Handling Java’s Abrupt Termination in a
Sequent Calculus for Dynamic Logic

Bernhard Beckert and Bettina Sasse

University of Karlsruhe
Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany
beckert@ira.uka.de, sasse@ira.uka.de

Abstract. In JAva, the execution of a statement can terminate abruptly (besides
terminating normally and terminating not at all). Abrupt termination either leads to a
redirection of the control flow after which the program execution resumes (for example
if an exception is caught), or the whole program terminates abruptly (if an exception
is not caught). Within the KeY project, a Dynamic Logic for Java Card has been
developed, as well as a sequent calculus for that logic, which can be used to verify Java
CARD programs. In this paper, we describe how abrupt termination is handled in that
calculus. The ideas behind the rules we present can easily be adapted to other program
logics (in particular Hoare logic) for JAVA.

1 Introduction

In JAVA, the execution of a statement can terminate abruptly (besides terminating
normally and terminating not at all). Possible reasons for an abrupt termination are
for instance (a) that an exception has been thrown, (b) that a loop or a single loop
iteration is terminated with the break resp. the continue statement, and (c) that the
execution of a method is terminated with the return statement. Abrupt termination
of a statement either leads to a redirection of the control flow after which the program
execution resumes (for example if an exception is caught), or the whole program
terminates abruptly (if an exception is not caught).

In [2] a Dynamic Logic for JAVA CARD (JAVA CARD DL) has been presented,
as well as the basic rules of a sequent calculus for JAVA CARD DL that can be used
to verify JAVA CARD programs. In this paper, we give a detailed description of how
abrupt termination is handled in that calculus. The basic principles of the rules we
present can easily be adapted to other program logics (in particular Hoare logic) for
JAVA.

The basic idea of our approach, which helps to keep the calculus’s rules simple,
is to give an abruptly terminating statement the same semantics as that of a non-
terminating statement. As usual in Dynamic Logics, the semantics of a program is
a partial functions between states. Neither the fact that an abrupt termination has
occurred nor the reason for the abrupt termination are made part of the states. Thus,
to define the semantics of DL formulas, we do not need to provide additional constructs
for handling abrupt termination. Nevertheless, our calculus can handle programs that
make use of abrupt termination to redirect control flow during execution.

We work according to the principle that the program states should not include
information about control flow: they do not contain a program counter, nor the value
of the condition in an if-else statement that has just been evaluated, nor the reason
for the termination of a statement.



6 B. Beckert and B. Sasse

A different approach is used in [3], where the semantics of a program is not a
function between states but from states to pairs consisting of a state and a reason
for termination, making the reason for completion effectively part of the final state
of a statement. Other related work includes [6] and [8], where program logics for
(subsets of) JAVA are described.

The structure of this paper is as follows: In Section 2, we shortly describe the
background and motivation of our work. Syntax and semantics of JAvA CARD DL are
introduced in Section 3; for details, the reader is referred to [2]. The rules for handling
abrupt termination are given in Section 4. In Section 5, we present an example for
the application of these rules.

2 Background

The work reported here has been carried out as part of the KeY project [1]. The
goal of KeY is to enhance a commercial CASE tool with functionality for formal
specification and deductive verification and, thus, to integrate formal methods into
real-world software development processes. Accordingly, the design principles for the
software verification component of the KeY system are:

— The programs that are verified should be written in a “real” object-oriented pro-
gramming language (we decided to use JAVA CARD).

— The logical formalism should be as easy as possible to use for software developers
(who do not have years of training in formal methods).

Since JAVA CARD is a “real” object-oriented language, it has features which are
difficult to handle in a software verification system, such as dynamic binding, aliasing,
object initialisation, and—the topic of this paper—abrupt termination. On the other
hand, JAVA CARD lacks some crucial complications of the full JAVA language such as
threads and dynamic loading of classes. Moreover, JAVA smart cards are an extremely
suitable target for software verification, as the applications are typically security-cri-
tical but rather small.

We use an instance of Dynamic Logic (DL) [5]—which can be seen as an exten-
sion of Hoare logic—as the logical basis of the KeY system’s software verification
component, because deduction in DL is based on symbolic program execution and
simple program transformations and is close to a programmer’s understanding of
Java CARD. Also, DL has successfully been applied in practice to verify software
systems of considerable size. It is used in the software verification systems KIV [7]
and VSE [4] (for a programming language that is not object-oriented).

3 Dynamic Logic for Java Card

3.1 Overview

Dynamic Logic can be seen as a modal predicate logic with a modality (p) for every
program p (we allow p to be any sequence of legal JAVA CARD statements); (p)
refers to the successor worlds (called states in the DL framework) that are reachable
by running the program p. In standard DL there can be several of these states (worlds)
because the programs can be non-deterministic; but here, since JAVA CARD programs
are deterministic, there is exactly one such world (if p terminates) or there is no



Handling Java’s Abrupt Termination in a Sequent Calculus for Dynamic Logic 7

such world (if p does not terminate). The formula (p )¢ expresses that the program p
terminates in a state in which ¢ holds. A formula ¢ — (p ) is valid if for every state s
satisfying the pre-condition ¢, a run of the program p starting in s terminates, and
in the terminating state the post-condition ¢ holds.

Thus, the formula ¢ — (p )t is similar to the Hoare triple {¢}p {+/}. But in con-
trast to Hoare logic, the set of formulas of DL is closed under the usual logical opera-
tors: In Hoare logic, the formulas ¢ and 1 are pure first-order formulas. DL allows to
involve programs in the descriptions ¢ resp. 1 of states. For example, using a program,
it is easy to specify that a data structure is not cyclic, which is impossible in pure
first-order logic. Because all JAVA constructs are available in DL for the description of
states (including while loops and recursion) it is not necessary to define an abstract
data type state and to represent states as terms of that type; instead DL formulas
can be used to give a (partial) description of states, which is a more flexible technique
and allows to concentrate on the relevant properties of a state.

3.2 Syntax of Java Card DL

As said above, a dynamic logic is constructed by extending some non-dynamic logic
with modal operators of the form (p). The non-dynamic base logic of our DL is a
typed first-order predicate logic. We do not describe in detail what the types of our
logic are (basically they are identical with the JAVA types) nor how exactly terms and
formulas are built, as this is not relevant for the handling of abrupt termination. The
definitions can be found in [2]. Note, that terms (which we often call “logical terms”
in the following) are different from JAVA expressions; they never have side effects.

In order to reduce the complexity of the programs occurring in DL formulas, we
introduce the notion of a program context. The context can consist of any legal JAvA
CARD program, i.e., it is a sequence of class and interface definitions. Syntax and
semantics of DL formulas are then defined with respect to a given context; and the
programs in DL formulas are assumed not to contain class definitions.

A context must not contain any constructs that lead to a compile-time error or
that are not available in JAVA CARD.!

The programs in DL formulas are basically executable JAVA CARD code; as said
above, they must not contain class definitions but can only use classes defined in
the program context. We introduced two additional constructs that are not available
in plain JAVA CARD but are necessary for certain rule applications: Programs can
contain a special construct for method invocation (see below), and they can contain
logical terms. These extensions are not used in the input formulas, they occur only
within proofs, i.e., we prove properties of pure JAVA CARD programs.

Ezample 1. The statement i=0; may be used as a program in a DL formula although
i is not declared as a local variable.

The statement break 1; is not a legal program because such a statement is only
allowed to occur inside a block labelled with 1. Accordingly, 1:{break 1;} is a legal
program and can be used in a DL formula.

! An additional restriction is that a program context must not contain inner classes (this restriction
is “harmless” because inner classes can be removed with a structure-preserving program transfor-
mation and are rarely used in JAvA CARD anyway).



8 B. Beckert and B. Sasse

The purpose of our first extension is the handling of method calls. Methods are
invoked by syntactically replacing the call by the method’s implementation. To handle
the return statement in the right way, it is necessary (a) to record the object field
or variable z that the result is to be assigned to, (b) to record the old value old
of this, and (c¢) to mark the boundaries of the implementation prog when it is
substituted for the method call. For that purpose, we allow statements of the form
call(old,z){prog} to occur in DL programs.

The second extension is to integrate logical terms in programs contained in DL
formulas (not in the program context). This is necessary to be able to replace JAVA
expressions with possible side effects by a logical term of the same type. However,
since the value of logical terms cannot and must not be changed by a program, a
logical term can only be used in positions where a final local variable could be used
according to the JAVA language specification (the value of local variables that are
declared final cannot be changed either). In particular, logical terms cannot be used
as the left hand side of an assignment.

3.3 Semantics of Java Card DL

The semantics of a program p is a state transition, i.e., it assigns to each state s the
set of all states that can be reached by running p starting in s. Since JAVA CARD
is deterministic, that set either contains exactly one state (if p terminates normally)
or is empty (if p does not terminate or terminates abruptly). The set of states of
a model must be closed under the reachability relation for all programs p, i.e., all
reachable states must exist in a model (other models are not considered).

The semantics of a logical term ¢ occurring in a program is the same as that of a
JAVA expression whose evaluation is free of side-effects and gives the same value as ¢.

For formulas ¢ that do not contain programs, the notion of ¢ being satisfied by a
state is defined as usual in first-order logic. A formula (p)¢ is satisfied by a state s
if the program p, when started in s, terminates normally in a state s’ in which ¢ is
satisfied. A formula is satisfied by a model M, if it is satisfied by one of the states
of M. A formula is valid in a model M if it is satisfied by all states of M; and a
formula is valid if it is valid in all models.

As mentioned above, we consider programs that terminate abruptly to be non-
terminating. Thus, for example, (throw x;)¢ is unsatisfiable for all ¢. Nevertheless,
it is possible to express and (if true) prove the fact that a program p terminates
abruptly. For example, the formula

e =null — (try{pl}catch(Exception e){})(— (e =null))

is true in a state s if and only if the program p, when started in s, terminates abruptly
by throwing an exception (as otherwise no object is bound to e).
Sequents are notated following the scheme

qsla"' 71)[)777, t 1111»--- awn )

which has the same semantics as the formula

(Vxl)(ka)((qﬁl /\.../\Q/Jm) — (1/)1 VVzpn)) ,

where z1,... ,xz; are the free variables of the sequent.



Handling Java’s Abrupt Termination in a Sequent Calculus for Dynamic Logic 9

4 Sequent Calculus Rules for Handling Abrupt Termination

4.1 Notation

The rules of our calculus operate on the first active command p of a program 7p w. The
non-active prefix m consists of an arbitrary sequence of opening braces “{”, labels,
beginnings “try{” of try-catch-finally blocks, and beginnings “call(...){” of
method invocation blocks. The prefix is needed to keep track of the blocks that the
(first) active command is part of, such that the abruptly terminating statements
throw, return, break, and continue can be handled appropriately.? The postfix w
denotes the “rest” of the program, i.e., everything except the non-active prefix and
the part of the program the rule operates on. For example, if a rule is applied to the
following JAVA block operating on its first active command i=0;, then the non-active
prefix m and the “rest” w are the marked parts of the block:

1:{try{ i=0; j=0; }finally{ k=0; }}
SN— . — J/

™ w

4.2 Loop Rules

Due to space restrictions, we present only one specific rule for while loops to demon-
strate the properties of loop rules. for and do-while loops are handled analogously.

The following rule “unwinds” while loops. Its application is the prerequisite for
symbolically executing the loop body. These “unwind” rules allow to handle while
loops if used together with induction schemata for the primitive and the user defined
types (see the example in Section 5).

rF ((mif(e)V:{1":{p'} 11:-- 1,:while(c){p}} w)9)
'+ ((m ly:- lp:while(e){p} w)9)

(R1)

where

— 1" and 1" are new labels,
— p' is the result of (simultaneously) replacing in p
(a) every break I; (for 1 <i <n) and every break (with no label) that has the
while loop as its target by break 1’, and
(b) every continue 1; (for 1 <i < n) and every continue (with no label) that
has the while loop as its target by break 1”.?

The list 11:,...,1l,: usually has only one element or is empty, but in general a loop
can have more than one label.

In the “unwound” instance p’ of the loop body p, the label 1’ is the new target for
break statements and 1” is the new target for continue statements, which both had

2 In DL versions for simple artificial programming languages, where no prefixes are needed, any
formula of the form (p q)¢ can be replaced by (p)(q)¢. In our calculus, splitting of (rpqw)¢ into
(mp){(qw)¢ is not possible (unless the prefix w is empty) because wp is not a valid program; and
the formula (7pw)(mqw)¢ cannot be used either because its semantics is in general different from
that of (rpquw)e.

® The target of a break or continue statement with no label is the loop that immediately encloses
it.



10 B. Beckert and B. Sasse

the while loop as target before. This results in the desired behaviour: break abruptly
terminates the whole loop, while continue abruptly terminates the current instance
of the loop body.

A continue with or without label is never handled by a rule directly, because it
can only occur in loops, where it is always transformed into a break by the loop rules.

4.3 Rules for the Abruptly Terminating Statements

Possible Combinations of Prefix and Abruptly Terminating Statement. In
the following, we present rules for combinations of prefix type (beginning of a block,
method invocation or try) and abruptly terminating statement (break, return or
throw). Due to restrictions of the language specification, the combination method
invocation/break does not occur. Also, switch statements, which may contain a
break, are not considered here; they are transformed into a sequence of if statements.

Evaluation of Arguments. The arguments ezc and val of statements throw ezc
resp. return wal must already be evaluated (they must be logical terms) before the
appropriate rule for redirecting the control flow can be applied to the abruptly termi-
nating statement. Otherwise, a rule such as the following (rule (R2)) has to be used
first, which then allows the application of other rules that evaluate the expression ezc.

I' v (m {z=ezc; throw z;} w)¢
I' + (m throw ezc; w)¢p

(R2)

where z is a new variable of the same type as the expression ezc. Since, in this paper
we focus on the handling of abrupt termination here and not on the evaluation of
expressions, we assume in the following that this has already been done.

We also do not consider the problem of undefined expressions in this paper, whose
evaluation results in an exception being thrown (e.g., the expression o.a if the value
of 0 is null). If an expression e occurs that may be undefined, the rules have a further
premiss I' F isdef(e) in the full version of the calculus.

Rule for Method Call/return. The rule for this combination symbolically executes
every step the virtual machine does when a method invocation is terminated: The
return value is assigned to the location recorded in the method call prefix and this
is restored to the value it had before method invocation.

I' v (r z=y; this=old; w)¢

(R3)
I' - (m call(old, z):{return y; pgm}w)d

In pure JAVA it is not possible to explicitly assign a value to this. Our assignment
rule, however, can handle such a statement and produces the desired effect. The “rest”
program pgm of the method body, which is not executed, may be empty.

Rule for Method Call/throw. In this case, the method is terminated and this
is restored to its old value, but no return value is assigned. The throw statement



Handling Java’s Abrupt Termination in a Sequent Calculus for Dynamic Logic 11

remains unchanged (i.e., the exception is handed up to the invoking program).

I' = (m this=old; throw ezc; w)¢
I' + (r method call(old, z):{throw ezc; pgm}w)¢p

(R4)

Again, the “rest” pgm of the method body, which is not executed, may be empty.

Rules for try/throw. The following rules allow to handle try-catch-finally blocks
and the throw statement. These are simplified versions of the actual rules that apply
to the case where there is exactly one catch clause and one finally clause.

I' + instanceof (ezc, T) I' = ((m try{e=ezc;q}finally{r} w)¢
I' = ((m try{throw exc; p}catch(T e){g}finally{r} w)¢)

(R5)

I' = —instanceof (exzc, T) I' - ({(m r; throw ezc; w)¢)
I' - ((rm try{throw ezc; p}catch(T e){g}finally{r} w)¢)

(R6)

Rule (R5) applies if an exception ezc is thrown that is an instance of exception
class T, i.e., the exception is caught; otherwise, if the exception is not caught, rule (R6)
applies.

Rules for try/break and try/return. A return or a break statement within a
try-catch-finally statement causes the immediate execution of the finally block.
Afterwards the try statement terminates abnormally with the break resp. the return
statement (a different abruptly terminating statement in the finally block takes
precedence). This behaviour is simulated by the following two rules:

I' - (m r break 1; w)¢

R7
I' - (7 try{break 1; pl}catch(T ezc){q}finally{r} w)¢ (RT)

I'' - (m r return v; w)¢o
I' - (m try{return v; p}catch(T ezc){g}finally{r} w)¢

(R8)

Rules for block/break, block/return, and block/throw. Rules (R9) and (R10)
apply to blocks which are terminated by a break statement without label resp. with
a label 1 matching one of the labels 14,..., 1 of the block (k > 0).

I+ (rm w)¢
't (m 1y:--- lp:{break; pgm} w)¢

It (rm w)o
't (m 1y:---lp:{break 1; pgm} w)¢

where 1 € {11,..., 1t} (R10)



12 B. Beckert and B. Sasse

The following rules handle labelled and unlabelled blocks that are abruptly ter-
minated by a break statement with a label I not matching any of the labels of the
block (Rule (R11)), or by a return or throw statement (Rules (R12) resp. (R13)).

I' + (7 break 1l; w)¢
't (m 1y:---lp:{break 1; pgm} w)¢

where 1 ¢ {1,...,1x} (RI11)

I' F (m return v; w)¢

(R12)
I' - (m 1y: - lp:{return v; pgm} w)¢

I' + (r throw e; w)¢
' (m 1y: - lp:{throw e; pgm} w)¢

(R13)

In all the rules above, the program pgm (that is not executed) may be empty.

Rules for Empty Blocks. Rule (R14) applies to empty try blocks, which terminate
normally. There are similar rules for empty blocks and empty method invocations.

Itk ((mr r w))
I' - ((r try{}catch(T e){q}finally{r} w)¢)

(R14)

5 Example

As an example, we use the calculus presented in the previous section to verify that,
if the program

while (true) {
if (i==10) break;
i++;
}
is started in a state in which the value of the variable i is between 0 and 10, then it

terminates normally in a state in which the value of i is 10.* That is, we prove that
the sequence

0<ini<10 (pwhi1e>i =10 (1)

is valid, where pyhile is an abbreviation for the above while loop. Instead of proving (1)
directly, we first use induction to derive the sequence

F (Yn)((n <10A1 =10 —n) = (pwhile)i = 10) (2)

as a lemma. It basically expresses the same as (1), the difference is that its form
allows a proof by induction on n. The introduction of this lemma is the only step in
the proof where an intuition for what the JAVA CARD program pyhile actually does
is needed and where a verification tool may require user interaction.

* This example program was presented in [3].



Handling Java’s Abrupt Termination in a Sequent Calculus for Dynamic Logic 13

1=10F1=10 (8) [induction hypothesis]
t . |
i=10 F <>1 =10 (7) (pvvhile)i =10
break (710
i=10 + (6) n<9i=10—-n F
(11:{break 11; i++; pynile})i = 10 (11:{12:{} puwnie})i =10
break (11
i=10 F (5) n<9i=9-ntF
(11:{12:{break 11; i++;}pwnie})i =10 (11:{12: {i++;}pwhile )i = 10
i=10 F n<9i=9-nkF
(11:{12:{if (i==10) break 11; ... })i =10 (11:{12:{if (i==10) Hi=10
i=10 F (4) n<9,i=9-nkF
(if (true) 11:{12:{ ... })i =10 (if (true) 11:{12:{ ... })i =10
while (R1) while (R1)
1 =10 F (pwnile)i =10 (3) n<9i=9—n F (puhite)i =10
Base case: Step case:
n=20 n—n+1

= (Vn)((n <10A1i=10-— n) — (Pwhile)i = 10) (2)

Fig. 1. Structure of the proof for sequent (1).

The derivation of (2) is shown schematically in Figure 1. In the following, we
describe the base case n = 0 of the induction in detail. The step case is similar (the
main difference is that it closes with an application of the induction hypothesis while
the base case closes with an axiomatic sequent).

The first sequent which appears in the base case after applying the induction rule
and some simplifications is

i =10 + (while (true) {if (i==10) break; i++;})i =10 (3)
An application of the rule for while loops (R1) results in the new proof obligation

i=10 F (4)
(if (true) 11:{12:{if (i==10) break 11; i++;} pynie})i = 10

Here, two new labels are introduced: 11 is the target for break statements in the loop
body and 12 is the target for continue statements (the latter does not occur in this
example).

The next step is to use the rule for if statements twice. After the second appli-
cation, we get the sequent

i=10 F (11:{12:{break 11; i++} pypie})i = 10 (5)



14 B. Beckert and B. Sasse

in which the next executable statement is break 11. Now, the rule for labelled break
statements in a block with a non-matching label (R11) has to be applied, which
eliminates the block labelled with 12:

i =10 F (11:{break 11; pynile})i = 10 (6)

Then, the rule for labelled break statements in a block with a matching label (R10)
is used. The result is

i=10 F ()(i =10) (7)
This simplifies with the rule for the empty program to
i=10F i=10 (8)

and can thus be shown to be valid.

After the lemma (2) has been proved by induction, it can be used to prove the
original proof obligation (1). First, we use a quantifier rule to instantiate n with
10 — i. The result is

0<iAi<10F (10—1i<10Ai=10— (i—10)) = ((Pwhile)i = 10)
which can be simplified to
0<iAi<10Ai=1iF ({pwhie)i = 10) (9)

And, since (9) is derivable, the original proof obligation (1) is derivable as well, because
the trivial equality i = i can be omitted.

References

1. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner
Héhnle, Wolfram Menzel, and Peter H. Schmitt. The KeY approach: Integrating object oriented
design and formal verification. In M. Ojeda-Aciego, I. P. de Guzman, G. Brewka, and L. M.
Pereira, editors, Proceedings, Logics in Artificial Intelligence (JELIA), Malaga, Spain, LNCS 1919.
Springer, 2000.

2. Bernhard Beckert. A Dynamic Logic for the formal verification of Java Card programs. In
Proceedings, Java Card Workshop (JCW), Cannes, France, LNCS 2014. Springer, 2001. To appear.
Available at i12www.ira.uka.de/ key.

3. Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic with abrupt
termination. In Proceedings, Fundamental Approaches to Software Engineering (FASE), Berlin,
Germany, LNCS 1783. Springer, 2000.

4. Dieter Hutter, Bruno Langenstein, Claus Sengler, Jorg H. Siekmann, and Werner Stephan. De-
duction in the Verification Support Environment (VSE). In M.-C. Gaudel and J. Woodcock,
editors, Proceedings, International Symposium of Formal Methods Europe (FME), Ozford, UK,
LNCS 1051. Springer, 1996.

5. Dexter Kozen and Jerzy Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 14, pages 789—
840. Elsevier, Amsterdam, 1990.

6. Arnd Poetzsch-Heffter and Peter Miiller. A programming logic for sequential Java. In S. D.
Swierstra, editor, Proceedings, Programming Languages and Systems (ESOP), Amsterdam, The
Netherlands, LNCS 1576, pages 162-176. Springer, 1999.

7. Wolfgang Reif. The KIV-approach to software verification. In M. Broy and S. Jahnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software — Final Report,
LNCS 1009. Springer, 1995.

8. Kurt Stenzel. Verification of Java Card programs. Technical Report 2001-5, Institut fiir Informatik,
Universitat Augsburg, 2001.



