o

ur in the post
ondition. A proof outlineembeds the information of a proof tree into the program text, whi
h allows a
atrepresentation of the proof tree. It
an be read as follows. At the line
ontaining theinvo
ation of getElem the invo
ation statement is instantiated with the fun
tionalspe
i�
ation triple of that method, i.e. formal parameters within the spe
i�
ation arerepla
ed by a
tual parameters. Above the method invo
ation, the axiom for lo
ationreads is instantiated. f , whi
h is assigned a new value, is repla
ed by the term readingthe lo
ation this.firstNode in store $ in the post
ondition and used as new pre-
ondition. The use of Hoare logi
 rules is displayed using the horizontal lines. Arrowspoint to the ante
edent triple. The triple of the
onsequen
e is displayed outside theline-bra
kets. Strengthening and weakening steps are simply denoted by =).In the proof outline example, the program proof part is
omplete. It remainsto show the impli
ations, marked by =). The proof that the impli
ations hold isobvious in this example. This results dire
tly from expanding the de�nitions of theabstra
tion fun
tions and the axioms of the store formalization. The example shows,that in addition to the spe
i�
ation part, abstra
tion plays an important role duringveri�
ation. Be
ause of this degree of
omplexity, a theorem prover supporting thesedata type me
hanisms is indispensable.The
omplete proof for the example used in the
ase study was
onstru
ted withthe Jive environment. The Jive-prover
ombines an intera
tive program prover withthe general purpose theorem prover PVS to perform the program independent prooftasks.4 Con
lusionIn this extended abstra
t we showed some hot spots of a
ase study
on
erning thespe
i�
ation and veri�
ation of obje
t-oriented programs. We demonstrated, howproperties of obje
t oriented programs
an be des
ribed in a program independentabstra
t way. This allows for (1.) pre
ise do
umentation of obje
t-oriented programsand frameworks for reuse, and (2.) spe
i�
ations, whi
h
an be dire
tly used to provethe spe
i�ed program properties. We presented spe
i�
ations of non trivial programproperties for the used list example, whi
h are diÆ
ult to express pre
isely with op-erational spe
i�
ation te
hniques. Furthermore we gave a short sket
h of the proofte
hniques, whi
h are implemented within the Jive proof environment. The Jive sys-tem was used to
onstru
t the
omplete program proof of the
ase study
oupled withthe PVS prover.A
knowledgments Mar
el Labeth
ontributed to this work by
onstru
ting the pro-gram proof with the Jive-System and proving all program independent proof obliga-tions with PVS. We also thank Peter M�uller for his important
ontributions to thiswork.

Towards Veri�able Spe
i�
ations of Obje
t-oriented Frameworks 41Referen
es[Be
00℄ Bernhard Be
kert. A dynami
 logi
 for java
ard. In Pro
. 2nd ECOOP Workshop onFormal Te
hniques for Java Programs, Cannes, Fran
e. TR 269, Fernuniversit�at Hagen,2000. Available from www.informatik.fernuni-hagen.de/pi5/publi
ations.html.[COR+95℄ J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introdu
tion toPVS, April 1995.[GH93℄ J. V. Guttag and J. J. Horning. Lar
h: Languages and Tools for Formal Spe
i�
ation.Texts and Monographs in Computer S
ien
e. Springer-Verlag, 1993.[Hui00℄ M. Huisman. Reasoning about Java programs in higher order logi
 Using PVS andIsabelle. PhD thesis, University of Nijmegen, 2000.[JvdBH+98℄ B. Ja
obs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews.Reasoning about Java
lasses. In Pro
eedings of Obje
t-Oriented Programming Sys-tems, Languages and Appli
ations (OOPSLA), 1998. Also available as TR CSI-R9812,University of Nijmegen.[Lea97℄ G. T. Leavens. Lar
h/C++ referen
e manual. Available fromhttp://www.
s.iastate.edu/~leavens/lar
h
++manual/l
pp_to
.html, July 1997.[LMMPH00℄ M. Labeth, J. Meyer, P. M�uller, and A. Poetzs
h-He�ter. Formal Veri�
ation of aDoubly Linked list implementation: A
ase study using the Jive system. Te
hni
alReport 270, FernUniversit�at Hagen, 2000.[MPH00℄ J. Meyer and A. Poetzs
h-He�ter. An ar
hite
ture for intera
tive program provers. InS. Graf and M. S
hwartzba
h, editors, TACAS00, Tools and Algorithms for the Con-stru
tion and Analysis of Software, volume 276 of Le
ture Notes in Computer S
ien
e,pages 63{77, 2000.[M�ul01℄ P. M�uller. Modular Spe
i�
ation and Veri�
ation of Obje
t-Oriented Programs. PhDthesis, FernUniversit�at Hagen, 2001.[PHM99℄ A. Poetzs
h-He�ter and P. M�uller. A programming logi
 for sequential Java. In D. Swier-stra, editor, ESOP '99, LNCS 1576. Springer-Verlag, 1999.[vO01℄ D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and HoareLogi
. PhD thesis, Te
hnis
he Universit�at M�un
hen, 2001.

42 J. Meyer and A. Poetzs
h-He�ter
� this 6= null ^ADList (this ; $) 6= null ^ADList (this ; $) = L	publi
 int first() {� this 6= null ^ADList (this ; $) 6= null ^ADList (this ; $) = L	=)� this 6= null ^ $��lo
 (this ;DList ?�rstNode) 6= null ^ADList (this ; $) = L	=)(9S; T : S = $ ^ T = $��lo
 (this ;DList ?�rstNode) ^ this 6= null^$��lo
 (this ;DList ?�rstNode) 6= null ^ADList (this ; S) = L ^ T 6= null) #{[ex-rule℄� this 6= null ^ $��lo
 (this ;DList ?�rstNode) 6= null ^ T 6= null ^$ = S ^ T = $��lo
 (this ;DList ?�rstNode) ^ADList (this ; S) = L �=)8><>: this 6= null ^ $��lo
 (this ;DList ?�rstNode) 6= null ^ $ = S ^T = $��lo
 (this ;DList ?�rstNode) ^ADList (this ; S) = L ^ T = S��lo
 (this ;DList ?�rstNode) ^ T 6= null 9>=>; #{[var-rule℄8><>: this 6= null ^ $��lo
 (this ;DList ?�rstNode) 6= null ^$ = S ^ T = $��lo
 (this ;DList ?�rstNode) ^ T1 6= null ^ADList (T1; S) = L ^ T = S��lo
 (T1;DList ?�rstNode) ^ T 6= null 9>=>; #{[inv-rule℄� this 6= null ^ $��lo
 (this ;DList ?�rstNode) 6= null ^$ = S ^ T = $��lo
 (this ;DList ?�rstNode) �Node f; f = this.firstNode;�f 6= null ^ $ = S ^ T = f 	int k; k = f.getElem();�aI (k) = ANode (T; S)	 "{[inv-rule℄8<: aI (k) = ANode (T; S) ^ T1 6= null ^ADList (T1; S) = L ^T = S��lo
 (T1;DList ?�rstNode) ^ T 6= null 9=; "{[var-rule℄�aI (k) = ANode (T; S) ^ this 6= null ^ ADList (this ; S) = L ^T = S��lo
 (this ;DList ?�rstNode) ^ T 6= null �=)�aI (k) =
ar (L)	return k;�aI (result) =
ar (L)	 "{[ex-rule℄�aI (result) =
ar (L)	} �aI (result) =
ar (L)	Fig. 2. Example for a Proof Outline of a Hoare-logi
 Proof

A Model Theoreti
 Semanti
s of OCLPeter H. S
hmittUniversit�at KarlsruheInstitute for Logi
, Complexity and Dedu
tion SystemsD-76128 Karlsruhe, Germanyi12www.ira.uka.de/~ps
hmittAbstra
t. This paper proposes a model theoreti
 semanti
s of the Obje
t ConstraintLanguage (OCL), observing the OMG standard as
lose as possible1 Introdu
tionThe Uni�ed Modeling Language, UML, has gained widespread a

eptan
e as a stan-dard for modelign obje
t-oriented systems. The Obje
t Constraint Language, OCL, isa part of UML used to add
onstraints to UML diagrams that
an
annot be expressedin the visual models. The available des
riptions, the OMG standard do
ument [8℄ andthe book [16℄, fall short of giving a rigorous semanti
, and even synta
ti
 des
riptionof the language. De�
ien
ies have been pointed out e.g. in [11, 4, 5, 7℄. The purpose ofthis paper is to give a systemati
 de�nition of syntax and semanti
s of the OCL.One way to provide OCL with a pre
ise semanti
s is via a translation into a known,well understood spe
i�
ation language. This approa
h has been pursued e.g. in [6, 3℄.As an additional advantage of this approa
h the translated expressions may be usedas input to existing tools. The disadvantage is that those not familiar with the targetlanguage will gain nothing.We des
ribe here a semanti
s of OCL in an informal yet mathemati
ally rigorousway, making use of naive set theory only. We believe that this is a
ommon ground forall spe
i�
ation languages, like Z, Abstra
t Ma
hine Notation, CASL, Isabelle or HOL,to name just a few. Formalizing our semanti
s in any of these will be straightforward
ompli
ated only by the requirement to get around the restri
tions imposed by the
hosen framework.This resear
h is supported by DFG within the KeY proje
t, see the web pagehttp://i12www.ira.uka.de/~key.2 The UML ContextOCL expressions only make sense with respe
t to a given UML model. For the timebeing OCL expressions may only be atta
hed to
lass diagrams. Figure 1 shows morepre
isely how syntax and semanti
s of OCL depend on their
ounterparts in UML.From a given UML
lass diagram we read o� a set of model types SD. These will inSubse
tion 3.1 be extended to obtain the set SOCLD of all OCL types. The
lass diagramalso provides a subtype ordering <D on SD, whi
h is in De�nition 6 again extendedto a subtype relation on all OCL types. The vo
abulary that is used to built up OCLexpressions also
omes in two parts: the symbols in FD that arise from the diagramD, and pre-de�ned OCL operation symbols. OCL
onstraints o

ur as additions to

44 P. H. S
hmittUML OCL
diagram D SD model types SOCLD OCL types<D <OCLDFD model vo
abulary FOCLD OCL vo
abularyTD model
onstraints OCL
onstraintsnapshot D MD model MOCLD OCL modelFig. 1. Synta
ti
 and semanti
 dependan
e of OCL on UMLUML diagrams in the form of invariants, pre
onditions and post
onditions. But thereis also information in D that goes beyond what is
oded in SD, <D, and FD. Atypi
al example are multipli
ities of asso
iation ends. This information
an easily beexpressed by OCL expressions. For la
k of spa
e we do not pursue this here.It is essential to distinguish between a
lass diagram D and a snapshot, or validinstan
e D of D, see e.g. [13, pages 59{60℄ for a
on
ise explanation. The
lass diagram
ompletely determines the syntax of OCL-expressions over D, while a snapshot D isneeded to determine the meaning of an OCL expression. First a snapshot D givesrise to a many-sorted algebra MD whi
h will then be extended to an OCL-algebraMOCLD as depi
ted in the lower part of Figure 1. For the rest of the paper we assumethat D is a �xed
lass diagram and D a valid instan
e of it.2.1 The vo
abulary of a UML diagramThe signature �D
onsists of the set SD of sorts, the set FD of fun
tions, and a subsortrelation <S;D on SD as detailed in the following de�nitions.De�nition 1 (SD; <D).1. The set SD of model types
onsists of all
lass symbols in D:2. The subtype relation S1 <D S2 holds if and only if type S1 is de
lared a subtype ofS2 in D.3. �D denotes the transitive, re
exive
losure of <D :In parti
ular, SD
ontains symbols for all
lasses with the stereotype� enumeration� that happen to o

ur in D.The fun
tions in FD arise from various sour
es in D as detailed in the followingde�nition.De�nition 2 (FD).1. For every asso
iation r in D and every two di�erent asso
iation ends e1; e2 of rthere is a fun
tion symbol fr;e1;e2 2 FD.If ei is atta
hed to the
lass Si for i = 1; 2 then the fun
tion symbol re
eives the

A Model Theoreti
 Semanti
s of OCL 45
orresponding signature: fr;e1;e2 : S1 ! Set(S2):In
ase the multipli
ity at the end e2 is 1 the signature is: fr;e1;e2 : S1 ! S2:If the e2-end has stereotype � ordered� then the signature is:fr;e1;e2 : S1 ! Sequen
e(S2):2. For every attribute a of a
lass S in D there is a fun
tion symbol fa 2 FD. If Sris the value type of a spe
i�ed in D then fa is given the signaturefa : S ! Sr: If a is a
lass attribute, (sometimes this is also
alled a stati
attribute), then fa is a
onstant symbol of type Sr.3. For every operation
 of a
lass S with parameters of type S1; : : : ; Sk and resulttype S0 there is a fun
tion symbol f
 2 FD with signaturef
 : S � S1 � : : :� Sk ! S0:We will require that
 has no side e�e
ts, i.e.
 satis�es the property isQuery()(see [9, p.2-25℄).4. For every asso
iation
lass C atta
hed to an asso
iation r, where r asso
iates the
lasses S1 and S2 there are symbols for the unary proje
tion fun
tions prS1 withsignature C ! S1, and prS2 with signature C ! S2.We will restri
t attention to binary relations. More than binary asso
iations arerare anyway. The extension to asso
iations with m asso
iation ends
an be easilyobtained by introdu
ing m unary fun
tions.It is not
lear if the e2-end is allowed to be of multipli
ity 1 and of stereotype� ordered �. If this
ase is possible we would suggest that the multipli
ity takespre
eden
e and the fun
tion have signature fr;e1;e2 : S1 ! S2 in
lause 1 of De�nition2. The explanations in [13, page 166�℄ allow to atta
h a multipli
ity di�erent from 1to attributes, in
luding the ex
eptional
ase of multipli
ity 0. This seems to have notbeen widely a

epted. In [2℄ e.g. this possibility is not even mentioned. We will thus
onsider for ea
h attribute a the asso
iated fun
tion fa to be total and single-valued.From the point of view of abstra
t syntax the names of the symbols in �D areirrelevant. But for all pra
ti
al purposes it helps to sti
k to the following naming
onventions:De�nition 3 (Naming Conventions).1. Sorts in SD will be given the same name as the
orresponding
lass. Sort namesbegin with an upper
ase letter.2. The fun
tion symbol fr;e1;e2 will be referred to by the role name of r at the asso-
iation end e2. If no role name is given, the name of the
lass atta
hed to e2 willbe used. Fun
tion names start with a lower
ase letter.3. Fun
tion symbols arising from attributes or operations will
arry the name of theattribute or operation. If attr is a stati
 attribute of
lass C then the
on
retesyntax of the
onstant fattr will be C:attr. This is in a

ordan
e with
ommonusage, see e.g. [16, Se
tion 3.5.3℄. Here the dot is not used to indi
ate appli
ationof a property, but is simply part of a name.In Java it is possible to apply a stati
 attribute of a
lass C to instan
es of
lassC. If we wanted to allow the same behaviour on the OCL level we would have tointrodu
e a stati
 attribute attr in addition to the
onstant C:attr a unary fun
tionsymbol fattr : C ! S, where S is the value type of attr.

46 P. H. S
hmitt4. The proje
tion fun
tions prS1 and prS2 for an asso
iation
lass C are
onsideredas impli
it attributes of C and denoted by lower
ase
lass names s1 and s2. In
asewe want to also in
lude n-ary asso
iations we would, of
ourse, have n proje
tionfun
tions.2.2 Semanti
s of UML diagramsFor any snapshot D of the UML
lass diagram D we will now de�ne an asso
iatedmany-sorted algebra MD = (MD; ID) of signature �D. For ease of reading we willwrite M instead of MD and I instead of ID when there is no danger of
onfusion.M may be viewed as a se
ond-order algebra sin
e fun
tion values will not alwaysbe elements of the universe ofM, but sometimes sets of elements.M is only the �rststep towards the OCL model MOCLD to be given in Se
tion 4.De�nition 4 (MD).1. For ea
h sort symbol S 2 SD the domain I(S)
onsists of all obje
ts in the
lassS of the snapshot D plus one new element ? reserved to stand for the valueof otherwise unde�ned terms. The universe MD of MD is the union of all typeuniverses I(S).2. If S is a sort symbol arising from an asso
iation
lass atta
hed to an asso
iationr between the
lasses S1 and S2, then I(S) is the
artesian produ
t of I(S1) andI(S2).3. For sort symbols S1; S2 2 SD with S1 �D S2 we stipulate I(S1) � I(S2). For sortsymbols S1; S2 2 SD satisfying neither S1 �D S2 nor S2 �D S1 the sort universesI(S1), I(S2) are disjoint.4. The fun
tion symbol fr;e1;e2 2 FD with signature S1 ! Set(S2) will be interpretedby the fun
tion I(fr;e1;e2). For an arbitrary obje
t a 2 I(S1) I(fr;e1;e2)(a) will bethe set of all obje
ts b in I(S2) that are in D linked to a via asso
iation r:5. For fun
tion symbols fa : S ! Sr arising from an attribute a, the fun
tion valueI(fa)(b) is the value of the attribute a of the obje
t b of type S as given by thesnapshot D:6. For fun
tion symbols f
 2 FD arising from query operations, the interpretationI(f
) is de�ned analogously to the previous
lause. Query operations are not ex-pli
itly required to terminate. If operation
 on the obje
t b does not terminatethen we set I(f
)(b) =?.7. The value of I(f) for argument tuples
ontaining one entry outside the requiredsort or one entry equal to ? equals ?.Comments1. If in
lause 1 of the previous de�nition S is an abstra
t
lass, then S has noinstan
es in D. In this
ase I(S) is the set-theoreti
 union I(S1) [: : : [I(Sk)where S1; : : : ; Sk are all immediate sub
lasses of S. This
ontradi
ts the positiontaken in [16, 4.3.1℄, whi
h would imply I(S) = ; for an abstra
t
lass S. Ourposition is, however, in a

ordan
e with the semanti
s of an abstra
t
lass in [13,p. 117℄:An abstra
t
lass may not have dire
t instan
es. It may have indire
t in-stan
es through its
on
rete des
endents.

A Model Theoreti
 Semanti
s of OCL 472. If a is in parti
ular a stati
 attribute of
lass C then I(C:a) is interpreted asan element of I(T), where T is the type of a. If also a unary fun
tion fa wasintrodu
ed for the stati
 attribute (see De�nition 3 item 3), then we require inaddition I(C:a) = I(fa)(o) for every o 2 I(C).3. The approa
h just outlined treats asso
iation
lasses as
lasses, i.e. as sets ofobje
ts. In the above semanti
s an asso
iation
lass is not an asso
iation. Notethat this does not
ontradi
t the UML metamodel. It is stated in [9, pages 2-20/2-21℄ thatAsso
iationClass is a sub
lass of both Asso
iation and Class (i.e., ea
hAsso
iationClass is both an Asso
iation and a Class); therefore, an Asso-
iationClass has both Asso
iationEnds and Features.The meta-model des
ribes how to build synta
ti
ally
orre
t diagrams, and givesrestri
tions on whi
h model elements may be
ombined in whi
h way. It has noe�e
t on the semanti
s of diagrams.3 The Syntax of OCLThe grammar for OCL in [8℄ is hard to understand. It is our goal to give here a human-oriented de�nition. We make use of the papers [12℄ whi
h
ontains a des
ription of theOCL syntax at the level of the UML metamodel, and [11℄ whi
h gives a �rst a

ountof a semanti
s for OCL.We will present the syntax of OCL in two steps. In the �rst part the OCL typesystem will be explained. The se
ond part
ontains a human-oriented des
ription ofthe OCL grammar.3.1 The OCL type systemSyntax of Type ExpressionsDe�nition 5 (Type expressions). Let D be a �xed
lass diagram. The type ex-pressions with respe
t to D are as follows:1. Integer, Real, Boolean, Stringare type expressions. These are refered to as the simple OCL type expressions.2. O
lType, O
lAny, O
lExpression, O
lStateare type expressions. We
all these meta type expressions.3. Any s 2 SD, i.e. any
lass o

uring in D is a type expression.Following [16℄ we
all these model types.4. If T is a type expression that is not itself of the form Colle
tion(T 0), Set(T 0),Bag(T 0), or Sequen
e(T 0), thenColle
tion(T), Set(T), Bag(T), Sequen
e(T)are type expressions. The types denoted by these expressions are usually refered toas
olle
tion types.We will use TED, or simply TE if no
onfusion is possible, to refer to the set of typeexpressions with respe
t to D. In a

ordan
e with [10, Se
tion 7.8.1℄ we refer to thetypes from
lauses 1 and 2 as basi
 types.

48 P. H. S
hmittComments1. We
onsider the senten
e \Colle
tion, Set, Bag and Sequen
e are basi
 types aswell." on [10, Page 7-7℄
ontradi
ting the above stipulation of basi
 types as aplunder that will be remedied in a future release.2. Unlike [12℄, we adhere to the standard and do not allow nesting of
olle
tion type
onstru
tors, i.e. Set(Set(Integer)) is not a legal type expression.3. The a

epted issue #3143 of the UML RTF proposes to drop the spe
ial OCLsyntax for enumerations and use instead UML
lasses with stereotype� enumeration�. This also makes the OCL type Enumeration super
uous, sowe did omit it. Following [1℄ one might reintrodu
e it as the
ommon supertypeof all model types with stereotype � enumeration �. But this remains to bede
ided.4. Set(O
lType), Set(O
lAny), Set(O
lExpression), Set(O
lState) are legal typeexpressions.De�nition 6 (Dire
t Subtypes). For type expressions T1; T2 2 TED the subtyperelation T1 <OCLD T2 is the least relation satisfying the following
onditions:1. If T1; T2 are model types and T1 is a subtype of T2 in the UML model, i.e. T1 <D T2,then T1 <OCLD T2:2. Integer <OCLD Real:3. For all type expressions T , not denoting a
olle
tion type,(a) Set(T) <OCLD Colle
tion(T)(b) Bag(T) <OCLD Colle
tion(T)(
) Sequen
e(T) <OCLD Colle
tion(T)4. If T is a model type or a basi
 type di�erent from OCLAny, thenT <OCLD OCLAny:5. If T1 <OCLD T2 and C is any of the type
onstru
tors Colle
tion, Set, Bag,Sequen
e, then C(T1) <OCLD C(T2):De�nition 7 (Type
onforman
e). The transitive, re
exive
losure of the subtyperelation <OCLD is denoted by �OCLD . If T1 �OCLD T2 holds, we say that T1
onformsto T2.Semanti
s of Types The
onstru
tions explained in this subse
tion are performedwith respe
t to a �xed snapshot D of a UML
lass diagram D. As des
ribed inSe
tion 2 we asso
iate with D a many-sorted stru
ture MD = (MD; I)
onsisting ofthe universeMD and the interpretation fun
tion I. Let SD denote the model types inD, see De�nition 1. Then every C 2 SD is interpreted via I as a subset of the universeMD, i.e. I(C) �MD.The obje
tive is to de�ne the stru
ture MOCLD = (MOCLD ; IOCL) extending MDsu
h that for every OCL expressionE the interpretation IOCL(E) is de�ned inMOCLD .In this subse
tion we de�ne MOCLD and the interpretation IOCL on all type expres-sions. The de�nition of IOCL will then be
ontinued in Se
tion 4.When no
onfusion is possible we will supress the supers
ript OCL.The universe of MOCLD is the union of all sort universes. Sort universes
orre-spond to
ertain types. With the type Integer, for example, there is a sort universeI(Integer) that
onsists of all integers plus the additional symbol ?. For ea
h model

A Model Theoreti
 Semanti
s of OCL 49sort C there is the sort universe I(C), as already explained in De�nition 4, Clause 1.Remember that the spe
ial symbol ? for unde�nied values is also an element of I(C).In addition there are sort universes for Set(C), Bag(C) and Sequen
e(C) and theuniverse for Colle
tion(C) will be the disjoint union of them. The sort universes forSet(C), Bag(C) and Sequen
e(C)
onsist of abstra
t obje
ts o, representing subsets,bags (multisets) or sequen
es of the sort universe of C respe
tively. The sort universefor O
lType will
onsist of obje
ts that are in one-to-one
orrespondan
e with the set
onsisting of model types and all basi
 OCL types, ex
ept O
lType.For example, for the pre-de�ned type Integer there will be an obje
t oInteger inM(O
lType). In [10, Subse
tion 8.8.1.1℄ we read the somewhat mysterious senten
e\All types de�ned in a UML model, or pre-de�ned within OCL, have a type." Inour setting this now makes perfe
t sense: For every type S there is an obje
t oS inM(O
lType). We will refer to oS as the type obje
t of S.RealIntegerBooleanStringO
lExpressionO
lTypemodel instan
es

Colle
tion(Real)Colle
tion(Integer)Colle
tion(Boolean)Colle
tion(String)Colle
tion(O
lExpression)Colle
tion(O
lType)
olle
tions of instan
es= O
lAnyColle
tion(S) = Set(S) Bag(S) Sequen
e(S)model instan
es = C1 . . . CkFig. 2. Sort universes of MOCLDFigure 2 shows the sort universes of MOCLD .De�nition 8. 1. For the OCL type expressions S 2 fInteger; Real; Boolean; Stringgthe obvious universes M 0(S) are the integers, reals, booleans and all strings overa �xed alphabet A, respe
tively.I(S) =M(S) =M 0(S) [f?gHere ? is a new element denoting an unde�ned value. The sets M 0(S) are
on-sidered disjoint with the ex
eption of M 0(Integer) being a subset of M 0(Real).2. { I(O
lType) = a set of obje
ts in one-to-one
orrespondan
e with all basi
 ormodel types with the ex
eption of O
lType itself.{ I(O
lAny) = SfI(S) j S a basi
 or model typeg{ I(O
lExpression) = TED

50 P. H. S
hmitt{ I(O
lState) is not treated here.3. for S 2 SD IOCL(S) = I(S) [f?g, see De�nition 4, Clause 1.4. { I(Set(T)) = set of all subsets of I(T),{ I(Bag(T)) = set of all multisets of elements from I(T),{ I(Sequen
e(T)) = set of all sequen
es of elements from I(T),{ I(Colle
tion(T)) = I(Set(T)) [I(Bag(T)) [I(Sequen
e(T))The universe of the stru
ture MOCLD is now taken to be the union of all I(S).Comments1. While the standard [8℄ is pre
ise on the meaning of O
lAny the intended meaningof O
lType is less
lear. The de�nition adopted here seems a reasonable extrapola-tion. A more fundamental
hange whi
h raisesO
lType to a
lass in the metamodelis proposed in [1℄.2. We did not introdu
e type obje
ts for
olle
tion types. The standard seems notto ex
lude this. But
onsider the following diÆ
ulty: Let o be the type obje
t fortype Set(Integer) what is o:allInstan
es supposed to be?3. It would probably not harm to have a type obje
t for O
lType itself, but it willon the other hand not be of mu
h help and
ertainly hard to swallow.3.2 The Syntax of OCL ConstraintsA
onstraints starts with a header �xing the
ontext in whi
h it is to be understood.Headers
ome in two forms, one for the
lassi�er
ontext, and one for the operator
ontext. We start with the
lassi�er
ontext:
ontext (
 :)? typeName inv expressionName? : O
lExpressionThe trailing question mark ? indi
ates optional elements; OCL keywords are setin boldfa
e. 'typeName'
ould for example be the name of a
lass in the �xed UMLdiagram. In general we allow all type expressions that are not
olle
tion expressionsas
ontext type. It is possible to introdu
e a name for easy referen
ing of expressions.The optional parameter
 will a
t very mu
h like a variable of the type given bytypename in the following OCL expression. Variable is here to be understood in theway it is used in formal logi
. A header may de�ne more than one expression:
ontext (
 :)? typeNameinv expressionName1? : O
lExpression1: : :: : :inv expressionNamen? : O
lExpressionnConstraints for an operator
ontext look like this:
ontext (
 :)? typeName ::opName(p1: type1; : : : ;pk: typek):rtypefpre ,post g expressionName? : O
lExpression

A Model Theoreti
 Semanti
s of OCL 51Here opName is meant to be the name of an operator de�ned on the given type.The list of parameters p1 : : : pk may be empty and the return type, rtype, may bemissing or both. As above, an operator
onstraint may
ontain more than one expres-sion.In the headers just shown OCL expressions have to be of type Boolean. Also thestereotype inv
an only appear in a
lassi�er
ontext while the stereotypes pre andpost
an only show up in operator
ontexts.We have added the optional parameter(
 :)? also in the operator
ontext to setit on equal footing with
lassi�er
ontexts, though we have seen no example of thisin the literature.The de�nition of OCL expressions to be given presently depends on a �xed
lassdiagram D. More pre
isely, D uniquely determines the set SD of model types andthe set FD of fun
tions together with their sorting signature. Model types and typeexpressions for OCL have been introdu
ed in Subse
tion 3.1 already.De�nition 9 (OCL fun
tion symbols). The set FOCLD of fun
tion symbols admit-ted in forming OCL expressions for diagram D is1. FD (see De�nition 2) plus2. For any basi
 or model type S there is a
onstant symbol S in F with type(S) =O
lType,3. All properties of the pre-de�ned OCL types as detailed in the standard [8, Se
tion7.8℄ plus4. The
onstant symbol result. This is only needed for expressions within the
ontextof an operator opname. The type of result will then be the return type of opname.De�nition 10 (OCL expressions). The set OCLExp of OCL expressions is thesmallest set satisfying the following re
ursive
onditions. At the same time we de�nefor every OCL expression e its unique type type(e).1. For every model type t 2 SD there is an unlimited number of variables vit. Ea
hvariable vit is in OCLExp with type(vit) = t. The parameters of an operator
on-straint are spe
ial instan
es of variables of the type spe
i�ed in their de
laration.2. self is a spe
ial variable, where type(self) is given by
ontext information.3. result is in OCLExp.This is only allowed if the expression o

urs in the
ontext of an operator m inthe stereotype post. Then type(result) = return type of m.4. There are
onstant symbols for integers, reals, and strings, for example 15, 7:88,0Peter0. The pre
ise syntax for these
onstants is given by the OCL grammar,where they are
alled literals. In addition there are
onstants for the two Booleanvalues, true and false.5. If f is a fun
tion symbol in F with argument types t1; : : : ; tk and result type trand e1; : : : ; ek are OCL expressions with type(ei) �OCLD ti for all 1 � i � k (seeDe�nition 7) thenf(e1; : : : ; ek) 2 OCLExp with type(f(e1; : : : ; ek)) = tr.6. If f is a fun
tion symbol in F with argument types t1; : : : ; tk and result type trwhere f is not the name of an operation and e1; : : : ; ek are OCL expressions withtype(ei)�OCLD ti for all 1 � i � k (see De�nition 7) then

52 P. H. S
hmittf�pre(e1; : : : ; ek) 2 OCLExp with type(f(e1; : : : ; ek)) = tr.OCL expressions
ontaining �pre may only o

ur under the post stereotype.7. If e1; e2 are OCL expression of the same type, then e1 = e2, e1 <> e2 are OCLexpressions of type Boolean.8. If e is an OCL expression of type Boolean, e1; e2 are expressions of type t1 andt2 respe
tively and either t1 � t2 or t1 � t2 thenif e then e1 else e2is an OCL expression.type(if e then e1 else e2) = � t2 if t1 � t2t1 if t1 � t2If need arises we will write more pre
isely OCLExpD instead of OCLExp.Comments1. We allow the shorthand notation for
olle
t as stated in the standard [10, Se
tion7.6.2℄ and also in [16, Subse
tion 3.6.11℄.Assume e is an OCL expression with type Set(T), and attr is an attribute oftype T . Then e:attr is a shorthand for e !
olle
t(
 j
:attr): The same appliesto fun
tions arising from asso
iations. Consider as an example the UML
lassdiagram in Figure 3.T1 T2 T3f *e1 e2 *e3 e4g
Fig. 3. Composition of navigationThe OCL expression self :e2 in the
ontext T1 has type Set(T2). The expressionself :e2:e4 in the same
ontext is short for self :e2 !
olle
t(
 j
:e4) and has typeBag(T3).2. We have in
lause 4 of the previous de�nition blurred the distin
tion betweensyntax and semanti
s. Adhering stri
tly to this distin
tion we should have intro-du
ed a
onstant symbol
a for every integer a with the semanti
 interpretationI(
a) = a. This seemed too mu
h trouble for too little reason.3. In De�nition 10 we have used the fun
tional notation as
on
rete syntax. Thisdoes not imply that we
onsider it superior to the
on
rete navigation syntaxused in the OCL standard. We will in fa
t feel free to use both. Some remarks onthe
omparision of OCL notation to the notation used in the modeling languageAlloy may be found in [15℄.fun
tion syntax navigation syntaxg(f(
))
:f:go
lIsKindOf(self; Class) self:o
lIsKindOf(Class)forAll(
; x; e)
! forAll(x j e)

A Model Theoreti
 Semanti
s of OCL 53De�nition 11 (Free variables). For an OCL expression e we denote by FV(e) theset of free variables in e. The expression self is
ounted as a free variable.We trust that the notion of free variable, and of its
ounterpart bound variable,are intuitively
lear. Here is an example:FV(iterate(e; vt : t; vt1 : t1 = e1 j f)) = FV(e) [(FV(f) n fvt; vt1g)De�nition 12 (OCL expressions in
ontext).1. An OCL expression e may o

ur in the
ontext
ontext (
 :)? typeName inv expressionName? : eonly if(a) the post�x �pre and result do not o

ur in e(b) FV(e) = fselfg if the parameter
 is not spe
i�ed. If
 is spe
i�ed, then weinsist that self does not o

ur in e and FV(e) = f
g:(
) type(e) = Boolean.2. An OCL expression e may o

ur in the
ontext
ontext (
 :)? typeName:: opname(p1: type1; : : : ;pk: typek):rtypefpre , post g expressionName? : eonly if(a) FV(e) = fp1; : : : ; pkg [fselfg if
 is not spe
i�ed, andFV(e) = fp1; : : : ; pkg [f
g if
 is spe
i�ed.(b) in the
ase of the pre stereotype, �pre and result do not o

ur in e:(
) type(e) = Boolean:Comments and examples1. OCL
onstraints have so far in the literature been
onsidered with respe
t to a�xed
ontext
lass, say S. Inspe
ting De�nition 10 reveals that this informationis only needed in determining the type of self . The same observation applies to[11, De�nition 5℄. Repla
ing self by the optional parameter
 : S spe
i�ed in the
ontext header we arrive at a de�nition of OCLExp not depending on
ontextinformation.The notion of
ontext is helpful, so we introdu
e it in De�nition 12, thus arrivingat a
lear separation of
on
erns.The approa
h adopted here also solves another problem that has been kept underthe rug in previous publi
ations. Assume that e is an OCL expression in
ontext
 with type(e) = Sequen
e(t) and we form the new expressione! iterate(vt : t; vt1 : t1 = e1 j f)What should be the
ontext of f? In most published examples it is not
, sometimesit is t, sometimes it is t1.The above de�nitions at least give a
lear answer, whi
h we hope will also proveuseful and in keeping with the spirit of OCL.

54 P. H. S
hmitt2. OCL allows as a short
ut to omit self . We assume in De�nition 12 that this, andall similar short
uts, have been removed.3. Here are some examples for OCL expressions a

ording to
lause 5.If f = + and type(e1) = type(e2) = Integer then e1 + e2 is an expression of typeInteger.There are two ways to derive the expression e1 + e2 within the OCL grammar inthe standard [9℄: �rst as a built-in operation on the type Integer and se
ond viathe grammer rule for additiveExpression. This shows that one
ould simplifythe grammar.If T is a
lass in D, e an expression of type T and f an attribute for the
lassT with value type T1 then f(e) is in OCLExp with type(f(e)) = T1. In
on
reteOCL syntax this expression would be written as e:f .Let f = fr;b1;b2 (see De�nition 2) be a fun
tion symbol asso
iated with the asso
i-ation ends b1 and b2 of an asso
iation r in D. Assume that bi is atta
hed to
lassti and e is an OCL expression with type(e) = T1. Then f(e) is an OCL expressionwith type(f(e)) = T2 if b2 has multipli
ity 1 and type(f(e)) = Set(t2) otherwise.In
on
rete OCL syntax this expression would be written as e:b2 or e:t2.If e is an expression with type(e) = Set(T) then size(e) is an OCL expression oftype Integer, be
ause size is a built-in operator. In
on
rete syntax: e! size.4. If the type of e1; e2 in
lause 7 is neither a meta type nor a
olle
tion type, thenequality and inequality are built-in operations of the type OCLAny. Be
ause ofthe restri
tion of the subtype relation in De�nition 6 this does not
over equalitybetween
olle
tion and meta types. Thus we have added
lause 7 here.5. Let e be an OCL expression of type Sequen
e(T), let vT , vT1 be variables of typeT and T1 respe
tively, e1 and f expressions of type T1, theniterate(e; vT : T; vT1 : T1 = e1 j f)is an OCL expression of type T1. iterate is a built-in operation for all
olle
tiontypes. It is most natural for sequen
es but also appli
able on sets and bags. Its
on
rete syntax is e! iterate(vT : T; vT1 : T1 = e1 j f):6. The usual let
onstru
t for introdu
ing abbreviations may be freely used in OCLexpressions. In the formal treatment we assume that all abbreviations have beenresolved.7. We do not ex
lude, that within an expression e o

uring as a pre or post
onditionin the
ontext of an operator opname, the fun
tion symbol fopname atta
hed toopname does o

ur.4 Semanti
s of OCLWe will now
ontinue the de�nition of MOCLD = (MOCLD ; IOCL) begun in Subse
tion3.1. Remember that we assume a �xed snapshot D of a UML
lass diagram D. From Dwe read o� the set of sort and fun
tion symbols, SD and FD, whileD may be des
ribedby the many-sorted stru
ture MD = (MD; I). We will again take the liberty to omitthe supers
ript OCL, when no
onfusion
an arise. In Subse
tion 3.1 I(e) was de�nedfor all OCL type expressions. The OCL expression e may
ontain free variables. Themeaning of e then depends on the values assigned to these free variables. This is thejob of the fun
tion �: for every variable v in e of type S we require �(v) to be an

A Model Theoreti
 Semanti
s of OCL 55element in I(S) and we will explain how to
al
ulate re
ursively the value of I�(e).The initial
ases (Clause 1 to 4) in De�nition 10 are easy to deal with and likewisethe indu
tion steps for
lauses 7 and 8 are obvious. We
on
entrate here on
lause 5and postpone
lause 6 for later.De�nition 13 (Semanti
s of model properties).1. Let fa in FD be the fun
tion symbol atta
hed to an attribute a of the
lass T (seeDe�nition 4). Let further e be an OCL expression with type(e) �OCLD T . ThenI�(f(e)) = I(fa)(I�(e)):2. Let f = fr;e1;e2 be a fun
tion symbol in FD atta
hed to the asso
iation r andthe asso
iation ends e1; e2 with argument type T and e an OCL expressions withtype(e)�OCLD T . Then I�(f(e)) = I(fr;e1;e2)(I�(e)):Next we should give the semanti
s for all pre-de�ned operations of OCL. Werestri
t ourselves to a few typi
al
ases.De�nition 14 (Semanti
s of model properties).1. Consider the expression e � e1 !
olle
t(
 j e2) (in fun
tional notation
olle
t(e1;
; e2)).(a) type(e2) is not a
olle
tion type.In
ase type(e1) = Set(S) or Bag(S):I�(e) = the bag of elements I�a
 (e2) for all a 2 I�(e1)In
ase type(e1) = Sequen
e(S):I�(e) = hI�a
1 (e2); : : : ; I�a
k (e2)i with I�(e1) = h
1; : : : ;
ki(b) type(e2) = Set(T) or Bag(T)I�(e) =[fI�a
 (e2) j a 2 I�(e1)gIn any
ase the union S will result in a bag, i.e. multiple o

uren
es will notbe eliminated. The information what kind of a
olle
tion type e1 did possess islost, even in the
ase type(e1) = Sequen
e(S).(
) type(e2) = Sequen
e(T)If type(e1) = Set(S) or Bag(S) the de�nition of the previous item applieswhere I�a
 (e2) is treated as the bag of elements o

uring in the sequen
e.If type(e1) = Sequen
e(S) then I�(e) is the
on
atenation of the sequen
esI�a
i (e2), with 1 � i � k and I�(e1) = h
1; : : : ;
ki.In these de�nitions we have used �a
 (x) = ��(x) if x 6=
a if x =
De�nition 15. Let v be the only free variable that may o

ur in e, and �m the vari-able assignment with �m(v) = m.The
onstraint
ontext t inv : eis true in MOCLD = (MD; I) if for every m 2 I(T): I�m(e) = true:

56 P. H. S
hmittThe meaning of
onstraints on methods is de�ned with respe
t to a pair of snapshotsD1;D2 for the same diagram D. These lead to a pair of stru
tures of the form:(MOCLD1 ;MOCLD2) = ((MD1 ; I1),(MD2 ; I2)). We will further assume that MD1 � MD2 .This amounts to the stipulation that instan
es on
e
reated
annot be removed.De�nition 16. The
onstraint
ontext (
 :) typeName :: opname(p1: type1; : : : ;pk: typek):rtypepre : e1post : e2is true in (MOCLD1 ;MOCLD2) if for every �I1;�(e1) = true implies I2;�(e2) = trueHere � ranges over all fun
tions from the set f
; p1; : : : ; pkg of variables into theuniverse MD1 satisfying the typing restri
tions.It is in De�nition 14
lause 2 and 3 that
attening takes pla
e and the
reation ofsets of sets or sequen
es of sequen
es is avoided.The standard [8, Subse
tion 7.5.5℄ allows to a

ess asso
iation ends of multipli
ity[0::1℄ both as sets and as elements. There is no
lear way in our setting to mimi
kthis overloading. We even doubt its pra
ti
ality.5 Future Resear
hWe are presently working on a translation of OCL into Dynami
 Logi
, whi
h isthe input language of the theorem prover in the KeYproje
t. Spe
ial
are has to betaken in the translation of the �pre suÆx. It is quite easy to use partial fun
tionsin a semanti
s des
ription, as we have done here. A dedu
tion
al
ulus for reasoningabout partial fun
tions in the OCL framework still has to be de
ided on.5.1 A
knowledgementsMany thanks are due to Wolfgang Ahrendt, Bernhard Be
kert, Joao Mar
os, andReiner H�ahnle, for their generous help in preparing this paper.Referen
es1. T. Baar and R. H�ahnle. An integrated metamodel for OCL types. In R. Fran
e, B. Rumpe, andJ. Whittle, editors, Pro
. OOPSLA 2000 Workshop Refa
toring the UML: In Sear
h of the Core,Minneapolis/MI, USA, O
t. 2000.2. M. Fowler and K. S
ott. UML Destilled. Applying the Standard Obje
t Modeling Language.Addison-Wesley, 1997.3. M. Gogolla and M. Ri
hters. On
onstraints and queries in UML. In S
hader and Korthaus [14℄,pages 109{121.4. A. Hamie. A formal semanti
s for
he
king and analysing UML models. In L. Andrade, A. Mor-eira, A. Deshpande, and S. Kent, editors, Pro
eedings of the OOPSLA'98 Workshop on Formal-izing UML. Why? How?, 1998.5. A. Hamie, J. Howse, and S. Kent. Navigation expressions in obje
t-oriented modelling. InFASE'98.

A Model Theoreti
 Semanti
s of OCL 576. A. Hamie, J. Howse, and S. Kent. Interpreting the obje
t
onstraint language. In Pro
eedings ofAsia Pa
i�
 Conferen
e in Software Engineering. IEEE Press, July 1998.7. L. Mandel and M. V. Cengarle. On the expressive power of OCL. In FM'99 - Formal Methods.World Congress on Formal Methods in the Development of Computing Systems, Toulouse, Fran
e,September 1999. Pro
eedings, Volume I, volume 1708 of LNCS, pages 854{874. Springer, 1999.8. OMG. Obje
t
onstraint language spe
i�
ation, version 1.3.
hapter 7 in [9℄. OMG Do
umentad970808, September 1999.9. OMG. OMG uni�ed modeling language spezi�
ation, version 1.3. OMG Do
ument, June 1999.10. OMG. OMG uni�ed modeling language spezi�
ation, version 1.3. OMG Do
ument, Mar
h 2000.11. M. Ri
hters and M. Gogolla. On formalizing the UML obje
t
onstraint language OCL. In T. W.Ling, S. Ram, and M. L. Lee, editors, Pro
. 17th Int. Conf. Con
eptual Modeling (ER'98), pages449{464. Springer, Berlin, LNCS 1507, 1998.12. M. Ri
hters and M. Gogolla. A metamodel for OCL. volume 1723 of LNCS, pages 156{171.Springer, 1999.13. J. Rumbaugh, I. Ja
obson, and G. Boo
h. The Uni�ed Modeling Language Referen
e Manual.Addison-Wesley, 1998.14. M. S
hader and A. Korthaus, editors. The Uni�ed Modeling Language: te
hni
al aspe
ts andappli
ations. Physi
a-Verlag, 1998.15. M. Vaziri and D. Ja
kson. Some short
omings of o
l, the obje
t
onstraint language of uml.response to obje
t management group's request for information on uml 2.0. Te
hni
al report,MIT Laboratory for Computer s
ien
e, De
ember 1999.16. J. Warmer and A. Kleppe. The Obje
t Constraint Language: Pre
ise Modelling with UML. Obje
tTe
hnology Series. Addison-Wesley, Reading/MA, 1999.

58 P. H. S
hmitt

