J. LOGIC PROGRAMMING 1993:12:1-199 1

LOGIC PROGRAMMING AS A BASIS FOR
LEAN AUTOMATED DEDUCTION *

BERNHARD BECKERT AND JOACHIM POSEGGA

> The idea of lean deduction is to achieve maximal efficiency from minimal
means. Every possible effort is made to eliminate overhead. Logic program-
ming languages provide an ideal tool for implementing lean deduction, as
they offer a level of abstraction that is close to the needs for building first-
order deduction systems. In this paper we describe the principle of lean
deduction and present leanT4P, an instance of it implemented in standard
Prolog. <

1. INTRODUCTION

The idea underlying lean automated deduction is to achieve maximal efficiency
from minimal means. Every possible effort is made to eliminate overhead; based on
experience in implementing (complex) deduction systems, only the most important
and efficient techniques and methods are implemented. The result is a clearly
structured implementation, that is easy to modify, easy to adapt to concrete needs
of an application, and easy to integrate with other components of a system.

The design of lean deduction theorem provers is motivated by the observation,
that—compared to the amount of research carried out—Automated Deduction is

*This paper is based on a talk that was given at the Workshop on Logic Programming,
University of Ziirich, Switzerland, October 1994. Its focus is on the general idea of lean deduction
and the relation to Logic Programming. The reader who is more interested in the program
leanTAP, that is presented as an example, is referred to [2]. leanTAP’s source code, as well as a
Prolog program for computing an optimized negation normal form, is available in the WWW at
http://il2www.ira.uka.de/leantap.

Address correspondence to Bernhard Beckert, Institute for Logic, Complexity, and Deduction
Systems, University of Karlsruhe, D-76128 Karlsruhe, Germany. E-mail: beckert@ira.uka.de;
and Joachim Posegga, Deutsche Telekom AG, Research Centre, FZ122h, D-64276 Darmstadt,
Germany, E-mail: posegga@fz.telekom.de.

THE JOURNAL OF LOGIC PROGRAMMING

(©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/%3.50

little applied in practice. Most researchers working in automated reasoning be-
lieve that there are many useful applications of the techniques developed, but few
attempts are made to actually build these applications.

We see one reason for this in that implementation-oriented research in Automa-
ted Deduction favors huge and highly complex systems, which does not suit the
needs of many applications: most existing automated theorem provers must be
seen as black boxes from a user’s point of view; the algorithms implemented for
carrying out deductions are usually highly sophisticated, and the interaction of the
various parameters influencing the search for proofs is often far from being obvious.
Furthermore, the low-level interfaces of these systems are often poorly developed,
which makes it very hard to integrate such a tool into a given software environment,
and even harder to adapt the implementation to meet concrete needs. From the
software engineer’s point of view, current automated reasoning tools mostly come
as monolithical systems.!

When looking at the field of software engineering, however, one realizes that
monolithical systems become less and less important: the interest is focussed since
quite a while on software components [9], and interoperability (see e.g. [10, 8] for
standards) of open, distributed systems. One idea behind both is to provide smaller
pieces of software that interact with each other, rather than using a monolithical
approach to building software. The main driving force behind these approaches
is to increase the adaptability of software, and to reduce the complexity of the
individual software components for gaining more reliable and more flexible systems.
The underlying motivation is very similar to what let us start our work on leanT4P.

2. leanP: AN INSTANCE OF LEAN DEDUCTION

The Prolog program shown in Figure 1 is an instance of a lean deduction system:
it implements a complete and sound theorem prover for first-order formulae in
skolemized negation normal form. The underlying calculus is based on free-variable
semantic tableaux (see for example [3]).

The program is a variant of leanT4P [2], where a few changes have been made to
increase readability. We shall now briefly explain the program, but refer the reader
for a detailed discussion to [2].

leanTAP exploits the power of Prolog’s inference engine as much as possible,
using its clause indexing scheme and backtracking mechanism. We modify Prolog’s
depth-first search to bounded depth-first search for gaining a complete prover.

For the sake of simplicity, we restrict our considerations to first-order formulae
in skolemized negation normal form. This is not a strong restriction; the prover
can easily be extended to full first-order logic by adding the standard tableau rules.
However, skolemization has to be implemented carefully to achieve the highest
possible performance [1].

We use Prolog syntax for first-order formulae: atoms are Prolog terms,
negation, “;” disjunction, and “,” conjunction. Universal quantification is ex-
pressed as all(X,F), where X is a Prolog variable and F is the scope. Thus,

“_” g

IThere are of course also other approaches like the KEIM system [4], an extension of Common
Lisp that provides an extensible toolbox for the development of deduction systems.

1 refute((A,B) ,UnExp,Lits,FreeV,VLim) :- !,
refute(A, [B|UnExp] ,Lits,FreeV,VLim) .

2 refute((A;B),UnExp,Lits,FreeV,VLim) :- !,
refute(A,UnExp,Lits,FreeV,VLim),
refute(B,UnExp,Lits,FreeV,VLim).

s refute(all(X,Fml) ,UnExp,Lits,FreeV,VLim) :- !,
\+ length(FreeV,VLim),
copy_term((X,Fml,FreeV), (X1,Fmll,FreeV)),
append (UnExp, [al1(X,Fml)],UnExpl),
refute(Fmll,UnExpl,Lits, [X1|FreeV],VLim).

1+ refute(Lit,_,Lits,_,_) :- closed(Lit,Lits).
refute(Lit, [Next|UnExp],Lits,FreeV,VLim) :-

refute (Next,UnExp, [Lit|Lits] ,FreeV,VLim).
6 closed(-L,[L1|T]) :- !, (unify(L,L1) ; closed(-L,T)).
7 closed(L, [-L1[|T]) :- unify(L,L1) ; closed(L,T).

o

Figure 1. leanT4P: The Basic Version of the Program

a first-order formula is represented by a Prolog term (for example, the formula
p(0) A (Vn)(—=p(n) V p(s(n))) is represented by (p(0) ,all (N, (-p(N);p(s()))))).

The Prolog predicate refute(Fml,UnExp,Lits,FreeV,VLim) implements our
prover; it succeeds if there is a closed tableau for the first-order formula bound to
Fml. The prover is started with the goal refute(Fml, [1, [1, [1,VLim), which suc-
ceeds if Fml can be proven inconsistent without using more than VLim free variables
on each tableau branch.?

The proof proceeds by considering individual branches (from left to right) of a
tableau; the parameters Fml, UnExp, and Lits represent the current branch: Fml is
the formula being expanded, UnExp holds a list of formulae not yet expanded, and
Lits is a list of the literals present on the current branch. FreeV is a list of the free
variables on the branch (Prolog variables, which might be bound to a term). The
positive integer VLim is used to initiate backtracking; it is an upper bound for the
length of FreeV.

If a conjunction “A and B” is to be expanded, then “A” is considered first
and “B” is put in the list of not yet expanded formulae (Clause 1). For disjunctions
we split the current branch and prove two new goals (Clause 2).

Handling universally quantified formulae (y-formulae) requires a little more effort
(Clause 3). We first check the number of free variables on the branch. Backtracking
is initiated if the depth bound VLim is reached. Otherwise, we generate a “fresh”
instance of the current y-formula all(X,Fml) with copy_term. FreeV is used to

2If one wants to avoid committing on the number VLim, the predicate refute can be called
with iterative deepening on VLim. The standard solution in Prolog for this is:

inc_refute(Fml,VarLim) :- refute(Fml,[],[],[],VarLim).
inc_refute(Fml,VarLim) :- NewVarLim is VarLim + 1,

inc_refute(Fml,NewVarLim) .

When started with inc_prove(Fml,N), the prover searches with the values N, N+1, ... for VarLim.

avoid renaming the free variables in Fml. The original y-formula is put at the end of
UnExp (putting it at the top of the list destroys completeness: the same ~-formula
would be used over and over again until the depth bound is reached), and the proof
search is continued with the renamed instance Fml1 as the formula to be expanded
next. The copy of the quantified variable, which is now free, is added to the list
FreeV.

Clause 4 closes branches; it is the only clause of refute which is not determinate.
It succeeds if the current formula Lit (which must be a literal) is contradictory to
one of the other literals Lits on the current branch. In this case, the current branch
is closed. The test is implemented by the predicate closed (see below).

Clause 5 is reached if Clause 4 cannot close the current branch. We add the
current formula (always a literal) to the list of literals on the branch and pick a
formula waiting for expansion.

Clauses 6 and 7 implement the test for a closed branch used in Clause 4; it is
basically a variant of the standard member-predicate with sound unification.

leanTA4P has two choice points: one is selecting between the last two clauses of
refute, which means closing a branch or extending it. The second choice point
within each of the two clauses of closed enumerates closing substitutions during
backtracking.

3. ADVANTAGES OF LEAN DEDUCTION

Although leanTAP does show surprising performance? it certainly does not outper-
form highly sophisticated theorem provers like Otter [7] or Setheo [5]. However,
many applications do not require deduction which is as complex as the state of the
art in automated theorem proving. Furthermore, there are often strong constraints
on the time allowed for deduction. In such areas our approach can be extremely
useful: it offers high inference rates on simple to moderately complex problems and
a high degree of adaptability.

The latter is the actual strength of our approach: leanT4P is a very simple and
clear implementation; similar to Satchmo [6], it offers an alternate view on Automa-
ted Deduction: rather than being confronted with a highly complex, monolithical
system, one can use an open implementation, that is easy to understand and easy
to adapt to and embed into applications.* Since leanT4P is based on semantic
tableaux, it can, furthermore, be adapted to other logics, for example modal or
temporal logics.

Another important argument for lean deduction is safety: It is easily possible
to verify the couple of lines of standard Prolog implementing leanTAP [2]; verifying
thousands of lines of C code, however, is hard—if not impossible—in practice.

It is interesting to consider the principle of lean deduction w.r.t. applications.
Deduction systems like ours have their limits, in that many problems are solvable

3For example, nearly all of Pelletier’s problems [11] can be solved. ~Running on a
SUN SPARC 10 workstation they are proven in less than 0.2sec, most of them in less than 0.01sec.

4Whilst Satchmo and leanTAP are quite related from this meta level point of view, they
differ significantly from a logical point of view: lean7AP implements a standard, free-variable
semantic tableaux calculus for formulae in negation normal form, whereas Satchmo uses a model
generation-like calculus for range-restricted formulae in clausal form. Both calculi show quite
different behavior w.r.t. the proof search.

lean provers

large provers

tractability for applications

Runtime

su1a)sAs a8ae[asn

Jea[oun

use lean systems

>
Problem Complexity

Figure 1. Lean versus Large Deduction Systems

with complex and sophisticated theorem provers but not with an approach like
leanTAP. However, when applying deduction in practice, this might not be relevant
at all: Figure 1 oversimplifies but shows the point; the z-axis gives a virtual value of
the complexity of a problem, and the y-axis shows the runtime required for finding
a solution. The two graphs give the performance of lean and of large deduction
systems. We are better off with a system like leanTAP below a certain degree of
problem complexity: it is compact, easier adaptable to an application, and also
faster because it has less overhead than a huge system.

Between a break-even point, where sophisticated systems become faster, and
the point where small systems fail, it is not immediately clear which approach to
favor: adaptability can still be a good argument for lean deduction. For really
hard problems, a sophisticated deduction system is the only choice. This last
area, however, could indeed be neglectable, depending on the requirements of an
application: if few time can be allowed, we cannot treat hard problems by deduction
at all. Thus, lean deduction can be superior in all cases—depending on the concrete
application.

4. LOGIC PROGRAMMING: THE BASIS FOR LEAN DEDUCTION

The basis for lean deduction is an appropriate implementation language, that of-
fers a level of abstraction that is close to the logic one wishes to implement. Logic
Programming languages offer the ideal basis, since they come equipped with me-
chanisms for representing terms, variables, substitutions, etc. This is one important
prerequisite for leanT4P-like implementations.

A second, equally important issue is that the search strategy used for deduction
is supported: standard Prolog, as used for leanTAP implements depth-first search,
thus there is no need to re-code this for controlling the proof search. This is
the most important point for the efficiency of leanT4P: it relies on the efficient
implementation of backtracking in the underlying Prolog system.

Lean deduction lies somewhere between Logic Programming and Theorem Pro-
ving: it is programming logics, rather than logic programming. Experience and
know-how in implementing calculi is taken from Automated Deduction, and Lo-
gic Programming provides the ideal implementation basis. We used only standard
Prolog, but it is easy to see that we could take advantage of many enhancements
to Prolog. It will be subject to future research to explore this to a greater extend.

We would like to thank Deepak Kapur for valuable comments on an earlier version of this paper.

REFERENCES

1. Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt. The even more liberalized
d-rule in free variable semantic tableaux. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, Proceedings, 3rd Kurt Gédel Colloquium (KGC), Brno,
Czech Republic, LNCS 713, pages 108-119. Springer, 1993.

2. Bernhard Beckert and Joachim Posegga. lean74P: Lean tableau-based deduction.
Journal of Automated Reasoning, 15(3):339-358, 1995.

3. Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
1990.

4. Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith,
Jorn Richts, and Jorg Siekmann. KEIM: A toolkit for automated deduction. In
A. Bundy, editor, Proceedings, 12th International Conference on Automated De-
duction (CADE), Nancy, France, LNCS 814, pages 807-810. Springer, 1994.

5. Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO:
A high-performance theorem prover. Journal of Automated Reasoning, 8(2):183—
212, 1992.

6. Rainer Manthey and Frangois Bry. SATCHMO: A theorem prover implemented in
Prolog. In Ewing Lusk and Ross Overbeek, editors, 9th International Conference on
Automated Deduction (CADE), LNCS, pages 415434, Argonne, Ill, 1988. Springer.

7. William W. McCune. OTTER Users’ Guide, Version 2.0. Argonne National
Laboratory, 1990.

8. Microsoft. Microsoft OLE 2 Design Team: Object Linking & Embedding. OLE 2.01
Design Specification. Microsoft Inc., 1993.

9. Oscar Nierstrasz, Simon Gibbs, and Dennis Tsichritzis. Component-oriented soft-
ware development. Communications of the ACM, 35(9):160-165, 1992.

10. Object Management Group. The Common Object Request Broker: Architecture
and Specification, Rev. 2.0. OMG (Object Management Group), Framingham,
MA, 1995.

11. Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem pro-
vers. Journal of Automated Reasoning, 2:191-216, 1986.

