
Probabilistic Models for the Veri�cation of

Human-Computer Interaction

Bernhard Beckert and Markus Wagner

Department of Computer Science, University of Koblenz, Germany
beckert@uni-koblenz.de, wagnermar@uni-koblenz.de

Abstract. In this paper, we present a method for the formalization of
probabilistic models of human-computer interaction (HCI) including user
behavior. These models can then be used for the analysis and veri�cation
of HCI systems with the support of model checking tools. This method
allows to answer probabilistic questions like �what is the probability that
the user will unintentionally send con�dential information to unautho-
rized recipients.� And it allows to compute average interaction costs and
answer questions like �how much time does a user on average need to
send an email?�

1 Introduction

Interaction between computer and user is a two-way communication process,
where the user enters commands and the system responds to the input. This is
referred to as interactive control [1]. Unfortunately, this control does not always
work perfectly and errors in human-computer interaction (HCI) occur. A huge
number of errors in HCI can be traced back to user interfaces that are insu�-
ciently secured against these errors, irrespective of whether the error is caused
(a) by the user � intentionally or unintentionally � interacting incorrectly with
the computer, (b) the computer reacting incorrectly to the user's input, or (c) the
user interpreting the computer's output incorrectly. The consideration of user
errors and their overall impact on the system forms an important part of an
analysis of a system's usability, safety, and security. As a result, the designers
of systems often consider human frailty and try to reduce errors and usability
problems. A popular approach is to stick to informal lists of design rules [1�3].

In our approach to the analysis of HCI, three model components are com-
bined: (1) a model of the user's behavior, (2) a model of the system's behavior,
and (3) a model of the user's assumptions about the system's state (based on the
user's inputs and the systems reactions). The advantage of our method is that
each model component can be probabilistic. This allows for the speci�cation of
errors in the user behavior, in the application, and in the way the user interprets
the application's reactions. The goal of our technique is to prove properties of the
interaction by means of probabilistic model checking � or more speci�cally, to
formally prove that, considering all the possible ways of HCI in a given scenario,
the given probabilistic requirements are ful�lled.

The basis of our work is the (non-probabilistic) method of Beckert and
Beuster [4] for the formalization, analysis, and veri�cation of user interfaces.
It is based on GOMS [5], which is a well-established user modeling method.
The GOMS models are formalized and augmented with formal models of the
application and the user's assumptions about the application's state.

2 Cost and Probability of HCI Sequences

Human-computer interactions can be split into sequences of actions. In our ap-
proach, each action of the user or (re-)action of the system is represented by a
transition in the HCI model. To take the di�erent cost of actions into consid-
eration, the notion of action cost is introduced, which can be used to represent
quantities like �amount of time�, �amount of money,� or �amount of resources.�
Action costs are attached to the corresponding transition in the model. Later,
this is used to reason about the e�ects of minor errors, such as mistyping charac-
ters when writing an email, and major errors, such as sending con�dential data
to unauthorized recipients. Whether an interaction is an error or not depends
on what the goal of the interaction is. Given a set of goal states, an action is
an error if it increases the total cost required to reach the goal or makes it im-
possible to reach the goal. In the latter case, the error cannot be undone, in the
former case, additional or more costly actions are required to undo the e�ect of
the error, i.e., an error cost is introduced.

Based on the total interaction cost and on the assumption that there is a limit
on the acceptable cost of the interaction, the sequences of actions that start in
the initial state and end in a goal state can be classi�ed into three categories:

1. optimal sequences with minimal total cost,
2. acceptable sequences with total cost that do not exceed the limit, and
3. unacceptable sequences with total costs that exceed the user's budget.

The analyst of an HCI scenario may be interested in computing the proba-
bilities or the expected cost of reaching certain states. This can be, e.g., a single
state, a set of goal states, or all the �nal states of the interaction. Similarly, the
analyst may be interested in verifying that certain states, or set of states, are
(not) reached with a certain probability. With our method, this all can be done.

Regarding the action's probabilistic values that are needed for the construc-
tion of the interaction model, the analyst applying our method may use estimates
or experimental data. Also, databases containing probabilities of di�erent kinds
of human errors may be used (e.g. [6, 7]). This data comes from many sources,
such as nuclear power plants, simulator studies, and laboratory experiments. A
method is provided for combining the data in order to produce estimations of
the erroneous executions of tasks.

3 Basis: The Non-Probabilistic Model

In this section, we present the non-probabilistic basis of our model. Follow-
ing [4], we assume that a user interacts with a system based on what his or her

assumptions of the application's con�guration are, including assumptions about
the internal state and relevant data. In terms of Linear Temporal Logic (LTL),
always correctly interprets the system's state if:

G((a0 ↔ c0) ∧ (a1 ↔ c1) ∧ · · · ∧ (an ↔ cn)) ,

where a0, . . . , an are the critical properties of the application, and c0, . . . , cn are
the user's assumptions about whether these properties hold or not.

If this formula does not hold, the user is error-prone. Then, the following
scenarios are possible: (1) Parts of the user's assumptions are wrong, and (2) the
user's assumptions are incomplete (over abstraction). For example, in the �rst
scenario the user could assume that the software is in another state that allows
other actions to be executed. In the second scenario, the user could be unaware
of the necessity to take certain action to avoid high costs. But even if the above
formula holds, the user can still execute erroneous actions. Even though he or
she could have known better (having the right assumptions about the system
state), missing knowledge about what the most cost-e�ective actions are may
lead to errors.

In [4], the model of the interaction is the result of the combination of three
model components:

1. a formal GOMS model describing the user behavior,

2. a component representing the user's assumptions of the software's state, and

3. a component representing the application itself.

Input Output Labeled Transition Systems (IOLTS) are used to model these
components.

De�nition 1. An IOLTS is a tuple L = (S, Σ, s0,→) where S is a set of states,
s0 ∈ S is an initial state,→ ⊆ S ×Σ × S is a transition relation, and Σ is a set

of labels with Σ = Σ? ∪Σ! ∪ΣI . We call Σ? the input alphabet, Σ! the output
alphabet, and ΣI the internal alphabet.

For example, whenever the user executes an action, the corresponding state
transition is performed. The corresponding edge in the automaton is annotated
with a label denoting that action.

The transition systems are combined by mutual composition. In mutual com-
positions of IOLTSs La and Lb, the output of La serves as input for Lb, and the
output of Lb serves as input of La, which is illustrated in Figure 1.

De�nition 2. Let La = (Sa, Σa, s0a,→a) and Lb = (Sb, Σb, s0b,→b) be two

IOLTSs. We assume the input and output alphabets of La and Lb to consist of

internal and external subsets, where the internal input is denoted with Σ?I , the
external input with Σ?E , the internal output with Σ!I , and the external output

with Σ!E . And we demand that these subsets are chosen such that Σ!I a = Σ?I b

and Σ!I b = Σ?I a. Then, the mutual composition (La||mLb) = (S, Σ, s0,→) of

Fig. 1. Mutual composition of two IOLTSs

La and Lb is de�ned by:

S = S0 × S1

Σ? = Σ?Ea ∪Σ?E b

Σ! = Σ!Ea ∪Σ!E b

ΣI = ΣI a ∪ΣI b ∪Σ!I a ∪Σ!I b

s0 = (s0a, s0b)

→ = {(sa, sb), σ, (s′a, sb)) | sa
σ−→a s′a with σ ∈ Σ?Ea ∪Σ!Ea ∪ΣI a} ∪

{(sa, sb), σ, (sa, s′b)) | sb
σ−→b s′b with σ ∈ Σ?E b ∪Σ!E b ∪ΣI b} ∪

{(sa, sb), σ, (s′a, s′b)) | sa
σ−→a s′a and sb

σ−→b s′b with

σ ∈ Σ!I a ∪Σ!I b = Σ?I b ∪Σ?I a}

The mutual composition of the three aforementioned model components pro-
vides the complete model of the interaction, making complete formal modeling
possible (see Figure 2).

Fig. 2. Basic model of the interaction.

4 The Probabilistic Extension

For our probabilistic extension of the models described in the previous section,
we introduce several modi�cations. In order to incorporate probabilistic values
as well as the idea of costs, variations of the IOLTS are introduced. Thus, the
state transitions of the resulting models contain information about the actions'
costs and the actions' probabilities.

A Probabilistic Input Output Labeled Transition System (PIOLTS) is an
IOLTS, where the set Σ of labels consists of tuples (l, p) where l is the label
denoting the action and p is the probability of that action (0 ≤ p ≤ 1). Simi-
larly, a Valued Input Output Labeled Transition System (VIOLTS) is an IOLTS,
where Σ consists of tuples (l, v) where v is the cost assigned to that action
(v ≥ 0). Finally, a Probabilistic Valued Input Output Labeled Transition System

(PVIOLTS) is a combination of both variants, where Σ consists of tuples (l, p, v).
To model the user's behavior, we use a PVIOLTS. Thus, not only the prob-

abilistic behavior is modeled, but also �personal� costs. The application's model
is extended to a VIOLTS by numerical values representing the costs for the exe-
cution of each single step. Probabilities can be added to model non-deterministic
application behavior. The user's assumptions are modeled using a PIOLTS, and
costs can be added if needed. As sources for the statistical data, we suggest to
use databases as mentioned in Section 2. However, this is not mandatory and the
analyst can come up with his/her own values. Now, the mutual composition of
these three components provides the extended model of the HCI, incorporating
probabilistic user behavior as well as the interaction cost.

The probabilistic models resulting from our method can be used to prove
quantitative aspects of the interaction. In general, probabilistic model checking
is an automatic formal veri�cation technique for the analysis of systems that
exhibit stochastic behavior [8]. In our setting, the models can be represented
as Discrete-Time Markov chains. Using Markov chains instead of Bayesian net-
works, which are another class of probabilistic graphical models, allows us to
use cyclic structures. The properties of the HCI are expressed in Probabilistic
Computation Tree Logic (PCTL) [9] and veri�ed using the probabilistic model
checker PRISM [10].

5 Example

In this section, we present an example that was implemented as proof of concept
for our method. Due to the page limit, we only present the �nal model of the
HCI, which is used to verify quantitative properties.

We model the interaction of a user with an email client. The user intends to
write a con�dential email and send it to Alice. However, with a certain probabil-
ity, he/she performs an erroneous action choosing Bob instead, which results in
high costs as con�dential information is disclosed. Then, among others, the fol-
lowing erroneous interaction sequences are possible (with certain probabilities):

Fig. 3. Part of the PVIOLTS of the mailing example. Labels written in uppercase
denote user's inputs, lowercase denote the software's outputs. The interpretation of
the application's output by the user is included only for the case that Bob is chosen as
the recipient.

� The user accidentally selects Bob as the addressee. The application conse-
quently reacts with setting Bob to be the recipient. Based on the output
provided by the application, the user's assumptions about the applications's
state, in particular the addressee, are not met and the user notices the error.
The user corrects the error. Then, compared to the non-erroneous situation,
the total cost of the interaction is increased by the amount it takes to select
and set an addressee, and to notice the mistake.

� The user accidentally selects Bob, and the application sets Bob as recipient.
In contrast to the previous sequence of actions, the user interprets the ap-
plication's output incorrectly, assuming that Alice is selected. Thus the user
fails to notice the �rst error, and as a second error sends the email to Bob.
Here, the error cost is the cost of sending con�dential data to the wrong
recipient.

� The user accidentally selects Bob, the application sets Bob, and the user
notices the error based on the application's output. However, the user reacts
with a second error by sending the email instead of correcting the address.
Again, the error cost is the cost of sending con�dential data to the wrong
recipient.

Once the model of the interaction is constructed using our method, properties
of the interaction can be formulated in PCTL and then checked by PRISM.
Figure 3 shows part of the PVIOLTS model of the interaction. For example,

the formula P≥0.95[3sentTo(Alice)] expresses that the email is sent to Alice

in at least 95% of the interactions. To express that �with a probability of at
most 0.02, Bob is selected as the addressee and the error is not corrected�, the
property P≤0.02[3(chosen(Bob) ∧ (chosen(Bob) U sentTo(Bob)))] can be used.
With PRISM's support of cost analysis, the average total cost for sending an
email can be computed by the query R =? [F email_sent]. Due to the possibility
of erroneous interaction, the average total cost here will be higher than in a
scenario where errors do not result in additional cost.

A way to lower the probability of sending the email to Bob would be to
introduce additional dialogue boxes that require the user to con�rm the address
selection. If the user is modeled to react �reasonably� to a con�rmation request
with a high probability (as opposed to, e.g., blindly con�rming the selection),
it can be proven that the probability to send the con�dential email to Bob is
indeed lowered.

6 Modeling Changing Probabilities

In the probabilistic HCI models described so far, the probabilities and costs are
�xed for each action. In certain situations, however, it is useful to model changing
probabilities and costs. This can be done by adding a set S of variables to the
states of the transition system whose values can be changed by state transitions.
Probabilities and costs can then be modeled as function of the values of these
state variables, which greatly improves the expressiveness of our approach. For
example, the probability p(a) of an action a becomes a probability p(a, S). The
variables in S can be �ags, counters, etc. For �rst experiments, this concept of
changing probabilities has been implemented.

Some examples for the use of this extension in the context of the email
scenario from the previous section are:

� di�erent probabilities for an action can be used for di�erent levels of com-
plexity of a con�rmation:

p(a, S) =
{

0.7 if S.confirmationType = simple
0.9 if S.confirmationType = complex

� a �learning� user can be modeled by increasing the probability for the correct
action over time:

p(a, S) =
{

0.6 and {S .learned := true} if ¬S.learned
0.8 and {S .learned := true} if S.learned

� an increasingly bored and thus �inattentive� user can modeled by decreasing
this probability over time:

p(a, S) =
1

S .inattentionLevel + 2
+ 0.4 and {S .inattentionLevel++}

yields the sequence 0.9, 0.73, 0.65, 0.6, . . . if S .inattentionLevel = 0 initially.

Con�rmations are modeled on the user side as well as the application side.
While they decrease total cost of the application's actions as unintended actions
are avoided, they increase total cost of the user's action as he has to interpret
the con�rmation request and react to it. Using our method, one can analyse the
trade o� between the cognitive workload that is imposed on the user by complex
con�rmations, and the average cost that is saved.

7 Conclusion

In this paper we have introduced a method for the formalization of probabilistic
models of human-computer interaction (HCI) including user behavior. These
models can then be used for the analysis and veri�cation of HCI systems with the
support of model checking tools. This allows to answer questions, such as �what
is the probability that the user will send con�dential information to unauthorized
recipients?� and to verify the corresponding properties of the HCI model.

Our method can help to develop user interfaces by avoiding the trap of having
to do human error analysis at the latest stages in the design process. Further-
more, it can help a designer to validate assumptions about human performance.
By setting up several scenarios, the analyst is able to discover the impact of
alternative designs on the expected cost of HCI. Thus, formal modeling and an
examination of the expected costs can together contribute to the design of user
interfaces, which have to be robust to the error-prone behavior of humans.

References

1. Avery, L.W., Sanquist, T.F., O'Mara, P.A., Shepard, A.P., Donohoo, D.T.: U.S.
Army weapon systems human-computer interface style guide. Version 2 (2007)

2. Shneiderman, B.: Designing the User Interface. Third edn. Addison Wesley (1998)
3. Leveson, N.G.: Analyzing software speci�cations for mode confusion potential. In:

Proc. of the Workshop on Human Error and System Development. (1997)
4. Beckert, B., Beuster, G.: A method for formalizing, analyzing, and verifying secure

user interfaces. In Jifeng, H., Liu, Z., eds.: Proc., Int. Conf. on Formal Engineering
Methods (ICFEM), Macao, China. LNCS 4260, Springer (2006) 55�73

5. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Transactions on Computer-Human Interaction
3(4) (December 1996) 320�351

6. Swain, A., Guttman, H.E.: Handbook of Human Reliability Analysis with Empha-
sis on Nuclear Power Plant Applications. Sandia National Laboratories (1983)

7. Kirwan, B.: A Guide to Practical Human Reliability Assessment. Taylor and
Francis, London, UK (1994)

8. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic veri�cation of probabilistic systems. In: Proceedings, TACAS, Vienna,
Austria. LNCS 3920, Springer (2006) 441�444

9. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5) (1994) 512�535

10. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Int. Conf. on Computer Performance Evaluation, Modelling Techniques
and Tools (TOOLS), London, UK. LNCS 2324, Springer (2002) 200�204

