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Abstract Signed conjunctive normal for(signed CNF) is a classical conjunctive clause
form using a generalised notion of literal, callsigned literal A signed literal
is an expression of the for$i: p, wherep is a classical atom an, its sign is a
subset of a domaifV. The informal meaning isp'takes one of the values 57
Signed formulas are a logical language for knowledge reptasion that lies in
the intersection of the area®nstraint programmindCP), many-valued logic
(MVL), and annotated logic programmin¢ALP). This central dle of signed
CNF justifies a detailed study of its subclasses includiggrthms for and com-
plexities of associated satisfiability problems (SAT pewbs). Although signed
logic is used since the 1960s, there are only few systenatéstigations of its
properties. In contrast to work done in ALP and MVL, our preseork is a more
fine-grained study for the case of propositional CNF. We liggihthe most inter-
esting lines of current research: (i) signed versions ofesomain proponents of
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classical deduction systems including non-trivial refieats having no classical
counterpart; (ii) incomplete local search methods fors§iatbility checking of
signed formulas; (iii) phase transition phenomena as kndarrexample, from
classical SAT and the influence of the cardinality/éfon the crossover point;
(iv) the complexity of the SAT problem for signed CNF and ithslasses.

Keywords:  Many-valued logic, signed logic, resolution, Davis-Putnboveland procedure,
local search, phase transition.

1. INTRODUCTION

Signed formulas are a logical language for knowledge reptation that
lies in the intersection of the areegnstraint programmingCP), many-valued
logic (MVL), and annotated logic programmingALP).

Signed conjunctive normal for(signed CNF) is a classical propositional or
first-order conjunctive clause form using a generalisenatf literal, called
signed literal A signed literal is an expression of the foisin p, wherep is a
classical atom anf, its sign, is a subset of a domaiN. The informal meaning
is “p takes one of the values #i".

When N is considered to be a truth value set, signed CNF formulas tur
out to be a generic representation for finite-valued loglcg:[ The problem
of deciding the satisfiability of formulas (SAT problem) afyafinite-valued
logic is in a natural way polynomially reducible to the pretnl of deciding
satisfiability of formulas in signed CNF (signed SAT).

If NV is equipped with an ordering, there is a natural notion afiestgHorn
formula (Definition 4). The particular case whé¥eis lattice-ordered anf is
an order filter is investigated in annotated logic prograngijR1] (there,S is
called anannotatior), therefore, annotated logic programs can be considered
as particular signed logic formulas.

Third, S : p can be interpreted ag‘is constrained to the values B and,
hence, as an instance of finite-domain constraint progragfo, 7].

Finally, it is also possible to embed signed formulas intssical monadic
first-order logic by representing a signed litefalp, whereS = {iq, ... ,i,},
as the classical formula

Bp)(s(p)) A (Vo) (s(x) = (s(in) V-V s(ir)))

using a unary predicate symbal

Applications for deduction in signed logics derive from $baf annotated
logic programming (e.g., mediated deductive databasesjtint program-
ming (e.g., scheduling), and many-valued logics (e.gunadtanguage pro-
cessing). In addition, some problems usually denoted ssidal clause logic
can be formulated in a better or simply in a different way gssigned logic:
this comes from the disjunctive interpretation of signg tidbows for a com-
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pact representation of certain finite-domain first-ordepprties; and there are
additional dimensions along which one can calibrate, ngnied number and
ordering of truth values as well as the form of the signs. Thibn is supported
by first experiments with combinatorial optimisation peris [6]. Atthe same
time, computational complexity of signed logic is mostlyrquarable to clas-
sical logic (see Section 7.). Altogether, signed logic tituigs an interesting
trade-off between expressivity and complexity.

The central dle of signed CNF justifies a detailed study of its subclgsses
including algorithms for and complexities of associatedlT $koblems. In
contrast to surveys of ALP [21] and MVL [16, 19], the presemajgter consti-
tutes a more fine-grained study into signed formulas withenftamework of
propositional logic and conjunctive normal form. Althougme of the results
described here are not yet formally published, the follgtias the character of
a survey, because, given the limited space, we decidedd® itndormal proofs
for examples and explanations. The reader is invited toubttge technical
references given throughout.

In the following section, syntax and semantics of signed Gid#-defined
formally. Of the remaining sections each captures a spduificof research.
Sections 3. and 4. discuss signed versions of some main meopoof clas-
sical deduction systems including non-trivial refinemerasing no classical
counterpart. Section 5. focuses on incomplete local seaethods for sat-
isfiability checking of signed formulas. In Section 6. wekdaoto the phase
transition phenomena well-known from classical satisfitgiiesting (and other
NP-complete problems) and investigate the influence of &ndiality of V
on the crossover point. Finally, in Section 7., results proso far on the com-
plexity of checking satisfiability of formulas in signed CN$tgned SAT) and
its subclasses are collected.

2. PRELIMINARIES
2.1 SYNTAX

We assume that a sighature, i.e., a denumerable set of fiopakvariables
is given. To form signed literals, the propositional vakésl{atoms) are adorned
with a sign that consists of a finite set of (truth) values.

Definition 1 A truth value setV is a finite set{iy, is,... ,i,} wheren € N.
The cardinality ofV is denoted byN|. A partial order< is associated wittv,
which may be the empty order.

Definition 2 A signis a setS C N of truth values. Asigned literalis of the
form S:pwhereS is a sign and is a propositional variable. Theomplement
of a signed literalS : p, denoted bys : p, is (N \ S) : p.



4 LABELLED DEDUCTION

4
|

/\
1 2

Figure 1.1 A partially ordered truth value set, see Example 5.

A signed clausés a finite set of signed literals. A signed clause containing
exactly one literal is called aigned unit clauseand a signed clause containing
exactly two literals is called aigned binary clauseThe empty signed clause
is denoted byJ.

Asigned CNF formulds a finite set of signed clauses. A signed CNF formula
whose clauses are binary is callecsmned 2-CNF formula

The clauses of a signed CNF formula are implicitly conjuredti con-
nected; and the literals in a signed clause are implicitijudictively con-
nected. In the following we us8; : p; VvV ---V Sk : pi to represent a signed

clause{S1 : p1,... , Sk : pr}-

Definition 3 Thelengthof a signed claus€’, denoted byC'|, is its cardinality.
The length of a signed formula, denoted byT'|, is the sum of the lengths of
its signed clauses.

Definition 4 For all i € N, let 7 denote the sighj € N | j >4} and let]
denote the sigfij € N | j < i} where<is the partial order associated witN'.
A sign S is regularif it is identical to 7 or to | i for somei € N.

A signed literalS : p is aregular literalif (a) its sign.S is regular or (b) its
signS = S’ is the complement of a regular sigi.

A signed clause (a signed CNF formula) isegular clausé€a regular CNF
formulg) if all its literals are regular.

Example 5 Let the truth value setv = {1,2,3,4} be ordered as shown in
Figure 1.1, i.e., we use the standard order on natural nuslexcept that
1 and 2 are incomparable. Then the signd = {1,3,4} and |1 = {1} are
regular; andl 1 = {2} and{ 3 = {1, 2} are complements of regular signs. The
signs{3} and{1, 4} are neither regular nor complements of regular signs.

The complement 3 of the regular signi 3 is not regular as it cannot be
represented a$i or | i for anyi € N. Thus, a regular literal can have a sign
that is not regular (but is theomplemenof a regular sign only).

Whenever the (partial) order on the truth value set is nottgngolarities
can be assigned to signed literals in a meaningful way, wbiebs rise to a
generalised notion of Horn clauses.
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Definition 6 A regular signS is of positive (resp.negative polarity if it is of
the form7 i (resp.] i) forsomei € N. Aregular literal is of positive(negative
polarity if its sign is of positive (negative) polarity.

A regular clause is aegular Horn clausé it contains at most one literal of
positive polarity and the signs of all its other literals axemplements of signs
with positive polarity. A regular CNF formula is@gular Horn formulaf all
its clauses are regular Horn clauses.

Our notion of regular Horn formula coincides with that of apositional
annotated logic prograni21].

Example 7 Using the truth value se¥V and the associated ordering from the
previous example, the clauses (1): p, (2) 12:pV 73: ¢, and (3)14: g are
Horn clauses. The regular clausgel : p Vv 12 : ¢ is hota Horn clause as it
contains more than one literal of positive polarity. Sifjce= 12 but| 4 # 14
foralli € N, theclausg 1: pis Hornwhereag 4 : pis notHorn (both clauses
are regular).

Definition 8 A literal S : p is monosignedf its sign .S = {i} is a singleton.
A signed clause (a signed CNF formula)nsnosignedf all its literals are
monosigned.

Classical two-valued CNF formulas are a special case of signed CNF
formulas (using a truth value séf with two elements). Monosigned CNF
formulas are (trivially) regular w.r.t. the empty ordering

2.2 SEMANTICS

Definition 9 Aninterpretatioris a mapping that assigns to every propositional
variable an element of the truth value set.

An interpretation/ satisfiesa signed literalS : p iff I(p) € S. It satisfies
a signed clausé’ iff it satisfies at least one of the signed literalsGh and it
satisfiesa signed CNF formuld’ iff it satisfies all clauses iffr.

A signed CNF formula (a signed clausesitisfiablgff it is satisfied by at
least one interpretation; otherwise it is1satisfiable

Two signed CNF formulas (signed clauses)egeivalenif they are satisfied
by the same interpretations. They aeisfiability equivaleniff they are either
both satisfiable or both unsatisfiable.

By definition, the empty signed clause is unsatisfiable aadthpty signed
CNF formula is satisfiable.

As in classical logic, a Horn formul@ = Ti1 :py V-V Tig:pe V1J 1 q
is equivalent to the implicatiofii; : py A---ATig:px — 17 :¢q, i.e., anin-
terpretation/ satisfiesC iff it does not satisfy one of i1 : p1,... , T4 : px OF
it satisfiest j : q.
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Proposition 10 Forall propositional variablep and all signsSy,... , Sy C N
(k € N), the signed clauses

Si:pV---VS,:pVvD and (SlU---USk):p\/D
are equivalent.

The simplification expressed in Proposition 10 is often lmi&hways useful,
as its application changes the structure of signs and caexéomple, destroy
the regularity of a clause.

2.3 CLAUSE FORM TRANSLATION

One of the prominent features of signed CNF formulas is thgtfarmula
of any finite-valued logic can be translated in polynomiatdiinto a satis-
fiability equivalentsigned CNF formula (the transformation is structure pre-
serving [17]); thus, the SAT problem of a finite-valued logigolynomially
reducible to the signed SAT problem.

In addition, every signed CNF formula can be translated Igromial time
into a satisfiability equivalentgular CNF formula with an arbitrary total or-
der onN by the following simple trick: a signed clause containirtgrals of
the form.S : p is first transformed into a monosigned clause by replaging
with \/;c5 {7} : p (using Proposition 10). Then all monosigned literal occur-
rences are eliminated by replacing a cladse: {i} : p V D with three clauses
Ci=1i:pVS:q,Cy=]i:pVS:q,andCs = DV S : ¢q, whereg is a new
propositional variable not occurring anywhere else &rd an arbitrary regu-
lar sign (soundness of this transformation is a direct cpumsiece of rule (1.1)
below).

A direct polynomial time translation into satisfiability equivateregular
CNF formulas was given by Sofronie-Stokkermans [32] for ¢hee that the
set of truth values and its associated order form a disiviblgattice; it exploits
properties of distributive lattices and often produces imass clauses than the
general method outlined above.

3. RESOLUTION

In this section we review in a uniform way resolution stylécad for signed
CNF formulas and their subclasses that appeared in thatliter[15, 17, 18,
28, 29, 25, 32, 33, 3]. The perhaps most straightforwarditaibn complete
version is formed by the rules below [28].

Si:pvV Dy Ss:ipV Dy 0:pVv D
(Sl ﬂSQ):p\/Dl V Dy D (1.1)
signed binary resolution simplification
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Note that, unlike classical resolution, the literal resolwipon does not nec-
essarily vanish and a so-callezsidueremains. The following parallel resolu-
tion rule [15, 28] avoids building residues. Both versiohd] and (1.2) were
originally thought to require thmerging ruleembodied in Proposition 10 for
completeness; however, one can show that it is not neceldjry

S1:pvVDy -+ SpipV Dy, ifSlﬂ---ﬁSm:Q)
Dy v -V D, (1.2)

signed parallel resolution
In the case of monosigned and regular CNF formulas over lytatalered

truth value set, completeness of signed binary resolusgpréserved if rule
applications generating a residue are not allowed; hentgd¢an be simplified:

S1:pV Dy So:pV Dy .
if S;NSy =10
D1V Dq e (1.3)
monosigned/regular binary resolution

Completeness of binary resolution, as well as of orderedugen and hyper-
resolution, for monosigned CNF formulas is proved by BaakFarmiller [1].
If NV is totally ordered, one obtains the hyperresolution-ligénements (1.4)
and (1.5) of regular binary resolution by combining sevamdlications of rule
(1.3) into one [17, 18].

Tir:pVDy -+ Tim:pVDy lj:pVvD
Div---vD,VvVD
regular resolution

|f (maXlngm Zk) > j

(1.4)

Using themaximali;, in the rule above is not strictly necessary: admitting
any i, > j yields a sound rule, but may lead to longer proofs. For regula
formulas, (1.4) withn = 1 is the same as (1.3).

Example 11 Let the truth value set b& = {1, 2,3} (with the natural order),
and letI” be the following regular CNF formula:

{UliprVv]2:pe, 12:p1V I lipy, [1:p1VT3:ps,
13:p2V712:p3, 13:p2V ]1:ps}

The last three clauses resolvetd : p; V T3 : ps by rule (1.4), which in turn
resolves to] 1 : p; with the first clause (by either rule (1.4) or (1.3)). From



8 LABELLED DEDUCTION

there, one obtaing 1 : po, with the second clause. In three more steps the empty
clause can be derived.

lit:pivVDr o |im :pm V Dy leipl\/"'\/ijipm\/E
DivV---VD,VE
providedm > 1,4; < j; forall1 <1 <m,
Dq,...,D,,, E contain only negative literals

regular negative hyperresolution
(1.5)

Sofronie-Stokkermans [32, 33] proved that, when claus@samtain pos-
itive regular literals or their complements and is a distributive lattice, an
analogue of rule (1.5) is complete where all negative liseofthe form|i : p
are replaced with complements of positive literals, iierals of the forn i:p.
WhenN is a lattice, the following calculus is complete [3]:

Ti:pV Dy Ti:pV Dy

T_j:p\/DQ Tj:pV Dy

D1V Dy T(@Uj):pV D1V Dy (1.6)
ifi>j if neitheri > jnorj >

lattice-regular binary resolution lattice-regular reduction

Note that, whenV is totally ordered, the left rule of (1.6) is the same as (1.3)
for regular formulas.

Refinements of regular binary resolution being completerdgular Horn
formulas over a totally ordered truth value set are regutétrnesolution [17]
(this corresponds to the cag®y = O in rule (1.3)) and regular positive unit
resolution [25] (where, in addition, the unit input clauseishbe a positive
literal). Recently, we proved [3] that the rules below arenptete for regular
Horn formulas in cas&’ forms an upper semi-lattice.

Tip Ti:p
1j:pvC Tj:p

C T@Euj):p (1.7)
ifi>j if neitheri > jnorj >

lattice-regular positive unit resolution lattice-regular reduction
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Example 12 Using the upper semi-lattice ordering and regular Horn cas
from Example 7, one may deriie : p from clauses (2) and (3) by lattice-
regular positive unit resolution. The resolvent togethédthvelause (1) gives
13 : p by lattice-regular reduction.

Recall that lattice-based regular Horn formulas are pritiposl annotated
logic programs. As aconseguence, the various SLD-stybduesn procedures
developed for ALP [21, 23, 22] can be used as well. Note, hewdkat SLD
resolution is optimised for first-order logic and is not vefficient on the
propositional level.

We close this section with a brief remark on the technique&scam employ
to prove completeness of the mentioned resolution caldtliurns out that
semantic tree arguments retain much of their clarity. Thetrswaightforward
approach is to us@V|-ary semantic trees [17]. Just as in classical resolu-
tion theory, more complex refinements are often better leahdl/ inductive
construction of a proof, where the number of atoms or atonnmences in a
formula supplies the induction parameter [18].

4. DAVIS-PUTNAM-LOVELAND PROCEDURES

In classical logic, among the most competitive proposélosatisfiability
solvers are variants of the Davis-Putnam-Loveland proeedDPL) [9]. In
this section we describe the extensions of DPL that have pegrosed for
signed and regular CNF formulas. They are complete proofquhores for
testing the satisfiability of this kind of formulas and seerbé¢ good candidates
to implement signed satisfiability solvers.

4.1 THE SIGNED DPL PROCEDURE
The signed DPL procedure (Signed-DPL) is based on the follpwwles:

Signed one-literal rule:Given a signed CNF formulR that contains a signed
unit clause{S : p},

1. remove all clauses containing a litefl: p such thatS C S,
2. delete all occurrences of litera$4 : p such thatS N S = 0;
3. replace all occurrences of literad§’ : p with (S”" N S) : p.

Signed branching ruleReduce the problem of determining whether a signed
CNF formulal' (that contains the propositional variabh is satisfi-
able to the problem of determining whether there is @anNV such that
T'u {{i} : p} is satisfiable.

Definition 13 Given asigned CNF formulathat contains a unit clausgs: p},
let simplify(T', S : p) denote the result of applying the signed one-literal rule
to I" using the unit claus¢s : p}.
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procedure Signed-DPL
Input: a signed CNF formul& and a truth value s&¥ = {i1,... ,i,}
Output: “satisfiable” or “unsatisfiable”

begin
[* signed one-literal rule */
while I' contains a unit clausgsS : p} do
I := simplify(T, S : p)
od;
if I' = () then return “satisfiable”fi;
if O € I then return “unsatisfiable™ti;

* signed branching rule */
let p be a propositional variable occurringlihy
for j=1tondo
if Signed-DPUT" U {i; : p}) = “satisfiable”then
return “satisfiable”fi
od;
return “unsatisfiable”
end

Figure 1.2 The Signed Davis-Putnam-Loveland procedure (Signed-DPL)

The Signed-DPL procedure is shown in Figure 1.2. It first atpdly applies
the signed one-literal rule. Once the formula cannot bén&ursimplified, it
then applies the branching rule and recursively tries teesebich of N| sub-
problems. As these sub-problems by construction contaignad unit clause,
the signed one-literal rule can be applied again. The pureggrminates when
either a satisfiable sub-problem is found or all sub-proBlé@ve been shown
to be unsatisfiable.

Intuitively, Signed-DPL constructs a proof tree using atbdpst strategy.
The root node of that tree is labelled with the input formultee other nodes
are labelled with the formulas that result from a single aagilon of the signed
one-literal or the signed branching rule to the formula @frtiparent node. If
all the leaves of the tree contain the signed empty clausangut formula is
unsatisfiable; otherwise, if at least one leaf is labellethuhe empty signed
CNF formula, the input formula is satisfiable.
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T
[
FTu{{1}:;m} ru{{2}:;m} ru{{3}:p}
{{172} D2, {{172} - P2, {{1,2} 1 P2,
{1} p2v{273} : D3, {3}1727 {3}p2V{1}p3,
{3} :p2 vV {1} : ps, {3} ip2 vV {1} : p3, {3} :pa vV {2,3)}:p3}
{3} :p2v{2,3}:ps} {3}:p2Vv{2,3}:p3}
_172 1 p2
‘ =
(1 pv (28, (D) e
{1} :p3,
{2,3} :ps } |
{O}
{0,...}

Figure 1.3 A proof tree created by Signed-DPL.

Example 14 Let the truth value set b& = {1, 2, 3} with an arbitrary order;
and let the signed CNF formula consist of the following six clauses:

{3} :p1 V{1,2} :p2 {2,3}:p1 V{1} :p2V{2,3} : p3
{1,3} :p1 V{3} : po {2} :p1 V{1,2} :po
{3}:]92\/{1}:]93 {3}:])2\/{2,3}:])3
Figure 1.3 shows the proof tree created by Signed-DPL foutihp Edges

corresponding to an application of the signed one-literdkrare labelled with
the literal that is used for simplification.

4.2 AN IMPROVED BRANCHING RULE
FOR SIGNED-DPL

An application of the branching rule of Signed-DPL from thre\ious sec-
tion always create§V| new sub-branches. In this section, we present an im-
proved branching rule for Signed-DPL that in many casesteseless sub-
branches [25].

Definition 15 LetT" be a signed CNF formula, and letbe a propositional
variable occurring inl". Then, the seNf? C N consists of those truth values
that appear inl" in literals of the formS : p.

Truth valuesi, j € NE are equivalent, denoted by, j, if, for all literals
oftheformS:pinT,i e Siff j € S.
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The partial order<, on equivalence classes df% w.r.t. , is defined by:
i =, 7 if, for all literals of the formS : pin T, C S impliesj C S.

The elements of maximal classes w.}.are calledmaximal truth values
ofpinT. AsetM = {i1,... i} C N is called amaximal truth value set
of p in T if it contains one element of each of the clasggs. . . , ., } that are
maximal w.r.t.<,.

It can happen that some truth valueg € N occur in a formuld” exactly in
the same signs of literals of the for$hp, i.e.,i ~, j where~x,, is the equivalence
relation from Definition 15. In that case, it suffices that tiranching rule
considers only one of the truth valugandj.

In addition, if the truth values of the equivalence clasgcur (among other
signs) in all signs in which the truth values of the equivakerlassi occur,
i.e., if i <, 4, then the truth values incan be ignored by the branching rule
of Signed-DPL. This simplification is justified because, rfiaterpretation/
satisfied” and/(p) € 7, thenI is as well satisfied by every interpretatidithat
assigns a truth value frogito p and is identical td for the other propositional
variables. Consequently, it is sufficient if the branchintgrof Signed-DPL
considers only the elements of a maximal truth value set.

Example 16 Let the set of truth values b€ = {1,2,... ,7}, and let

{2,7}:pV Dy {1,3,6} :pV Dy {1,3,4} : pV D3
{1,2,3,7}!])\/D4 {2,5,7}2])\/D5

be the clauses in the signed CNF formillan which literals of the forns : p
occur. Then, the equivalence classes\gf w.r.t. =, are {2, 7}, {1, 3}, {4},
{5}, and {6}. The maximal elements w.r.t. the order relatier) are {2, 7}
and{1,3}, becausg4} <, {1,3}, {6} <, {2,7},and{6} =<, {1,3}. Amax-
imal truth value set op in I'is {2, 3}.

Proposition 17 LetT" be a signed CNF formula, letbe a propositional vari-
able occurring inl', and let{i,,... ,i,} be a maximal truth value set @f
inT'. Then[I is satisfiable iff there is & € {1,... ,m} such that" U {i) : p}
is satisfiable.

The branching rule of Proposition 17 can reduce the size dfjae8-DPL
prooftree considerably. Consider, forexample, the foafidtom Example 14;
{2, 3} is a maximal truth value set ¢f in I'. Therefore, the leftmost branch
of the proof tree fol" shown in Figure 1.3 is actually redundant and is not
constructed if the improved branching rule from Propogitld is used. When
the branching rule is applied to the formula from Exampleth&,number of
new sub-branches is reduced from seven to two.
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4.3 THE REGULAR DPL PROCEDURE

Signed-DPL is, of course, suitable for the (sub-)clagegfilar CNF formu-
las as well. However, there are some refinements and spechatiues that
can be applied. In this section we describe the regular ERwisam-Loveland
procedure (Regular-DPL) defined byahkhle [18] for regular CNF formulas
over a totally ordered truth value set. Regular-DPL was st finany-valued
DPL-style procedure published and inspired some of the waphrted in this
survey.

The regular one-literal rule consists of only the first twotp®f the signed
one-literal rule from Section 4.1, which preserve regtyant the formula; the
third part is not needed. The regular branching rule redtivegproblem of
checking whether a regular CNF formulais satisfiable to the problem of
checking whether one of the formulBsu {S : p} andl’ U {S : p} is satisfiable
whereS : p is a regular literal occurring ifi. The branching factor is at most
two when theegular branching rule is applied, but not all literals containjng
are necessarily removed. In contrast to thatsigaedbranching rule removes
all occurrences of, but the branching factor can be as large as the cardinality
of the truth value set.

Example 18 Figure 1.4 shows the proof tree constructed by Regular-DiPL f
the regular CNF formuld™ from Example 11. As in Figure 1.3, edges corre-
sponding to an application of the one-literal rule are laleel with the literal
that is used for simplification.

The performance of Regular-DPL depends (1) on the datatstes used to
represent formulas and (I) on the heuristic for selectivegrtext literal to which
the branching rule is applied. Maat al. [26] describe an implementation of
Regular-DPL that uses suitable data structures and incatgsothe regular two-
sided Jeroslow-Wang heuristic defined bgttle [18]. Itis the only DPL-style
procedure implemented so far in the framework of signed Giimilas.

S. LOCAL SEARCH ALGORITHMS

Local search algorithms (LSAs) outperform deductive deniprocedures
for checking satisfiability of CNF formulas on some probldasses. In partic-
ular, this holds for satisfiable hard random 3-SAT instapedsch the fastest
implementations of DPL cannot solve within a reasonable tiimit [30]. In
this section, we describe the first LSA that deals with sigdidF formulas and
we report some experimental results.

Regular-GSAT [4], an extension of GSAT [31] whose pseuddeds shown
in Figure 1.5, tries to find a satisfying interpretation feegular CNF formuld’
(with a total order on truth values) performing a greedy Isearch through the
space of interpretations. It starts with a randomly geeeratterpretatior. If
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Figure 1.4 A proof tree created by Regular-DPL.

Table 1.1 Comparison of running times for Regular-GSAT and RegulBt-D

Regular-GSAT Regular-DPL
%4 C MaxTries MaxChanges time (secs.) time (secs.)
o o I o
80 487 100 1000 0.68 0.63 1.10 0.85
120 720 200 2800 6.35 5.33 19.45 16.47
160 972 260 6200 25.98 21.48 290.16 325.40
200 1230 400 12000 99.97 88.49 3242.58 3000.16

I does not satisfy', then it creates a sét, formed by those variable-value pairs
(p, k) that give rise to a maximal decrease (possibly zero or negati the total
number of unsatisfied clausesloivhen the truth value of atp is changed té:.
Next, a propositional variablg’ appearing inS is randomly chosen. Then a
truth valuek’ from {k | (p, k) € S} is randomly chosen. Finally, is updated
to k' atp’. Such changes are repeated until either a satisfying net@&ton is
found or a pre-set maximum number of changes (MaxChangesgdked. The

whole process is repeated up to MaxTries times, if no satigfinterpretation
is found before.
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procedure Regular-GSAT
Input: a regular CNF formul&, MaxChanges, and MaxTries
Output: either a model df, or “no satisfying interpretation found

begin
fori = 1to MaxTriesdo

I := arandomly generated interpretation fqr

for j = 1 to MaxChangesio
if I satisfied" then return [ fi;
S :={(p, k) | decrease in number of unsatisfied clauses qf

maximal, when/ changed td: atp};

select randomly’ € {p | (p,k) € S};
select randomly:’ € {k | (p', k) € S};

I(p') =k
od
od;
return “no satisfying interpretation found”
end

Figure 1.5 The procedure Regular-GSAT.

Table 1.1 summarises an experiment performed in order t@agarthe per-
formance of Regular-DPL and Regular-GSAT on satisfiableloam regular
(signed) 3-SAT instances of the hard region of the phaseitian (see Sec-
tion 6.) with a different number of propositional variablasd |[N| = 3 [4].
Both procedures were applied to 100 satisfiable instancts 8@, 120, 160
and 200 propositional variables. In order to obtain moreigate results, each
instance was run 50 times with Regular-GSAT. The first colummntains the
numberl” of propositional variables and the second the nunibef clauses of
the instances tested. The remaining columns display ttiegebf MaxTries
and MaxChanges employed, the averagand the standard deviatienof the
time needed to solve the sets of instances considered. Thhenma of each
instance solved with Regular-DPL corresponds to the tineelee to solve that
instance, whereas the run time of each instance solved veifulBr-GSAT is
the average run time over the 50 runs on that instance.

Itis clear that local search algorithms for solving reg @A problems scale
better than Regular-DPL when the number of variables intbllpm instances
increases. Thisresult suggeststhatlocal search algwijtust as their classical
counterparts, are good candidates for solving difficuisfiable problems. First
experiments with scheduling problems support this conjedi6].

Local search algorithms are incomplete and cannot provatisfigbility.
Recently, some impressive results were obtained by contpidéterministic
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and complete satisfiability procedures (such as DPL) witHoaisation to cope
with the so-called “heavy-tailed” distribution phenomarjt4]. We expect this
to generalise to signed logic as well.

6. PHASE TRANSITIONS

The phase transition phenomenon for the 3-SAT problem stnsf two
observations: (I) There is a sharp increase (phase tramysif the percentage
of unsatisfiable random 3-SAT instances around a certaimt pdien the ratic%
between the numbe? of clauses and the numbgr of variables is varied (at
lower ratios, most instances are under-constrained asdttisfiable, at higher
ratios, most instances are over-constrained and thusisfiedaie). (I1) There
is an easy-hard-easy pattern in the computational diffi@flsolving problem
instances ag, is varied; the hard instances tend to be found near the aresso
point.

Phase transitions occur, among other NP-hard problemdasgsical [27]
and random regular 3-SAT problems [26]. In the present cneeir interest
in them is twofold: (i) The hard instances described beloavjale a first
testbed to evaluate and compare satisfiability solveradoesl CNF formulas,
and (ii) with an eye on knowledge representation with siggdldF formulas, it
would be valuable to know what impact the cardinalityj\ohas on the crossover
point.

Before we describe the phase transition phenomena in thedsicase, we
explain how random regular 3-SAT instances are generategen@ fixed
numberC' of clauses, a numbér of propositional variables, and a totally
ordered truth value sé¥, for one problem instana@ non-tautological regular
clauses are generated. Each regular clause is producedfbosmip choosing
three literals with different propositional variables rfiahe set of possible
regular literals.

Manya et al. [26] report on experiments performed on random ee@iSAT
instances with Regular-DPL (see Section 4.3). They obdebath aspects
() and (Il) of phase transition. Figure 1.6 visualises thighe random regular
3-SAT problem, wheréN| = 7 andV = 60. Along the vertical axis is the
average number of nodes in the proof tree needed to solvebkepranstance
with Regular-DPL. Along the horizontal axis is the raﬁdn the test problems.
One observes clearly the easy-hard-easy patteﬁqiasaried. The dashed line
indicates the percentage of instances found to be satisfitid 100 % mark is
scaled to the maximum of the curve indicating hardness dflpros).

Recent experiments indicate that the location of the ckasqmint increases
logarithmically as a function of the cardinality of the tiutalue set [5]. Ta-
ble 1.2 shows the location of the crossover point for diffiécardinalities ofV.
The following equation was derived from the experimentakspver points by
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Figure 1.6 Phase transition in the random regular 3-SAT problem.

Table 1.2 Location of the crossover point for different cardinaktiaf V.

|N|  crossover point |N|  crossover point |N| crossover point
2 4.25 10 9.08 30 10.16
3 6.08 15 9.50 40 10.33
4 7.08 20 9.75 50 10.41
5 7.75 25 10.00 60 10.50

using the Levenberg-Marquardt method for obtaining a mogak regression
model [5]:

L(|N]) = 6.30544 In%391434 (|N|)

7. COMPLEXITY OF THE SIGNED SAT PROBLEM
7.1 OVERVIEW

It is well-known that the classical SAT problem is NP-conelg8]. It is,
however, polynomially solvable under certain restricsiofror example, there
are linear-time algorithms for solving the classical SAblgem in case all
clauses of the formula have at most one positive literal (H9AT) [10] and in
case all clauses of the formula have at most two literalsAR}$13].

Similar to the classical case, th@nedSAT problem is NP-complete, but
some of its sub-classes are polynomially solvable. In regears, complexity
results for the signed 2-SAT and signed Horn SAT probleme teaen estab-
lished. These problems have the truth value/édtesp.(N, >)) as a second
input parameter (besides the formdlao be tested for satisfiability). Thus,
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Table 1.3 Known complexity results for signed SAT problems.

SAT 2-SAT Horn SAT
classical NP-compl. linear [13] linear [10]
mono-signed NP-compl. linear [24] —
regular, N totally ord. NP-compl.  polynomial [25]  |T|log |T'| [18, 25]
regular, N a distr. lattice,
signs of forml ¢ and 1 NP-compl.  NP-compl. [2] L[| N|? [33]
regular, N a lattice,
signs of formt i and 1 ¢ NP-compl.  NP-compl. polynomial [3]
regular, N a lattice,
signs of form{ ¢ and | NP-compl.  polynomial [2] —
regular (arbitrary) NP-compl.  NP-compl. —
signed (arbitrary) NP-compl.  NP-compl. [25, 3] —

signed SATis the problem of deciding for an arbitrary formulaover an arbi-
trary truth value setv, whether there is an interpretation ovérsatisfyingI'.
One also considers decision problems whirés not an input parameter but
fixed, which is denoted by attaching the fixed truth value/éets an index to
the name of the decision problem. For example, given a fixeld talue sefV,
signed SAY is the problem of deciding for an arbitrary formulaover N
whether there is an interpretation ovErsatisfyingI.

NP-containment of the most general problem, signed SATragghtforward
to show. The classical SAT problem is trivially reduciblesigned SAT ,;
therefore, the latter and signed SAT are both NP-complateth€r results are
summarised in Table 1.3 and are discussed in Sections 7.2.ahelow.

7.2 THE SIGNED 2-SAT PROBLEM

The signed 2-SAJ; problem for|N| > 3 and, therefore, the signed 2-SAT
problem was proven to be NP-complete by Mar25] (as compared to the
classical 2-SAT problem that can be solved in linear timeglgernative proof of
NP-hardness of signed 2-SAT was later given by Beckert §lalManya [25]
reduces the 3-colourability problem of graphs to signedAZ-g to show its
NP-hardness, whereas the NP-hard problem Beckert et akd8Fe to signed
2-SAT is classical SAT.

Theregular 2-SAT problem is NP-complete as well; this can be shown by
reducing the (general) signed 2-SAT problem to regular Z-§). Under
certain restrictions, however, satisfiability of requlaCRIF formulas can be
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checked in polynomial time. This problem was first considdrng Manya [25]
with the additional assumption thaf is a totally ordered set. In that case, a
refinement of Regular-DPL yields a quadratic-time procedérgeneralisation
of this result was proved by Beckert et al. [2]:Nfis a lattice and all occurring
signs are of the forni i or the form | ¢, then regular 2-SAT is polynomially
solvable.

A further special case of the regular 2-SAT problem that casdived in
polynomial time is the monosigned 2-SAT problem. By exanmgrthe rules of
monosigned binary resolution one can check that the nunflparssible resol-
vents for a given monosigned 2-CNF formula is polynomialha humber of
distinct literals it contains. A quadratic-time procedfoesolving monosigned
2-SAT was described by Maay[25]. He later refined the result by showing
that monosigned 2-SAT is solvable in time linear in the langftthe formula
using a reduction to classical 2-SAT [24].

7.3 THE REGULAR HORN SAT PROBLEM

A Horn fragment is naturally defined if (and only if) the trithlue setV is
totally ordered or at least a finite lattice.

If N is totally ordered, the problem of deciding whether a regtiarn
formulal is satisfiable can be solved in time linearrin= |T'| in case|N| is
fixed, and in time linear im log n otherwise [18]. Algorithms with the same
complexity were described in [25]. An algorithm for a pantar subclass of
regular Horn formulas appeared before [11]; related resudh be found in a
paper by Escalada-lmaz and MarjL 2].

If N is a finite lattice, regular Horn SAT is solvable in time linea the
length of the formula and polynomial in the cardinality/éfvia a reduction to
the classical Horn SAT problem [3]. For distributive |la¢ts; the more precise
boundn - | N|? was found independently [33], which contains also somdtsesu
on decidable first-order fragments of regular CNF formulas.

A closer inspection of the proofs in the cited papers yietdsediately that
all defined regular Horn SAY problems have linear complexity.
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