
Handling Java's Abrupt Termination in aSequent Cal
ulus for Dynami
 Logi
Bernhard Be
kert and Bettina SasseUniversity of KarlsruheInstitute for Logi
, Complexity and Dedu
tion SystemsD-76128 Karlsruhe, Germanybe
kert�ira.uka.de, sasse�ira.uka.deAbstra
t. In Java, the exe
ution of a statement
an terminate abruptly (besidesterminating normally and terminating not at all). Abrupt termination either leads to aredire
tion of the
ontrol
ow after whi
h the program exe
ution resumes (for exampleif an ex
eption is
aught), or the whole program terminates abruptly (if an ex
eptionis not
aught). Within the KeY proje
t, a Dynami
 Logi
 for Java Card has beendeveloped, as well as a sequent
al
ulus for that logi
, whi
h
an be used to verify JavaCard programs. In this paper, we des
ribe how abrupt termination is handled in that
al
ulus. The ideas behind the rules we present
an easily be adapted to other programlogi
s (in parti
ular Hoare logi
) for Java.1 Introdu
tionIn Java, the exe
ution of a statement
an terminate abruptly (besides terminatingnormally and terminating not at all). Possible reasons for an abrupt termination arefor instan
e (a) that an ex
eption has been thrown, (b) that a loop or a single loopiteration is terminated with the break resp. the
ontinue statement, and (
) that theexe
ution of a method is terminated with the return statement. Abrupt terminationof a statement either leads to a redire
tion of the
ontrol
ow after whi
h the programexe
ution resumes (for example if an ex
eption is
aught), or the whole programterminates abruptly (if an ex
eption is not
aught).In [2℄ a Dynami
 Logi
 for Java Card (Java Card DL) has been presented,as well as the basi
 rules of a sequent
al
ulus for Java Card DL that
an be usedto verify Java Card programs. In this paper, we give a detailed des
ription of howabrupt termination is handled in that
al
ulus. The basi
 prin
iples of the rules wepresent
an easily be adapted to other program logi
s (in parti
ular Hoare logi
) forJava.The basi
 idea of our approa
h, whi
h helps to keep the
al
ulus's rules simple,is to give an abruptly terminating statement the same semanti
s as that of a non-terminating statement. As usual in Dynami
 Logi
s, the semanti
s of a program isa partial fun
tions between states. Neither the fa
t that an abrupt termination haso

urred nor the reason for the abrupt termination are made part of the states. Thus,to de�ne the semanti
s of DL formulas, we do not need to provide additional
onstru
tsfor handling abrupt termination. Nevertheless, our
al
ulus
an handle programs thatmake use of abrupt termination to redire
t
ontrol
ow during exe
ution.We work a

ording to the prin
iple that the program states should not in
ludeinformation about
ontrol
ow: they do not
ontain a program
ounter, nor the valueof the
ondition in an if-else statement that has just been evaluated, nor the reasonfor the termination of a statement.

6 B. Be
kert and B. SasseA di�erent approa
h is used in [3℄, where the semanti
s of a program is not afun
tion between states but from states to pairs
onsisting of a state and a reasonfor termination, making the reason for
ompletion e�e
tively part of the �nal stateof a statement. Other related work in
ludes [6℄ and [8℄, where program logi
s for(subsets of) Java are des
ribed.The stru
ture of this paper is as follows: In Se
tion 2, we shortly des
ribe theba
kground and motivation of our work. Syntax and semanti
s of Java Card DL areintrodu
ed in Se
tion 3; for details, the reader is referred to [2℄. The rules for handlingabrupt termination are given in Se
tion 4. In Se
tion 5, we present an example forthe appli
ation of these rules.2 Ba
kgroundThe work reported here has been
arried out as part of the KeY proje
t [1℄. Thegoal of KeY is to enhan
e a
ommer
ial CASE tool with fun
tionality for formalspe
i�
ation and dedu
tive veri�
ation and, thus, to integrate formal methods intoreal-world software development pro
esses. A

ordingly, the design prin
iples for thesoftware veri�
ation
omponent of the KeY system are:{ The programs that are veri�ed should be written in a \real" obje
t-oriented pro-gramming language (we de
ided to use Java Card).{ The logi
al formalism should be as easy as possible to use for software developers(who do not have years of training in formal methods).Sin
e Java Card is a \real" obje
t-oriented language, it has features whi
h arediÆ
ult to handle in a software veri�
ation system, su
h as dynami
 binding, aliasing,obje
t initialisation, and|the topi
 of this paper|abrupt termination. On the otherhand, Java Card la
ks some
ru
ial
ompli
ations of the full Java language su
h asthreads and dynami
 loading of
lasses. Moreover, Java smart
ards are an extremelysuitable target for software veri�
ation, as the appli
ations are typi
ally se
urity-
ri-ti
al but rather small.We use an instan
e of Dynami
 Logi
 (DL) [5℄|whi
h
an be seen as an exten-sion of Hoare logi
|as the logi
al basis of the KeY system's software veri�
ation
omponent, be
ause dedu
tion in DL is based on symboli
 program exe
ution andsimple program transformations and is
lose to a programmer's understanding ofJava Card. Also, DL has su

essfully been applied in pra
ti
e to verify softwaresystems of
onsiderable size. It is used in the software veri�
ation systems KIV [7℄and VSE [4℄ (for a programming language that is not obje
t-oriented).3 Dynami
 Logi
 for Java Card3.1 OverviewDynami
 Logi

an be seen as a modal predi
ate logi
 with a modality hp i for everyprogram p (we allow p to be any sequen
e of legal Java Card statements); hp irefers to the su

essor worlds (
alled states in the DL framework) that are rea
hableby running the program p . In standard DL there
an be several of these states (worlds)be
ause the programs
an be non-deterministi
; but here, sin
e Java Card programsare deterministi
, there is exa
tly one su
h world (if p terminates) or there is no

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 7su
h world (if p does not terminate). The formula hp i� expresses that the program pterminates in a state in whi
h � holds. A formula �! hp i is valid if for every state ssatisfying the pre-
ondition �, a run of the program p starting in s terminates, andin the terminating state the post-
ondition holds.Thus, the formula �! hp i is similar to the Hoare triple f�gp f g. But in
on-trast to Hoare logi
, the set of formulas of DL is
losed under the usual logi
al opera-tors: In Hoare logi
, the formulas � and are pure �rst-order formulas. DL allows toinvolve programs in the des
riptions � resp. of states. For example, using a program,it is easy to spe
ify that a data stru
ture is not
y
li
, whi
h is impossible in pure�rst-order logi
. Be
ause all Java
onstru
ts are available in DL for the des
ription ofstates (in
luding while loops and re
ursion) it is not ne
essary to de�ne an abstra
tdata type state and to represent states as terms of that type; instead DL formulas
an be used to give a (partial) des
ription of states, whi
h is a more
exible te
hniqueand allows to
on
entrate on the relevant properties of a state.3.2 Syntax of Java Card DLAs said above, a dynami
 logi
 is
onstru
ted by extending some non-dynami
 logi
with modal operators of the form hp i. The non-dynami
 base logi
 of our DL is atyped �rst-order predi
ate logi
. We do not des
ribe in detail what the types of ourlogi
 are (basi
ally they are identi
al with the Java types) nor how exa
tly terms andformulas are built, as this is not relevant for the handling of abrupt termination. Thede�nitions
an be found in [2℄. Note, that terms (whi
h we often
all \logi
al terms"in the following) are di�erent from Java expressions; they never have side e�e
ts.In order to redu
e the
omplexity of the programs o

urring in DL formulas, weintrodu
e the notion of a program
ontext. The
ontext
an
onsist of any legal JavaCard program, i.e., it is a sequen
e of
lass and interfa
e de�nitions. Syntax andsemanti
s of DL formulas are then de�ned with respe
t to a given
ontext; and theprograms in DL formulas are assumed not to
ontain
lass de�nitions.A
ontext must not
ontain any
onstru
ts that lead to a
ompile-time error orthat are not available in Java Card.1The programs in DL formulas are basi
ally exe
utable Java Card
ode; as saidabove, they must not
ontain
lass de�nitions but
an only use
lasses de�ned inthe program
ontext. We introdu
ed two additional
onstru
ts that are not availablein plain Java Card but are ne
essary for
ertain rule appli
ations: Programs
an
ontain a spe
ial
onstru
t for method invo
ation (see below), and they
an
ontainlogi
al terms. These extensions are not used in the input formulas, they o

ur onlywithin proofs, i.e., we prove properties of pure Java Card programs.Example 1. The statement i=0; may be used as a program in a DL formula althoughi is not de
lared as a lo
al variable.The statement break l; is not a legal program be
ause su
h a statement is onlyallowed to o

ur inside a blo
k labelled with l. A

ordingly, l:{break l;} is a legalprogram and
an be used in a DL formula.1 An additional restri
tion is that a program
ontext must not
ontain inner
lasses (this restri
tionis \harmless" be
ause inner
lasses
an be removed with a stru
ture-preserving program transfor-mation and are rarely used in Java Card anyway).

8 B. Be
kert and B. SasseThe purpose of our �rst extension is the handling of method
alls. Methods areinvoked by synta
ti
ally repla
ing the
all by the method's implementation. To handlethe return statement in the right way, it is ne
essary (a) to re
ord the obje
t �eldor variable x that the result is to be assigned to, (b) to re
ord the old value oldof this, and (
) to mark the boundaries of the implementation prog when it issubstituted for the method
all. For that purpose, we allow statements of the form
all(old,x){prog} to o

ur in DL programs.The se
ond extension is to integrate logi
al terms in programs
ontained in DLformulas (not in the program
ontext). This is ne
essary to be able to repla
e Javaexpressions with possible side e�e
ts by a logi
al term of the same type. However,sin
e the value of logi
al terms
annot and must not be
hanged by a program, alogi
al term
an only be used in positions where a final lo
al variable
ould be useda

ording to the Java language spe
i�
ation (the value of lo
al variables that arede
lared final
annot be
hanged either). In parti
ular, logi
al terms
annot be usedas the left hand side of an assignment.3.3 Semanti
s of Java Card DLThe semanti
s of a program p is a state transition, i.e., it assigns to ea
h state s theset of all states that
an be rea
hed by running p starting in s. Sin
e Java Cardis deterministi
, that set either
ontains exa
tly one state (if p terminates normally)or is empty (if p does not terminate or terminates abruptly). The set of states ofa model must be
losed under the rea
hability relation for all programs p , i.e., allrea
hable states must exist in a model (other models are not
onsidered).The semanti
s of a logi
al term t o

urring in a program is the same as that of aJava expression whose evaluation is free of side-e�e
ts and gives the same value as t.For formulas � that do not
ontain programs, the notion of � being satis�ed by astate is de�ned as usual in �rst-order logi
. A formula hp i� is satis�ed by a state sif the program p, when started in s, terminates normally in a state s0 in whi
h � issatis�ed. A formula is satis�ed by a model M , if it is satis�ed by one of the statesof M . A formula is valid in a model M if it is satis�ed by all states of M ; and aformula is valid if it is valid in all models.As mentioned above, we
onsider programs that terminate abruptly to be non-terminating. Thus, for example, hthrow x;i� is unsatis�able for all �. Nevertheless,it is possible to express and (if true) prove the fa
t that a program p terminatesabruptly. For example, the formulae := null ! htry{p}
at
h(Ex
eption e){}i(: (e := null))is true in a state s if and only if the program p , when started in s, terminates abruptlyby throwing an ex
eption (as otherwise no obje
t is bound to e).Sequents are notated following the s
heme�1; : : : ; m ` 1; : : : ; n ;whi
h has the same semanti
s as the formula(8x1) � � � (8xk)((�1 ^ : : : ^ m)! (1 _ : : : _ n)) ;where x1; : : : ; xk are the free variables of the sequent.

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 94 Sequent Cal
ulus Rules for Handling Abrupt Termination4.1 NotationThe rules of our
al
ulus operate on the �rst a
tive
ommand p of a program �p!. Thenon-a
tive pre�x �
onsists of an arbitrary sequen
e of opening bra
es \{", labels,beginnings \try{" of try-
at
h-finally blo
ks, and beginnings \
all(: : :){" ofmethod invo
ation blo
ks. The pre�x is needed to keep tra
k of the blo
ks that the(�rst) a
tive
ommand is part of, su
h that the abruptly terminating statementsthrow, return, break, and
ontinue
an be handled appropriately.2 The post�x !denotes the \rest" of the program, i.e., everything ex
ept the non-a
tive pre�x andthe part of the program the rule operates on. For example, if a rule is applied to thefollowing Java blo
k operating on its �rst a
tive
ommand i=0;, then the non-a
tivepre�x � and the \rest" ! are the marked parts of the blo
k:l:{try{| {z }� i=0; j=0; }finally{ k=0; }}| {z }!4.2 Loop RulesDue to spa
e restri
tions, we present only one spe
i�
 rule for while loops to demon-strate the properties of loop rules. for and do-while loops are handled analogously.The following rule \unwinds" while loops. Its appli
ation is the prerequisite forsymboli
ally exe
uting the loop body. These \unwind" rules allow to handle whileloops if used together with indu
tion s
hemata for the primitive and the user de�nedtypes (see the example in Se
tion 5).� ` (h� if(
)l0:{l00:{p0} l1:� � � ln:while(
){p }} !i�)� ` (h� l1:� � � ln:while(
){p } !i�) (R1)where{ l0 and l00 are new labels,{ p0 is the result of (simultaneously) repla
ing in p(a) every break li (for 1 � i � n) and every break (with no label) that has thewhile loop as its target by break l0, and(b) every
ontinue li (for 1 � i � n) and every
ontinue (with no label) thathas the while loop as its target by break l00.3The list l1:; : : : ;ln: usually has only one element or is empty, but in general a loop
an have more than one label.In the \unwound" instan
e p0 of the loop body p , the label l0 is the new target forbreak statements and l00 is the new target for
ontinue statements, whi
h both had2 In DL versions for simple arti�
ial programming languages, where no pre�xes are needed, anyformula of the form hp q i�
an be repla
ed by hp ihq i�. In our
al
ulus, splitting of h�pq!i� intoh�p ihq!i� is not possible (unless the pre�x � is empty) be
ause �p is not a valid program; andthe formula h�p!ih�q!i�
annot be used either be
ause its semanti
s is in general di�erent fromthat of h�pq!i�.3 The target of a break or
ontinue statement with no label is the loop that immediately en
losesit.

10 B. Be
kert and B. Sassethe while loop as target before. This results in the desired behaviour: break abruptlyterminates the whole loop, while
ontinue abruptly terminates the
urrent instan
eof the loop body.A
ontinue with or without label is never handled by a rule dire
tly, be
ause it
an only o

ur in loops, where it is always transformed into a break by the loop rules.4.3 Rules for the Abruptly Terminating StatementsPossible Combinations of Pre�x and Abruptly Terminating Statement. Inthe following, we present rules for
ombinations of pre�x type (beginning of a blo
k,method invo
ation or try) and abruptly terminating statement (break, return orthrow). Due to restri
tions of the language spe
i�
ation, the
ombination methodinvo
ation/break does not o

ur. Also, swit
h statements, whi
h may
ontain abreak, are not
onsidered here; they are transformed into a sequen
e of if statements.Evaluation of Arguments. The arguments ex
 and val of statements throw ex
resp. return val must already be evaluated (they must be logi
al terms) before theappropriate rule for redire
ting the
ontrol
ow
an be applied to the abruptly termi-nating statement. Otherwise, a rule su
h as the following (rule (R2)) has to be used�rst, whi
h then allows the appli
ation of other rules that evaluate the expression ex
 .� ` h� {x =ex
 ; throw x ;} !i�� ` h� throw ex
 ; !i� (R2)where x is a new variable of the same type as the expression ex
 . Sin
e, in this paperwe fo
us on the handling of abrupt termination here and not on the evaluation ofexpressions, we assume in the following that this has already been done.We also do not
onsider the problem of unde�ned expressions in this paper, whoseevaluation results in an ex
eption being thrown (e.g., the expression o.a if the valueof o is null). If an expression e o

urs that may be unde�ned, the rules have a furtherpremiss � ` isdef (e) in the full version of the
al
ulus.Rule for Method Call/return. The rule for this
ombination symboli
ally exe
utesevery step the virtual ma
hine does when a method invo
ation is terminated: Thereturn value is assigned to the lo
ation re
orded in the method
all pre�x and thisis restored to the value it had before method invo
ation.� ` h� x =y ; this=old; !i�� ` h�
all(old, x):{return y ; pgm }!i� (R3)In pure Java it is not possible to expli
itly assign a value to this. Our assignmentrule, however,
an handle su
h a statement and produ
es the desired e�e
t. The \rest"program pgm of the method body, whi
h is not exe
uted, may be empty.Rule for Method Call/throw. In this
ase, the method is terminated and thisis restored to its old value, but no return value is assigned. The throw statement

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 11remains un
hanged (i.e., the ex
eption is handed up to the invoking program).� ` h� this=old; throw ex
 ; !i�� ` h� method
all(old, x):{throw ex
 ; pgm }!i� (R4)Again, the \rest" pgm of the method body, whi
h is not exe
uted, may be empty.Rules for try/throw. The following rules allow to handle try-
at
h-finally blo
ksand the throw statement. These are simpli�ed versions of the a
tual rules that applyto the
ase where there is exa
tly one
at
h
lause and one finally
lause.� ` instan
eof (ex
 ; T) � ` (h� try{e=ex
 ;q }finally{r} !i�� ` (h� try{throw ex
; p }
at
h(T e){q }finally{r} !i�) (R5)� ` :instan
eof (ex
 ; T) � ` (h� r ; throw ex
 ; !i�)� ` (h� try{throw ex
 ; p }
at
h(T e){q }finally{r} !i�) (R6)Rule (R5) applies if an ex
eption ex
 is thrown that is an instan
e of ex
eption
lass T , i.e., the ex
eption is
aught; otherwise, if the ex
eption is not
aught, rule (R6)applies.Rules for try/break and try/return. A return or a break statement within atry-
at
h-finally statement
auses the immediate exe
ution of the finally blo
k.Afterwards the try statement terminates abnormally with the break resp. the returnstatement (a di�erent abruptly terminating statement in the finally blo
k takespre
eden
e). This behaviour is simulated by the following two rules:� ` h� r break l ; !i�� ` h� try{break l ; p }
at
h(T ex
){q }finally{r} !i� (R7)� ` h� r return v ; !i�� ` h� try{return v ; p }
at
h(T ex
){q }finally{r} !i� (R8)Rules for blo
k/break, blo
k/return, and blo
k/throw. Rules (R9) and (R10)apply to blo
ks whi
h are terminated by a break statement without label resp. witha label l mat
hing one of the labels l 1; : : : ; l k of the blo
k (k � 0).� ` h� !i�� ` h� l 1: � � � l k:{break; pgm } !i� (R9)� ` h� !i�� ` h� l 1: � � � l k:{break l ; pgm } !i� where l 2 fl 1; : : : ; l kg (R10)

12 B. Be
kert and B. SasseThe following rules handle labelled and unlabelled blo
ks that are abruptly ter-minated by a break statement with a label l not mat
hing any of the labels of theblo
k (Rule (R11)), or by a return or throw statement (Rules (R12) resp. (R13)).� ` h� break l ; !i�� ` h� l 1: � � � l k:{break l ; pgm } !i� where l 62 fl 1; : : : ; l kg (R11)� ` h� return v ; !i�� ` h� l 1: � � � l k:{return v ; pgm } !i� (R12)� ` h� throw e ; !i�� ` h� l 1: � � � l k:{throw e ; pgm } !i� (R13)In all the rules above, the program pgm (that is not exe
uted) may be empty.Rules for Empty Blo
ks. Rule (R14) applies to empty try blo
ks, whi
h terminatenormally. There are similar rules for empty blo
ks and empty method invo
ations.� ` (h� r !i�)� ` (h� try{}
at
h(T e){q }finally{r} !i�) (R14)5 ExampleAs an example, we use the
al
ulus presented in the previous se
tion to verify that,if the programwhile (true) {if (i==10) break;i++;}is started in a state in whi
h the value of the variable i is between 0 and 10, then itterminates normally in a state in whi
h the value of i is 10.4 That is, we prove thatthe sequen
e 0 � i ^ i � 10 ` hpwhileii := 10 (1)is valid, where pwhile is an abbreviation for the above while loop. Instead of proving (1)dire
tly, we �rst use indu
tion to derive the sequen
e` (8n)((n � 10 ^ i := 10� n)! hpwhileii := 10) (2)as a lemma. It basi
ally expresses the same as (1), the di�eren
e is that its formallows a proof by indu
tion on n. The introdu
tion of this lemma is the only step inthe proof where an intuition for what the Java Card program pwhile a
tually doesis needed and where a veri�
ation tool may require user intera
tion.4 This example program was presented in [3℄.

Handling Java's Abrupt Termination in a Sequent Cal
ulus for Dynami
 Logi
 13

` (8n)((n � 10 ^ i := 10� n)! hpwhileii := 10) (2)indu
tionBase
ase:n := 0i := 10 ` hpwhileii := 10 (3)while (R1)i := 10 `hif(true) l1:{l2:{ : : : }ii := 10 (4)ifi := 10 `hl1:{l2:{if (i==10) break l1; : : : }ii := 10ifi := 10 `hl1:{l2:{break l1; i++;}pwhile}ii := 10 (5)break (R11)i := 10 `hl1:{break l1; i++; pwhile}ii := 10 (6)break (R10)i := 10 ` hii := 10 (7)empty prog.i := 10 ` i := 10 (8)

Step
ase:n! n+ 1n � 9; i := 9� n ` hpwhileii := 10while (R1)n � 9; i := 9� n `hif(true) l1:{l2:{ : : : }ii := 10ifn � 9; i := 9� n `hl1:{l2:{if (i==10) : : : }ii := 10ifn � 9; i := 9� n `hl1:{l2:{i++;}pwhile}ii := 10++ operatorn � 9; i := 10� n `hl1:{l2:{} pwhile}ii := 10empty blo
kn � 9; i := 10� n `hpwhileii := 10indu
tion hypothesis

Fig. 1. Stru
ture of the proof for sequent (1).The derivation of (2) is shown s
hemati
ally in Figure 1. In the following, wedes
ribe the base
ase n = 0 of the indu
tion in detail. The step
ase is similar (themain di�eren
e is that it
loses with an appli
ation of the indu
tion hypothesis whilethe base
ase
loses with an axiomati
 sequent).The �rst sequent whi
h appears in the base
ase after applying the indu
tion ruleand some simpli�
ations isi := 10 ` hwhile (true) {if (i==10) break; i++;}ii := 10 (3)An appli
ation of the rule for while loops (R1) results in the new proof obligationi := 10 `hif (true) l1:{l2:{if (i==10) break l1; i++;} pwhile}ii := 10 (4)Here, two new labels are introdu
ed: l1 is the target for break statements in the loopbody and l2 is the target for
ontinue statements (the latter does not o

ur in thisexample).The next step is to use the rule for if statements twi
e. After the se
ond appli-
ation, we get the sequenti := 10 ` hl1:{l2:{break l1; i++} pwhile}ii := 10 (5)

14 B. Be
kert and B. Sassein whi
h the next exe
utable statement is break l1. Now, the rule for labelled breakstatements in a blo
k with a non-mat
hing label (R11) has to be applied, whi
heliminates the blo
k labelled with l2:i := 10 ` hl1:{break l1; pwhile}ii := 10 (6)Then, the rule for labelled break statements in a blo
k with a mat
hing label (R10)is used. The result is i := 10 ` hi(i := 10) (7)This simpli�es with the rule for the empty program toi := 10 ` i := 10 (8)and
an thus be shown to be valid.After the lemma (2) has been proved by indu
tion, it
an be used to prove theoriginal proof obligation (1). First, we use a quanti�er rule to instantiate n with10� i. The result is0 � i ^ i � 10 ` (10� i � 10 ^ i := 10� (i� 10)) ! (hpwhileii := 10)whi
h
an be simpli�ed to0 � i ^ i � 10 ^ i := i ` (hpwhileii := 10) (9)And, sin
e (9) is derivable, the original proof obligation (1) is derivable as well, be
ausethe trivial equality i := i
an be omitted.Referen
es1. Wolfgang Ahrendt, Thomas Baar, Bernhard Be
kert, Martin Giese, Elmar Habermalz, ReinerH�ahnle, Wolfram Menzel, and Peter H. S
hmitt. The KeY approa
h: Integrating obje
t orienteddesign and formal veri�
ation. In M. Ojeda-A
iego, I. P. de Guzman, G. Brewka, and L. M.Pereira, editors, Pro
eedings, Logi
s in Arti�
ial Intelligen
e (JELIA), Malaga, Spain, LNCS 1919.Springer, 2000.2. Bernhard Be
kert. A Dynami
 Logi
 for the formal veri�
ation of Java Card programs. InPro
eedings, Java Card Workshop (JCW), Cannes, Fran
e, LNCS 2014. Springer, 2001. To appear.Available at i12www.ira.uka.de/~key.3. Marieke Huisman and Bart Ja
obs. Java program veri�
ation via a Hoare logi
 with abrupttermination. In Pro
eedings, Fundamental Approa
hes to Software Engineering (FASE), Berlin,Germany, LNCS 1783. Springer, 2000.4. Dieter Hutter, Bruno Langenstein, Claus Sengler, J�org H. Siekmann, and Werner Stephan. De-du
tion in the Veri�
ation Support Environment (VSE). In M.-C. Gaudel and J. Wood
o
k,editors, Pro
eedings, International Symposium of Formal Methods Europe (FME), Oxford, UK,LNCS 1051. Springer, 1996.5. Dexter Kozen and Jerzy Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Handbook ofTheoreti
al Computer S
ien
e, volume B: Formal Models and Semanti
s,
hapter 14, pages 789{840. Elsevier, Amsterdam, 1990.6. Arnd Poetzs
h-He�ter and Peter M�uller. A programming logi
 for sequential Java. In S. D.Swierstra, editor, Pro
eedings, Programming Languages and Systems (ESOP), Amsterdam, TheNetherlands, LNCS 1576, pages 162{176. Springer, 1999.7. Wolfgang Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen, editors,KORSO: Methods, Languages, and Tools for the Constru
tion of Corre
t Software { Final Report,LNCS 1009. Springer, 1995.8. Kurt Stenzel. Veri�
ation of Java Card programs. Te
hni
al Report 2001-5, Institut f�ur Informatik,Universit�at Augsburg, 2001.

