
The Approa
h: Integrating Obje
t OrientedDesign and Formal Veri�
ationWolfgang Ahrendt1, Thomas Baar1, Bernhard Be
kert1, Martin Giese1,Elmar Habermalz1, Reiner H�ahnle2, Wolfram Menzel1, and Peter H. S
hmitt11 University of Karlsruhe, Institute for Logi
, Complexity and Dedu
tion Systems,D-76128 Karlsruhe, Germany, http://i12www.ira.uka.de/~key2 Department of Computing S
ien
e, Chalmers University of Te
hnologyS-41296 Gothenburg, reiner�
s.
halmers.seAbstra
t This paper reports on the ongoing KeY proje
t aimed atbridging the gap between (a) obje
t-oriented software engineering meth-ods and tools and (b) dedu
tive veri�
ation. A distin
tive feature of ourapproa
h is the use of a
ommer
ial CASE tool enhan
ed with fun
tion-ality for formal spe
i�
ation and dedu
tive veri�
ation.1 Introdu
tion1.1 Analysis of the Current SituationWhile formal methods are by now well established in hardware and system design(the majority of produ
ers of integrated
ir
uits are routinely using BDD-basedmodel
he
king pa
kages for design and validation), usage of formal methodsin software development is
urrently
on�ned essentially to a
ademi
 resear
hproje
ts. There are industrial appli
ations of formal software development [8℄,but they are still ex
eptional [9℄.The limits of appli
ability of formal methods in software design are not de-�ned by the potential range and power of existing approa
hes. Several
ase stud-ies
learly demonstrate that
omputer-aided spe
i�
ation and veri�
ation of re-alisti
 software is feasible [18℄. The real problem lies in the ex
essive demandimposed by
urrent tools on the skills of prospe
tive users:1. Tools for formal software spe
i�
ation and veri�
ation are not integratedinto industrial software engineering pro
esses.2. User interfa
es of veri�
ation tools are not ergonomi
: they are
omplex,idiosyn
rati
, and are often without graphi
al support.3. Users of veri�
ation tools are expe
ted to know syntax and semanti
s of oneor more
omplex formal languages. Typi
ally, at least a ta
ti
al program-ming language and a logi
al language are involved. And even worse, to makeserious use of many tools, intimate knowledge of employed logi

al
uli andproof sear
h strategies is ne
essary.

Su

essful spe
i�
ation and veri�
ation of larger proje
ts, therefore, is done sep-arately from software development by a
ademi
 spe
ialists with several years oftraining in formal methods, in many
ases by the tool developers themselves.While this is viable for proje
ts with high safety and low se
re
y demands,it is unlikely that formal software spe
i�
ation and veri�
ation will be
ome aroutine task in industry under these
ir
umstan
es.The future
hallenge for formal software spe
i�
ation and veri�
ation is tomake the
onsiderable potential of existing methods and tools feasible to use inan industrial environment. This leads to the requirements:1. Tools for formal software spe
i�
ation and veri�
ation must be integratedinto industrial software engineering pro
edures.2. User interfa
es of these tools must
omply with state-of-the-art softwareengineering tools.3. The ne
essary amount of training in formal methods must be minimized.Moreover, te
hniques involving formal software spe
i�
ation and veri�
ationmust be tea
hable in a stru
tured manner. They should be integrated in
ourses on software engineering topi
s.To be sure, the thought that full formal software veri�
ation might be possiblewithout any ba
kground in formal methods is utopian. An industrial veri�
ationtool should, however, allow for gradual veri�
ation so that software engineersat any (in
luding low) experien
e level with formal methods may bene�t. Inaddition, an integrated tool with well-de�ned interfa
es fa
ilitates \outsour
ing"those parts of the modeling pro
ess that require spe
ial skills.Another important motivation to integrate design, development, and veri�-
ation of software is provided by modern software development methodologieswhi
h are iterative and in
remental. Post mortem veri�
ation would enfor
e theantiquated waterfall model. Even worse, in a linear model the extra e�ort neededfor veri�
ation
annot be parallelized and thus
ompensated by greater workfor
e. Therefore, delivery time in
reases
onsiderably and would make formallyveri�ed software de
isively less
ompetitive.But not only must the extra time for formal software development be withinreasonable bounds, the
ost of formal spe
i�
ation and veri�
ation in an indus-trial
ontext requires a

ountability:4. It must be possible to give realisti
 estimations of the
ost of ea
h stepin formal software spe
i�
ation and veri�
ation depending on the type ofsoftware and the degree of formalization.This implies immediately that the mere existen
e of tools for formal softwarespe
i�
ation and veri�
ation is not suÆ
ient, rather, formal spe
i�
ation andveri�
ation have to be fully integrated into the software development pro
ess.1.2 The Proje
tSin
e November 1998 the authors work on a proje
t addressing the goals outlinedin the previous se
tion; we
all it the proje
t (read \key").

In the prin
ipal use
ase of the KeY system there are a
tors who want toimplement a software system that
omplies with given requirements and formallyverify its
orre
tness. The system is responsible for adding formal detail to theanalysis model, for
reating
onditions that ensure the
orre
tness of re�nementsteps (
alled proof obligations), for �nding proofs showing that these
onditionsare satis�ed by the model, and for generating
ounter examples if they are not.Spe
ial features of KeY are:{ We
on
entrate on obje
t-oriented analysis and design methods (OOAD)|be
ause of their key role in today's software development pra
ti
e|, andon Java as the target language. In parti
ular, we use the Uni�ed ModelingLanguage (UML) [24℄ for visual modeling of designs and spe
i�
ations andthe Obje
t Constraint Language (OCL) for adding further restri
tions. This
hoi
e is supported by the fa
t, that the UML (whi
h
ontains OCL sin
eversion 1.3) is not only an OMG standard, but has been adopted by all majorOOAD software vendors and is featured in re
ent OOAD textbooks [22℄.{ We use a
ommer
ial CASE tool as starting point and enhan
e it by ad-ditional fun
tionality for formal spe
i�
ation and veri�
ation. The
urrenttool of our
hoi
e is TogetherSoft's Together 4.0.{ Formal veri�
ation is based on an axiomati
 semanti
s of the real program-ming language JavaCard [29℄ (soon to be repla
ed by Java 2 Mi
ro Edition,J2ME).{ As a
ase study to evaluate the usability of our approa
h we develop a s
e-nario using smart
ards with JavaCard as programming language [15,17℄.Java smart
ards make an extremely suitable target for a
ase study:� As an obje
t-oriented language, JavaCard is well suited for OOAD;� JavaCard la
ks some
ru
ial
ompli
ations of the full Java language(no threads, fewer data types, no graphi
al user interfa
es);� JavaCard appli
ations are small (Java smart
ards
urrently o�er 16Kmemory for
ode);� at the same time, JavaCard appli
ations are embedded into largerprogram systems or business pro
esses whi
h should be modeled (thoughnot ne
essarily formally veri�ed) as well;� JavaCard appli
ations are often se
urity-
riti
al, thus giving in
entiveto apply formal methods;� the high number (usually millions) of deployed smart
ards
onstitutes anew motivation for formal veri�
ation, be
ause, in
ontrast to softwarerun on standard
omputers, arbitrary updates are not feasible;1{ Through dire
t
onta
ts with software
ompanies we
he
k the soundness ofour approa
h for real world appli
ations (some of the experien
es from these
onta
ts are reported in [3℄).The KeY system
onsists of three main
omponents (see the Figure on the right):1 While JavaCard applets on smart
ards
an be updated in prin
iple, for se
urityreasons this does not extend to those applets that verify and load updates.

{ The modeling
omponent : this
omponent is based on the CASEtool and is responsible for all userintera
tions (ex
ept intera
tive de-du
tion). It is used to generate andre�ne models, and to store andpro
ess them. The extensions forpre
ise modeling
ontains, e.g., ed-itor and parser for the OCL. Ad-ditional fun
tionality for the veri�-
ation pro
ess is provided, e.g., forwriting proof obligations. counter examples

CASE Tool

automated

System

Precise

Modeling Component

Extension
for

Modeling

Deduction Component

interactive

Verification Manager

{ The veri�
ation manager : the link between the modeling
omponent and thededu
tion
omponent. It generates proof obligations expressed in formal logi
from the re�nement relations in the model. It stores and pro
esses partialand
ompleted proofs; and it is responsible for
orre
tness management (tomake sure, e.g., that there are no
y
li
 dependen
ies in proofs).{ The dedu
tion
omponent. It is used to a
tually
onstru
t proofs|or
ounterexamples|for proof obligations generated by the veri�
ation manager. It isbased on an intera
tive veri�
ation system
ombined with powerful auto-mated dedu
tion te
hniques that in
rease the degree of automation; it also
ontains a part for automati
ally generating
ounter examples from failedproof attempts. The intera
tive and automated te
hniques and those for�nding
ounter examples are fully integrated and operate on the same datastru
tures.Although
onsisting of di�erent
omponents, the KeY system is going to be fullyintegrated with a uniform user interfa
e.A �rst KeY system prototype has been implemented, integrating the CASEtool Together and the system IBIJa [16℄ as (inter
ative) dedu
tion
omponent(it has limited
apabilities and la
ks the veri�
ation manager). Work on the fullKeY system is in progress.2 Designing a System with2.1 The Modeling Pro
essSoftware development is generally divided into four a
tivities: analysis, design,implementation, and test. The KeY approa
h embra
es veri�
ation as a �fth
at-egory. The way in whi
h the development a
tivities are arranged in a sequentialorder over time is
alled modeling pro
ess. It
onsists of di�erent phases. Theend of ea
h phase is de�ned by
ertain
riteria the a
tual model should meet(milestones).In some older pro
ess models like the waterfall model or Boehm's spiral modelno di�eren
e is made between the main a
tivities|analysis, design, implemen-tation, test|and the pro
ess phases. More re
ent pro
ess models distinguish

between phases and a
tivities very
arefully; for example, the Rational Uni�edPro
ess [19℄ uses the phases in
eption, elaboration,
onstru
tion, and transitionalong with the above a
tivities.The KeY system does neither support nor require the usage of a parti
ularmodeling pro
ess. However, it is taken into a

ount that most modern pro
esseshave two prin
iples in
ommon. They are iterative and in
remental. The designof an iteration is often regarded as the re�nement of the design developed in theprevious iteration. This has an in
uen
e on the way in whi
h the KeY systemtreats UML models and additional veri�
ation tasks (see Se
tion 2.3). The veri-�
ation a
tivities are spread a
ross all phases in software development. They areoften
arried out after test a
tivities.We do not assume any dependen
ies be-tween the in
rements in the development pro-
ess and the veri�
ation of proof obligations.On the right, progress in modeling is depi
tedalong the horizontal axis and progress in ver-ifying proof obligations on the verti
al axis.The overall goal is to pro
eed from the up-per left
orner (empty model, nothing proven)to the bottom right one (
omplete model, allproof obligations veri�ed). There are two ex-treme ways of doing that:
(a)

(a)

(c)

(b)

progress in modeling

progress in proving

{ First
omplete the whole modeling and
oding pro
ess, only then start toverify (line (a)).{ Start verifying proof obligations as soon as they are generated (line (b)).In pra
ti
e an intermediate approa
h is
hosen (line (
)). How this approa
hdoes exa
tly look is an important design de
ision of the veri�
ation pro
ess withstrong impa
t on the possibilities for reuse and is the topi
 of future resear
h.2.2 Spe
i�
ation with the UML and the OCLThe diagrams of the Uni�ed Modeling Language provide, in prin
iple, an easyand
on
ise way to formulate various aspe
ts of a spe
i�
ation, however, as SteveCook remarked [31, foreword℄: \[: : : ℄ there are many subtleties and nuan
es ofmeaning diagrams
annot
onvey by themselves."This was a main sour
e of motivation for the development of the Obje
tConstraint Language (OCL), part of the UML sin
e version 1.3 [24℄. Constraintswritten in this language are understood in the
ontext of a UML model, theynever stand by themselves. The OCL allows to atta
h pre
onditions, post
ondi-tions, invariants, and guards to spe
i�
 elements of a UML model.When designing a system with KeY, one develops a UML model that is en-ri
hed by OCL
onstraints to make it more pre
ise. This is done using the CASEtool integrated into the KeY system. To assist the user, the KeY system providesmenu and dialog driven input possibility. Certain standard tasks, for example,

generation of formal spe
i�
ations of indu
tive data stru
tures (in
luding the
ommon ones su
h as lists, sta
ks, trees) in the UML and the OCL
an be donein a fully automated way, while the user simply supplies names of
onstru
torsand sele
tors. Even if formal spe
i�
ations
annot fully be
omposed in su
h as
hemati
 way,
onsiderable parts usually
an.In addition, we have developed a method supporting the extension of a UMLmodel by OCL
onstraints that is based on enri
hed design patterns. In theKeY system we provide
ommon patterns that
ome
omplete with prede�nedOCL
onstraint s
hemata. They are
exible and allow the user to generate well-adapted
onstraints for the di�erent instan
es of a pattern as easily as one usespatterns alone. The user needs not write formal spe
i�
ations from s
rat
h, butonly to adapt and
omplete them. A detailed des
ription of this te
hnique andof experien
es with its appli
ation in pra
ti
e is given in [4℄.As an example,
onsider the
omposite pattern, depi
ted onthe right [11, p. 163�℄. This is aubiquitous pattern in many
on-texts su
h as user interfa
es, re-
ursive data stru
tures, and, inparti
ular, in the model for theaddress book of an email
lientthat is part of one of our
asestudies.
Component

+Operation()
+Add(c:Component)
+Remove(c:Component)
+GetChild(i:int)

Leaf
+Operation()

Composite
+Operation()
+Add(c:Component)
+Remove(c:Component)
+GetChild(i:int)

 children
 0..*

Client

The
on
rete Add and Remove operations in Composite are intuitively
learbut leave some questions unanswered. Can we add the same element twi
e? Someimplementations of the
omposite pattern allow this [14℄. If it is not intended,then one has to impose a
onstraint, su
h as:
context Composite::Add(c:Component)
post: self.children!select(p|p = c)!size = 1This is a post
ondition on the
all of the operation Add in OCL syntax. After
ompletion of the operation
all, the stated post
ondition is guaranteed to betrue. Without going into details of the OCL, we give some hints on how to readthis expression. The arrow \!" indi
ates that the expression to its left representsa
olle
tion of obje
ts (a set, a bag, or a sequen
e), and the operation to its rightis to be applied to this
olle
tion. The dot \:" is used to navigate within diagramsand (here) yields those obje
ts asso
iated to the item on its left via the role nameon its right. If C is the multiset of all
hildren of the obje
t self to whi
h Addis applied, then the select operator yields the set A = fp 2 C j p = cg and thesubsequent integer-valued operation size gives the number of elements in A.Thus, the post
ondition expresses that after adding c as a
hild to self, theobje
t c o

urs exa
tly on
e among the
hildren of self.There are a lot of other useful (and more
omplex)
onstraints, e.g., the
onstraint that the
hild relationship between obje
ts of
lass Component isa
y
li
.

2.3 The Module Con
eptThe KeY system supports modularization of the model in a parti
ular way.Those parts of a model that
orrespond to a
ertain
omponent of the modeledsystem are grouped together and form a module. Modules are a di�erent stru
-turing
on
ept than iterations and serve a di�erent purpose. A module
ontainsall the model
omponents (diagrams,
ode et
.) that refer to a
ertain system
omponent. A module is not restri
ted to a single level of re�nement.There are three main reasons behind the module
on
ept of the KeY system:Stru
turing: Models of large systems
an be stru
tured, whi
h makes themeasier to handle.Information hiding: Parts of a module that are not relevant for other modulesare hidden. This makes it easier to
hange modules and
orre
t them whenerrors are found, and to re-use them for di�erent purposes.Veri�
ation of single modules: Di�erent modules
an be veri�ed separately,whi
h allows to stru
ture large veri�
ation problems. If the size of modulesis limited, the
omplexity of verifying a system grows linearly in the numberof its modules and thus in the size of the system. This is indispensable forthe s
alability of the KeY approa
h.In the KeY approa
h, a hierar
hi
al module
on
ept with sub-modules sup-ports the stru
turing of large models. The modules in a system model form atree with respe
t to the sub-module relation.Besides sub-modules and model
omponents, a module
ontains the re�ne-ment relations between
omponents that des
ribe the same part of the modeledsystem in two
onse
utive levels of re�nement. The veri�
ation problem asso
i-ated with a module is to show that these re�nements are
orre
t (see Se
tion 3.1).The re�nement relations must be provided by the user; typi
ally, they in
lude asignature mapping.To fa
ilitate information hiding, a module is divided into a publi
 part, its
ontra
t, and a private (hidden) part; the user
an de
lare parts of ea
h re-�nement level as publi
 or private. Only the publi
 information of a module Ais visible in another module B provided that module B impli
itly or expli
itlyimports module A. Moreover, a
omponent of module B belonging to some re-�nement level
an only see the visible information from module A that belongsto the same level. Thus, the private part of a module
an be
hanged as longas its
ontra
t is not a�e
ted. For the des
ription of a re�nement relation (likea signature mapping) all elements of a module belonging to the initial model orthe re�ned model are visible, whether de
lared publi
 or not.As the modeling pro
ess pro
eeds through iterations, the system model be-
omes ever more pre
ise. The �nal step is a spe
ial
ase, though: the involvedmodels|the implementation model and its realization in Java|do not ne
es-sarily di�er in pre
ision, but use di�erent paradigms (spe
i�
ation vs. implemen-tation) and di�erent languages (UML with OCL vs. Java).22 In
onventional veri�
ation systems that do not use an iterative modeling pro
ess[25,27℄, only these �nal two models exist (see also the following subse
tion). In su
h

Below is a s
hemati
 example for the levels of re�nement and the modulesof a system model (the visibility aspe
t of modules is not represented here).Stronger re�nement may require additional stru
ture via (sub-)modules, hen
ethe number of modules may in
rease with the degree of re�nement.
Java
code

precise
model

imprecise
model

Refinement relation

Import relationModule

R
efin

em
en

t L
evels

Part of module within one refinementAlthough the import and re�nement relations are similar in some respe
ts,there is a fundamental di�eren
e: by way of example,
onsider a system
ompo-nent being (impre
isely) modeled as a
lass DataStorage in an early iteration. Itmay later be re�ned to a
lass DataSet, whi
h repla
es DataStorage. On the otherhand, the module
ontaining DataSet
ould import a module DataList and uselists to implement sets, in whi
h
ase lists are not a re�nement of sets and donot repla
e them.Relation of Modules to other Approa
hes The ideas of re�nement and mod-ularization in the KeY module
on
ept
an be
ompared with (and are partlyin
uen
ed by) the KIV approa
h [27℄ and the B Method [1℄.In KIV, ea
h module (in the above sense)
orresponds to exa
tly two re�ne-ment levels, that is to say, a single re�nement step. The �rst level is an algebrai
data type, the se
ond an imperative program, whose pro
edures intentionally im-plement the operations of the data type. The import relation allows the algebrai
data type operations (not the program pro
edures!) of the imported module toappear textually in the program of the importing module. In
ontrast to this,the Java
ode of a KeY module dire
tly
alls methods of the imported module'sJava
ode. Thus, the obje
t programs of our method are pure Java programs.Moreover, KeY modules in general have more than two re�nement levels.The B Method o�ers (among other things) multi-level re�nement of abstra
tma
hines. There is an elaborate theory behind the pre
ise semanti
s of a re-�nement and the resulting proof obligations. This is possible, be
ause both, ama
hine and its re�nement, are
ompletely formal, even if the re�nement hap-pens to be less abstra
t. That di�ers from the situation in KeY, where all but thelast re�nement levels are UML-based, and a re�ned part is typi
ally more formalthan its origin. KeY advo
ates the integrated usage of notational paradigms asopposed to, for example, prepending OOM to abstra
t ma
hine spe
i�
ation inthe B Method [21℄.systems, modules
onsist of a spe
i�
ation and an implementation that is a re�ne-ment of the spe
i�
ation.

2.4 The Internal State of Obje
tsThe formal spe
i�
ation of obje
ts and their behavior requires spe
ial te
hniques.One important aspe
t is that the behavior of obje
ts depends on their state thatis stored in their attributes, however, the methods of a Java
lass
an in generalnot be des
ribed as fun
tions on their input as they may have side e�e
ts and
hange the state. To fully spe
ify the behavior of an obje
t or
lass, it must bepossible to refer to its state (in
luding its initial state). DiÆ
ulties may ariseif methods for observing the state are not de�ned or are de
lared private and,therefore,
annot be used in the publi

ontra
t of a
lass. To model su
h
lasses,observer methods have to be added. These allow to observe the state of a
lasswithout
hanging it.Example 1. Let
lass Registry
ontain a method seen(o:Object):Booleanthat maintains a list of all the obje
ts it has \seen". It returns false, if it\sees" an obje
t for the �rst time, and true, otherwise. In this example, weadd the fun
tion state():Set(Object) allowing to observe the state of anobje
t of
lass Registry by returning the set of all seen obje
ts. The behavior of
seen
an now be spe
i�ed in the OCL as follows:

context Registry::seen(o:Object)
post: result = state@pre()!includes(o) and

state() = state@pre()!including(o)The OCL key word result refers to the return value of seen, while @pregives the result of state() before invo
ation of seen, whi
h we denote byoldstate . The OCL expression state@pre()!includes(o) then stands for
o 2 oldstate and state@pre()!including(o) stands for oldstate [fog.3 Formal Veri�
ation withOn
e a program is formally spe
i�ed to a suÆ
ient degree one
an start to for-mally verify it. Neither a program nor its spe
i�
ation need to be
omplete inorder to start verifying it. In this
ase one suitably weakens the post
onditions(leaving out properties of unimplemented or unspe
i�ed parts) or strengthenspre
onditions (adding assumptions about unimplemented parts). Data en
apsu-lation and stru
turedness of OO designs are going to be of great help here.3.1 Proof ObligationsWe use
onstraints in two di�erent ways: �rst, they
an be part of a model (thedefault); these
onstraints do not generate proof obligations by themselves. Se
-ond,
onstraints
an be given the status of a proof obligation; these are not partof the model, but must be shown to hold in it. Proof obligations may arise in-dire
tly from
onstraints of the �rst kind: by
he
king
onsisten
y of invariants,pre- and post
onditions of a super
lass and its sub
lasses, by
he
king
onsis-ten
y of the post
ondition of an operation and the invariant of its result type,

et
. Even more important are proof obligations arising from iterative re�nementsteps. To prove that a diagram D0 is a sound re�nement of a diagram D requiresto
he
k that the assertions stated in D0 entail the assertions in D. A parti
ularre�nement step is the passage from a fully re�ned spe
i�
ation to its realizationin
on
rete
ode.3.2 Dynami
 Logi
.We use Dynami
 Logi
 (DL) [20℄|an extension of Hoare logi
 [2℄|as the logi
albasis of the KeY system's software veri�
ation
omponent. We believe that thisis a good
hoi
e, as dedu
tion in DL is based on symboli
 program exe
ution andsimple program transformations, being
lose to a programmer's understandingof JavaCard. For a more detailed des
ription of our JavaCard DL than givenhere, see [5℄.DL is su

essfully used in the KIV software veri�
ation system [27℄ for animperative programming language; and Poetzs
h-He�ter and M�uller's de�nitionof a Hoare logi
 for a Java subset [26℄ shows that there are no prin
ipal obsta
lesto adapting the DL/Hoare approa
h to OO languages.DL
an be seen as a modal predi
ate logi
 with a modality hpi for everyprogram p (p
an be any legal JavaCard program); hpi refers to the su

essorworlds (
alled states in the DL framework) rea
hable by running the program p.In
lassi
al DL there
an be several su
h states (worlds) be
ause the programs
an be non-deterministi
; here, sin
e JavaCard programs are deterministi
,there is exa
tly one su
h world (if p terminates) or there is none (if p does notterminate). The formula hpi� expresses that the program p terminates in a statein whi
h � holds. A formula �! hpi is valid, if for every state s satisfyingpre
ondition � a run of the program p starting in s terminates, and in theterminating state the post
ondition holds.The formula �! hpi is similar to the Hoare triple f�gpf g. In
ontrast toHoare logi
, the set of formulas of DL is
losed under the usual logi
al operators:In Hoare logi
, the formulas � and are pure �rst-order formulas, whereas inDL they
an
ontain programs. DL allows programs to o

ur in the des
riptions� resp. of states. With is feature it is easy, for example, to spe
ify that adata stru
ture is not
y
li
 (it is impossible in �rst-order logi
). Also, all Java
onstru
ts (e.g., instan
eof) are available in DL for the des
ription of states. Soit is not ne
essary to de�ne an abstra
t data type state and to represent statesas terms of that type (like in [26℄); instead, DL formulas
an be used to give a(partial) des
ription of states, whi
h is a more
exible te
hnique and allows to
on
entrate on the relevant properties of a state.In
omparison to
lassi
al DL (that uses a toy programming language), a DLfor a \real" OO programming language like JavaCard has to
ope with some
ompli
ations: (1) A program state does not only depend on the value of (lo
al)program variables but also on the values of the attributes of all existing obje
ts.(2) Evaluation of a Java expression may have side e�e
ts, so there is a di�eren
ebetween expressions and logi
al terms. (3) Su
h language features as built-in datatypes, ex
eption handling, and obje
t initialisation must be handled.

3.3 Syntax and Semanti
s of Java Card DL.We do not allow
lass de�nitions in the programs that are part of DL formulas,but de�ne syntax and semanti
s of DL formulas wrt a given JavaCard program(the
ontext), i.e., a sequen
e of
lass de�nitions. The programs in DL formu-las are exe
utable
ode and
omprise all legal JavaCard statements, in
lud-ing: (a) expression statements (assignments, method
alls, new-statements, et
.);(b) blo
ks and
ompound statements built with if-else, swit
h, for, while,and do-while; (
) statements with ex
eption handling using try-
at
h-finally;(d) statements that redire
t the
ontrol
ow (
ontinue, return, break, throw).We allow programs in DL formulas (not in the
ontext) to
ontain logi
alterms. Wherever a JavaCard expression
an be used, a term of the same typeas the expression
an be used as well. A

ordingly, expressions
an
ontain terms(but not vi
e versa). Formulas are built as usual from the (logi
al) terms, thepredi
ate symbols (in
luding the equality predi
ate :=), the logi
al
onne
tives:, ^, _, !, the quanti�ers 8 and 9 (that
an be applied to logi
al variables butnot to program variables), and the modal operator hp i, i.e., if p is a programand � is a formula, then hp i� is a formula as well.The models of DL
onsist of program states. These states share the sameuniverse
ontaining a suÆ
ient number of elements of ea
h type. In ea
h state a(possibly di�erent) value (an element of the universe) of the appropriate type isassigned to: (a) the program variables, (b) the attributes (�elds) of all obje
ts,(
) the
lass attributes (stati
 �elds) of all
lasses in the
ontext, and (d) thespe
ial obje
t variable this. Variables and attributes of obje
t types
an beassigned the spe
ial value null . States do not
ontain any information on
ontrol
ow su
h as a program
ounter or the fa
t that an ex
eption has been thrown.The semanti
s of a program p is a state transition, i.e., it assigns to ea
hstate s the set of all states that
an be rea
hed by running p starting in s.Sin
e JavaCard is deterministi
, that set either
ontains exa
tly one state oris empty. The set of states of a model must be
losed under the rea
habilityrelation for all programs p , i.e., all states that are rea
hable must exist in amodel (other models are not
onsidered).We
onsider programs that terminate abnormally to be non-terminating:nothing
an be said about their �nal state. Examples are a program that throwsan un
aught ex
eption and a return statement outside of a method invo
ation.Thus, for example, hthrow x;i� is unsatis�able for all �.33.4 A Sequent Cal
ulus for Java Card DL.We outline the ideas behind our sequent
al
ulus for JavaCard DL and givesome of its basi
 rules (a
tually, simpli�ed versions of the rules, e.g., initialisationof obje
ts and
lasses is not
onsidered). The DL rules of our
al
ulus operate on3 It is still possible to express and (if true) prove the fa
t that a program p ter-minates abnormally. For example, htry{p }
at
h{Ex
eption e}i(: e := null) ex-presses that p throws an ex
eption.

� `
nd := true � ` h� prg while (
nd) prg !i�� ` h� while (
nd) prg !i� (1)� `
nd := false � ` h�!i�� ` h� while (
nd) prg !i� (2)� ` instan
eof (ex
 ; T) � ` h� try{e =ex
 ; q }finally{r } !i�� ` h� try{throw ex
 ; p }
at
h(T e){q }finally{r } !i� (3)� ` :instan
eof (ex
 ; T) � ` h� r ; throw ex
 ; !i�� ` h� try{throw ex
 ; p }
at
h(T e){q }finally{r } !i� (4)� ` h� r !i�� ` h� try{}
at
h(T e){q }finally{r } !i� (5)Table 1. Some of the rules of our
al
ulus for Java Card DL.the �rst a
tive
ommand p of a program �p!. The non-a
tive pre�x �
onsistsof an arbitrary sequen
e of opening bra
es \{", labels, beginnings \try{" oftry-
at
h blo
ks, et
. The pre�x is needed to keep tra
k of the blo
ks that the(�rst) a
tive
ommand is part of, su
h that the
ommands throw, return, break,and
ontinue that abruptly
hange the
ontrol
ow are handled
orre
tly. (In
lassi
al DL, where no pre�xes are needed, any formula of the form hp q i�
anbe repla
ed by hp ihq i�. In our
al
ulus, splitting of h�pq!i� into h�p ihq!i� isnot possible (unless the pre�x � is empty) be
ause �p is not a valid program;and the formula h�p!ih�q!i�
annot be used either be
ause its semanti
s is ingeneral di�erent from that of h�pq!i�.)As examples, we present the rules for while loops and for ex
eption handling.The rules operate on sequents � ` �. The semanti
s of a sequent is that the
onjun
tion of the DL formulas in � implies the DL formula �. Sequents areused to represent proof obligations, proof (sub-)goals, and lemmata.Rules (1) and (2) in Table 1 allow to \unwind" while loops. They are sim-pli�ed versions that only work if (a) the
ondition
nd is a logi
al term (i.e.,has side e�e
ts), and (b) the program prg does not
ontain a
ontinue state-ment. These rules allow to handle loops if used in
ombination with indu
tions
hemata. Similar rules are de�ned for do-while and for loops.Rules (3){(5) handle try-
at
h-finally blo
ks and the throw statement.Again, these are simpli�ed versions of the a
tual rules; they are only appli
ableif (a) ex
 is a logi
al term (e.g., a program variable), and (b) the statementsbreak,
ontinue, return do not o

ur. Rule (3) applies, if an ex
eption ex
is thrown that is an instan
e of ex
eption
lass T , i.e., the ex
eption is
aught;otherwise, if the ex
eption is not
aught, rule (4) applies. Rule (5) applies if thetry blo
k is empty and terminates normally.3.5 The Dedu
tion ComponentThe KeY system
omprises a dedu
tive
omponent, that
an handle KeY-DL.This KeY prover
ombines intera
tive and automated theorem proving te
h-

niques. Experien
e with the KIV system [27℄ has shown how to
ope with DLproof obligations. The original goal is redu
ed to �rst-order predi
ate logi
 us-ing DL rules, as demonstrated in the previous se
tion. First-order goals
an beproven using theory spe
i�
 knowledge about the used data types.We developed a language for expressing knowledge of spe
i�
 theories|weare thinking here mainly of theories of abstra
t data types|in the form of proofrules. We believe that this format, stressing the operational aspe
t, is easierto understand and simpler to use than alternative approa
hes
oding the sameknowledge in de
larative axioms, higher-order logi
, or �xed sets of spe
ial proofrules. This format,
alled s
hemati
 theory spe
i�
 rules, is explained in de-tail in [16℄ and has been implemented in the intera
tive proof system IBIJa(i11www.ira.uka.de/~ibija). In parti
ular, a s
hemati
 theory spe
i�
 rule
ontains: (a) Pure logi
al knowledge, (b) information on how this knowledge isto be used, and (
) information on when and where this knowledge should bepresented for intera
tive use.Nearly all potential rule appli
ations are triggered by the o

urren
e of
er-tain terms or formulas in the proof
ontext. The easy-to-use graphi
al user in-terfa
e of IBIJa supports invo
ation of rule appli
ations by mouse
li
ks on therelevant terms and formulas. The rule s
hema language is expressive enough todes
ribe even
omplex indu
tion rules. The rule s
hema language is
arefullydesigned in su
h a way that for every new s
hemati
 theory spe
i�
 rule, IBIJaautomati
ally generates proof obligations in �rst-order logi
. On
e these obli-gations are shown to be true the soundness of all appli
ations of this rule isguaranteed. Hen
e, during ea
h state of a proof, soundness-preserving new rules
an be introdu
ed.To be pra
ti
ally useful, intera
tive proving must be enhan
ed by automatingintermediate proof steps as mu
h as possible. Therefore, the KeY prover
ombinesthe IBIJa with automated proof sear
h in the style of analyti
 tableaux. Thisintegration is based on the
on
epts des
ribed in [12,13℄. A s
reen shot of atypi
al situation as it may arise during proof
onstru
tion with our prototypeis shown below. The user may either intera
tively apply a rule (button \ApplySele
ted Rule") or invoke the automated dedu
tion
omponent (button \StartPRINS").

In a real development pro
ess, resulting programs often are bug-ridden, there-fore, the ability of disproving
orre
tness is as important as the ability of provingit. The interesting and
ommon
ase is that neither
orre
tness nor its negationare dedu
ible from given assumptions. A typi
al reason is that data stru
turesare underspe
i�ed. We may, for example, not have any knowledge about the be-havior of, say, pop(s:Sta
k):Sta
k if s is empty. To re
ognize su
h situations,whi
h often lead to bugs in the implementation, we develop spe
ial dedu
tivete
hniques. They are based on automati
ally
onstru
ting interpretations (ofdata type operations) that ful�ll all assumptions but falsify the hypothesis.4 Related WorkThere are many proje
ts dealing with formal methods in software engineeringin
luding several ones aimed at Java as a target language. There is also workon se
urity of JavaCard and A
tiveX appli
ations as well as on se
ure smart
ard appli
ations in general. We are, however, not aware of any proje
t quitelike ours. We mention some of the more
losely related proje
ts.A thorough mathemati
al analysis of Java using Abstra
t State Ma
hineshas been given in [6℄. Following another approa
h, a pre
ise semanti
s of a Javasublanguage was obtained by embedding it into Isabelle/HOL [23℄; there, anaxiomati
 semanti
s is used in a similar spirit as in the present paper.The Cogito proje
t [30℄ resulted in an integrated formal software develop-ment methodology and support system based on extended Z as spe
i�
ationlanguage and Ada as target language. It is not integrated into a CASE tool, butstand-alone.The FuZE proje
t [10℄ realized CASE tool support for integrating the Fu-sion OOAD pro
ess with the formal spe
i�
ation language Z. The aim wasto formalize OOAD methods and notations su
h as the UML, whereas we areinterested to derive formal spe
i�
ations with the help of an OOAD pro
essextension.The goal of the Quest proje
t [28℄ is to enri
h the CASE tool AutoFo-
us for des
ription of distributed systems with means for formal spe
i�
ationand support by model
he
king. Appli
ations are embedded systems, des
riptionformalisms are state
harts, a
tivity diagrams, and temporal logi
.Aim of the SysLab proje
t is the development of a s
ienti�
ally founded ap-proa
h for software and systems development. At the
ore is a pre
ise and formalnotion of hierar
hi
al \do
uments"
onsisting of informal text, message sequen
e
harts, state transition systems, obje
t models, spe
i�
ations, and programs. Alldo
uments have a \mathemati
al system model" that allows to pre
isely des
ribedependen
ies or transformations [7℄.The goal of the PROSPER proje
t was to provide the means to deliver thebene�ts of me
hanized formal spe
i�
ation and veri�
ation to system designersin industry (www.d
s.gla.a
.uk/prosper/index.html). The di�eren
e to theKeY proje
t is that the dominant goal is hardware veri�
ation; and the softwarepart involves only spe
i�
ation.

5 Con
lusion and the Future ofIn this paper we des
ribed the
urrent state of the KeY proje
t and its ultimategoal: To fa
ilitate and promote the use of formal veri�
ation in an industrial
ontext for real-world appli
ations. It remains to be seen to whi
h degree thisgoal
an be a
hieved.Our vision is to make the logi
al formalisms transparent for the user with re-spe
t to OO modeling. That is, whenever user intera
tion is required, the
urrentstate of the veri�
ation task is presented in terms of the environment the userhas
reated so far and not in terms of the underlying dedu
tion ma
hinery. Thesituation is
omparable to a symboli
 debugger that lets the user step throughthe sour
e
ode of a program while it a
tually exe
utes
ompiled ma
hine
ode.A
knowledgementsThanks to S. Klingenbe
k and J. Posegga for valuable
omments on earlier ver-sions of this paper. We also thank our former group members T. Fu
h�, R. Prei�,and A. S
h�onegge for their input during the preparation of the proje
t. KeY issupported by the Deuts
he Fors
hungsgemeins
haft (grant no. Ha 2617/2-1).Referen
es1. J.-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge UniversityPress, Aug. 1996.2. K. R. Apt. Ten years of Hoare logi
: A survey { part I. ACM Transa
tions onProgramming Languages and Systems, 1981.3. T. Baar. Experien
es with the UML/OCL-approa
h to pre
ise software modeling:A report from pra
ti
e. Submitted, see i12www.ira.uka.de/~key, 2000.4. T. Baar, R. H�ahnle, T. Sattler, and P. H. S
hmitt. EntwurfsmustergesteuerteErzeugung von OCL-Constraints. In G. Snelting, editor, Softwarete
hnik-Trends,Informatik Aktuell. Springer, 2000.5. B. Be
kert. A dynami
 logi
 for Java Card. In Pro
. 2nd ECOOP Work-shop on Formal Te
hniques for Java Programs, Cannes, Fran
e, 2000. Seei12www.ira.uka.de/~key/do
/2000/be
kert00.pdf.gz.6. E. B�orger and W. S
hulte. A programmer friendly modular de�nition of the se-manti
s of Java. In J. Alves-Foss, editor, Formal Syntax and Semanti
s of Java,LNCS 1523, pages 353{404. Springer, 1999.7. R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. S
hwerin. Towards a pre
isesemanti
s for obje
t-oriented modeling te
hniques. In H. Kilov and B. Rumpe,editors, Pro
 Workshop on Pre
ise Semanti
s for Obje
t-Oriented Modeling Te
h-niques at ECOOP'97. Te
hn. Univ. of Muni
h, Te
h. Rep. TUM-I9725, 1997.8. E. Clarke and J. M. Wing. Formal methods: State of the art and future dire
tions.ACM Computing Surveys, 28(4):626{643, 1996.9. D. L. Dill and J. Rushby. A

eptan
e of formal methods: Lessons from hardwaredesign. IEEE Computer, 29(4):23{24, 1996. Part of: Hossein Saiedian (ed.). AnInvitation to Formal Methods. Pages 16{30.

10. R. B. Fran
e, J.-M. Bruel, M. M. Larrondo-Petrie, and E. Grant. Rigorous obje
t-oriented modeling: Integrating formal and informal notations. In M. Johnson,editor, Pro
. Algebrai
 Methodology and Software Te
hnology (AMAST), Berlin,Germany, LNCS 1349. Springer, 1997.11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1995.12. M. Giese. Integriertes automatis
hes und interaktives Beweisen: Die Kalk�ulebene.Diploma Thesis, Fakult�at f�ur Informatik, Universit�at Karlsruhe, June 1998.13. M. Giese. A �rst-order simpli�
ation rule with
onstraints. In Pro
. Int.Workshop on First-Order Theorem Proving, St. Andrews, S
otland, 2000. Seei12www.ira.uka.de/~key/do
/2000/giese00a.ps.gz.14. M. Grand. Patterns in Java, volume 2. John Wiley & Sons, 1999.15. S. B. Guthery. Java Card: Internet
omputing on a smart
ard. IEEE InternetComputing, 1(1):57{59, 1997.16. E. Habermalz. Intera
tive theorem proving with s
hemati
 theory spe
i�
 rules.See i12www.ira.uka.de/~key/do
/2000/stsr.ps.gz, 2000.17. U. Hansmann, M. S. Ni
klous, T. S
h�a
k, and F. Seliger. Smart Card Appli
ationDevelopment Using Java. Springer, 2000.18. M. G. Hin
hey and J. P. Bowen, editors. Appli
ations of Formal Methods. Prenti
eHall, 1995.19. I. Ja
obson, G. Boo
h, and J. Rumbaugh. The Uni�ed Software DevelopmentPro
ess. Obje
t Te
hnology Series. Addison-Wesley, 1999.20. D. Kozen and J. Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Hand-book of Theoreti
al Computer S
ien
e, volume B: Formal Models and Semanti
s,
hapter 14, pages 789{840. Elsevier, Amsterdam, 1990.21. K. Lano. The B Language and Method: A guide to Pra
ti
al Formal Development.Springer Verlag London Ltd., 1996.22. J. Martin and J. J. Odell. Obje
t-Oriented Methods: A Foundation, UML Edition.Prenti
e-Hall, 1997.23. T. Nipkow and D. von Oheimb. Ma
hine-
he
king the Java spe
i�
ation: Provingtype safety. In J. Alves-Foss, editor, Formal Syntax and Semanti
s of Java, LNCS1523, pages 119{156. Springer, 1999.24. Obje
t Management Group, In
., Framingham/MA, USA, www.omg.org. OMGUni�ed Modeling Language Spe
i�
ation, Version 1.3, June 1999.25. L. C. Paulson. Isabelle: A Generi
 Theorem Prover. Springer, Berlin, 1994.26. A. Poetzs
h-He�ter and P. M�uller. A programming logi
 for sequential Java. InS. D. Swierstra, editor, Pro
. Programming Languages and Systems (ESOP), Am-sterdam, The Netherlands, LNCS 1576, pages 162{176. Springer, 1999.27. W. Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen,editors, KORSO: Methods, Languages, and Tools for the Constru
tion of Corre
tSoftware { Final Report, LNCS 1009. Springer, 1995.28. O. Slotos
h. Overview over the proje
t QUEST. In Applied Formal Methods,Pro
eedings of FM-Trends 98, Boppard, Germany, LNCS 1641, pages 346{350.Springer, 1999.29. Sun Mi
rosystems, In
., Palo Alto/CA, USA. Java Card 2.1 Appli
ation Program-ming Interfa
es, Draft 2, Release 1.3, 1998.30. O. Traynor, D. Hazel, P. Kearney, A. Martin, R. Ni
kson, and L. Wildman. TheCogito development system. In M. Johnson, editor, Pro
. Algebrai
 Methodologyand Software Te
hnology, Berlin, LNCS 1349, pages 586{591. Springer, 1997.31. J. Warmer and A. Kleppe. The Obje
t Constraint Language: Pre
ise Modellingwith UML. Obje
t Te
hnology Series. Addison-Wesley, 1999.

