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Abstract
We analyse the problem of constructing a deterministic proof procedure
for free-variable clausal tableaux that performs depth-first proof search
without backtracking; and we present a solution based on a fairness strat-
egy. That strategy uses weight orderings and a notion of tableau subsump-
tion to avoid proof cycles and it employs reconstruction steps to handle
the destructiveness of free-variable calculi.

1. Introduction

In this paper, we analyse the problem of constructing a deterministic proof pro-
cedure for free-variable tableau calculi that performs depth-first proof search and
is complete without backtracking. As an example, we present a solution for first-
order clausal tableaux that is based on a fairness strategy. That strategy uses
weight orderings and a notion of tableau subsumption to avoid proof cycles and
it employs reconstruction steps to handle the destructiveness of clausal tableaux.

First-order clausal tableaux are proof-confluent, i.e., every tableau for an un-
satisfiable clause set can be completed to a proof. They are, however, a destruc-
tive calculus because all occurrences of a (free) variable in a tableau have to be
instantiated by the same term and, thus, a rule application can make another
rule application impossible.

The proof search space can be visualised as a search tree where each possible
choice of the next rule application to a tableaux T creates a node with as many
successor nodes as T has different successor tableaux (Fig. 1). Since we use a
proof-confluent calculus, all fully exhausted branches in the search tree (for an
unsatisfiable input clause set) are either infinite or end in a node that is labelled
with a proof, i.e., a closed tableau.

There are two main concepts for proof search: breadth-first and depth-first
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Figure 1: A proof search tree.
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Figure 2: Comparison of proof search strategies.

search. Depth-first search requires that either there are no paths in the search
tree that do not contain proofs or it is possible to avoid such paths using fairness
strategies for the construction of tableaux.

As fairness strategies that allow depth-first search are difficult to construct
for first-order clausal tableaux, most automated deduction systems use breadth-
first search. It allows to find shorter proofs than depth-first search because all
paths of the search tree are considered whereas, using depth-first search, paths
in the search tree that contain short proofs may be missed; fairness strategies
only guarantee that some proof is found but it may not be the shortest one.
However, the length of found proofs is not of great importance in automated
deduction (the only advantage of short proofs is that their construction requires
less rule applications and that they are thus easier to find); and breadth-first
search is “expensive” as compared to depth-first search because neighbouring
paths in the search tree contain many similar or even identical tableaux that
using breadth-first search all have to be considered.

For all (useful) iterative deepening strategies, i.e., all monotonic functions m
from N to sets of tableaux where | J;.ym(7) includes all constructible tableaux
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(i is the iteration level), the size of the partial search trees m(i) grows ezponen-
tially in 7. It is thus, even for small 7, impossible to store all the tableaux in
m(i) in the memory of a machine. Therefore, most implementations use depth-
first iterative deepening (DFID). The initial, partial search space consisting of
all the tableaux in M (i) = [J,.,m(j) for some i € N is searched for proofs in
a depth-first manner using backtracking, and if it turns out not to contain a
proof, then i is increased (for example, the proof procedure described by Fitting
[1996] is of this type). Then, however, the tableaux in M (i) are not available for
the construction of the tableaux in M (i + 1); they have to be constructed again
from scratch, which, however, merely causes polynomial overhead as compared
to a breadth-first search at the “right” level i because M (i + 1) is exponen-
tially larger than M (7). Although DFID search leads to acceptable performance
of tableau-based automated theorem provers, it should be stressed that it is
only a compromise used when no completeness preserving fairness strategy for
depth-first search is available.

The advantage of depth-first proof search is that the information represented
by the constructed tableaux increases at each proof step; no information is lost
since there is no backtracking. In addition, considering similar tableaux or se-
quences of tableaux in different paths of the search tree is avoided.

Figure 2 shows how the different search strategies traverse the search space.
The coloured part has to be searched before a proof is found. The form of the
search space visualises its exponential growth.

In the case of non-destructive and proof-confluent tableau calculi—such as
the ground version of first-order tableaux that does not use free variables—it is
relatively easy to use depth-first proof search; it suffices to systematically add
all possible conclusions until all branches of the constructed tableau are either
fully expanded or closed. The situation is much more complicated in free-variable
clausal tableau calculi, which are destructive (even if they are proof-confluent).
Applying a substitution may destroy literals on a tableau that are needed for
the proof, such that they have to be deduced again.

Up to now there was no useful solution to the problem of constructing a
deterministic proof procedure for free-variable clause tableaux that performs
depth-first search and is complete, i.e., that never fails to find a proof if there is
one. Such procedures were only known for the special case where tableaux are
expanded without instantiating variables and only a single substitution is finally
applied that is known to allow to close all branches simultaneously. This solution
is not really satisfactory as (1) free variables are only used in a very restricted
way, and (2) checking whether there is a single substitution simultaneously clos-
ing all branches of a tableau is computationally expensive. Solving the problem
for a similar calculus, Baumgartner et al. [1999] recently described a depth-first
proof procedure for a connection calculus.

We propose in this paper a deterministic search strategy that is based upon:

e A tableau subsumption relation to detect “cycles” in the search (i.e., to make
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sure that it is not possible to deduce the same literals or sub-tableaux again
and again).

o Weight orderings that assign each literal a “weight” in such a way that
there are only finitely many different literals (up to variable renaming) of
a certain weight; thus, if literals with lesser weight are deduced first, then
sooner or later each possible conclusion is added to all branches containing
its premiss.

e Reconstruction steps to handle the destructiveness of free-variable clausal
tableaux. Immediately after a rule application that destroys literals, the
construction steps that are needed to recreate the destroyed sub-tableaux
are executed.

The main difficulty is to define a tableau subsumption relation that on the
one hand is restrictive enough to avoid cycles in the proof construction and on
the other hand is not too restrictive such that completeness is preserved.

Our fairness strategy considers the whole tableau tree (and not only a single
branch) both for the subsumption check and for choosing a conclusion of minimal
weight; a procedure based on this strategy may extend any branch of a tableau at
any time. Note that this does not imply a large memory consumption; at least it
is not worse than that of proof strategies where a “current” branch is extended
until it is closed before other branches are considered and where DFID-based
breadth-first search is used to ensure completeness, as in that case all closed
branches have to be stored for backtracking.

As said above, no useful deterministic proof procedures for free-variable clausal
tableaux were known up to now. There is trivially a (not useful) deterministic
proof procedure for all proof-confluent calculi, namely a procedure performing a
breadth-first search in the background. “Useful” means that the computational
complexity of deciding what the next rule application should be in each situation
has to be reasonably low. In addition, the number of construction steps that are
necessary to find a proof has to be reasonably small as compared to the number
of necessary steps when a breadth-first search strategy is used.

If the fairness strategy we present in the following sections is used, then the
complexity of deciding what the next expansion step should be is in the worst
case quadratic in the size of the tableau to be expanded and its possible successor
tableaux. In the average case the complexity is much lower as only those parts of
a tableau have to be considered that are affected by one of the possible tableau
rule applications. The number of steps required to construct a proof is smaller
than (or equal to) the worst-case number of construction steps using DFID.

The structure of the paper is as follows: In Section 2, we describe the calcu-
lus of clausal tableaux. After introducing our notion of tableau subsumption in
Section 3 and that of weight orderings in Section 4, our method for constructing
deterministic proof procedures for free-variable clausal tableaux is presented in
Section 5.

In [Beckert, 1998] the same techniques for constructing deterministic proof
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procedures are applied to a more general class of tableau calculi that are in a
certain sense well-behaved, and of which free-variable clausal tableaux are an
instance.

2. First-order Clausal Tableaux

A first-order signature ¥ = ( Py, s, ax) consists of a non-empty set Ps of pred-
icate symbols, a set Fy, of function symbols, and a function ay : Pr U Fy, — N
assigning an arity to the predicate and function symbols; functions of arity 0 are
colled constants. Moreover, there is an infinite set Var of object variables.

The logical operators of clause logic are the connectives — (negation) and
V (disjunction) and the universal quantifier V. In addition, we use the logical
constants T (true) and L (false).

The notions of free and bound variable, term, atom, literal, and substitution
are defined as usual. We use z, y, z etc. to denote quantified variables and X, Y, Z
etc. to denote free variables. The logical constants T and L are considered to be
literals (but not atoms). The complement of a literal L is denoted with L.

DEFINITION 2.1: A variable renaming is a substitution that replaces all occur-
ring variables by distinct new variables (i.e., variables that are new w.r.t. the
context where the variable renaming is applied).

DEFINITION 2.2: A clause C over a signature X is a first-order formula of the

form
(Vxq)--- (Vo) (Ly V-~V L)

where the L; are literals over ¥ and x+,...,x, are all the variables occurring in
Ly,...,L,.

A new instance of a clause C is a formula (LyV ---V L,)o where o is a
variable renaming.

DEFINITION 2.3: A clausal tableau for a set S of clauses is built by a sequence
of applications of the following construction rules. Each rule has a premiss (a set
of literals) and a conclusion (consisting of a set of literals and a substitution).

Initialisation: The tree consisting of a single node labelled with T is a tableau

for S.

FExpansion: If T is a tableau for S, B is a branch of T, and L1V ---V L, is a
new instance of a clause in S, then a tableau T" is a tableau for S if obtained

by extending B with r nodes Ly, ..., L,. (In this case, the premiss is empty
and the conclusion is ({Ly,..., L}, id).)

Closure: If T is a tableau for S, B is a branch of T, L, L' are literals on B, and
L, L' are unifiable with most general unifier o, then T' is a tableau for S if
obtained by appending L to B and applying o to each node of T. (In this
case, the premiss is {L, L'} and the conclusion is ({1}, 0).)
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Note, that a branch is closed by adding the special literal |; therefore, branch
closure can be considered to be a special kind of branch expansion.

DEFINITION 2.4: A tableau T is closed if all its branches are closed, i.e., con-
tain 1.

We use a slightly non-standard definition of the notion of successor tableau.

DEFINITION 2.5: A tableau T' is a successor tableau of a tableau T if it is
constructed from T by one or more “identical” rule applications, i.e., there are

1. different branches By, ..., B, (n>1) of T,

2. premisses I1; on the B; such that 11;, 11, are identical up to variable renam-
ing,
3. a (single) conclusion (C, o) such that IL;oc =10 (1 <1i,j <n),

and T' is constructed from T by extending each of the branches B; with the
literals in C and applying the substitution o to T.

DEFINITION 2.6: Let S be a clause set.

A tableau sequence for S is a sequence (T;);>1 of tableaux for S such that T;4
is a successor tableau of T; (i > 1).

A tableau proof for (the unsatisfiability of) S is a finite tableau sequence
Ty,..., T, for S such that T, is closed.

Clausal tableaux as defined above are a complete and proof-confluent calculus.

THEOREM 2.1: Let S be an unsatisfiable clause set.

Completeness: There is a tableau proof for the unsatisfiability of S.

Proof confluence: Every finite tableau sequence Ty, ..., Ty for S can be extended
to a tableau proof Ty, ..., Ty, Tpy1,..., T, for S.

Our technique for constructing a backtracking-free proof procedure (as de-
scribed in the following sections) is compatible with many search space restric-
tions that preserve proof confluence. Examples are selection functions [Hdhnle
and Pape, 1997] and connection tableaux with restart, where (except for restart
steps) a clause used for expansion must have a link into the branch being ex-
panded.

3. Tableau Subsumption Relation

Assume that a sequence 17, ..., T, of tableaux has already been constructed. A
rule application to T, is forbidden if the successor tableau T;,, is subsumed by
one of the predecessor tableaux T;—in particular, if 7, is subsumed by 7.
In that case, the sequence T},...,T,;; constitutes a cycle in the proof search
because 7,41 does not contain any information that is not already in Tj.
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We define a tableau Tj to subsume a tableau T, iff each branch of T} sub-
sumes one of the branches of T;,.. Intuitively, the tableau 7}, is in that case
redundant because, if closed sub-tableaux can be constructed below all branches
of T, 11, it is possible to construct closed sub-tableaux of the same complexity
below all branches of Tj as each of them subsumes a branch of T}, ;.

When does a tableau branch subsume another branch? A first approximate
answer to that question is: A branch B subsumes a branch B’ if B contains a
variant of each literal occurring on B’. That, however, is an over-simplification;
three additional aspects have to be taken into concern.

First additional aspect. For a branch B to subsume a branch B’, it is in
general not sufficient if the branch B contains one variant of each literal L
occurring in B’, namely in case B’ contains two variants of L that are both needed
to close the branch. However, since the premiss for a single rule application
contains at most two literals, it is sufficient if B contains a variant of each
set of (at most) two literals occurring on B’. This implies that at most two
variable-disjoint variants of each literal on B’ are needed on B (where however,
as described below, literals may have to be considered to be effectively different
although they are variants of each other on first sight).

EXAMPLE 3.1: If the literals —p(X), p(f(X)), —-p(X"), p(f(X")) occur on B’
whereas the branch B only contains —p(X) and p(f(X)) (and B and B' are
otherwise identical), then B contains a variant of each literal on B'. Nevertheless,
the transition from B to B' is definitely not a cycle in proof search because—
contrary to B—the branch B’ can be closed.

Second additional aspect. The second important aspect is that, in order to
decide whether some literal L on a branch B can be considered to be a variant
of some literal L' on a branch B’, not only the literals L and L' have to be
taken into concern but also associated literals (on B and B’ as well as on other
branches) that have free variables in common with L and L'.

DEFINITION 3.1: Literals Ly and Lo are associated if there is a variable occur-
ring in both Ly and L. The set of all literals in a tableau T that are associated
with a literal L, excluding L itself, is denoted with Assoc(T,L). Accordingly, if
® is a set of literals, then Assoc(T, ®) is the literal set (|J, . Assoc(T,L)) \ @.

Associated literals play a role because the ordering of tableau rule applications
used by a deterministic proof procedure as described in Section 5 has to take
all literals into account that are generated by an application. So, if L(X) is a
premiss for a certain tableau rule application that leads to the instantiation of X
with a term ¢ and there is a literal L'(X) on the tableau, then that application
will generate the new literal L'(¢) (besides L(t)). Since the choice of which rule is
applied next to a tableau depends the new literals that possible rule applications
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generate, the form of L'(¢)—and thus the form of the associated literal L'(X)—
can affect the choice of the next rule application (in particular if L'(X) has a
higher weight than L(X), see Section 4).

Third additional aspect. As said above, a tableau T' subsumes a tableau 7" if
for each branch B in T there is a branch B’ in T" such that B subsumes B’. That
includes the possibility that the same branch B’ of T" is assigned to two different
branches B; and By of T. In that case there is for each set ® (of at most two
literals on B') a literal set ®; on B; and a literal set ®5 on B, that are variants
of ®'. The basic idea behind the definition of our subsumption relation implies
that every possible rule application on branch B’ with the premiss ®' can as well
be applied—simultaneously—on the branches subsuming B’ with the premisses
®; resp. ®,. That, however, requires the two variable renamings constructing @’
from ®; resp. ®, to be compatible. The same holds if B’ is assigned to more
than two branches in 7.

Formal definition of the subsumption relation. We now formally define our
tableau subsumption relation. It is transitive and reflexive.

DEFINITION 3.2: Let T and T' be tableauz that do not have any variables in
common. The tableau T subsumes the tableau T', denoted by T' C T, if

i. it s possible to assign to each branch B of T a branch B' of T"

it. and then, for each pair B, B’ respectively, to each set ®' of at most two
literals on B', a set ® of literals B and a variable renaming © can be assigned

such that:
1. The following holds for ®, ®" and =:
(a) o = P';
(b) for each of the literals L in Assoc(T, ®) there is (at least) one literal L'

in Assoc(T', ®') such that Lm and L' are identical up to the renaming
of variables not occurring in ®mw resp. P’.

2. If a branch B' of T' is assigned to different branches By, ..., Bs of T (s > 2),
then, for all ®" on B', the variable renamings m, ..., 75 assigned to @' in
connection with By, ..., By are compatible in the following way: there is a

substitution m such that the restriction of ™ to the variables occurring in
®; U Assoc(T, ®;) is identical to m; (1 <1< s).

Now, let T and T' be tableaux that have variables in common; and let p be a
variable renaming such that T and T'p do not have any variables in common.
Then, T subsumes T" iff T subsumes T'p.

If a tableau T subsumes a tableau T’, then each branch B of T is assigned a
branch B’ of T'. In that case, we say that B subsumes B’.
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I [
p()lﬁ) p(X1) p(Y1) p(il/l) p(?/l)
p(Xs) p(Y2) p(?é)

p(Y3)

T T T T, T,
Figure 3: The tableaux from Example 3.3.

o
q(X) Q()l(')
r(X’)

Ty Ty

Figure 4: The tableaux from Example 3.4.

Using the tableau subsumption relation for restricting the search space pre-
serves completeness of clausal tableaux: Given a partial proof Ti,...,7T; it is
forbidden to derive a successor tableau 7;,; from 7; that is subsumed by any
of the tableau Ti,...,T;. On the other hand, this restriction is strong enough
to ensure that every sequence of tableaux built accordingly, i.e., every tableau
sequence not containing a tableau that is subsumed by one of its predecessors,
has the following property: If the sequence is infinite, then it contains infinitely
many different literals or, equivalently, if the sequence only contains finitely many
different literals (up to the renaming of variables) then it is finite.

To check whether a tableau T subsumes one of its successor tableaux 7" and,
thus, whether the rule application deriving 7" from T is allowed, it is sufficient
to only consider those parts of the tableaux that are affected, i.e., the expanded
branch and the formulae on the tableaux that are associated with it. The check
does not involve unifiability tests because free variables may only be renamed
but not instantiated with terms.

EXAMPLE 3.2: Let ® = {p(X)} and let ®' = {p(X")}; further let Assoc(T, D)
consist of ¢(X,Y1) and q(X,Y3).

Then, Condition 1b in Definition 3.2 is, for example, satisfied if q(X',Y")
occurs in Assoc(T', ®'). But it is neither satisfied if Assoc(T',®') = 0 nor if
Assoc(T", @) = {q(Y', X")} (because to make ¢(X',Y1) and q(Y', X') identical
would require to rename the variable X' that occurs in .

EXAMPLE 3.3: The tableau T in Figure 3 subsumes each of the tableauz T},
Ty, Ty. The tableau Ty subsumes only T7.
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i i
ﬂpl(a) ﬂpl(a)
=q(b) —q(b)

/ N\ / AN
p(X) q(Y) p(X")  q(X')
Ty Ty

Figure 5: The tableaux from Example 3.5.

T T T

/" | N\
p(X,Y) p(V,X)  p(UV)  p(X1, Y1) p(Xy,Ya)
T, T T

Figure 6: The tableaux from Example 3.6.

EXAMPLE 3.4: Neither of the two tableauz in Figure 4 subsumes the other one.
The tableau Ty does not subsume the tableau Ty because the (single) branch of Ty
contains an additional literal; and, although a variant of each literal set on T,
occurs on Ty, the tableau Ty does not subsume Ty as for r(X'), which is an ele-
ment of Assoc(Ty, q(X")), there is no corresponding element in Assoc(T,q(X))
and, thus, Condition 1b in Definition 3.2 is not satisfied.

EXAMPLE 3.5: The tableau T in Figure 5 subsumes the tableau Ty. But Ty does
not subsume Ty because the literals p(X') and q(X') in Ty are associated, whereas
the corresponding literals in T} are not associated.

Indeed, a transition from Ty to Ty does not constitute a cycle in proof search
because the tableau Ty can be closed whereas Ty cannot be closed.

EXAMPLE 3.6: The tableau T in Figure 6 does not subsume the tableau T".

That would (only) be possible if the branches By, By of T both subsumed the
single branch of T'. Both By and By contain a variant p(X,Y") resp. p(Y, X) of
the (single) literal p(U, V') on the branch of T'. But the required variable renam-
ings{X—U Y —V}and{X — V, Y — U} are not compatible, which violates
Condition 2 in the definition of the subsumption relation (Def. 3.2). This prob-
lem does not occur with the tableau Ty in Figure 6. It subsumes T' because the
two required variable renamings { Xy — U, Y1 +— V} and {Xy — U, Yo — V'} are
compatible.

ExXAMPLE 3.7: Consider the tableau Ty shown on the left in Figure 7. The rule
application that derives the conclusion ({L},id) from the premiss {—p,p} can
be used to close both of its branches.
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subsumes does not
T T T
| | subsume |
/ \ / \ / \
o i F
1 1 1

does not subsume

Figure 7: The tableaux from Example 3.7.

T\

. p(a)\ ﬂpl(a) .
p(|a) /q(a)\ VRN
L) ay PP 49

B B i p(la) q(a)
1 Blio

Figure 8: The tableaux from Example 3.8.

Closing the tableau requires two consecutive applications. However, the inter-
mediate tableau Ty that results from closing the left branch (in the middle of
Figure 7) is subsumed by Ty because both branches of Ty subsume the right (not
yet expanded) branch of Ty. Thus, this first rule application is not allowed. The
tableau T3, however, that results from closing both branches (shown in the right
in Figure 7) is neither subsumed by Ty nor by Ty. Indeed, since both rule applica-
tions use the same premiss and conclusion, Ty is by definition a successor tableau
of Ty (without considering the intermediate step), and deriving Ty from Ty is an
allowed rule application.

EXAMPLE 3.8: An important type of tableau construction steps that generate a
tableau T" subsumed by its predecessor T' and that are, therefore, forbidden, is the
following: Assume that a branch By of T is extended using a conclusion (C, o),
and some branch Bho in the new tableau T' is subsumed by all branches B
of T affected by the rule application, i.e., the branch By (which is extended)
and all other branches containing variables that are instantiated by o. This is
in particular the case if Bho is “contained” in an initial sub-branch Ry of Bs
that ends above the first occurrence of any free variable in the domain of 0. As
an example consider the tableau T shown in Figure 8 on the left, and assume
that its branch By is closed using the premiss consisting of the two literals —p(a)
and p(X) to derive the conclusion ({ L}, {X — a}). The right branch Bho of the
resulting tableau T" (shown in Figure 8 on the right) whose nodes are labelled with
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the literals =p(a) and twice q(a) is “contained” in the sub-branch Ry of T whose
nodes are labelled with —p(a) and q(a); and Ry ends above the first occurrence
of X in T which is the only variable instantiated by o. Intuitively, the application
is useless because any closed sub-tableau that can be constructed below Bho can
be constructed as well below both B; and Bs.

A forbidden rule application as described above is irreqular according to the
definition of regularity that is usually given in the literature (e.g. [Beckert and
Hdhnle, 1998]) since the branch Bho contains the same branch extension multi-
ply. In general, however, irreqular expansion steps are not necessarily forbidden
according to our subsumption condition—nor are all forbidden expansion steps
irreqular.

The proof of Theorem 5.1, which is the main theorem of this paper, makes
use of the following lemma. It states an important property of tableau sequences
that satisfy the subsumption condition, i.e., that do not contain a tableau that
subsumes one of its successors.

LEMMA 3.1: Let I' be a finite set of literals; and let (T;);>1 be a sequence of
tableaux such that

1. no tableau T; subsumes any of the tableauz T; for i < j,
2. all literals occurring in (T;);>1 are variants of the literals in T.

Then the sequence (T;);>1 is finite.

Proof: Let the equivalence relation ~ on tableaux be defined by: T ~ T" iff
T and T’ subsume each other, i.e., T CT and T" C T.

We show that there is only a finite number of equivalence classes of tableaux
(w.r.t. ~) that consist of variants of literals from T.

Since I' is finite, there are—up to variable renaming—only finitely many
pairs (®, U) of literal sets such that:

e All elements of ® and ¥ are variants of the literals in T’
e ® has at most two elements;
e cvery literal in ¥ has at least one variable in common with a literal in ®;

e there are no different literals 1), ¢/’ in ¥ that are identical up to the renaming
of variables not occurring in ®.

Let r(®) be the number of different, incompatible renamings of the variables in
a set ® of at most two literals (where the notion of compatible variable renamings
is defined as in Condition 2 in Definition 3.2); r(®) only depends on the number
of different variables in ®. R

Now, let T" be a set of pairs of literal sets as described above, such that (a) I’
contains r(®) different representatives of each class of pairs that are identical up
to variable renaming to some (®, ¥) and (b) the elements of T are all pairwise
variable disjoint. Since T is finite, the power set P of the power set of T is finite.
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Each tableau T is assigned an element of P as follows: To each set ® of at
most two literals occurring on some branch of T, the pair (®, Assoc(T, ®)) is
assigned. To each branch B of T', a subset of [is assigned that contains variants
of the pairs assigned to sets ® of at most two literals occurring on B, where at
most 7(®P) of the pairs that are identical up to variable renaming are included.
To the tableau T', an element of P is assigned consisting of variants of the sets
assigned to the branches of T'.

The definitions of C resp. ~ imply that two tableaux belong to the same
equivalence class w.r.t. ~ if they can be assigned the same element of P. Thus,
there are at most as many equivalence classes as there are elements in P—which
is a finite set.

Now we can complete the proof. Let n € N be the number of equivalence classes
of tableaux w.r.t. ~. It is an upper bound for the length of the sequence (7;);>1,
because if there were more than n tableaux in the sequence (7;);>1, then it had to
contain two tableaux T; and Tj (i < j) belonging to the same equivalence class.
That, however, implies T; C T; which contradicts the lemma’s assumptions. O

4. Weight Orderings

Weight orderings are the second important concept (besides the concept of ta-
bleau subsumption) on which our fairness strategy is based. The properties an
ordering on literals for ensuring fairness must have are: (1) It is a well-ordering
on the set of literals (up to renaming of free-variables), i.e., it is well-founded and
there are only finitely many literals that are incomparable to a given literal—
such that for each literal L all but a finite number of literals (up to variable
renaming) are greater than L w.r.t. the ordering. (2) Proper instances of a lit-
eral L have a higher weight than L. (3) Literals that are identical up to variable
renaming have the same weight. Intuitively, these are typical properties of or-
derings on literals that are defined by assigning a “weight” to the symbols of a
signature (which is why we call them weight orderings).

DEFINITION 4.1: A weight function w assigns to each literal over ¥ a natural
number (its weight ), such that the following conditions are satisfied:

1. Let ® be a set of literals. If

(a) ® does not contain different literals that are identical up to variable
renaming, and

(b) there is an n € N such that w(¢) < n for all ¢ € P,
then ® is finite.

2. If X is a variable occurring in some literal ¢ and t is a term that is not a
variable, then

w(g) < w(¢{X —1}) .
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3. If literals ¢, @' are identical up to the renaming of variables, then
w(g) =w(¢') .

Let w be a weight function. Then the weight ordering <, (that is induced
by w) is for all literals ¢, over & defined by:

¢ <. iff w(g) <w(y) .

A weight ordering is extended to sets of literals by comparing the mazimal
weight of the literals they contain. This extension is a well-ordering as well,
provided the literal sets are only allowed to contain a certain number of variants
of each literal.

EXAMPLE 4.1: Assume that every function symbol f € Fyx, is assigned a weight
wy € N and every predicate symbol p € Px is assigned a weight w, € N, such that
only finitely many symbols are assigned the same weight.

For all literals ¢, let w(¢) be the sum of the weights of all function and predicate
symbols in ¢, where the weight of a symbol occurring multiply is added multiply.
Then, w is a weight function (Def. /.1).

5. Deterministic Proof Procedures for Clausal Tableaux

In this section, we define a (class of) complete deterministic proof procedure(s)
for clausal tableaux; this proof procedure can be used to perform depth-first
search for proofs without backtracking. It is constructed using the notions of
subsumption and weight orderings as described in Sections 3 and 4.

To ensure that a deterministic proof procedure is complete, i.e., a proof is
found if there is one, we demand that the constructed sequence of tableaux sat-
isfies the following two conditions: (1) The creation of a tableau that is subsumed
by one of its predecessors is forbidden. (2) At each step, from all possible rule
applications not violating Condition 1, an application is chosen that creates a
successor tableau in which the maximal weight of literals is as small as possible
(i.e., successor tableaux are compared according to the maximal weight of the
literals they contain). If several rule applications satisfy these conditions, arbi-
trary heuristics may be employed to choose one of them; e.g., rule applications
creating less new sub-branches may be preferred.

Note that conclusions are not necessarily added to a tableau branch in the
order defined by the maximal weight of their literals because a literal L can only
be added if the necessary premiss II is present on the branch; and the weight of
the literals in II may be higher than that of L. Also, at which point a certain
conclusion is added, depends on its literal with the highest weight. Thus, literals
with a lower weight that can only be added as part of a conclusion containing
other literals of higher weight are added to the tableau later.

To comply with the condition that all rule applications adding literals of
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less weight have to be executed before literals of higher weight are added to a
tableau, it may be necessary to expand branches that are already closed. That is
not always redundant, because closed branches still contain useful information
and can influence other branches by the substitutions that are applied when
they are expanded (the first substitution that is applied to close a branch is not
necessarily the “right one” that allows to complete the proof). If a closed branch
has no free variables in common with other branches, it needs not be further
expanded.

Unfortunately, the restriction of the search space as described above is diffi-
cult to implement; it requires to compare a tableau 7, with all its predecessors
Ty,...,T, and not only with the tableau 7, from which it is derived. Such a sub-
sumption check is prohibitively expensive w.r.t. both space and time. Moreover,
if a subsumption is encountered, i.e., if T,,, is subsumed by one of the prede-
cessor tableaux 7}, then other successor tableaux of T; (besides Tj.) must be
considered, which in a certain sense amounts to backtracking. The reason for
this is the following: A tableau T, that is subsumed by a tableau 7} does not
have to be considered for proof search as all the proofs that may be constructed
from 7,41 can be constructed from T}. Now, if j = n, then we can just exclude
the successor tableau 7}, and be sure that if there is a proof derivable from 7, 4
then it is derivable from 7, without considering 7;,.. If, however, 7 < n, then
the closed tableau that is known to be derivable from T, and thus from 7}
may not involve T y,...,T, but require to procceed with an alternative suc-
cessor tableau T]{Jrl different from T} ;. This situation is visualised in the upper
part of Figure 9.

The following example demonstrates that cycles in the proof search are not
all of length one or two but can indeed be of arbitrary length (the cycle in the
example is of length four).

EXAMPLE 5.1: Figure 10 shows a tableau sequence (T;);>1 for the clause set

S={ -pla), —r(), (Vz)(p(z)Vq(x)), (Yy)(r(y)Vsy)) } .

For i > 8, the tableau T; subsumes the tableau T;.4 (and none of the tableaux
Tii1y...,Tirs. Thus, the sequence contains a cycle in proof search of length four.

The sequence is constructed as follows: After the tableau Ty has been derived,
the following rule applications are repeatedly executed:

1. A conclusion of the form ({r(Y),s(Y)},id) is derived and used to expand
the rightmost branch (e.g., to derive tableau Ty from tableau Tg).

2. The third branch from the right is closed using a premiss consisting of lit-
erals —p(a) and p(X) and a conclusion ({ L},{X + a}) (e.g., to derive Ty
from Ty).

3. A conclusion of the form ({p(X),q(X)},id) is derived and used to expand
the rightmost branch (e.g., to derive tableau Ty, from tableau Ty ).
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Figure 9: Proof search with a calculus that is destructive (top) resp. non-destructive (bottom).

4. The third branch from the right is closed using a premiss consisting of lit-
erals —r(b) and r(Y') and a conclusion ({ L}, {Y — b}) (e.g., to derive Tis
from Ty ).

All problems stem from the fact that a tableau T is not necessarily subsumed
by its successor tableau Tj,; as the clausal tableau calculus is destructive and
literals occurring in 7; may not occur in 7j,; any more. However, if we make the
calculus weakly non-destructive in the sense that a tableau is always subsumed
by all its successor tableaux, then we have the situation shown in the lower
part Figure 9. Now, the tableau 7j is subsumed by the tableau 7, ensuring
that every proof that can be constructed from 7,,,; can as well be constructed
from T,,—without deriving 7T, ,; as an intermediate result. In a certain sense, a
(weakly) non-destructive calculus is proof-confluent w.r.t. the restricted search
space (where no tableaux subsumed by a predecessor are allowed).

To make clausal tableaux weakly non-destructive, i.e., to make sure that a
tableau T}, always subsumes its predecessor tableau T}, we impose the following
additional restriction on the proof construction: Immediately after a tableau
construction step destroying literals, the construction steps needed to recreate
the destroyed literals must be executed. In the worst case, a new copy of the sub-
tableau that was affected by the variable instantiation is created and appended
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Figure 10: A sequence of tableaux containing a proof search cycle; see Example 5.1.
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Figure 11: A tableau reconstruction step (Example 5.2).

to all sub-branches that have been affected. The result is a tableau T, that
subsumes both 7; and T;,; and all the tableaux occurring as intermediate results
during the reconstruction.

ExXAMPLE 5.2: Consider the clause set

S={ (Vz)(p(x) vV q(2)), (Vo)(~q(z) Vr(r)), s1Vsa } .

A tableau T; for S is shown in Figure 11 (a). The left branch of T; is closed using
the conclusion ({ L}, {X — a}). The result is the tableau T;,, (Figure 11 (b)),
in which all literals containing the free variable X have been destroyed. They are
reconstructed by appending a copy of the sub-tableau R(X) that consists of all
literals in T; in which X occurs to all the branches in T; 1 from which literals are
missing; the resulting tableau T;% | (Figure 11 (c)) subsumes both T; and T;i4.

If a deterministic proof procedure executes a reconstruction step after each
tableau rule application, then a sequence T;",T,", ... of tableaux is constructed
where T Y, is derived from T:" by executing a construction step (that does not
lead to a tableau subsumed by its predecessor) and then reconstructing the
destroyed literals. To ensure that such a sequence meets all conditions, it is suf-
ficient to test whether the immediate successor tableau T;,; of T;" is subsumed
by T;". The earlier predecessors do not have to be considered as they are all sub-
sumed by T;". Theorem 5.1 below states completeness of such a proof procedure;
it is the main theorem of this paper.
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1
tableaux for S that is constructed as described below contains a closed tableau.

The tableau T, is an initial tableau for S. And for all i > 1 the following
holds:

1. T,y is a successor tableau of T;" (Def. 2.5) such that

(a) T:* does not subsume T;y; and

(b) there is no successor tableau T}, | of T;" that satisfies Condition (a) and
has a smaller mazimal literals weight than T,y (w.r.t. an arbitrary but
fized weight ordering).

THEOREM 5.1: If a clause set S is unsatisfiable, then every sequence (T, );>1 of

2. Let (C;,7;) be the conclusion (derived from some premiss on T.") that is
used to construct T;,1; and let R; be the minimal sub-tableau of Ti+ that
contains all occurrences of the variables instantiated by 7;. The tableau T/,
is constructed from Ty by (repeatedly) executing all rule applications that
are necessary to generate R;; R; is appended to all branches that go through
the sub-tableau of T;y1 corresponding to R; (which results from applying 7;
to Rz)

Proof: Part 1. The definition of the tableau construction rules immediately im-
plies that, if a conclusion (C, o) is derivable from a premiss I1, then the conclusion
(C,id) is derivable from the premiss ITo for all substitutions o. Therefore, the
reconstruction step (i.e., the rule applications that are necessary to construct
T;* from T;) does not require the instantiation of free variables. Consequently,
the reconstruction is non-destructive, and we have

T, C T}

for all + > 1.

By construction of T;jrl, all literals that are destroyed by applying the sub-
stitution 7; to T;" are appended by the reconstruction step to all branches from
which they are missing in Tjy. Therefore T;" C T;% | and, thus,

Tt C T;r for all i < j.

Part 2. We show by contradiction that the sequence (7;");>; does not contain
a tableau that subsumes one of its successors. Assume the contrary, i.e., there
are tableaux T;", T}, i < j, such that 7" C T;". Using the results of Part 1, that
implies

Tiv1 CT

+ +
z+1gTj gjjz :

By construction of the sequence (7;");>1, however, the tableau T}, is not sub-
sumed by T;". Thus, the assumption is wrong, and (7;");>; does indeed not

1
contain a tableau that subsumes one of its successors.

Part 3. Let wpax € N be an arbitrary weight. We prove finiteness of the initial
sub-sequence of (7;");>1 that only contains literals ¢ of weight w(¢) < wmax.
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Let T be a set of (variants of) representatives of each equivalence class of
literals in (7;");>1 that are identical up to variable renaming and whose weight

is not bigger than wpma,. That is, if ¢ is a literal in (7;);>1 with w(¢) < Wmax,
then there is a variant of ¢ in I'. Let the literals in I' be chosen in such a way
that they are all pairwise variable-disjoint.

The definition of weight orderings implies that the set I must be finite. Thus,
by Lemma 3.1, the initial sub-sequence of (7;");>; that only contains literals of

13
weight w(¢) < wmay must be finite.

Part 4. Since S is unsatisfiable and the (unrestricted) clausal tableau calculus
is complete, there is a tableau proof 7Y, ..., T, for S (it possibly violates the
subsumption condition and is not constructed as described in the theorem). Let
Wmax be the maximum of the weights of all the literals occurring in this tableau
sequence; and let T, be the last tableau in the initial sub-sequence of (T;");>
that only contains literals of weight not bigger than wm,.y (as has been shown in
Part 3, this sub-sequence is finite).

We proof by induction on j that there are substitutions o; for 1 < j < m such
that

/ +
T’ngnO'j.

Base case j = 1. Let 0y = id. The tableaux T| and T;" are both initial tableaux
for S and do not contain any free variables. Thus, 7| = T,” C T.” = T.Fo; holds
trivially.

Induction step j — j+ 1. Let II" be the premiss and (C, p) be the conclusion
used to derive T}, from T}. And let B} be the branch in T} that is extended.
Since p is a most general unifier of literals in 7}, it instantiates only variables
occurring in 77.

If no branch in T,fo; subsumes the branch B}, then every branch of T, o;
subsumes one of the branches of T} that are not expanded. In that case we have
Ti,, € T,ojp and thus T}, C T;fo;41 with 011 = (poay).

Otherwise, there are branches B',..., B in T, 0; that subsume B;.. Thus,
there are sets II' of literals on B' and a substitution 7 such that IT'r = II'.
According to Condition 2 in the definition of the subsumption relation (Def. 3.2),
the substitution 7 does not depend on [. Therefore, B can be extended using the
conclusion (C, po 7). Now, let T' be the tableau, that is derived from T fo; by
extending each of the branches B',..., B® using the conclusion (C, p o). The

ool + ’ . ’
successor tableau T of T, o subsumes T} 4, i.e., T}, CT.

Let I/A{ be the set of all literals that are added by the rule applications used to
derive T from T, o;, which are the literals in C' and in (Assoc(T,", II)) 7 p. Because
T, C T, by the definition of C and by the construction of f, all literals in K
already occur in 7T}, ;. Therefore, by definition of wyax, the weight of all literals
in K is not bigger than wmnax.

Using rule applications corresponding to those used to derive T from T, o;,
it is possible to derive a Tableau T from T, such that To;;; =T for some
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substitution o;;. Let K be the set of all literals that are added by the rule
apphcatlons used to derive T from T,". Then there is a substitution & such that
Ko =K. Therefore, the weight of the literals in K is not bigger than wy,x. Also,
by definition, the weight of the literals in 7, is not bigger than wyax. Thus, the
weight of all literals in T is not bigger than wyay.

Since, by construction, 7, is the last tableau in the sequence (7;);>; that does
not contain literals of weight bigger than wpna.y, every rule application that leads
to a tableau with this property must be forbidden because it leads to a tableau
subsumed by T, (because otherwise it would have to be derived instead of the
tableau 7T},, 1, which contains a literal of weight bigger than wy,ay). Thus, we have
T C T\ and, therefore, fajﬂ C T,Foj11. Consequently,

TJI+1 CT=Toj41 C T;Ujﬂ .

Part 5. We now can conclude the proof of the theorem. As a consequence of
what is proven in Part 4, the tableau T, o, subsumes the tableau 7T}, . Since T/,
is closed, each branch of T} contains the literal L. Thus, each branch of T, oy,
contains L; and, since L does not contain variables, each branch of T,F con-
tains L. Therefore, T, is closed. O

EXAMPLE 5.3: As an example for the proof construction as described in this sec-
tion, Figure 12 shows a closed tableau for the clause set consisting of the clauses
=p(a), —p(b), —q(b), (Vx)(p(x) V q(x)). The proof construction starts with adding
the unit literals to the initial tableau; the result is the tableau Ty. At this point
only one rule application is possible, which results in the tableau T5. Then there
are several possibilities to proceed; the left branch of Ty can be closed instantiating
X1 with either a or b and the right branch can be closed instantiating X, with b.
We assume that according to the weight ordering, p(a) <, p(b) and q(a) <, q(b).
Consequently, the “bad” instantiation {X; — a} is preferred and the tableau T3
15 constructed, because the maximal weight of its literals is less than that of the
literals in the alternative tableauzx. Since the variable X, is instantiated, a recon-
struction step is required; the result of that step is the tableau Ty. Now there are
again several possibilities. If the weight of literals were the only criterion, then
a tableau T, would have to be derived from Ty that is identical to Ts except that
X3 is instantiated with a instead of b (i.e., repeating the useless instantiation).
However, deriving Ty from Ty is not allowed as T} is subsumed by Ty (it is easy
to check that each branch of Ty subsumes one of the branches of T;). There-
fore, the tableau T5 is derived instead of T:; and the variable X3 is instantiated
with b instead of a. Again, a reconstruction step is required, which results in the
tableau Tg. From Ty the closed tableau Tr can easily be constructed.

A proof procedure as described in Theorem 5.1 constructs a tableau sequence
T, T, ... such that no tableau is subsumed by any of its predecessors and all
tableaux are subsumed by their successors. Such a procedure simulates (in a
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Figure 12: The closed tableau described in Example 5.3.

certain sense) a depth-first iterative deepening search (as described in the in-
troduction). The weight of the literals that can occur in the tableaux increases
stepwise. If some (unrestricted) tableau proof exists that does not contain liter-
als of weight bigger than wyax, then there is a closed tableau T, that is the last
in the constructed sequence not containing literals of weight bigger than some
w,. € N. It subsumes all tableaux that can be constructed from literals L of
weight w(L) < wmax. The big advantage of this simulated DFID over classical
DFID search based on backtracking is that the tableau 7, is a very compact rep-
resentation of the search space. All the information that is contained in tableaux
whose literals are of weight less than wyp,,y is present in the single structure T,F;
and all the tableaux in the search space that are identical or in some way sym-
metrical to each other are represented by only one sub-tableau of T.F. Since no
backtracking occurs, no information that has been derived is ever lost. There
may be parts of the tableau T, that represent redundant information and are
therefore useless (i.e., non-closed sub-tableaux that should not have been cre-
ated); but these can be easily be detected and removed (e.g., using the pruning
technique [Beckert and Hahnle, 1998]).
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