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The main goal of the Verisoft XT project is the creation of methods and tools which allow for the pervasive formal verification
of integrated computer systems, and the prototypical realization of four concrete industrial application tasks.

In this paper, we report on two of Verisoft XT’s sub-projects, where formal verification is applied to real-world system software,
namely Microsoft’s Hypervisor and the embedded operating system PikeOS. We describe the deductive verification technology
used in Verisoft XT and the tool chain that implements these methods, including the C verifier called VCC and the SMT

solver Z3.

1 Introduction

In recent years, deductive program verification has improved to a
degree that makes it feasible for real-world programs. Following
this observation, the main goal of the Verisoft XT project is
(a) the creation of methods and tools which allow the pervasive
formal verification of integrated computer systems, and (b) the
prototypical realization of four concrete industrial application
tasks. Verisoft XT is funded by the German Federal Ministry of
Education and Research (BMBF).

As correctness of the built-in operating system is a crucial
requirement for the reliability of safety- and security-critical sys-
tems, two of the four Verisoft XT application tasks are operating
system verifications: the goal of the Avionics sub-project is to
prove functional correctness of the microkernel in the hypervi-
sor PikeOS, a commercial operating system for embedded sys-
tems [3, 4]; the Hypervisor verification sub-project aims at full
functional verification of the kernel of Hyper-V, an industrial vir-
tualization platform, currently shipped with Microsoft Windows
Server 2008.

Modern operating systems are usually implemented in C,
with small, but significant, parts in assembly code. The C code
is highly optimized, does not adhere to any simple type disci-
pline, is concurrent, and implements a wide range of custom
concurrency control primitives. These characteristics are shared
by both our verification targets and place very strict require-
ments on the verification methodology to be applied.

Both projects decided to use deductive verification as the
underlying verification technology. To verify that (a part of) a
program performs according to its specification, a logical formula
is automatically generated from the source P of the program and
its specification S. This formula ¢, called verification condition,
is rendered in predicate logic and has the property that, if it is
valid, then P is correct w.r.t. S. Finding a proof for the validity
of ¢, which would serve as a witness for the correctness of P, is
then a task to be solved by a deduction system. More informa-
tion on deductive program verification and current developments
in this area may be found in the related article [1] in this issue.

Because Verisoft XT aims at industrially viable methods, it
is highly desirable for the deduction system to be automatic and
for the specification to be reasonably easy to develop.

PikeOS (see http://www.pikeos.com/) consists of a micro-

kernel acting as paravirtualizing hypervisor (i.e., it presents the
guest systems with an interface similar but not identical to that
of the underlying hardware) and a system software component.
The PikeOS kernel is particularly tailored to the context of em-
bedded systems, featuring real-time functionality and orthogo-
nal partitioning of resources such as processor time, user address
space memory, and kernel resources. The PikeOS system soft-
ware component is responsible for system configuration. The
allocation of resources can be bound at compile-time, for ex-
ample to conform to partitioning requirements. At the kernel
level, the mechanisms for communication between threads are
IPC, events, and shared memory. High-level communication con-
cepts can be mapped onto these kernel-level mechanisms. For
a thorough discussion of PikeOS and its evolution, see [11].

The Hypervisor verification project aims at full functional verifi-
cation of the kernel of Hyper-V, an industrial virtualization plat-
form, currently shipped with Microsoft Windows Server 2008.
Hyper-V allows for running several operating systems on the
same physical machine. It is essentially a small operating sys-
tem, with memory management, scheduler, and essential device
drivers. It consists of about 100000 lines of C code (excluding
comments) and about 5000 lines of x64 assembly code. The
ultimate goal of the project is a formal proof that Hyper-V sim-
ulates the virtualized hardware for each of the guest operating
systems. There are however multiple intermediate goals, the first
one being verification of memory safety in a concurrent context.
Even this first step relies on establishing, e.g., functional correct-
ness of red-black trees and complex concurrency synchronization
protocols.

2 The C Verifier VCC

Both sub-projects employ a C verifier called VCC [6]. Using
VCC, the specification of the program is supplied using annota-
tions directly in the program text. Given an annotated C pro-
gram, VCC performs three steps to conduct a correctness proof
(if possible). The reason for this breakdown into several steps
is a better separation of concerns and easy integration of differ-
ent tools: (1) The annotated C code is compiled into an inter-
mediate imperative programming language called BoogiePL [8],
which includes the specified properties of the C program ren-
dered as assertions. (2) The input for the following translation



step consists of two parts: (a) the BoogiePL code that results
from compiling the original C source (including annotations) and
(b) axiomatic descriptions (in BoogiePL syntax) of certain as-
pects of the C programming language, called the BoogiePL pre-
lude. The annotated BoogiePL program together with the pre-
lude is then transformed into first-order predicate logic formulas
(verification conditions), which state that the program satisfies
the annotated specification. (3) These verification conditions
are given to the automatic theorem prover (SMT solver) Z3 [7]
to check whether they are valid, which then implies that the
original C program is correct w.r.t. the annotated specification.

The possible results Z3 may return are: (1) The formulas are
valid (Z3 has found a proof). (2) At least one of the formulas
is not valid (Z3 has found a counter-example). (3) Z3 runs out
of resources (time or space). In Case (1) above, the program
verification was successful. In Cases (2) and (3), the verification
engineer has to analyse the problem and correct the error. In
Case (2), the counter-example, which can be thought of as an
execution trace, can be visualized using a VCC-specific tool with
debugger-like interface. In Case (3), one may also find that the
program indeed satisfies the annotations. Then new annotations
(stronger invariants, helpful lemmas, etc.) have to be added.
This process is repeated until a proof is found.

Annotation Language. The annotation language of VCC is
guarded by C preprocessor macros. When verifying, a flag is
set so that these macros evaluate to keywords specific to VCC,
which in turn generates the corresponding BoogiePL code out of
them. If a normal C compiler is used (without this flag), all an-
notations evaluate to the empty string, so that the annotations
are transparent for the compilation process.

The VCC annotation language consists of side-effect-free C
expressions, extended with first-order quantification, lambda ex-
pressions, and a number of constructs used to attach specifica-
tions to existing C constructs, e.g., to attach function contracts
to function declarations, loop invariants to loops and so forth.
Additionally one can also place explicit assertions in the running
code, e.g., to help in debugging specifications.

Modularity. Verification in VCC is modular, both with respect
to threads and functions. Functions are equipped with contracts
in form of pre- and post-conditions, giving all necessary condi-
tions to call the function and the guarantees on the state, when
the function returns. Callers are then verified with respect to
the contracts, not bodies, of the called functions. The program
is verified as if it were executed by a single thread but, to handle
concurrency, predicates describing knowledge about the state
are weakened at possible points of interleavings to simulate the
effects of other threads.

Ghost Fields and Ghost Code. Verification of complex, func-
tional properties of programs has been, up to date, mostly done
using interactive, higher-order provers. VCC restricts the specifi-
cation language not to use any higher order or specialized logics,
and instead relies on purely first-order specification for two rea-
sons. The first one is automation: development of automatic
first-order systems has received much more attention than either
specialized logics or higher-order logics. The second reason is
the belief that first-order logic is better understood by “ordinary”
programmers.

This restriction comes at a price. For example, the graph
reachability relation, a crucial concept in specification of recur-
sive data structures, is not expressible in first-order logic. In
places where such relations are needed we introduce ghost fields
in data structures to keep track of the set of reachable objects
and use ghost code to update these fields whenever the data
structure is updated. Ghost code is introduced only to facilitate
verification and is syntactically restricted not to alter execution
of the physical code. We thus verify the program with ghost
code, but the set of reachable physical states is the same with
and without ghost code. VCC supports manipulation of a num-
ber of ghost-only types, including maps (from pointers and in-
tegers into arbitrary types) as well as entire states of execution,
which can be captured and used to evaluate expressions in them.
Additionally, new user-defined ghost data types can be specified
at the level of C, using function symbols and axioms.

Ghost code and ghost state allow for introduction of abstrac-
tion layers: for example a red-black tree, from the user’s point of
view, is represented as a mathematical map, greatly simplifying
reasoning. Additionally ghost state is used to capture protocols
using flags, ownership transfer, and two-state invariants. A sig-
nificant advantage of ghost code is that it is well understood by
“ordinary” programmers, being much like code introduced for
debugging and runtime assertion checking.

We have been able to specify and verify multiple recursive
data structures, as found in the Hyper-V code, some complex
synchronisation primitives (spin locks, reader-writer locks, run-
downs, custom algorithms for message passing) and specify a
good deal of data structure invariants. We currently do not face
expressiveness problems with the restriction to first-order logic.

Object Invariants and Ownership. One way to capture global
properties of a software system is to define invariants for data
structures (i.e., structs in the case of C) used in the pro-
gram. With VCC, such invariants can be given by annotating a
struct with (arbitrarily many) invariant clauses. To enable
modular reasoning about properties of complex data structures
(e.g., pointer structures or nested structs), and to capture rela-
tions between data structures, the concept of ownership between
structured data is used (VCC's ownership model is an extension
of the one used in the Spec# methodology [13]). Every struct
has exactly one “owner” and can itself own arbitrarily many
structures. At the top of the ownership hierarchy, structs can
be owned by executing threads. The ownership relation is pro-
vided explicitly in annotations by the verification engineer, and
it reflects his/her abstract knowledge about the data structure
and how it is used.

3 The Deduction System Z3

While there are ongoing efforts to accommodate different theo-
rem provers into the VCC tool chain (including interactive ones,
like Isabelle/HOL [5]), the Verisoft XT sub-projects Hypervisor
and Avionics mostly use the SMT solver called Z3 as the un-
derlying deduction engine. SMT stands for Satisfiability Modulo
Theories. SMT solvers decide satisfiability of first-order formu-
las in presence of background theories like integer or bit-vector
arithmetic, arrays, etc. Conjunctions of literals from the theories
are tested for satisfiability by decision procedures.



While most SMT solvers handle only quantifier-free, decid-
able logics, Z3 is also capable of solving problems with quantified
formulas. Universal quantification is handled either with incom-
plete instantiation heuristics, complete model-based instantia-
tion or with superposition based calculi. VCC uses only the first
method, due to performance reasons.

We shall now go through a simple program, how its correct-
ness is encoded as an SMT formula, and how the SMT solver
checks its satisfiability.

1 void compute_abs (int *x)
2 { if (¥x < 0)

3 *x = —(*x);

4 assert (¥x >= 0); }

For brevity we skip proof obligations stemming from checking
validity of memory accesses, so by correctness of the program we
mean that the explicit assertion never fails. VCC generates the
following three formulas. The unsatisfiability of the conjunction
of them implies the correctness of the program.

VH,p,v. rd(wr(H,p,v),p) =v (1)

(rd(Ho,z) <0 A Hi = wr(Ho,z,—rd(Ho,z))) V )
(~(xd(Ho,z) < 0) A Hy = Hp) (2)

=(rd(Hy,z) > 0) 3)

The first conjunct (1) is one of the axioms describing the behav-
ior of the heap: if one writes v at heap location p, then reading
from the updated heap at p will yield v. There are more axioms
describing the heap, as well as a few hundred other axioms en-
coding the rest of the VCC verification methodology, which are
not needed for this example. The second conjunct (2) encodes
the semantics of the if statement: either the condition was true,
and the new heap is constructed by updating the old heap at x,
or the condition was not true, and the new heap equals the old
heap. Finally, conjunct (3) says that the assertion is violated.
A model for the conjunction of the three formulas corresponds
to a program execution where the assertion is violated. If such
a model does not exists (i.e., the formula is unsatisfiable), then
the program is correct.

Let us now examine how the SMT solver establishes unsatis-
fiability of the conjunction. Generally, at first it ignores function
symbols and quantified subformulas, and looks for a proposition-
ally satisfying truth assignment to the atoms (where by atoms
we mean applications of predicates and quantified subformulas)
of the formula. Assume the first assignment the solver considers
is to make the quantified formula (1) and Hy = Hj true and to
make rd(Ho, z) < 0 and rd(H1,x) > 0 false. The uninterpreted
function decision procedure (DP)! infers rd(Ho, z) = rd(H7, )
based on H; = Hp. The linear arithmetic DP perspective on
this is =(a < 0) and —=(b > 0) (where a and b are abstrac-
tions of rd(Ho,z) and rd(Hi,x) respectively, the arithmetic
DP is not concerned about their internal structure), and now
it receives the literal @ = b, and says that the resulting set
of literals is unsatisfiable. Such situations, where the current
literal assignment is unsatisfiable, are called a conflict. Then,

LEverything that is not pure equality and propositional connectives
is treated as theory in SMT. This includes the uninterpreted function
theory, which could be axiomatized with Vz1,...,Zn,y1, ..., Yyn.x1 =
YIA e AN = Yn = f(z1,...,2n) = f(y1,..., yn) for every function
symbol f with arity n.

the DPs narrow down the subset of currently assigned literals,
that actually participate in the conflict. A disjunction of nega-
tions of those literals is called conflict clause and is a tautology
modulo background theories. In our case the conflict clause is:
rd(Ho,z) < 0V =~(Hy = Ho) V rd(Hi,z) > 0. Because the
conflict clause is a tautology, conjoining it to the input formula
does not change the satisfiability status of the input formula.
After we conjoin it, the search space narrows down: a class of
literal assignments, including the current one, is propositionally
excluded. In our case, the only remaining possible propositional
assignment for our formula is to make the quantified formula (1),
rd(Ho,z) < 0, and H1y = wr(Ho,z, —rd(Ho, z)) true, and to
make rd(Hy,z) > 0 false. These literals do not conflict at the
ground level, and thus the quantified formula is instantiated.
The following tautology is conjoined to the original formula:

(VH,p,v. rd(wr(H,p,v),p) = v) =
rd(wr(Ho, z, —rd(Ho, z)),z) = —rd(Ho, =)

The propositional assignment is then extended to make the lit-
eral rd(wr(Ho, z, —rd(Ho, z)),z) = —rd(Ho,x) true, which is
the only way to satisfy the implication above. The uninterpreted
function DP infers —(—rd(Ho, z) > 0), and the linear arithmetic
view of a < 0 and =(—a > 0) generates a conflict clause, which
blocks the only remaining propositional assignment. The for-
mula is thus deemed unsatisfiable.

This description of the proof search highlights the most im-
portant features of SMT solvers. (1) Handling of the proposi-
tional structure of the formula is very much like in the modern,
extremely efficient, propositional SAT solvers. (2) Multiple DPs
build into the SMT solvers need to cooperate, in our example
the uninterpreted function DP propagated equality to the linear
arithmetic DP. (3) The search space is narrowed by the conflict
clauses that the SMT solver learns during the search. (4) The
quantified formulas are handled by instantiation and, therefore,
we need some heuristic to decide how to instantiate.

The heuristic which we use in Z3 for VCC is based on E-
matching.? Certain subterms of the quantified formula body are
designated as triggers. The SMT solver searches for substitu-
tions, which make the triggers equal to some subterms of cur-
rently assigned ground literals, in hope that an instance sharing
subterms with the current ground problem will be relevant for
the search. For example, let us assume the trigger for the heap
axiom is rd(wr(H,p,v),p). At the moment, where we needed
the instantiation, the ground literals included —(rd(H1,z) > 0)
and Hy = wr(Ho,z, —rd(Ho, z))). If we take

o =[H := Ho,p:=z,v:= —rd(Ho, )] ,

then
o(rd(wr(H,p,v),p)) = rd(Hi, ) ,

because H1 = wr(Ho,z,—rd(Ho,x))) (we thus consider the
currently assumed equality atoms).

The triggers can be either explicitly supplied to the SMT
solver, or the solver can select them using a simple heuristic.
The explicit triggering has proven to be a powerful, if somewhat
arcane, tool for building custom SMT theories, like the one de-
scribing a particular verification methodology [9, 10, 2, 12]. The

2The E in “E-matching” stands for equality.



triggering annotation can be viewed as a logic programming lan-
guage used to implement a theory to be executed by the SMT
solver. Of course one could also implement the theory inside an
SMT solver, which would likely be much more efficient, but the
implementation would be much harder. Given how fast such a
theory evolves during development of a verification tool, it seems
counterproductive in most cases.

The problems stemming from deductive software verification
are quite different from the ground SMT problems that mostly
result from hardware verification. For example, the number of
conflicts per time unit that the solver finds tends to a thou-
sand times smaller for software. This is not enough to calibrate
usual heuristics for ordering propositional assignments. Also the
implementation of various indices for E-matching is crucial for
performance. Z3 is very good with ground SMT problems, and
it is definitely the leading solver for quantified queries. This is
partially a result of close collaboration between the authors of
Z3 and researchers using it for software verification.

4 Conclusion

The Hypervisor sub-project involves up to 20 people working,
mostly on specification of the Hyper-V, for three years, making
it one of the largest formal verification efforts ever attempted.
While the Avionics sub-project is smaller, it still involves the full
functional verification of thousands of lines of complex C code.

Based on experience and results from the first half of the
project, we can conclude that verifying concurrent system soft-
ware written in C and assembly code is difficult and at the edge
of the state of the art of software verification. But given suffi-
cient resources, it can be done and, considering the importance
of correct system software, is useful and feasible on an indus-
trial scale. The Verisoft XT project emphasises the well-known
fact that software verification is one of the most important ap-
plications of automated deduction. The project’s success relies
heavily on recent advances in deduction technology.
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