Second-Order Principles in Specification
Languages for Object-Oriented Programs

Bernhard Beckert! and Kerry Trentelman?

! Department of Computer Science, University of Koblenz-Landau
beckert@uni-koblenz.de
2 Automated Reasoning Group, Australian National University
Kerry.Trentelman@anu.edu.au

Abstract. Within the setting of object-oriented program specification
and verification, pointers and object references can be considered as re-
lations between the elements of a data structure. When we specify prop-
erties of these data structures, we often describe properties of relations.
Hence it is important to be able to talk about relations and their proper-
ties when specifying object-oriented programs or programs with pointers.
Many interesting properties of relations such as transitive closure, finite-
ness, and generatedness are not expressible in first-order logic (FOL);
hence neither are they expressible in first-order fragments of specifica-
tion languages. In this paper we give an overview of the different ways
such properties can be expressed in various logics, with a particular em-
phasis on extensions of FOL, i.e. transitive closure logic, fixed-point logic,
and first-order dynamic logic. Within the paper we also discuss which of
these extensions already are — or in fact should be — implemented within
specification languages. We feel that such a discussion is necessary since
it is often the case that when an extension of FOL is implemented within
a specification language it is done so in an ad hoc manner or the under-
pinning logical concepts are not well documented..

1 Introduction

When it comes to specifying object-oriented programs, we need to be able to:
(a) refer to a set of particular objects in an object structure; and (b) talk about
the properties of the relation between the objects. As an example, consider the
definition of sets of related objects which are used in modifies clauses (a modifies
clause allows one to specify those parts of a program state that are exclusively
allowed to change [28, 6]). To illustrate, suppose we have a linked list with objects
of class Node having a next field. For a method say, sortInPlace, it would be
useful to be able to write 1list.next* in the method’s modifies clause, where *
denotes some form of transitive closure. Its semantic intention would then be
that the set of locations that are reachable from 1ist using the field next may
be modified during the method’s execution. One may also wish to specify that
the list is not cyclic; assuming that this is the case, a field such as position()
may be introduced such that it returns a reference to a node at a given position.
If the position is less than or greater than 1, then the field returns null.

All specification languages have some form of modification which allows them
to extend beyond the limitations of first-order logic. For example the query lan-
guage SQL implements fixed-point logic, the Object Constraint Language OCL
uses the iterate and let constructs, the Common Algebraic Specification Lan-
guage CASL uses the notion of freeness, and the Java Modeling Language, JML,
incorporates built-in recursion. However it is often the case that the modifica-
tions made to specification languages are done in a “make-do” fashion and their
designers are unaware of the logic underpinning their decisions. In this paper we
attempt to clarify what is really going on within these specification languages.

Our work is carried out in the framework of the KeY project. The KeY system
is a commercial CASE tool augmented with specification and deductive verifi-
cation functionalities [1] (see website at www.key-project.org). KeY uses the
Unified Modeling Language UML for visual modelling of designs and specifica-
tions, along with OCL for specifying constraints and other expressions attached
to the models [29]. The target language for program verification is Java. Both
the specification language OCL and the verification language of the KeY tool —
namely, dynamic logic — have second-order elements (as described in Section 4).
Our case study experience has shown that often there is a need for expressing
second-order principles in a more usable and/or flexible way; this need provides
the motivation behind our investigations. In particular, a modifies clause has
been recently implemented within the KeY system [6]. As the above example
demonstrates, it would be advantageous to be able to express transitive closure
in OCL in an easier fashion than the current method — which is by using the
OCL iterate construct — described in Section 4.

The paper is organised as follows: in Section 2 we look at how one goes about
expressing properties of relations and composing relations. We discuss various
properties which may or may not be expressed in first-order logic. This logic’s
lack of expressiveness leads us to an examination of a number of extensions
of first-order logic in Section 3. In Section 4 we discuss several specification
languages and the approaches they take in determining properties of relations.
Finally, we draw conclusions in Section 5.

2 Relations and Relational Formulae in a FOL Setting

We are interested in both expressing properties of relations and composing rela-
tions in relational formulae. In this section we provide the basic definitions for
these notions and briefly discuss relational algebra. We conclude by describing a
number of properties which can or cannot be expressed in first-order logic. How-
ever, before we begin, we need to stipulate what we mean by a relation within
an object-oriented language.

Following [30] we say that a relation expresses (the symmetric form of) those
associations which are represented in a programming language as pointers or
object references. Hence we model both object references and pointers as first-
order functions on objects.

A property P of a relation R (a formula with two free variables) is said to
be expressible if there is a closed formula ¢p(R) such that, for all models M,
the interpretation RM has property P if and only if ¢p(R) is true in M. Here
RM is the (single) interpretation of relation R in M. The formula ¢p(R) must
be effectively constructible from any given R in a uniform way. This notion is
extended to properties of tuples of relations. Formally, a property is a relation
on relations.

A composition C of relations Ry, ..., Ry is expressible if there is a formula
Yp(Ry, ..., Ry)(x,y) with free variables 2 and y such that (vp(R1,. .., Rx))M is
the relation composed from R, ..., RM. Here (¢p(Ry, ..., R;))M is the (single)
interpretation of ¢p(R1,..., R;)(z,y) in M. The formula ¢p(Ry, ..., Rj) must
be effectively constructible from any given Rq, ..., Ry in a uniform way. Formally,
a composition is a function on relations.

Note that the constructibility of ¢ and @ neither implies the decidability
of P, nor respectively the computability of C. This is because the validity of
the constructed formula is in general undecidable. Moreover, the composition of
relations may be iterated, but the properties themselves cannot be iterated.

Relational algebra is a formal system used for manipulating relations. The set
of its operations may vary per definition, but it usually includes set operations —
since relations are sets of tuples — and special operators defined for relations
such as select, project, and join. The select operator selects tuples from a relation
whose attributes meet the selection criteria (which is normally expressed as a
predicate). The project operator selects certain attributes from a single relation,
discarding the rest. The join operator composes two relations. Relational algebra
forms the basis of a multitude of relational query languages; these are used in
order to manipulate the data of a relational database. We discuss aspects of one
of the standard languages, SQL, in Section 4.

Examples of properties expressible in FOL are reflexivity and transitivity;
concatenation is an expressible composition: We say that R is reflexive if Vz. zRz
and R is transitive if VaVyVz. (zRy A yRz — zRz). The concatenation of two
relations R and S is expressible by Ro S = {(z,2) | Jy. xRy A ySz}. Note that
we use the notation 2Ry for (x,y) € R and R(x,y) respectively.

On the other hand, properties that demand the finiteness of certain sets of
elements are not expressible. For example: “all elements are at most related to a
finite number of other elements”. Furthermore, many properties that demand the
existence of a finite but unknown number of elements which are related in a cer-
tain way are not expressible. For example quantifications such as In. 3z ...z,
(which are routinely used in mathematical notation) do not exist in FOL and
often cannot be expressed by any other means.

Another typical but important example is transitive closure. The transitive
closure of a relation R is the relation TC(R) such that for all elements x and y the
relation TC(R)(x,y) holds if and only if there is a finite number of intermediate
points zg,..., 2, where n € N with x = 2o, y = 2z, and z,_;Rz; for 1 <i<n.
Accordingly, one cannot express in FOL that some point b is R-reachable from
some other point a, i.e. TC(R)(a,b). An alternative — yet equivalent — definition

of transitive closure TC(R) is: (1) TC(R) is transitive; (2) R C TC(R) and;
(3) if R’ is transitive and R C R’ then TC(R) C R’. The latter condition is not
expressible in FOL as it implicitly quantifies over R’.

It is important to note, however, that the transitive closure of a structure
can be expressed in a FOL setting if the structure is both finite and acyclic (see
Section 4).

3 Extensions of FOL

In this section we investigate a number of extensions of first-order logic including
transitive closure logic, fixed-point logic, and first-order dynamic logic. These
extensions allow us to express various properties and compositions of relations
that cannot be expressed using first-order logic alone.

Transitive Closure Logic. First-order logic extended by a transitive closure
operator — written FO(TC') and called transitive closure logic — was first in-
troduced by Immerman [16]. If we let the formula ¢(Z,§) represent a binary
relation on two n-tuples of domain variables — which range over the universe
of a Kripke structure — then the reflexive transitive closure of this relation is
expressed by TCz 536(Z,7), or more succinctly T'C'¢. Strict transitive closure is
denoted TC?®¢. This represents the transitive closure of ¢ as opposed to the
reflexive transitive closure of ¢. The restriction FO?(TC) is such that only
two variables x and y may appear in a formula ¢. For example, the formula
Jy. ((TCyyRa(x,y))(z,y) Ap(y)) expresses “there is a path of a-edges from x
to a vertex where p holds”.

Reachability Logic RL is a fragment of FO?(TC) with an unbounded number
of boolean variables in addition to the two domain variables = and y [3]. Boolean
variables are first-order variables restricted to range over 0 and 1. Formulae of the
logic are constructed using an adjacency formula §(z, b,y,b’) which is a binary
relation between two n-tuples (x,by,...,b,—1) and (y,b],...,b),_;). This is in
fact a disjunction of conjunctions where each conjunction contains at least one of
the following: = y, R, (x,y), or R, (y, x) for some binary relation R,. Hence the
adjacency formula necessarily implies that there is an edge from x to y, or an edge
from y to z, or that x is equal to y. Conjuncts may also contain expressions of the
form —(b; = b;), b; = 0, or b; = 1. For ¢ € RL the formulae NEXT(6)¢ (denoting
Fy. (0(z,0,y,1) A ly/x])), REACH (6)¢ (i-e., Fy. (TC)(6(x,0,y,1) A ¢y/x])),
and CYCLE(9) (i.e., (TC®5)(6(x,0,2,0))) are also formulae of RL. Hence it is
possible to describe in this logic: steps out of the current vertex x, paths out
of x, and cycles from x back to itself.

Importantly, the boolean variables allow Propositional Dynamic Logic (PDL)
and the variation of Computational Tree Logic, CTL", to be embedded in RL.
Consider the PDL formula («)p, which is a true property of a state s whenever
there is some state ¢ in which p holds that is reachable from s by execution of a.
The regular expression « can be translated into an non-deterministic finite au-
tomaton N, with n states. Within the framework of RL the adjacency formula

of o is a translation of the transition relation of N, whereby each state of the
automaton is represented by k& = 1 + log n bits with 0 and 1 representing the
initial and final states respectively. For example, if « is the sequential composi-
tion mp;m then a transition from state s to state ¢ in Ny ., is represented by
the adjacency formula Ry (z,y) Abi...by = sV Ry (z,y) Ab)...b, =t where
by ...by is the initial state and b] ... b}, is the final state. Hence an example of a
formula in RL is REACH (§)p where §(x, by, ba,y, b, b5) is (Ry, (2, y) A brby =
00 Abyby = 01) V (R, (z,y) Abrby = 01 Abyb, = 11). This has the meaning that
it is possible to take the path of a mg-edge followed by a m-edge to a point where
p holds; this is just (m; 71)p in PDL.

Regular Expressions Over Relations. Kleene algebras are algebraic struc-
tures that generalise the operations of regular expressions. A Kleene algebra
consists of a set K with binary + and - operations, a unary operation *, and
constants 0 and 1. In general the algebra’s operational semantics depends on the
model, but typically * involves some notion of finite iteration. A Kleene algebra
gives rise to a relational algebra extended with reflexive transitive closure when
the following interpretations of the operations are made: operation - as join; el-
ement 0 as the null/empty relation; element 1 as the identity relation; and * as
the reflexive transitive closure of a relation.

As mentioned previously, an extension of first-order logic with the ability to
write list.next® — or even more generally, to be able to use regular expressions
to describe terms or term sets — would be very useful. There exist approaches
which allow an extended syntax for terms in first-order logic. For example in [10]
recursive term definitions are added to first-order logic.

Rather than using regular expressions and Kleene algebras to extend FOL, it
is possible to manipulate FOL formulae such that they fulfill a purpose similar
to that of regular expressions.

Two ways to define words and/or formal languages are by using: (1) predicate
logics, such that each model corresponds to a word in the language; and (2) modal
logics, such that each path in a Kripke structure corresponds to a word. There is a
large amount of literature on the latter. For (1), we fix a family of signatures X 4.
They contain the binary relation symbol <, a constant symbol first, a unary
postfix function 41, and for every a in the alphabet A, we have the unary relation
symbol Q. The set of words over A is denoted A*. For w € A*\{A}, where A is
the empty word, the associated X 4-structure is denoted M, (the empty model
is not possible). The formula M, = Qq(first) holds true if and only if the first
letter of w is a. The formula M,, = Qp(+1) holds true if and only if the second
letter of w is b, etc. For (2), we express information about semi-structured data —
represented as a graph — by imposing constraints on the possible paths through
the graph. Such a constraint might be “all objects reachable by a path p are
also reachable via a path ¢”, where p and ¢ are sequences of labels possibly
involving regular expressions. In order to check that the constraints hold, we re-
cast them as model or satisfiability checking tasks in some logic (usually modal).

For example, see [2] where this is done using propositional dynamic logic, and [12]
where this is done using monadic second-order logic.

Fixed-Point Logic. Fixed-point logics are particularly well-suited for mod-
elling recursion and have consequently found applications in various areas of
computer science such as database theory, finite model theory and, formal veri-
fication. Following [22, 13], for a set A and a function F' : p(A) — p(A), a fixed-
point P of F is any set P C A such that F(P) = P. A fixed point @ is called
the least (greatest) fixed-point of F' if and only if Q@ C P (P C @) holds for all
fixed points P of F. The function F is said to be monotone if F(X) C F(Y) for
all X C Y C A. A well-known theorem by Knaster and Tarski states that every
monotone function has a least and a greatest fixed-point [33]. For limit ordi-
nals A and the monotone function F', consider the sequence (X%),eorq of sets
X% C A defined by (i) X° =0, (ii) X+ = F(X?), and (iii) X* = U£</\ X¢.
A fixed-point X *° is reached in this sequence whereby X = X for the least
ordinal o such that X = X+ This fixed-point X is called the inductive
fixed-point of F. A second theorem by Knaster and Tarski states that the least
and inductive fixed-points coincide, hence any least fixed-point of a monotone
function can be defined inductively by a sequence of sets as described above.
Dually, the greatest fixed-point of a monotone function F' can be defined induc-
tively using the sequence (X)acora of sets X C A defined by (i) X° = A,
(ii) Xt = F(X%), and (iii) X* = Ne<x X¢. Note that if F is inflationary
(i.e. X C F(X) for all X C A) rather than monotone, then X is called the
inflationary fixed-point of F'. Next let 7 be a signature, i.e. a finite set of relation
symbols, and let A be a structure consisting of a universe A and interpretations
for each relation symbol in 7. Consider a first-order formula ¢(R,Z) with R a
k-ary free relation symbol not occurring in 7 and a k-tuple of free variables.
On A the formula ¢ induces a fixed-point operator F, : p(A4*) — p(A*) such
that F,(R) ={a | (A, R) = ¢(a)}. Here (A, R) |= ¢(a) means that formula ¢ is
satisfied by the interpretation that assigns to each variable x; of T the element a;
of a € AF.

Below we investigate three fundamental fixed-point logics: monotone, least,
and inflationary fixed-point logics. First of all we discuss monotone fixed-point
logic. Using this logic we can nest inductive definitions; from one fixed-point
built-up from a formula we can define another.

Monotone Fized-Point Logic. Monotone Fixed-Point Logic MFP is the extension
of FOL by the following rule: if R is a k-ary free relation variable, T is a k-tuple of
free first-order variables, t is a k-tuple of terms and (R, T) is a formula such that
the corresponding operator F, is monotone on all structures, then [Iifpy ,¢]()
is also a formula. For any structure .4 that provides an interpretation of the
free variables of ¢ except for 7, A |= [Ifp g z](#) if and only if the interpretation
of £ in A is in the least fixed-point of the operator defined by p(R,Z). As we
have mentioned previously, the least and greatest fixed-point of any monotone
operator always exists. However it is undecidable as to whether a formula induces

a monotone operator. In order to guarantee monotonicity on the operator one
can restrict the formulae such that they are positive in the relation variable R.
This leads us to the definition of least fixed-point logic.

Least Fized-Point Logic. Least Fixed-Point Logic LFP is the extension of FOL
by the following rule: if R is a k-ary free relation variable, is a k-tuple of free
first-order variables, t is a k-tuple of terms and (R, Z) is a formula in which R oc-
curs only positively, then [Ifpp z¢](f) is also a formula. For any structure A that
provides an interpretation of the free variables of ¢ except for Z, A |= [Ifp g z](%)
if and only if the interpretation of £ in A is in the least fixed-point of the operator
defined by ¢(R,). Consider, for example, the directed graph (V, E), where V is
a set of n vertices and E C V x V is a set of ordered pairs, i.e. edges. Then the
transitive closure of E is defined as [lifpg , , (zEy V 32. (xRz A 2Ry))|(x, y).

Inflationary Fixzed-Point Logic. Inflationary Fixed-Point Logic IFP can be con-
sidered the simplest non-monotone fixed-point logic. It is the extension of first-
order logic by the following rule: if R is a k-ary free relation variable, Z is a
k-tuple of free first order variables, ¢ is a k-tuple of terms and ¢(R,Z) is a
formula, then [ifpg z](f) is also a formula. Let A be a structure which pro-
vides an interpretation of the free variables of ¢ except for . The operator
I,(R)={a|ae Ror (A R) = ¢(a)} is inflationary and therefore has an infla-
tionary fixed-point R*. Hence A = [ifp z](f) if and only if the interpreta-
tion of t in A is in the inflationary fixed-point. An interesting result is that
both least and inflationary fixed-point logics are equally expressive on arbitrary
structures [21].

First-Order Dynamic Logic. The principle of dynamic logic (DL) is to fa-
cilitate the formulation of statements about program behaviour by integrating
programs and formulas within a single language (see e.g. [15,20] for general ex-
positions of DL). By permitting arbitrary programs « as actions of a labelled
multi-modal logic, dynamic logic provides formulas of the form [a]¢ and ().

When considering states during program execution as worlds of modal logic,
[a]¢ expresses that all (terminating) executions of program « lead to states in
which ¢ holds; whereas («)¢ is a true property of a state s whenever there is some
state t reachable from s by execution of program « in which ¢ holds. A Hoare-
style specification {¢}a{1} of partial correctness can be expressed as ¢ — [a]i.
In contrast to Hoare logic and temporal logic approaches to program verifica-
tion, dynamic logic permits the expression of structural relationships between
different programs by using multiple modalities. For example relative correctness
statements like {(a)¢ — (a')¢ as well as nesting are possible, as in the formula
[a](c>0— {(a/)e < d-d).

Provided that they are computable, dynamic logic can express properties of
relations that are ordinarily not expressible in pure first-order logic. For example
to express that y is reachable from x via applications of the function next (i.e.
x and y are related in the transitive closure of the relation p defined by p(u, v)
iff v = next(u)) can be expressed by (while (x # y) x := next(x))true.

4 Specification Languages

In this section we look at the approaches that specification languages take
in defining transitive closure and similar properties of relations. Most require
“hacks” to force a model’s finiteness and acyclicity before transitive closure can
be determined (an interesting and unique approach is taken by the Java Model-
ing Language JML).

Alloy. The Alloy Analyzer implements an automatic analysis method for formu-
lae of relational logic [17,18]. This logic acts as an intermediate language for the
object modelling notation Alloy. It is a first-order logic with sets and relations
whereby each formula is accompanied by a declaration that associates variables
to their types. The combination of formula and declaration is called a problem.
There are three kinds of types: set, relation, and function. Scalar variables are
treated as singleton sets and sets are encoded as “degenerate” relations. For ex-
ample, a scalar variable v of set type T can also be represented as the relational
type T'— Unit, where Unit is a special type designed for this purpose.

A “navigation” expression s.r denotes the image of a set s under a relation 7.
The encoding of sets as degenerate relations allows a uniform syntax to be given
to such expressions, i.e. if p is a person then p.mother will denote p’s mother,
whereas p.parents will denote the set of p’s parents. A transitive closure opera-
tor + is also included in Alloy. For example, the formula (p4)NId = 0 expresses
that p is acyclic. Here Id is the identity relation and 0 is the empty relation.

Because relational logic is undecidable, it is in general impossible to prove
that a formula is either consistent or valid. To determine for a given formula
whether a model exists (within a particular scope), the Alloy Analyzer places
restrictions on the size of the sets of the basic types. A model is said to be within
a scope of k if it assigns to each type a set consisting of no more than k elements.

SQL. In order to manipulate the data of a relational database, relational query
languages — based on relational algebra — are used. The database query language
SQL was adopted as an industry standard in 1986 [32]. Having undergone two
major revisions, SQL3 is now the current version.

WITH
RECURSIVE AncestorDescendant (ancestor, descendant) AS
((SELECT * FROM ParentChild)
UNION
(SELECT adl.ancestor, ad2.descendant
FROM AncestorDescendant adl, AncestorDescendant ad2
WHERE adl.descendant = ad2.ancestor))
SELECT ancestor FROM AncestorDescendant WHERE descendant = "Mary”;

Fig. 1. SQL specification.

Unlike its predecessors, SQL3 supports linear recursion; a recursive query has
the form “WITH RECURSIVE R AS r @;”, where r is the expression that you
want to recurse and R is its name that can then be used in the associated query
expression @Q. If we consider a query as a function on tables, then a recursive
query computes the “fixed-point table” [34]. Essentially, we start with R as
an empty table. We then evaluate r using the (temporary) contents of R and
replace R with this new value. As long as R™*" # R, we continue to evaluate r
and replace R by its new value. Once R™*" = R, we compute @ using the current
contents of R and output the result. The example shown in Figure 1 outlines how
we find Mary’s ancestors from the schema ParentChild(parent, child). The
first part of the recursive definition — utilising * — is the base case. Its meaning is
that all “parent/child” pairs are also “ancestor/descendant” pairs. Although
initially we know nothing about ancestor-descendant relationships, after the first
round we deduce that parents are ancestors and children are descendants. In
each subsequent round we use the facts deduced in previous rounds to get more
ancestor-descendant relationships. We eventually stop when no new facts can be
proven.

When the query @ is non-monotone, i.e. adding tuples to R might cause
some tuple to be removed from the result of @, then the fixed-point iteration
may not converge. A way to circumvent this is to construct a dependency graph
whereby: (1) each table R; is a node; (2) there is a directed arc from R; to R;
if R; is defined in terms of R;; and (3) the arc is labelled “-” if the query
defining R; is non-monotone with respect to R;, i.e. by adding something to R;
we may cause something to be removed from R;. The maximum number of
- arcs on any path from R in the dependency graph is called the stratum of
node R. A recursive query statement is said to be stratified if every node has
a finite stratum, i.e. there are no cycles containing - arcs. Hence legal SQL3
recursive queries are required to be stratified. Note that this technique can also
be used in other languages using fixed-point definitions in order to exclude non-
monotonicity cases that lead to fixed-points being undefined.

CASL. The Common Algebraic Specification Language (CASL), has been de-
veloped by CoFI, the international Common Framework Initiative for algebraic
specification and development (see website at http://www.cofi.info). The al-
gebraic approach to software specification was conceived in the early 1970s, see
for example [35]. Programs are considered as algebras consisting of datatypes
and operations; the intended behaviour of a program is specified by formulae
involving these operations. The development of dozens of languages, all with
slight variations in syntax and semantics, demanded the need for a common
framework, hence CoFI was formed. The resulting specification language CASL
features partial functions, subsorts, sort generation constraints, first-order logic,
and structural and architectural specifications [27].

In CASL datatypes are specified using the keyword type and are given in
terms of sorts (i.e. the types of values) and constructors. Datatypes may be de-
clared to be either generated or free. When a generated datatype is declared,

spec GENERATED_CONTAINER ([sort Elem] =
generated type Container ::= empty | insert(Elem; Container)
pred __is_in__: Elem x Container
Ve,e' : Elem; C : Container
e —(e is_in empty)
e c is_in insert(e’,C) & (e = €' Ve is_in O)
end

spec TRANSITIVE_CLOSURE ([sort Elem pred __R__: Elem x Elem] =
free { pred __R"__: Elem x Elem
Ve,y,z: Elem ex Ry — xRy
exRTyAyRYz—2R" 2}
end

Fig. 2. CASL specifications.

then the corresponding sort is constrained to be generated only by the declared
constructors. For example in the specification of GENERATED_CONTAINER
taken from the CASL User Manual [7] (see Figure 2), the generatedness con-
straint is such that any value of sort Container is denoted by a term built only
with operators empty, insert and variables of sort Flem.

Note that within this specification, the pairs of underscores “_” indicate
place-holders for the binary predicate is_in and the bulleted list features “ax-
ioms” which constrain the predicate. Essentially, the generatedness constraint
allows one to prove — by induction on the declared constructors — properties of
values of the sort Container. A free datatype declaration has the same inter-
pretation as the generated datatype declaration with the additional property
that all distinct constructor terms of the same sort denote distinct values.

In CASL a “freeness” constraint — using the keyword free — can be im-
posed on a predicate declaration. This has the effect that a predicate that is
consistent with the given axioms but not a consequence of the axioms will be
false; predicates hold minimally. We can see this in the specification of TRAN-
SITIVE_CLOSURE shown in Figure 2 (also taken from [7]). Here the transitive
closure of a binary relation R on some sort Elem is specified. Since predicates
hold minimally in models of free specifications, R is actually the smallest tran-
sitive relation including R.

OCL. The Object Constraint Language (OCL) [19] is a part of the Unified
Modeling Language (UML) [14]. Currently the industry standard, UML allows
software developers to graphically specify, visualise and document models of soft-
ware systems. OCL can be used to augment UML object models with additional
textual information which cannot otherwise be expressed by UML diagrams.
This additional information takes the form of side-effect-free expressions and
constraints. An expression is a specification of a value. A constraint is a restric-
tion of one or more values in (part of) the object-oriented model. The semantics
of OCL constraints is defined by an evaluation function which maps — in a given

object diagram — any constraint to one of the logical constants true, false,
and undefined. Admissible diagrams are those whereby all constraints of the
corresponding class diagram evaluate to true.

The type of an OCL expression is either pre-defined (Boolean, Integer, etc.)
or it is the type of a class in the corresponding class diagram. Dot notation is
used for accessing the attributes of objects. The basic data structures of OCL
are the collections Set, Bag and Sequence.

OCL does not have a primitive operator for transitive closure, but it does al-
low recursion. Consider the following OCL invariant in the context Person, where
ancestors are recursively defined in order to represent the transitive closure of
the relation defined by parents (note that both ancestors and parents are of
type Set(Person)): ancestors = parents -> union(parents.ancestors).
The expression parents.ancestors computes the set of all ancestors of a set of
parents and returns a value of type Set (Person).

Now suppose A is a parent of B, who in turn is a parent of C. Then the minimal
object structure which solves the constraint is such that the parent of B is A and
the ancestors of C include both B and A. However, additional solutions involve
situations where B and A are both ancestors of each other and themselves. In our
case we would prefer to use the minimal solution (corresponding to the minimal
fixpoint), but this cannot always be found: there may be more than one equiva-
lent solution, or it may not even exist. A suggestion to uniquely characterise the
minimal solution is given in [11]. This paper suggests mimicking induction over
a natural number n. This is exhibited in the following OCL specification.

ancestors_up_to(n) = if (n==1) then parents
else parents -> union(parents.ancestorsup_to(n-1))
Nat -> forall(n | ancestors_up_to(n) = ancestors.up_to(n+1)
implies ancestors = ancestors_up_to(n))

Of course this makes the assumption that the models are finite. Alternatively, as
done in [9], we can use the OCL let construct to stipulate that the inheritance
relationship must be acyclic. Note that self refers to any instance of the class
in which it is specified.

let parents = self.parents
let ancestors = self.parents —> union(self.parents.ancestors)
in <some_expression_using_definition_of _ancestor>

The let construct is a new addition to OCL, introduced in version 2.0. The
expression let x = e; in e, evaluates expression e, with each occurrence of x
replaced by the value of e;. Its use avoids evaluating the same expression multiple
times. However the construct’s semantics within OCL is not entirely clear [9].
Whether arbitrary recursively defined expressions are allowed is uncertain. Thus,
using let to define transitive closure is not advised.

In [26] the transitive closure of a relation is computed by coding the well-
known Warshall’s algorithm in OCL. This coding makes use of the OCL iterate
construct which iterates through all items of a collection, verifying a given con-
dition and possibly updating the value of a variable returned at the end of

the iteration. The algorithm itself calculates the transitive closure of a directed
graph (V, E)), where V is a set of n vertices and E C V x V is a set of ordered
pairs, i.e. edges. A path from vertex vy to vy is denoted vy — v and is a se-
quence of edges (vg,v1), (v1,v2),. .., (Vk—1,vk). The intuition behind Warshall’s
algorithm is this: if the graph contains paths v = w and w = u whose interme-
diate vertices belong to the set S, then the graph also contain a path v — u such
that the intermediate vertices belong to S U {w}. The algorithm iterates from
1 to n. At the k' iteration it selects paths whose intermediate vertices come
from {v1,...,vk—1}. Unfortunately the resulting OCL code of this algorithm is
about one and a half pages in length; it is neither intuitive nor easy to read, and
furthermore it requires the directed graph to be finite.

A transitive closure construct for OCL is proposed by Schiirr in [31]. This
is based on features of the path expression sublanguage — similar to OCL — of
PROGRES, a graph transformation language. The transitive closure operator *
is implemented to keep track of already visited objects and therefore avoids any
cyclic problems. Schiirr defines it as follows:

self.ancestors® = self.ancestorsClosure(self)
self.ancestorsClosure(visitedQObj) =

let S:... = self.ancestors —> excludeAll(visitedObj) in

S -> collect(ancestorsClosure(S -> union(visited0bj))) -> asSet

This definition will suffer from the unclear semantics of the let construct.

As mentioned in Section 2, it is possible to define the transitive closure
of relations known to be finite and acyclic. To illustrate this, Baar [4] de-
fines ancestors by APar(x) = Par(z) U {y|3z. z € Par(z) Ny € APar(2)},
where Par(z) and APar(x) are the translations of x.parents and x.ancestors,
respectively. Correspondingly, in first-order logic, this definition can be expressed
by the formula r*(z,y) < (r(z,y)V 3z. r(z,2z) Ar*(z,y)), where the relation
symbols r and r* are substituted for Par and APar, with r(z,y) meaning
y € Par(x) and r*(z,y) meaning y € APar(z). This formula is interpreted by
the structure (U, R, R*) where U is a universe of variables, and R and R* are
interpretations of the relations r and r*, respectively. Countermodels for this
formula are presented whereby R* does not coincide with the transitive closure
of R. However if the model (U, R, R*) is finite and the axiom —r*(z,) holds —
enforcing R*s acyclicity — then R* is a correct definition of transitive closure
(however, in general finiteness is not expressible).

JML and SPEC#. The Java Modeling Language (JML) was originally de-
signed by Leavens et al. at lowa State University in 1998. Having spawned a
much larger community of users and tool developers who are now actively in-
volved in its development, JML has since become the standard specification
language used for verification of Java programs. JML is used to specify Java
classes and interfaces [23, 24].

The Spec# system [5] has been developed as a specification language for .Net.
The recent developments in the JML community have been influenced and some

ideas have been adopted that originated from the Spec# project. The treatment
of second-order concepts is similar in both languages (we concentrate on JML
in the following).

Specifications in JML are formulated by making use of (side-effect-free)
boolean Java expressions; they are written as Java comments. The original JML
tool is a pre-compiler designed to translate specified programs into Java pro-
grams that explicitly monitor assertions at run-time. Specification violations
that are found throw Java exceptions. Since JML’s conception, many more tools
have been developed using JML as an input specification language. For a more
extensive overview of JML tools and applications, see [8].

When specifying transitive closure, JML manages to avoid the whole issue
of acyclicity by defining recursive datagroups [28]. These have been designed
primarily with frame-condition issues in mind. To solve the information hiding
problem (i.e. that protected or private fields of a class should remain hidden
from their clients) the represents clause was introduced to JML, allowing one
to specify the representation of concrete fields by particular abstract fields. Hence
protected or private fields in an implementation can be changed without changing
the specification visible to its clients. Unfortunately, the use of abstract fields
generated problems with the modifies clause. (A method’s modifies clause
specifies those locations that are permitted to be changed by execution of the
method.) This was fixed by a depends clause which relates those locations used
to determine an abstract location’s values. A datagroup can be modelled by
an abstract location whose value contains no information. By using a depends
clause, a location can be declared to be in a datagroup, therefore membership
in a datagroup allows the locations in the datagroup to be modified whenever
the datagroup is mentioned in the modifies clause. The license to modify a
datagroup implies the license to modify the members of the datagroup as defined
by a downward closure rule [25]. For any set of datagroups S, the downward
closure of this set is the smallest superset of S such that for any group G in the
closure of S, all nested datagroup members of G also belong in the closure of S.
For example, consider the following Java linked list with Node objects having
next and value fields:

class Node { Integer value; Node next; }

The datagroups nodeValues and nodeLinksare are defined recursively using
clauses such as “maps next.nodeValues \into nodeValues”. Hence the clause
“modifies list.nodelLinks;”, when it is added to the JML specification of a
method sortInPlace(Node 1list), says that all node objects reachable from
list may be changed whenever sortInPlace is executed.

Such specifications rely on a smallest-fixed-point semantics for recursive defi-
nitions built into JML. Gleaned from mailing list discussions, Leavens et al. have
considered introducing regular expressions, (i.e. writing list.next™ in order to
specify the JMLObjectSet of all objects reachable from 1ist using the field name
next) but have rejected this as not particularly beneficial since using datagroups
seems to be an adequate enough solution.

5 Conclusions

Although important properties of relations are not expressible in classical first-
order logic, it is possible to extend first-order logic (e.g. with fixed-point and
transitive closure operators) in order to describe such properties. We find that
all specification languages feature modifications which allow them to extend
beyond the limitations of first-order logic. For example SQL implements fixed-
point logic, OCL uses the iterate and let constructs, CASL implements the
notion of freeness, whereas JML incorporates built-in recursion. However, the
logical concepts underpinning these modifications are often not well documented.
This paper has attempted to clarify what is going on regarding these extensions.

Generally we have found that once integers are “available” in a specification
language, it is possible to define transitive closure and other properties of rela-
tions in the language. Otherwise this is possible only for finite relations (which
is mostly adequate). In our opinion the best solution is that which is taken by
CASL and JML, namely by building freeness or minimal fixed-points either ex-
plicitly or implicitly into the language. It still seems desirable to add regular
expressions to specification languages. It is not clear yet how this should be
done; this is the subject of future work.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4:32-54, 2005.

2. N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path constraints.
Journal of Logic and Computation, 13:1-18, 2003.

3. N. Alechina and N. Immerman. Reachability logic: An efficient fragment of tran-
sitive closure logic. Logic Journal of the IGPL, 8(3):325-337, 2000.

4. T. Baar. The definition of transitive closure with OCL: Limitations and appli-
cations. In Proceedings of the Fifth Andrei Ershov International Conference on
Perspectives of System Informatics, LNCS 2890, pages 358-365. Springer, 2003.

5. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, International Workshop, CASSIS 2004, Marseille, France, Revised
Selected Papers, LNCS 3362. Springer, 2005.

6. B. Beckert and P. H. Schmitt. Program verification using change information. In
Proceedings, SEFM 2003, pages 91-99. IEEE Press, 2003.

7. M. Bidoit and P. Mosses. CASL User Manual: Introduction to Using the Common
Algebraic Specification Language. LNCS 2900. Springer, 2004.

8. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino, and E. Poll.
An overview of JML tools and applications. In Formal Methods for Industrial
Critical Systems (FMICS 2003), volume 80 of ENTCS. Elsevier, 2003.

9. M. V. Cengarle and A. Knapp. A formal semantics for OCL 1.4. In Proceedings,
The Unified Modeling Language (UML 2001), LNCS 2185. Springer, 2001.

10. H. Chen, J. Hsiang, and H. Kong. On finite representation of infinite sequences of
terms. In Proceedings of 2nd International Workshop on Conditional and Typed
Rewriting Systems, number 516 in LNCS, pages 100-114. Springer, 1990.

11

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.
35.

S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The
Amsterdam manifesto on OCL, 1999. Available at http://www.trireme.com/
whitepapers/design/components/0CL_manifesto.PDF.

B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformations. World Scientific, 1997.

A. Dawar and Y. Gurevich. Fixed point logics. In The Bulletin of Symbolic Logic,
volume 8, pages 65-88. Association for Symbolic Logic, 2002.

M. Fowler and K. Scott. UML Distilled, 2nd ed. Addison-Wesley, 2000.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 11, chapter 10, pages 497-604. Reidel, 1984.

N. Immerman. Languages that capture complexity classes. SIAM Journal of
Computing, 16(4):760-778, 1987.

D. Jackson. Automating first-order relational logic. In Foundations of Software
Engineering, pages 130-139, 2000.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy constraint analyzer.
In Proceedings,ICSE 2000, pages 730-733. IEEE, 2000.

Klasse Objecten. OCL center, 1999. At http://www.klasse.nl/ocl.

D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 14. The MIT Press, 1990.

S. Kreutzer. Expressive equivalence of least and inflationary fixed-point logic. In
Proceedings, Symposium on Logic in Computer Science (LICS). IEEE, 2000.

S. Kreutzer. Pure and Applied Fized-Point Logics. PhD thesis, Aachen University
of Technology, 2002.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical report, lowa State Univ., 2000.
Available at ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.ps.gz.
G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML
reference manual. At http://www.cs.iastate.edu/ leavens/JML/jmlrefman.

K. R. M. Leino. Specifying the modification of extended state. Technical Report
1997-026, Digital Systems Research Center, 1997.

L. Mandel and M. V. Cengarle. On the expressive power of OCL. In Proceedings,
FM 1999, LNCS 1708, pages 854—874. Springer, 1999.

P. D. Mosses. CASL: A guided tour of its design, 1999. Available at http://wuw.
brics.dk/Projects/CoFI/Documents/CASL/GuidedTour/index.html.

P. Miiller, A. Poetzsch-Heffter, and G. Leavens. Modular specification of frame
properties in JML. Technical Report 02-02, lowa State University, 1997.

Object Management Group. UML resource page, 1999. At http://www.uml.org.
J. Rumbaugh. Relations as semantic constructs in an object-oriented language. In
Proceedings, OOPSLA 1987, pages 466-481, 1987.

A. Schiirr. Adding graph transformation concepts to UML’s constraint language
OCL. In Proceedings, First Workshop on Language Descriptions, Tools and Ap-
plications (LDTA), ENTCS 44. Elsevier, 2001.

JCC’s SQL std. page. At http://www.jcc.com/SQLPages/jccs_sql.htm.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

J. Yang. SQL3 recursion. Lecture notes, Stanford University, 1999.

S. Zilles. Algebraic specification of data types. Technical Report XI, MIT Labo-
ratory for Computer Science, 1974.

