
To appear in Journal of Symboli
 Computation, 2002 (submitted 2000)
Depth-�rst Proof Sear
hwithout Ba
ktra
kingfor Free-variable Clausal TableauxBernhard Be
kertUniversit�at Karlsruhe, D-76128 Karlsruhe, Germany.Email: be
kert�ira.uka.deAbstra
tWe analyse the problem of
onstru
ting a deterministi
 proof pro
edurefor free-variable
lausal tableaux that performs depth-�rst proof sear
hwithout ba
ktra
king; and we present a solution based on a fairness strat-egy. That strategy uses weight orderings and a notion of tableau subsump-tion to avoid proof
y
les and it employs re
onstru
tion steps to handlethe destru
tiveness of free-variable
al
uli.1. Introdu
tionIn this paper, we analyse the problem of
onstru
ting a deterministi
 proof pro-
edure for free-variable tableau
al
uli that performs depth-�rst proof sear
h andis
omplete without ba
ktra
king. As an example, we present a solution for �rst-order
lausal tableaux that is based on a fairness strategy. That strategy usesweight orderings and a notion of tableau subsumption to avoid proof
y
les andit employs re
onstru
tion steps to handle the destru
tiveness of
lausal tableaux.First-order
lausal tableaux are proof-
on
uent, i.e., every tableau for an un-satis�able
lause set
an be
ompleted to a proof. They are, however, a destru
-tive
al
ulus be
ause all o

urren
es of a (free) variable in a tableau have to beinstantiated by the same term and, thus, a rule appli
ation
an make anotherrule appli
ation impossible.The proof sear
h spa
e
an be visualised as a sear
h tree where ea
h possible
hoi
e of the next rule appli
ation to a tableaux T
reates a node with as manysu

essor nodes as T has di�erent su

essor tableaux (Fig. 1). Sin
e we use aproof-
on
uent
al
ulus, all fully exhausted bran
hes in the sear
h tree (for anunsatis�able input
lause set) are either in�nite or end in a node that is labelledwith a proof, i.e., a
losed tableau.There are two main
on
epts for proof sear
h: breadth-�rst and depth-�rst1

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 2
r

r r

r

r PROOF r

PROOF
Figure 1: A proof sear
h tree.

Breadth-�rstsear
h Depth-�rst withiterative deepening Depth-�rst withfairness strategyFigure 2: Comparison of proof sear
h strategies.sear
h. Depth-�rst sear
h requires that either there are no paths in the sear
htree that do not
ontain proofs or it is possible to avoid su
h paths using fairnessstrategies for the
onstru
tion of tableaux.As fairness strategies that allow depth-�rst sear
h are dif�
ult to
onstru
tfor �rst-order
lausal tableaux, most automated dedu
tion systems use breadth-�rst sear
h. It allows to �nd shorter proofs than depth-�rst sear
h be
ause allpaths of the sear
h tree are
onsidered whereas, using depth-�rst sear
h, pathsin the sear
h tree that
ontain short proofs may be missed; fairness strategiesonly guarantee that some proof is found but it may not be the shortest one.However, the length of found proofs is not of great importan
e in automateddedu
tion (the only advantage of short proofs is that their
onstru
tion requiresless rule appli
ations and that they are thus easier to �nd); and breadth-�rstsear
h is \expensive" as
ompared to depth-�rst sear
h be
ause neighbouringpaths in the sear
h tree
ontain many similar or even identi
al tableaux thatusing breadth-�rst sear
h all have to be
onsidered.For all (useful) iterative deepening strategies, i.e., all monotoni
 fun
tions mfrom N to sets of tableaux where Si2Nm(i) in
ludes all
onstru
tible tableaux

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 3(i is the iteration level), the size of the partial sear
h trees m(i) grows exponen-tially in i. It is thus, even for small i, impossible to store all the tableaux inm(i) in the memory of a ma
hine. Therefore, most implementations use depth-�rst iterative deepening (DFID). The initial, partial sear
h spa
e
onsisting ofall the tableaux in M(i) = Sj�im(j) for some i 2 N is sear
hed for proofs ina depth-�rst manner using ba
ktra
king, and if it turns out not to
ontain aproof, then i is in
reased (for example, the proof pro
edure des
ribed by Fitting[1996℄ is of this type). Then, however, the tableaux in M(i) are not available forthe
onstru
tion of the tableaux in M(i+ 1); they have to be
onstru
ted againfrom s
rat
h, whi
h, however, merely
auses polynomial overhead as
omparedto a breadth-�rst sear
h at the \right" level i be
ause M(i + 1) is exponen-tially larger than M(i). Although DFID sear
h leads to a

eptable performan
eof tableau-based automated theorem provers, it should be stressed that it isonly a
ompromise used when no
ompleteness preserving fairness strategy fordepth-�rst sear
h is available.The advantage of depth-�rst proof sear
h is that the information representedby the
onstru
ted tableaux in
reases at ea
h proof step; no information is lostsin
e there is no ba
ktra
king. In addition,
onsidering similar tableaux or se-quen
es of tableaux in di�erent paths of the sear
h tree is avoided.Figure 2 shows how the di�erent sear
h strategies traverse the sear
h spa
e.The
oloured part has to be sear
hed before a proof is found. The form of thesear
h spa
e visualises its exponential growth.In the
ase of non-destru
tive and proof-
on
uent tableau
al
uli|su
h asthe ground version of �rst-order tableaux that does not use free variables|it isrelatively easy to use depth-�rst proof sear
h; it suÆ
es to systemati
ally addall possible
on
lusions until all bran
hes of the
onstru
ted tableau are eitherfully expanded or
losed. The situation is mu
h more
ompli
ated in free-variable
lausal tableau
al
uli, whi
h are destru
tive (even if they are proof-
on
uent).Applying a substitution may destroy literals on a tableau that are needed forthe proof, su
h that they have to be dedu
ed again.Up to now there was no useful solution to the problem of
onstru
ting adeterministi
 proof pro
edure for free-variable
lause tableaux that performsdepth-�rst sear
h and is
omplete, i.e., that never fails to �nd a proof if there isone. Su
h pro
edures were only known for the spe
ial
ase where tableaux areexpanded without instantiating variables and only a single substitution is �nallyapplied that is known to allow to
lose all bran
hes simultaneously. This solutionis not really satisfa
tory as (1) free variables are only used in a very restri
tedway, and (2)
he
king whether there is a single substitution simultaneously
los-ing all bran
hes of a tableau is
omputationally expensive. Solving the problemfor a similar
al
ulus, Baumgartner et al. [1999℄ re
ently des
ribed a depth-�rstproof pro
edure for a
onne
tion
al
ulus.We propose in this paper a deterministi
 sear
h strategy that is based upon:� A tableau subsumption relation to dete
t \
y
les" in the sear
h (i.e., to make

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 4sure that it is not possible to dedu
e the same literals or sub-tableaux againand again).� Weight orderings that assign ea
h literal a \weight" in su
h a way thatthere are only �nitely many di�erent literals (up to variable renaming) ofa
ertain weight; thus, if literals with lesser weight are dedu
ed �rst, thensooner or later ea
h possible
on
lusion is added to all bran
hes
ontainingits premiss.� Re
onstru
tion steps to handle the destru
tiveness of free-variable
lausaltableaux. Immediately after a rule appli
ation that destroys literals, the
onstru
tion steps that are needed to re
reate the destroyed sub-tableauxare exe
uted.The main diÆ
ulty is to de�ne a tableau subsumption relation that on theone hand is restri
tive enough to avoid
y
les in the proof
onstru
tion and onthe other hand is not too restri
tive su
h that
ompleteness is preserved.Our fairness strategy
onsiders the whole tableau tree (and not only a singlebran
h) both for the subsumption
he
k and for
hoosing a
on
lusion of minimalweight; a pro
edure based on this strategy may extend any bran
h of a tableau atany time. Note that this does not imply a large memory
onsumption; at least itis not worse than that of proof strategies where a \
urrent" bran
h is extendeduntil it is
losed before other bran
hes are
onsidered and where DFID-basedbreadth-�rst sear
h is used to ensure
ompleteness, as in that
ase all
losedbran
hes have to be stored for ba
ktra
king.As said above, no useful deterministi
 proof pro
edures for free-variable
lausaltableaux were known up to now. There is trivially a (not useful) deterministi
proof pro
edure for all proof-
on
uent
al
uli, namely a pro
edure performing abreadth-�rst sear
h in the ba
kground. \Useful" means that the
omputational
omplexity of de
iding what the next rule appli
ation should be in ea
h situationhas to be reasonably low. In addition, the number of
onstru
tion steps that arene
essary to �nd a proof has to be reasonably small as
ompared to the numberof ne
essary steps when a breadth-�rst sear
h strategy is used.If the fairness strategy we present in the following se
tions is used, then the
omplexity of de
iding what the next expansion step should be is in the worst
ase quadrati
 in the size of the tableau to be expanded and its possible su

essortableaux. In the average
ase the
omplexity is mu
h lower as only those parts ofa tableau have to be
onsidered that are a�e
ted by one of the possible tableaurule appli
ations. The number of steps required to
onstru
t a proof is smallerthan (or equal to) the worst-
ase number of
onstru
tion steps using DFID.The stru
ture of the paper is as follows: In Se
tion 2, we des
ribe the
al
u-lus of
lausal tableaux. After introdu
ing our notion of tableau subsumption inSe
tion 3 and that of weight orderings in Se
tion 4, our method for
onstru
tingdeterministi
 proof pro
edures for free-variable
lausal tableaux is presented inSe
tion 5.In [Be
kert, 1998℄ the same te
hniques for
onstru
ting deterministi
 proof

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 5pro
edures are applied to a more general
lass of tableau
al
uli that are in a
ertain sense well-behaved, and of whi
h free-variable
lausal tableaux are aninstan
e.2. First-order Clausal TableauxA �rst-order signature � = hP�; F�; ��i
onsists of a non-empty set P� of pred-i
ate symbols, a set F� of fun
tion symbols, and a fun
tion �� : P� [F� ! Nassigning an arity to the predi
ate and fun
tion symbols; fun
tions of arity 0 are
olled
onstants. Moreover, there is an in�nite set Var of obje
t variables.The logi
al operators of
lause logi
 are the
onne
tives : (negation) and_ (disjun
tion) and the universal quanti�er 8. In addition, we use the logi
al
onstants > (true) and ? (false).The notions of free and bound variable, term, atom, literal, and substitutionare de�ned as usual. We use x; y; z et
. to denote quanti�ed variables and X; Y; Zet
. to denote free variables. The logi
al
onstants > and ? are
onsidered to beliterals (but not atoms). The
omplement of a literal L is denoted with L.Definition 2.1: A variable renaming is a substitution that repla
es all o

ur-ring variables by distin
t new variables (i.e., variables that are new w.r.t. the
ontext where the variable renaming is applied).Definition 2.2: A
lause C over a signature � is a �rst-order formula of theform (8x1) � � � (8xn)(L1 _ � � � _ Lr)where the Li are literals over � and x1; : : : ; xn are all the variables o

urring inL1; : : : ; Lr.A new instan
e of a
lause C is a formula (L1 _ � � � _ Lr)� where � is avariable renaming.Definition 2.3: A
lausal tableau for a set S of
lauses is built by a sequen
eof appli
ations of the following
onstru
tion rules. Ea
h rule has a premiss (a setof literals) and a
on
lusion (
onsisting of a set of literals and a substitution).Initialisation: The tree
onsisting of a single node labelled with > is a tableaufor S.Expansion: If T is a tableau for S, B is a bran
h of T , and L1 _ � � � _ Lr is anew instan
e of a
lause in S, then a tableau T 0 is a tableau for S if obtainedby extending B with r nodes L1; : : : ; Lr. (In this
ase, the premiss is emptyand the
on
lusion is hfL1; : : : ; Lrg; idi.)Closure: If T is a tableau for S, B is a bran
h of T , L; L0 are literals on B, andL; L0 are uni�able with most general uni�er �, then T 0 is a tableau for S ifobtained by appending ? to B and applying � to ea
h node of T . (In this
ase, the premiss is fL; L0g and the
on
lusion is hf?g; �i.)

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 6Note, that a bran
h is
losed by adding the spe
ial literal ?; therefore, bran
h
losure
an be
onsidered to be a spe
ial kind of bran
h expansion.Definition 2.4: A tableau T is
losed if all its bran
hes are
losed, i.e.,
on-tain ?.We use a slightly non-standard de�nition of the notion of su

essor tableau.Definition 2.5: A tableau T 0 is a su

essor tableau of a tableau T if it is
onstru
ted from T by one or more \identi
al" rule appli
ations, i.e., there are1. di�erent bran
hes B1; : : : ; Bn (n � 1) of T ,2. premisses �i on the Bi su
h that �i;�j are identi
al up to variable renam-ing,3. a (single)
on
lusion hC; �i su
h that �i� = �j� (1 � i; j � n),and T 0 is
onstru
ted from T by extending ea
h of the bran
hes Bi with theliterals in C and applying the substitution � to T .Definition 2.6: Let S be a
lause set.A tableau sequen
e for S is a sequen
e (Ti)i�1 of tableaux for S su
h that Ti+1is a su

essor tableau of Ti (i � 1).A tableau proof for (the unsatis�ability of) S is a �nite tableau sequen
eT1; : : : ; Tn for S su
h that Tn is
losed.Clausal tableaux as de�ned above are a
omplete and proof-
on
uent
al
ulus.Theorem 2.1: Let S be an unsatis�able
lause set.Completeness: There is a tableau proof for the unsatis�ability of S.Proof
on
uen
e: Every �nite tableau sequen
e T1; : : : ; Tk for S
an be extendedto a tableau proof T1; : : : ; Tk; Tk+1; : : : ; Tn for S.Our te
hnique for
onstru
ting a ba
ktra
king-free proof pro
edure (as de-s
ribed in the following se
tions) is
ompatible with many sear
h spa
e restri
-tions that preserve proof
on
uen
e. Examples are sele
tion fun
tions [H�ahnleand Pape, 1997℄ and
onne
tion tableaux with restart, where (ex
ept for restartsteps) a
lause used for expansion must have a link into the bran
h being ex-panded.3. Tableau Subsumption RelationAssume that a sequen
e T1; : : : ; Tn of tableaux has already been
onstru
ted. Arule appli
ation to Tn is forbidden if the su

essor tableau Tn+1 is subsumed byone of the prede
essor tableaux Tj|in parti
ular, if Tn+1 is subsumed by Tn.In that
ase, the sequen
e Tj; : : : ; Tn+1
onstitutes a
y
le in the proof sear
hbe
ause Tn+1 does not
ontain any information that is not already in Tj.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 7We de�ne a tableau Tj to subsume a tableau Tn+1 i� ea
h bran
h of Tj sub-sumes one of the bran
hes of Tn+1. Intuitively, the tableau Tn+1 is in that
aseredundant be
ause, if
losed sub-tableaux
an be
onstru
ted below all bran
hesof Tn+1, it is possible to
onstru
t
losed sub-tableaux of the same
omplexitybelow all bran
hes of Tj as ea
h of them subsumes a bran
h of Tn+1.When does a tableau bran
h subsume another bran
h? A �rst approximateanswer to that question is: A bran
h B subsumes a bran
h B0 if B
ontains avariant of ea
h literal o

urring on B0. That, however, is an over-simpli�
ation;three additional aspe
ts have to be taken into
on
ern.First additional aspe
t. For a bran
h B to subsume a bran
h B0, it is ingeneral not suÆ
ient if the bran
h B
ontains one variant of ea
h literal Lo

urring inB0, namely in
ase B0
ontains two variants of L that are both neededto
lose the bran
h. However, sin
e the premiss for a single rule appli
ation
ontains at most two literals, it is suÆ
ient if B
ontains a variant of ea
hset of (at most) two literals o

urring on B0. This implies that at most twovariable-disjoint variants of ea
h literal on B0 are needed on B (where however,as des
ribed below, literals may have to be
onsidered to be e�e
tively di�erentalthough they are variants of ea
h other on �rst sight).Example 3.1: If the literals :p(X), p(f(X)), :p(X 0), p(f(X 0)) o

ur on B0whereas the bran
h B only
ontains :p(X) and p(f(X)) (and B and B0 areotherwise identi
al), then B
ontains a variant of ea
h literal on B0. Nevertheless,the transition from B to B0 is de�nitely not a
y
le in proof sear
h be
ause|
ontrary to B|the bran
h B0
an be
losed.Se
ond additional aspe
t. The se
ond important aspe
t is that, in order tode
ide whether some literal L on a bran
h B
an be
onsidered to be a variantof some literal L0 on a bran
h B0, not only the literals L and L0 have to betaken into
on
ern but also asso
iated literals (on B and B0 as well as on otherbran
hes) that have free variables in
ommon with L and L0.Definition 3.1: Literals L1 and L2 are asso
iated if there is a variable o

ur-ring in both L1 and L2. The set of all literals in a tableau T that are asso
iatedwith a literal L, ex
luding L itself, is denoted with Asso
(T; L). A

ordingly, if� is a set of literals, then Asso
(T;�) is the literal set (SL2�Asso
(T; L)) n �.Asso
iated literals play a role be
ause the ordering of tableau rule appli
ationsused by a deterministi
 proof pro
edure as des
ribed in Se
tion 5 has to takeall literals into a

ount that are generated by an appli
ation. So, if L(X) is apremiss for a
ertain tableau rule appli
ation that leads to the instantiation of Xwith a term t and there is a literal L0(X) on the tableau, then that appli
ationwill generate the new literal L0(t) (besides L(t)). Sin
e the
hoi
e of whi
h rule isapplied next to a tableau depends the new literals that possible rule appli
ations

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 8generate, the form of L0(t)|and thus the form of the asso
iated literal L0(X)|
an a�e
t the
hoi
e of the next rule appli
ation (in parti
ular if L0(X) has ahigher weight than L(X), see Se
tion 4).Third additional aspe
t. As said above, a tableau T subsumes a tableau T 0 iffor ea
h bran
h B in T there is a bran
h B0 in T 0 su
h that B subsumes B0. Thatin
ludes the possibility that the same bran
h B0 of T 0 is assigned to two di�erentbran
hes B1 and B2 of T . In that
ase there is for ea
h set �0 (of at most twoliterals on B0) a literal set �1 on B1 and a literal set �2 on B2 that are variantsof �0. The basi
 idea behind the de�nition of our subsumption relation impliesthat every possible rule appli
ation on bran
h B0 with the premiss �0
an as wellbe applied|simultaneously|on the bran
hes subsuming B0 with the premisses�1 resp. �2. That, however, requires the two variable renamings
onstru
ting �0from �1 resp. �2 to be
ompatible. The same holds if B0 is assigned to morethan two bran
hes in T .Formal de�nition of the subsumption relation. We now formally de�ne ourtableau subsumption relation. It is transitive and re
exive.Definition 3.2: Let T and T 0 be tableaux that do not have any variables in
ommon. The tableau T subsumes the tableau T 0, denoted by T 0 � T , ifi. it is possible to assign to ea
h bran
h B of T a bran
h B0 of T 0ii. and then, for ea
h pair B;B0 respe
tively, to ea
h set �0 of at most twoliterals on B0, a set � of literals B and a variable renaming �
an be assignedsu
h that:1. The following holds for �, �0 and �:(a) �� = �0;(b) for ea
h of the literals L in Asso
(T;�) there is (at least) one literal L0in Asso
(T 0;�0) su
h that L� and L0 are identi
al up to the renamingof variables not o

urring in �� resp. �0.2. If a bran
h B0 of T 0 is assigned to di�erent bran
hes B1; : : : ; Bs of T (s � 2),then, for all �0 on B0, the variable renamings �1; : : : ; �s assigned to �0 in
onne
tion with B1; : : : ; Bs are
ompatible in the following way: there is asubstitution � su
h that the restri
tion of � to the variables o

urring in�i [Asso
(T;�i) is identi
al to �i (1 � i � s).Now, let T and T 0 be tableaux that have variables in
ommon; and let � be avariable renaming su
h that T and T 0� do not have any variables in
ommon.Then, T subsumes T 0 i� T subsumes T 0�.If a tableau T subsumes a tableau T 0, then ea
h bran
h B of T is assigned abran
h B0 of T 0. In that
ase, we say that B subsumes B0.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 9>p(X1)p(X2) >p(X1) >p(Y1) >p(Y1)p(Y2) >p(Y1)p(Y2)p(Y3)T1 T2 T 01 T 02 T 03Figure 3: The tableaux from Example 3.3.>q(X) >q(X 0)r(X 0)T1 T2Figure 4: The tableaux from Example 3.4.Using the tableau subsumption relation for restri
ting the sear
h spa
e pre-serves
ompleteness of
lausal tableaux: Given a partial proof T1; : : : ; Ti it isforbidden to derive a su

essor tableau Ti+1 from Ti that is subsumed by anyof the tableau T1; : : : ; Ti. On the other hand, this restri
tion is strong enoughto ensure that every sequen
e of tableaux built a

ordingly, i.e., every tableausequen
e not
ontaining a tableau that is subsumed by one of its prede
essors,has the following property: If the sequen
e is in�nite, then it
ontains in�nitelymany di�erent literals or, equivalently, if the sequen
e only
ontains �nitely manydi�erent literals (up to the renaming of variables) then it is �nite.To
he
k whether a tableau T subsumes one of its su

essor tableaux T 0 and,thus, whether the rule appli
ation deriving T 0 from T is allowed, it is suÆ
ientto only
onsider those parts of the tableaux that are a�e
ted, i.e., the expandedbran
h and the formulae on the tableaux that are asso
iated with it. The
he
kdoes not involve uni�ability tests be
ause free variables may only be renamedbut not instantiated with terms.Example 3.2: Let � = fp(X)g and let �0 = fp(X 0)g; further let Asso
(T;�)
onsist of q(X; Y1) and q(X; Y2).Then, Condition 1b in De�nition 3.2 is, for example, satis�ed if q(X 0; Y 0)o

urs in Asso
(T 0;�0). But it is neither satis�ed if Asso
(T 0;�0) = ; nor ifAsso
(T 0;�0) = fq(Y 0; X 0)g (be
ause to make q(X 0; Y1) and q(Y 0; X 0) identi
alwould require to rename the variable X 0 that o

urs in �0.Example 3.3: The tableau T1 in Figure 3 subsumes ea
h of the tableaux T 01,T 02, T 03. The tableau T2 subsumes only T 01.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 10>:p(a):q(b)p(X) q(Y)
>:p(a):q(b)p(X 0) q(X 0)T1 T2Figure 5: The tableaux from Example 3.5.>p(X; Y) p(Y;X) >p(U; V) >p(X1; Y1) p(X2; Y2)T1 T 0 T2Figure 6: The tableaux from Example 3.6.Example 3.4: Neither of the two tableaux in Figure 4 subsumes the other one.The tableau T1 does not subsume the tableau T2 be
ause the (single) bran
h of T2
ontains an additional literal; and, although a variant of ea
h literal set on T1o

urs on T2, the tableau T2 does not subsume T1 as for r(X 0), whi
h is an ele-ment of Asso
(T2; q(X 0)), there is no
orresponding element in Asso
(T1; q(X))and, thus, Condition 1b in De�nition 3.2 is not satis�ed.Example 3.5: The tableau T1 in Figure 5 subsumes the tableau T2. But T2 doesnot subsume T1 be
ause the literals p(X 0) and q(X 0) in T2 are asso
iated, whereasthe
orresponding literals in T1 are not asso
iated.Indeed, a transition from T2 to T1 does not
onstitute a
y
le in proof sear
hbe
ause the tableau T1
an be
losed whereas T2
annot be
losed.Example 3.6: The tableau T1 in Figure 6 does not subsume the tableau T 0.That would (only) be possible if the bran
hes B1; B2 of T both subsumed thesingle bran
h of T 0. Both B1 and B2
ontain a variant p(X; Y) resp. p(Y;X) ofthe (single) literal p(U; V) on the bran
h of T 0. But the required variable renam-ings fX 7! U; Y 7! V g and fX 7! V; Y 7! Ug are not
ompatible, whi
h violatesCondition 2 in the de�nition of the subsumption relation (Def. 3.2). This prob-lem does not o

ur with the tableau T2 in Figure 6. It subsumes T 0 be
ause thetwo required variable renamings fX1 7! U; Y1 7! V g and fX2 7! U; Y2 7! V g are
ompatible.Example 3.7: Consider the tableau T1 shown on the left in Figure 7. The ruleappli
ation that derives the
on
lusion hf?g; idi from the premiss f:p; pg
anbe used to
lose both of its bran
hes.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 11>:pp p >:pp? p >:pp? p?does not subsume
subsumes does notsubsume

Figure 7: The tableaux from Example 3.7.>:p(a)p(a)? q(a)p(X)B1 q(X)B2
R0 >:p(a)p(a)? q(a)p(a)? q(a)B02�

R0
Figure 8: The tableaux from Example 3.8.Closing the tableau requires two
onse
utive appli
ations. However, the inter-mediate tableau T2 that results from
losing the left bran
h (in the middle ofFigure 7) is subsumed by T1 be
ause both bran
hes of T1 subsume the right (notyet expanded) bran
h of T2. Thus, this �rst rule appli
ation is not allowed. Thetableau T3, however, that results from
losing both bran
hes (shown in the rightin Figure 7) is neither subsumed by T2 nor by T1. Indeed, sin
e both rule appli
a-tions use the same premiss and
on
lusion, T3 is by de�nition a su

essor tableauof T1 (without
onsidering the intermediate step), and deriving T3 from T1 is anallowed rule appli
ation.Example 3.8: An important type of tableau
onstru
tion steps that generate atableau T 0 subsumed by its prede
essor T and that are, therefore, forbidden, is thefollowing: Assume that a bran
h B1 of T is extended using a
on
lusion hC; �i,and some bran
h B02� in the new tableau T 0 is subsumed by all bran
hes Bof T a�e
ted by the rule appli
ation, i.e., the bran
h B1 (whi
h is extended)and all other bran
hes
ontaining variables that are instantiated by �. This isin parti
ular the
ase if B02� is \
ontained" in an initial sub-bran
h R0 of B2that ends above the �rst o

urren
e of any free variable in the domain of �. Asan example
onsider the tableau T shown in Figure 8 on the left, and assumethat its bran
h B1 is
losed using the premiss
onsisting of the two literals :p(a)and p(X) to derive the
on
lusion hf?g; fX 7! agi. The right bran
h B02� of theresulting tableau T 0 (shown in Figure 8 on the right) whose nodes are labelled with

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 12the literals :p(a) and twi
e q(a) is \
ontained" in the sub-bran
h R0 of T whosenodes are labelled with :p(a) and q(a); and R0 ends above the �rst o

urren
eof X in T whi
h is the only variable instantiated by �. Intuitively, the appli
ationis useless be
ause any
losed sub-tableau that
an be
onstru
ted below B02�
anbe
onstru
ted as well below both B1 and B2.A forbidden rule appli
ation as des
ribed above is irregular a

ording to thede�nition of regularity that is usually given in the literature (e.g. [Be
kert andH�ahnle, 1998℄) sin
e the bran
h B02�
ontains the same bran
h extension multi-ply. In general, however, irregular expansion steps are not ne
essarily forbiddena

ording to our subsumption
ondition|nor are all forbidden expansion stepsirregular.The proof of Theorem 5.1, whi
h is the main theorem of this paper, makesuse of the following lemma. It states an important property of tableau sequen
esthat satisfy the subsumption
ondition, i.e., that do not
ontain a tableau thatsubsumes one of its su

essors.Lemma 3.1: Let � be a �nite set of literals; and let (Ti)i�1 be a sequen
e oftableaux su
h that1. no tableau Ti subsumes any of the tableaux Tj for i < j,2. all literals o

urring in (Ti)i�1 are variants of the literals in �.Then the sequen
e (Ti)i�1 is �nite.Proof: Let the equivalen
e relation � on tableaux be de�ned by: T � T 0 i�T and T 0 subsume ea
h other, i.e., T � T 0 and T 0 � T .We show that there is only a �nite number of equivalen
e
lasses of tableaux(w.r.t. �) that
onsist of variants of literals from �.Sin
e � is �nite, there are|up to variable renaming|only �nitely manypairs h�;	i of literal sets su
h that:� All elements of � and 	 are variants of the literals in �;� � has at most two elements;� every literal in 	 has at least one variable in
ommon with a literal in �;� there are no di�erent literals ; 0 in 	 that are identi
al up to the renamingof variables not o

urring in �.Let r(�) be the number of di�erent, in
ompatible renamings of the variables ina set � of at most two literals (where the notion of
ompatible variable renamingsis de�ned as in Condition 2 in De�nition 3.2); r(�) only depends on the numberof di�erent variables in �.Now, let b� be a set of pairs of literal sets as des
ribed above, su
h that (a) b�
ontains r(�) di�erent representatives of ea
h
lass of pairs that are identi
al upto variable renaming to some h�;	i and (b) the elements of b� are all pairwisevariable disjoint. Sin
e b� is �nite, the power set P of the power set of b� is �nite.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 13Ea
h tableau T is assigned an element of P as follows: To ea
h set � of atmost two literals o

urring on some bran
h of T , the pair h�;Asso
(T;�)i isassigned. To ea
h bran
h B of T , a subset of b� is assigned that
ontains variantsof the pairs assigned to sets � of at most two literals o

urring on B, where atmost r(�) of the pairs that are identi
al up to variable renaming are in
luded.To the tableau T , an element of P is assigned
onsisting of variants of the setsassigned to the bran
hes of T .The de�nitions of � resp. � imply that two tableaux belong to the sameequivalen
e
lass w.r.t. � if they
an be assigned the same element of P. Thus,there are at most as many equivalen
e
lasses as there are elements in P|whi
his a �nite set.Now we
an
omplete the proof. Let n 2 N be the number of equivalen
e
lassesof tableaux w.r.t. �. It is an upper bound for the length of the sequen
e (Ti)i�1,be
ause if there were more than n tableaux in the sequen
e (Ti)i�1, then it had to
ontain two tableaux Ti and Tj (i < j) belonging to the same equivalen
e
lass.That, however, implies Tj � Ti whi
h
ontradi
ts the lemma's assumptions. 24. Weight OrderingsWeight orderings are the se
ond important
on
ept (besides the
on
ept of ta-bleau subsumption) on whi
h our fairness strategy is based. The properties anordering on literals for ensuring fairness must have are: (1) It is a well-orderingon the set of literals (up to renaming of free-variables), i.e., it is well-founded andthere are only �nitely many literals that are in
omparable to a given literal|su
h that for ea
h literal L all but a �nite number of literals (up to variablerenaming) are greater than L w.r.t. the ordering. (2) Proper instan
es of a lit-eral L have a higher weight than L. (3) Literals that are identi
al up to variablerenaming have the same weight. Intuitively, these are typi
al properties of or-derings on literals that are de�ned by assigning a \weight" to the symbols of asignature (whi
h is why we
all them weight orderings).Definition 4.1: A weight fun
tion w assigns to ea
h literal over � a naturalnumber (its weight), su
h that the following
onditions are satis�ed:1. Let � be a set of literals. If(a) � does not
ontain di�erent literals that are identi
al up to variablerenaming, and(b) there is an n 2 N su
h that w(�) � n for all � 2 �,then � is �nite.2. If X is a variable o

urring in some literal � and t is a term that is not avariable, then w(�) < w(�fX 7! tg) :

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 143. If literals �; �0 are identi
al up to the renaming of variables, thenw(�) = w(�0) :Let w be a weight fun
tion. Then the weight ordering �w (that is indu
edby w) is for all literals �; over � de�ned by:� �w i� w(�) � w() :A weight ordering is extended to sets of literals by
omparing the maximalweight of the literals they
ontain. This extension is a well-ordering as well,provided the literal sets are only allowed to
ontain a
ertain number of variantsof ea
h literal.Example 4.1: Assume that every fun
tion symbol f 2 F� is assigned a weightwf 2 N and every predi
ate symbol p 2 P� is assigned a weight wp 2 N , su
h thatonly �nitely many symbols are assigned the same weight.For all literals �, let w(�) be the sum of the weights of all fun
tion and predi
atesymbols in �, where the weight of a symbol o

urring multiply is added multiply.Then, w is a weight fun
tion (Def. 4.1).5. Deterministi
 Proof Pro
edures for Clausal TableauxIn this se
tion, we de�ne a (
lass of)
omplete deterministi
 proof pro
edure(s)for
lausal tableaux; this proof pro
edure
an be used to perform depth-�rstsear
h for proofs without ba
ktra
king. It is
onstru
ted using the notions ofsubsumption and weight orderings as des
ribed in Se
tions 3 and 4.To ensure that a deterministi
 proof pro
edure is
omplete, i.e., a proof isfound if there is one, we demand that the
onstru
ted sequen
e of tableaux sat-is�es the following two
onditions: (1) The
reation of a tableau that is subsumedby one of its prede
essors is forbidden. (2) At ea
h step, from all possible ruleappli
ations not violating Condition 1, an appli
ation is
hosen that
reates asu

essor tableau in whi
h the maximal weight of literals is as small as possible(i.e., su

essor tableaux are
ompared a

ording to the maximal weight of theliterals they
ontain). If several rule appli
ations satisfy these
onditions, arbi-trary heuristi
s may be employed to
hoose one of them; e.g., rule appli
ations
reating less new sub-bran
hes may be preferred.Note that
on
lusions are not ne
essarily added to a tableau bran
h in theorder de�ned by the maximal weight of their literals be
ause a literal L
an onlybe added if the ne
essary premiss � is present on the bran
h; and the weight ofthe literals in � may be higher than that of L. Also, at whi
h point a
ertain
on
lusion is added, depends on its literal with the highest weight. Thus, literalswith a lower weight that
an only be added as part of a
on
lusion
ontainingother literals of higher weight are added to the tableau later.To
omply with the
ondition that all rule appli
ations adding literals of

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 15less weight have to be exe
uted before literals of higher weight are added to atableau, it may be ne
essary to expand bran
hes that are already
losed. That isnot always redundant, be
ause
losed bran
hes still
ontain useful informationand
an in
uen
e other bran
hes by the substitutions that are applied whenthey are expanded (the �rst substitution that is applied to
lose a bran
h is notne
essarily the \right one" that allows to
omplete the proof). If a
losed bran
hhas no free variables in
ommon with other bran
hes, it needs not be furtherexpanded.Unfortunately, the restri
tion of the sear
h spa
e as des
ribed above is diÆ-
ult to implement; it requires to
ompare a tableau Tn+1 with all its prede
essorsT1; : : : ; Tn and not only with the tableau Tn from whi
h it is derived. Su
h a sub-sumption
he
k is prohibitively expensive w.r.t. both spa
e and time. Moreover,if a subsumption is en
ountered, i.e., if Tn+1 is subsumed by one of the prede-
essor tableaux Tj, then other su

essor tableaux of Tj (besides Tj+1) must be
onsidered, whi
h in a
ertain sense amounts to ba
ktra
king. The reason forthis is the following: A tableau Tn+1 that is subsumed by a tableau Tj does nothave to be
onsidered for proof sear
h as all the proofs that may be
onstru
tedfrom Tn+1
an be
onstru
ted from Tj. Now, if j = n, then we
an just ex
ludethe su

essor tableau Tn+1 and be sure that if there is a proof derivable from Tn+1then it is derivable from Tn without
onsidering Tn+1. If, however, j < n, thenthe
losed tableau that is known to be derivable from Tn+1 and thus from Tjmay not involve Tj+1; : : : ; Tn but require to pro

eed with an alternative su
-
essor tableau T 0j+1 di�erent from Tj+1. This situation is visualised in the upperpart of Figure 9.The following example demonstrates that
y
les in the proof sear
h are notall of length one or two but
an indeed be of arbitrary length (the
y
le in theexample is of length four).Example 5.1: Figure 10 shows a tableau sequen
e (Ti)i�1 for the
lause setS = f :p(a); :r(b); (8x)(p(x) _ q(x)); (8y)(r(y) _ s(y)) g :For i � 8, the tableau Ti subsumes the tableau Ti+4 (and none of the tableauxTi+1; : : : ; Ti+3. Thus, the sequen
e
ontains a
y
le in proof sear
h of length four.The sequen
e is
onstru
ted as follows: After the tableau T8 has been derived,the following rule appli
ations are repeatedly exe
uted:1. A
on
lusion of the form hfr(Y); s(Y)g; idi is derived and used to expandthe rightmost bran
h (e.g., to derive tableau T9 from tableau T8).2. The third bran
h from the right is
losed using a premiss
onsisting of lit-erals :p(a) and p(X) and a
on
lusion hf?g; fX 7! agi (e.g., to derive T10from T9).3. A
on
lusion of the form hfp(X); q(X)g; idi is derived and used to expandthe rightmost bran
h (e.g., to derive tableau T11 from tableau T10).

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 16
T1 : : : Tj : : : Tn Tn+1 Proof

Proof
forbiddensubsumed by

T1 : : : Tj : : : Tn Tn+1 Proof
Proof Proof

forbiddensubsumed bysubs. byFigure 9: Proof sear
h with a
al
ulus that is destru
tive (top) resp. non-destru
tive (bottom).4. The third bran
h from the right is
losed using a premiss
onsisting of lit-erals :r(b) and r(Y) and a
on
lusion hf?g; fY 7! bgi (e.g., to derive T12from T11).All problems stem from the fa
t that a tableau Tj is not ne
essarily subsumedby its su

essor tableau Tj+1 as the
lausal tableau
al
ulus is destru
tive andliterals o

urring in Tj may not o

ur in Tj+1 any more. However, if we make the
al
ulus weakly non-destru
tive in the sense that a tableau is always subsumedby all its su

essor tableaux, then we have the situation shown in the lowerpart Figure 9. Now, the tableau Tj is subsumed by the tableau Tn ensuringthat every proof that
an be
onstru
ted from Tn+1
an as well be
onstru
tedfrom Tn|without deriving Tn+1 as an intermediate result. In a
ertain sense, a(weakly) non-destru
tive
al
ulus is proof-
on
uent w.r.t. the restri
ted sear
hspa
e (where no tableaux subsumed by a prede
essor are allowed).To make
lausal tableaux weakly non-destru
tive, i.e., to make sure that atableau Ti+1 always subsumes its prede
essor tableau Ti, we impose the followingadditional restri
tion on the proof
onstru
tion: Immediately after a tableau
onstru
tion step destroying literals, the
onstru
tion steps needed to re
reatethe destroyed literals must be exe
uted. In the worst
ase, a new
opy of the sub-tableau that was a�e
ted by the variable instantiation is
reated and appended

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 17>:p(a):r(b)p(a)? q(a)r(b)? s(b)p(X1) q(X1)T8
>:p(a):r(b)p(a)? q(a)r(b)? s(b)p(X1) q(X1)r(Y1) s(Y1)T9>:p(a):r(b)p(a)? q(a)r(b)? s(b)p(a)? q(a)r(Y1) s(Y1)T10

>:p(a):r(b)p(a)? q(a)r(b)? s(b)p(a)? q(a)r(Y1) s(Y1)p(X2) q(X2)T11>:p(a):r(b)p(a)? q(a)r(b)? s(b)p(a)? q(a)r(b)? s(b)p(X2) q(X2)T12S = f :p(a); :r(b); (8x)(p(x) _ q(x)); (8y)(r(y) _ s(y)) gFigure 10: A sequen
e of tableaux
ontaining a proof sear
h
y
le; see Example 5.1.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 18>:p(a)p(X) q(X):q(X)? r(X)s1 s2(a)
>:p(a)p(a)? q(a):q(a)? r(a)s1 s2(b)>:p(a)p(a)?R(X1) q(a):q(a)?R(X2) r(a)s1R(X3) s2R(X4)
where R(X) =p(X) q(X):q(X)? r(X)(
)Figure 11: A tableau re
onstru
tion step (Example 5.2).to all sub-bran
hes that have been a�e
ted. The result is a tableau T+i+1 thatsubsumes both Ti and Ti+1 and all the tableaux o

urring as intermediate resultsduring the re
onstru
tion.Example 5.2: Consider the
lause setS = f (8x)(p(x) _ q(x)); (8x)(:q(x) _ r(x)); s1 _ s2 g :A tableau Ti for S is shown in Figure 11 (a). The left bran
h of Ti is
losed usingthe
on
lusion hf?g; fX 7! agi. The result is the tableau Ti+1 (Figure 11 (b)),in whi
h all literals
ontaining the free variable X have been destroyed. They arere
onstru
ted by appending a
opy of the sub-tableau R(X) that
onsists of allliterals in Ti in whi
h X o

urs to all the bran
hes in Ti+1 from whi
h literals aremissing; the resulting tableau T+i+1 (Figure 11 (
)) subsumes both Ti and Ti+1.If a deterministi
 proof pro
edure exe
utes a re
onstru
tion step after ea
htableau rule appli
ation, then a sequen
e T+1 ; T+2 ; : : : of tableaux is
onstru
tedwhere T+i+1 is derived from T+i by exe
uting a
onstru
tion step (that does notlead to a tableau subsumed by its prede
essor) and then re
onstru
ting thedestroyed literals. To ensure that su
h a sequen
e meets all
onditions, it is suf-�
ient to test whether the immediate su

essor tableau Ti+1 of T+i is subsumedby T+i . The earlier prede
essors do not have to be
onsidered as they are all sub-sumed by T+i . Theorem 5.1 below states
ompleteness of su
h a proof pro
edure;it is the main theorem of this paper.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 19Theorem 5.1: If a
lause set S is unsatis�able, then every sequen
e (T+i)i�1 oftableaux for S that is
onstru
ted as des
ribed below
ontains a
losed tableau.The tableau T+1 is an initial tableau for S. And for all i > 1 the followingholds:1. Ti+1 is a su

essor tableau of T+i (Def. 2.5) su
h that(a) T+i does not subsume Ti+1 and(b) there is no su

essor tableau T 0i+1 of T+i that satis�es Condition (a) andhas a smaller maximal literals weight than Ti+1 (w.r.t. an arbitrary but�xed weight ordering).2. Let hCi; �ii be the
on
lusion (derived from some premiss on T+i) that isused to
onstru
t Ti+1; and let Ri be the minimal sub-tableau of T+i that
ontains all o

urren
es of the variables instantiated by �i. The tableau T+i+1is
onstru
ted from Ti+1 by (repeatedly) exe
uting all rule appli
ations thatare ne
essary to generate Ri; Ri is appended to all bran
hes that go throughthe sub-tableau of Ti+1
orresponding to Ri (whi
h results from applying �ito Ri).Proof: Part 1. The de�nition of the tableau
onstru
tion rules immediately im-plies that, if a
on
lusion hC; �i is derivable from a premiss �, then the
on
lusionhC; idi is derivable from the premiss �� for all substitutions �. Therefore, there
onstru
tion step (i.e., the rule appli
ations that are ne
essary to
onstru
tT+i from Ti) does not require the instantiation of free variables. Consequently,the re
onstru
tion is non-destru
tive, and we haveTi � T+ifor all i � 1.By
onstru
tion of T+i+1, all literals that are destroyed by applying the sub-stitution �i to T+i are appended by the re
onstru
tion step to all bran
hes fromwhi
h they are missing in Ti+1. Therefore T+i � T+i+1 and, thus,T+i � T+j for all i � j.Part 2. We show by
ontradi
tion that the sequen
e (T+i)i�1 does not
ontaina tableau that subsumes one of its su

essors. Assume the
ontrary, i.e., thereare tableaux T+i ; T+j , i < j, su
h that T+j � T+i . Using the results of Part 1, thatimplies Ti+1 � T+i+1 � T+j � T+i :By
onstru
tion of the sequen
e (T+i)i�1, however, the tableau Ti+1 is not sub-sumed by T+i . Thus, the assumption is wrong, and (T+i)i�1 does indeed not
ontain a tableau that subsumes one of its su

essors.Part 3. Let wmax 2 N be an arbitrary weight. We prove �niteness of the initialsub-sequen
e of (T+i)i�1 that only
ontains literals � of weight w(�) � wmax.

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 20Let � be a set of (variants of) representatives of ea
h equivalen
e
lass ofliterals in (T+i)i�1 that are identi
al up to variable renaming and whose weightis not bigger than wmax. That is, if � is a literal in (T+i)i�1 with w(�) � wmax,then there is a variant of � in �. Let the literals in � be
hosen in su
h a waythat they are all pairwise variable-disjoint.The de�nition of weight orderings implies that the set � must be �nite. Thus,by Lemma 3.1, the initial sub-sequen
e of (T+i)i�1 that only
ontains literals ofweight w(�) � wmax must be �nite.Part 4. Sin
e S is unsatis�able and the (unrestri
ted)
lausal tableau
al
ulusis
omplete, there is a tableau proof T 01; : : : ; T 0m for S (it possibly violates thesubsumption
ondition and is not
onstru
ted as des
ribed in the theorem). Letwmax be the maximum of the weights of all the literals o

urring in this tableausequen
e; and let T+n be the last tableau in the initial sub-sequen
e of (T+i)i�1that only
ontains literals of weight not bigger than wmax (as has been shown inPart 3, this sub-sequen
e is �nite).We proof by indu
tion on j that there are substitutions �j for 1 � j � m su
hthat T 0j � T+n �j :Base
ase j = 1. Let �1 = id . The tableaux T 01 and T+1 are both initial tableauxfor S and do not
ontain any free variables. Thus, T 01 = T+1 � T+n = T+n �1 holdstrivially.Indu
tion step j ! j + 1. Let �0 be the premiss and hC; �i be the
on
lusionused to derive T 0j+1 from T 0j. And let B0j be the bran
h in T 0j that is extended.Sin
e � is a most general uni�er of literals in T 0j, it instantiates only variableso

urring in T 0j.If no bran
h in T+n �j subsumes the bran
h B0j, then every bran
h of T+n �jsubsumes one of the bran
hes of T 0j that are not expanded. In that
ase we haveT 0j+1 � T+n �j� and thus T 0j+1 � T+n �j+1 with �j+1 = (� Æ �j).Otherwise, there are bran
hes B1; : : : ; Bs in T+n �j that subsume B0j. Thus,there are sets �l of literals on Bl and a substitution � su
h that �l� = �0.A

ording to Condition 2 in the de�nition of the subsumption relation (Def. 3.2),the substitution � does not depend on l. Therefore, B
an be extended using the
on
lusion hC; � Æ �i. Now, let bT be the tableau, that is derived from T+n �j byextending ea
h of the bran
hes B1; : : : ; Bs using the
on
lusion hC; � Æ �i. Thesu

essor tableau bT of T+n �j subsumes T 0j+1, i.e., T 0j+1 � bT .Let bK be the set of all literals that are added by the rule appli
ations used toderive bT from T+n �j, whi
h are the literals in C and in (Asso
(T+n ;�))��. Be
auseT 0j+1 � bT , by the de�nition of � and by the
onstru
tion of bT , all literals in bKalready o

ur in T 0j+1. Therefore, by de�nition of wmax, the weight of all literalsin bK is not bigger than wmax.Using rule appli
ations
orresponding to those used to derive bT from T+n �j,it is possible to derive a Tableau eT from T+n su
h that eT�j+1 = bT for some

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 21substitution �j+1. Let eK be the set of all literals that are added by the ruleappli
ations used to derive eT from T+n . Then there is a substitution e� su
h thateKe� = bK. Therefore, the weight of the literals in eK is not bigger than wmax. Also,by de�nition, the weight of the literals in T+n is not bigger than wmax. Thus, theweight of all literals in eT is not bigger than wmax.Sin
e, by
onstru
tion, T+n is the last tableau in the sequen
e (Ti)i�i that doesnot
ontain literals of weight bigger than wmax, every rule appli
ation that leadsto a tableau with this property must be forbidden be
ause it leads to a tableausubsumed by T+n (be
ause otherwise it would have to be derived instead of thetableau Tn+1, whi
h
ontains a literal of weight bigger than wmax). Thus, we haveeT � T+n and, therefore, eT�j+1 � T+n �j+1. Consequently,T 0j+1 � bT = eT�j+1 � T+n �j+1 :Part 5. We now
an
on
lude the proof of the theorem. As a
onsequen
e ofwhat is proven in Part 4, the tableau T+n �m subsumes the tableau T 0m. Sin
e T 0mis
losed, ea
h bran
h of T 0m
ontains the literal ?. Thus, ea
h bran
h of T+n �m
ontains ?; and, sin
e ? does not
ontain variables, ea
h bran
h of T+n
on-tains ?. Therefore, T+n is
losed. 2Example 5.3: As an example for the proof
onstru
tion as des
ribed in this se
-tion, Figure 12 shows a
losed tableau for the
lause set
onsisting of the
lauses:p(a), :p(b), :q(b), (8x)(p(x) _ q(x)). The proof
onstru
tion starts with addingthe unit literals to the initial tableau; the result is the tableau T1. At this pointonly one rule appli
ation is possible, whi
h results in the tableau T2. Then thereare several possibilities to pro
eed; the left bran
h of T2
an be
losed instantiatingX1 with either a or b and the right bran
h
an be
losed instantiating X1 with b.We assume that a

ording to the weight ordering, p(a) �w p(b) and q(a) �w q(b).Consequently, the \bad" instantiation fX1 7! ag is preferred and the tableau T3is
onstru
ted, be
ause the maximal weight of its literals is less than that of theliterals in the alternative tableaux. Sin
e the variable X1 is instantiated, a re
on-stru
tion step is required; the result of that step is the tableau T4. Now there areagain several possibilities. If the weight of literals were the only
riterion, thena tableau T 05 would have to be derived from T4 that is identi
al to T5 ex
ept thatX3 is instantiated with a instead of b (i.e., repeating the useless instantiation).However, deriving T 05 from T4 is not allowed as T 05 is subsumed by T4 (it is easyto
he
k that ea
h bran
h of T4 subsumes one of the bran
hes of T 05). There-fore, the tableau T5 is derived instead of T 05; and the variable X3 is instantiatedwith b instead of a. Again, a re
onstru
tion step is required, whi
h results in thetableau T6. From T6 the
losed tableau T7
an easily be
onstru
ted.A proof pro
edure as des
ribed in Theorem 5.1
onstru
ts a tableau sequen
eT+1 ; T+2 ; : : : su
h that no tableau is subsumed by any of its prede
essors and alltableaux are subsumed by their su

essors. Su
h a pro
edure simulates (in a

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 22>:p(a):p(b):q(b)T1
T1p(X1) q(X1)T2 T1p(a)? q(a)T3T1p(a)?p(X2) q(X2) q(a)p(X3) q(X3)T4

T1p(a)?p(X2) q(X2) q(a)p(b)? q(b)T5T1p(a)?p(X2) q(X2) q(a)p(b)?p(X4) q(X4) q(b)p(X5) q(X5)T6
T1p(a)?p(X2) q(X2) q(a)p(b)?p(X4) q(X4) q(b)p(X5)? q(X5)?T7Figure 12: The
losed tableau des
ribed in Example 5.3.
ertain sense) a depth-�rst iterative deepening sear
h (as des
ribed in the in-trodu
tion). The weight of the literals that
an o

ur in the tableaux in
reasesstepwise. If some (unrestri
ted) tableau proof exists that does not
ontain liter-als of weight bigger than wmax, then there is a
losed tableau T+n that is the lastin the
onstru
ted sequen
e not
ontaining literals of weight bigger than somew+max 2 N . It subsumes all tableaux that
an be
onstru
ted from literals L ofweight w(L) � wmax. The big advantage of this simulated DFID over
lassi
alDFID sear
h based on ba
ktra
king is that the tableau T+n is a very
ompa
t rep-resentation of the sear
h spa
e. All the information that is
ontained in tableauxwhose literals are of weight less than wmax is present in the single stru
ture T+n ;and all the tableaux in the sear
h spa
e that are identi
al or in some way sym-metri
al to ea
h other are represented by only one sub-tableau of T+n . Sin
e noba
ktra
king o

urs, no information that has been derived is ever lost. Theremay be parts of the tableau T+n that represent redundant information and aretherefore useless (i.e., non-
losed sub-tableaux that should not have been
re-ated); but these
an be easily be dete
ted and removed (e.g., using the pruningte
hnique [Be
kert and H�ahnle, 1998℄).

B. Be
kert: Depth-�rst Proof Sear
h for Clausal Tableaux 23Referen
esPeter Baumgartner, Norbert Eisinger, and Ulri
h Furba
h. A
on
uent
onne
-tion
al
ulus. In H. Ganzinger, editor, Pro
eedings, Conferen
e on AutomatedDedu
tion (CADE), Trento, Italy, LNCS 1632, pages 329{343. Springer, 1999.Bernhard Be
kert. Integration und Uniformierung von Methoden des tableau-basierten Theorembeweisens. PhD thesis, Universit�at Karlsruhe, Fakult�at f�urInformatik, July 1998. Available at www.ubka.uni-karlsruhe.de/eva/.Bernhard Be
kert and Reiner H�ahnle. Analyti
 tableaux. In Wolfgang Bibel andPeter H. S
hmitt, editors, Automated Dedu
tion | A Basis for Appli
ations,volume I: Foundations. Kluwer, Dordre
ht, 1998.Melvin Fitting. First-Order Logi
 and Automated Theorem Proving. Springer,New York, se
ond edition, 1996.Reiner H�ahnle and Christian Pape. Ordered tableaux: Extensions and appli-
ations. In Pro
eedings, International Conferen
e on Theorem Proving withAnalyti
 Tableaux and Related Methods, Pont-�a-Mousson, Fran
e, LNCS 1227,pages 173{187. Springer, 1997.A
knowledgementI thank Reiner H�ahnle and Peter H. S
hmitt for fruitful dis
ussions, and theanonymous referees for useful
omments on earlier versions of this paper.

