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Abstract

In the last years two automated reasoning techniques for
clause normal form arose in which the use of labels are
prominently featured:signed logicandannotated logic pro-
gramming, which can be embedded into the first. The un-
derlying basic idea is to generalise the classical notion of a
literal by adorning an atomic formula with a sign or label
which in general consists of a possibly ordered set of truth
values. In this paper we relate signed logic and classical
logic more closely than before by defining two new transfor-
mations between them. As a byproduct we obtain a number
of new complexity results and proof procedures for signed
logics.

1 Introduction

In the last years two automated reasoning techniques for
clause normal form arose in which the use of labels are
prominently featured: from generic treatments of many-
valued logic, so-calledsigned logicemerged (see, for exam-
ple, [6, 7, 3, 4, 14, 15]) whileannotated logic programming
(see, for example, [12, 8, 9]) was motivated by attempts to
deal with inconsistency in deductive databases. Both ap-
proaches are closely connected to each other [13, 10] and to
constraint logic programming [11]. In fact, annotated logic
can be embedded into signed logic [13].

In each case the underlying basic idea is to generalise the
classical notion of a literal by adorning an atomic formula
with a sign or label, which in general consists of a finite
set of (truth) values. Whenever the values appearing in the�This work has been partially supported by EC COST Action 15Many-
valued Logics for Computer Science Applications.yPartially supported by the project TIC96-1038-C04-03 funded by the
CICYT. This work was carried out during a visit to the University of Karls-
ruhe with a postdoctoral fellowship of the “Comissionat pera Universitats
i Recerca” (1997BEAI400138).

signs are partially ordered, polarities can be assigned to sig-
ned literals in a natural way which gives rise to generalised
notions of a Horn set. It turns out that many problems can
be represented more succinctly using formulae over signed
literals whose proof procedures and complexities are often
(but not always) similar as in classical logic.

In the present paper we relate signed logic and classi-
cal logic more closely than it has been done before. This
is done by defining two new transformations between them.
After formal definition of some basic notions in the next
section we start in Section 3 with transforming arbitrary
classical formulae in conjunctive normal form (CNF) into
signed CNF formulaewith at most two literals per clause.
This provides an alternative proof of NP-hardness of signed
2-SAT (first proved by [14]) and creates the possibility to
compare classical and signed deduction procedures experi-
mentally. In Section 4.1 we take the reverse direction and
reduce signed Horn formulae based on certain partial orders
to classical logic. In the case of lattice orders this yields the
new result that generalised Horn problems turn out to have
still polynomial complexity with respect to formula size and
number of truth values (Section 4.2). We can also extract an
efficient decision procedure based on generalised unit res-
olution (Section 4.3). A major advantage of our reduction
to classical logic is that it scales up: we demonstrate this by
sketching generalisations to infinite orders in Section 4.4
and to partial orders that are not lattices in Section 4.5.

Due to space limitations, most proofs had to be omitted.
A full version of this paper is available from the authors on
request.

2 Basic Definitions

2.1 Syntax of Signed Logic

Definition 1. A truth value setis a non-empty, finite setN = fi1; i2; : : : ; ing. The cardinality ofN is denotedjN j.
1



Definition 2. Let� be apropositional signature, i.e., a de-
numerable set of propositional variables. We define theset
of atomic signed formulae(or signed atoms for short) as:fS : pi j S � N; pi 2 �g :
Definition 3. Given a signed atomS : p, thenS is said to
be itssign. Let� be a partial order on the truth value setN ,
let " i denote the setfj 2 N j j � ig and let# i denote the
setfj 2 N j j � ig. If a signS is equal to either" i or # i,
for somei 2 N , then it is called aregular sign. A signed
atom with a regular sign is called aregular atom.

Definition 4. A signed clauseC is an expression of the
form S1 : p1; : : : ; Sk : pk ! S01 : q1; : : : ; S0l : ql ;
whereS1 : p1; : : : ; Sk : pk andS01 : q1; : : : ; S0l : ql are sig-
ned atoms andk; l � 0.

We say the signed atomsS1 : p1; : : : ; Sk : pk occur with
negative polarityin C, the signed atomsS01 : q1; : : : ; S0l : ql
occur withpositive polarity. The expression on the left of! is called thebodyof the clause and the expression on the
right is called thehead. A signed formulain conjunctive
normal form (CNF) is a finite set of signed clauses.

A signed clause is calledregular if (N;�) is a lattice and
it only contains regular atoms with signs of the form" i.1 A
signed CNF formula is calledregular if it only contains reg-
ular clauses. A regular clause containing at most one atom
with positive polarity is aregular Horn clause. A regular
CNF formula consisting solely of regular Horn clauses is a
regular Horn formula.

In signed clausesk = 0 andl = 0 are allowed; thus, for
signed atomsp; q, bothp; q ! hi andhi ! p; q are signed
clauses, and we represent them byp; q ! and ! p; q.
Whenk = 0 and l = 0 we have the signed empty clause,
denoted by2.

Definition 5. Thelengthof asigned atomS : p, denoted byjS : pj, is jSj+1, wherejSj denotes the cardinality ofS. The
lengthof a signed clauseC, denoted byjCj, is the sum of
the lengths of the signed atoms occurring inC. The length
of a signed CNF formula�, denoted byj�j, is the sum of
the lengths of the clauses in�.

2.2 Semantics of Signed Logic

Definition 6. An interpretation is a mapping that assigns
to every propositional variable of the signature� a truth
value ofN . An interpretationI satisfiesa signed atom

1Regular clauses could also be defined containing only signs of the
form # i instead of signs of the form" i. The results of this paper are also
valid for regular clauses defined that way.

S :p, in symbolsI j= S : p, iff I(p) 2 S; I satisfiesasigned
clauseC = S1 : p1; : : : ; Sk : pk ! S01 : q1; : : : ; S0l : ql, de-
notedI j= C, iff the following holds: If I satisfies all ofS1 : p1; : : : ; Sk : pk thenI must also satisfy at least one ofS01 : q1; : : : ; S0l : ql. A signed CNF formula� is satisfiable
iff there exists an interpretationI that satisfies all the sig-
ned clauses in�. We say then thatI is a model of� and
we write I j= �. A signed CNF formula that is not satis-
fiable isunsatisfiable. The signed empty clause is always
unsatisfiable and the signed empty CNF formula is always
satisfiable.

In particular,I satisfies ! S01 : q1; : : : ; S0l : ql iff it sat-
isfies at least one ofS01 : q1; : : : ; S0l : ql; similarly,I satisfiesS1 : p1; : : : ; Sk : pk ! iff it doesnotsatisfy at least one ofS1 : p1; : : : ; Sk : pk.

Observe that if we takeN = ftrue; falseg, assumingtrue > false , and consider only regular atoms of the form" true : p, then we obtain the logic of classical conjunc-
tive normal form: " true : p is equivalent to the classical
atomp if it occurs with positive polarity, and to the negated
classical atom:p if it occurs with negative polarity. So,
the classical clausep1; : : : ; pk ! q1; : : : ; ql is equivalent
to the regular clause" true : p1; : : : ; " true : pk !" true : q1; : : : ; " true : ql :
In the following, when we refer to classical clauses we use
the former notation.

In classical propositional logic, clauses are sometimes
defined as a finite disjunction of literals (i.e., signed atoms
or negated signed atoms). It is easy to see from the pre-
vious definitions thatp1; : : : ; pk ! q1; : : : ; ql is logically
equivalent to:p1 _ � � � _ :pk _ q1 _ � � � _ ql. So, classi-
cal atoms occurring with negative polarity are implicitly
negated. In our definition of signed clauses, signed atoms
occurring with negative polarity are implicitly negated as
well in the sense that a signed atomS : p with negative po-
larity is satisfied by an interpretationI iff I 6j= S : p. Nev-
ertheless, we do not define regular clauses as a disjunction
of regular atoms with arbitrary regular signs since, as we
assumeN to bepartially ordered, an occurrence of" i : p
with negative polarity is not, in general, logically equivalent
to # j :p for anyj 2 N and can therefore not be represented
by a positive occurrence of some literal# j : p.

2.3 Satisfiability Problems

The propositional satisfiability problem, briefly called
SAT, is the problem to determine whether a classical CNF
formula is satisfiable, and is known for being the original
NP-complete problem [1]. However, there exist linear-time
algorithms for solving the SAT problem when we consider



Horn formulae (Horn SAT) [2] or CNF formulae with only
two literals per clause (2-SAT) [5]. When a CNF formula
admits three literals per clause (3-SAT), it is again an NP-
complete problem.

In the last years, some results about the complexity of the
satisfiability problems for different versions of signed CNF
formulae have been published. These problems have the
truth value setN (resp.(N;�)) as a second input parameter
(besides the formula� to be tested for satisfiability). Thus,
signed SATis the problem of deciding for an arbitrary for-
mula� over an arbitrary thruth value setN , whether there
is an interpretation overN satisfying�. We also consider
decision problems whereN is not an input parameter but
fixed, which we denote by attaching the fixed truth value
setN as an index to the name of the decision problem. For
example, given a fixed truth value setN , signed SATN is
the problem of deciding for an arbitrary formula� overN
whether there is an interpretation overN satisfying�.

The classical SAT problem is trivially reducible to sig-
ned SATftrue;falseg; therefore, the latter and the more gen-
eral problem signed SAT are NP-complete. Signed 2-SATN
is known to be NP-complete forjN j � 3 [14] (thus, the
general problem signed 2-SAT is NP-complete). But, the
restriction of signed 2-SAT to the case where all signs are
singletons, called monosigned 2-SAT, is polynomially solv-
able [14]. Concerning regular CNF formulae, it is known
that regular Horn SAT [7, 3] and regular 2-SAT [14] are
both polynomially solvable in case the partial order defined
over the set of truth values is total.

3 Transforming Classical SAT into
Signed 2-SAT

3.1 The Transformation

In this section, a mapping0 is defined that transforms
classical CNF formulae into signed (not necessarily regu-
lar) 2-CNF formulae, in other words, a reduction of clas-
sical SAT to signed 2-SAT; the transformation is shown to
be computable in polynomial time. We define0 as follows:
Let � be a classical CNF formula with clausesC1; : : : ; Cr
(r � 1) over a signature�. Assume thatp1; : : : ; ps (s � 1)
are the propositional variables occurring in�; thus, the clau-
ses in� are of the form2Cm = pim;1 ; : : : ; pim;km ! pjm;1 ; : : : ; pjm;lm :
We associate with� a signed 2-CNF formula�0 over the

truth value setN 0� = fp�1 ; : : : ; p�s ; p+1 ; : : : ; p+s g and signa-
ture�0 = fp01; : : : ; p0rg, i.e., the truth values are the clas-
sical atoms annotated with the two possible polarities�

2Recall from Section 2 that the atoms in� really are signed atoms of the
form " true : p, but the signs are not shown in representations of classical
CNF formulae.

and+, and for each clauseCm in � there is a propositional
variablep0m in �0. The idea is thatp0m has the truth valuep+i
or p�i in a (non-classical) interpretationI 0 if the classical
atompi is the one that makes the clauseCm true in the cor-
responding classical interpretationI . That is,I 0(p0m) = p�i
if pi is false inI and occurs with negative polarity inCm,
andI 0(p0m) = p+i if pi is true inI and occurs with positive
polarity inCm. An atom can only have a single truth value
whereas a clauseCm can be “made true” by more than one
of its literals, in which case an arbitrary one may be chosen
to be the truth value ofp0m. For each clauseCm = pim;1 ; : : : ; pim;km ! pjm;1 ; : : : ; pjm;lm
in � there is a unit clauseC 0m = ! fp�im;1 ; : : : ; p�im;km ; p+jm;1 ; : : : ; p+jm;lmg : p0m
in �0. The signed atom inC 0m represents the fact thatCm
(them-th clause of�) is made true. Thus�0 represents only
satisfying truth assignments of�.

This is, of course, not enough. We must ensure that�0
in fact represents solely such truth assignments for atoms
in �which are consistent or, in usual terminology, which are
well-defined interpretations. For this purpose,�0 contains
for all (classical) clausesCm andCn in �. resp., for all
propositional variablesp0m andp0n in �0 (1 � m;n � r) and
for all atoms, resp., truth valuespi (1 � i � s) additional
clausesD0mni = fp+i g : p0m ! (S0n n fp�i g) : p0n
where S0n = fp�in;1 ; : : : ; p�in;kn ; p+jn;1 ; : : : ; p+jn;lng :
The signed clausesD0mni express that if an atom is used
with positive polarity to “make true” some clauseCm of �,
then it cannot be used with negative polarity to “make true”
any other clause of�.

The clauseD0mni may be omitted from�0 if pi does not
occur with positive polarity inCm or does not occur with
negative polarity inCn. Instead of the clausesD0mni, the
clausesE0mni = fp�i g : p0m ! (S0n n fp+i g) : p0n
can be used. The proof of Theorem 7 shows that it is indeed
sufficient to either use only the clausesD0mni or only the
clausesE0mni.
Example 1.Consider the classical CNF formula� consist-
ing of the clauses (C1) p ! q(C2) q ! p(C3) ! p; q



The only modelI of � is defined byI(p) = I(q) = true.
The result of applying the mapping0 to � is a signed 2-
CNF formula�0 over the signature�0 = fp01; p02; p03g and
using the truth value setN 0� = fp�; q�; p+; q+g; �0 consists
of the clauses(C 01) ! fp�; q+g : p01(C 02) ! fq�; p+g : p02(C 03) ! fp+; q+g : p03(D0211) fp+g : p02 ! fq+g : p01(D0311) fp+g : p03 ! fq+g : p01(D0122) fq+g : p01 ! fp+g : p02(D0322) fq+g : p03 ! fp+g : p02
In (non-classical) interpretationsI 0 satisfying�0, the truth
value ofp01 is q+, and the truth value ofp02 is p+. The truth
value ofp03 can be eitherp+ or q+, according to the fact that
both atoms in the clauseC3 are satisfied by the classical
interpretationI .

3.2 Results

The following theorem states the correctness of the trans-
formation0:
Theorem 7. A classical CNF formula� is satisfiable if and
only if there is an interpretation overN 0� satisfying�0.
Proof sketch. Only-if-part:Assume that the classical inter-
pretationI satisfies�. Define the interpretationI 0 overN 0�
as follows: In each clauseCm 2 � there has to be an atomp
such that (1)I(p) = true andp occurs positively inCm or
(2) I(p) = false andp occurs negatively inCm, because
otherwiseCm were not satisfied byI . If there is more than
one such atomp in Cm, then choose an arbitrary one. If (1)
holds forp, then defineI 0(p0m) = p+, otherwise (i.e., if (2)
holds forp) defineI 0(p0m) = p�. It is easy to show thatI 0
satisfies the clausesC 0m andD0mni for all 1 � m;n � r and1 � i � s.
If-part: Assume that the interpretationI 0 satisfies�0. We
define the classical interpretationI for all atomsp 2 � as
follows: If, for any 1 � m � r, there is an atomp0m such
that I 0(p0m) = p+, then letI(p) = true; let I(p) = false
otherwise. It is easy to show thatI satisfies all clausesCm
in �. ut

The size of�0 is easily seen to beXm (km + lm + 1)| {z }=jC0mj + Xm;n;i (kn + ln + 2)| {z }=jD0mnij ;
which is less than or equal toj�j+ r + 2r2s wherer is
the number of clauses in�, ands is the number of differ-
ent atoms occurring in�. As r; s < j�j, this placesj�0j in

O(j�j3). Obviously,�0 can be constructed in time which is
linear in its own size and, thus, the time complexity of its
construction is inO(j�j3).
Theorem 8. The transformation0 is computable in cubic
time.

In [14], NP-hardness of signed 2-SAT was proven with
a poly-time reduction from 3-colourability of graphs to sig-
ned 2-SATN with jN j = 3. As classical SAT is NP-com-
plete, NP-hardness of signed 2-SAT (withN as an input
parameter) follows as well as a corollary from Theorem 8.

Corollary9. Signed 2-SAT is NP-complete.

An additional benefit of the transformation0 is that it
makes it possible to compare classical decision procedures
with specific procedures for signed CNF.

4 Transforming Regular Horn SAT into
Classical Horn SAT

4.1 The Transformation

In this section, we define a mapping� that transforms
lattice-ordered regular Horn formulae into classical Horn
formulae; and we prove that it is linear in the size of the
transformed formula and quadratic in the size of the truth-
value lattice.

We assume in the following that the formula to be trans-
formed does not contain a signed atom of the form"? : p,
where? is the bottom element of the truth value lattice.
This is not a real restriction, as such atoms are true in all
interpretations; they can be removed from a formula in lin-
ear time preserving satisfiability as follows: (1) if a clause
contains a negative occurrence of"? : p, then remove that
occurrence from the clause; (2) if a clause contains a pos-
itive occurrence of"? : p, then remove the whole clause
from the formula.

The mapping� is defined as follows: Let� be a regular
Horn formula over the truth-value lattice(N;�) not con-
taining the sign"?. Let C1; : : : ; Cr be the clauses in�
(r � 1), let p1; : : : ; ps 2 � be the propositional variables
occurring in� (s � 1).

We associate with� a classical Horn formula�� over the
signature �� = f" i : p j i 2 N; p 2 �g ;
that is signed atoms—including their signs—are used as
propositional variables. A transformation based on the same
principle is described in [16]; it allows to transform formu-
lae from certain finite-valued logics whose truth value lat-
tice is distributive into classical CNF formulae.



For each1 � m � r the classical Horn formula�� con-
tains the clausesC�m = Cm from �, which in �� are re-
garded as classical clauses over��. In addition, for all truth
valuesi; j 2 N and all propositional variablespk occurring
in � (1 � k � s), �� contains

1. the clauseD�ijk = " i : pk ! " j : pk ;
provided that (a)i > j and (b) there is noj0 2 N such
thati > j0 > j,

2. the clauseE�ijk = " i : pk; " j : pk ! " (i t j) : pk ;
if neitheri � j norj � i, wherei t j is the supremum
of i andj in the truth value lattice.

As �� contains the clauses from�, the classical inter-
pretations satisfying�� satisfy� as well. The additional
clausesD�ijk andE�ijk ensure that such a classical interpre-
tationI� over the signature�� corresponds to a well defined
interpretationI over the signature�.

The clausesD�ijk represent the fact that, ifI satisfies" i : pk, i.e.,I(pk) � i andi > j, thenI(pk) � j andI sat-
isfies" j : pk as well.

The clausesE�ijk , on the other hand, represent the fact
that, if I satisfies both" i :pk and" i :pk, i.e.,I(pk) � i andI(pk) � j, thenI(pk) � i t j and, thus,I j= " (i t j) : pk.

The precondition (a)i > j for the inclusion of the clau-
sesD�ijk in �� is necessary for the correctness of the trans-
formation; in casenot i > j, the clausesD�ijk are (in gen-
eral) not satisfied by arbitrary interpretations. Contrary to
that, the precondition (b) for the inclusion of theD�ijk and
the precondition for the inclusion of the clausesE�ijk is only
needed to avoid redundancies.

The following lemma shows that clausesD�ijk for val-
ues ofi; j violating precondition (b) are redundant. They
are true in all interpretations satisfying��. Therefore, their
inclusion would not impose any further restriction on the
models of��.

Lemma 10. Let� be a regular Horn formula over a signa-
ture�, let I� be a classical interpretation satisfying��, letp 2 �, and letj; j0 be truth values inN such thatj � j0
and I�(" j : p) = true ;
then I�(" j0 : p) = true :

The clausesE�ijk are tautological (and redundant), when-
everi � j or j � i; in particular, they are not needed if the
ordering� on the truth value setN is total.

According to the following lemma, it is not necessary to
include in�� clauses of the form" i1 : p; : : : ; " iq : p ! "Gfi1; : : : ; iqg : p
for q > 2.

Lemma 11. Let� be a regular Horn formula over a signa-
ture�, let I� be a classical interpretation satisfying��, letp 2 �, and letM � N be a non-empty set of truth values
such that, for allj 2M ,I�(" j : p) = true ;
then I�("GM : p) = true :
Example 2.Assume thatN = f?;>; true; falseg and the
partial order overN is the lattice shown below:>true false?
Given a regular Horn formula� (over signature�), for each
propositional variablep occurring in�we add the following
classical Horn clauses (over the signature��) to obtain��:(D�1) "> : p ! " true : p(D�2) "> : p ! " false : p(D�3) " true : p ! "? : p(D�4) " false : p ! "? : p(E�1 ) " true : p; " false : p ! "> : p

The following theorem states the correctness of the trans-
formation�:

Theorem 12. A regular Horn formula� is satisfiable over
some truth-value lattice(N;�) if and only if�� is satisfi-
able.

4.2 Results

The size of�� is easily seen to havej�j+ 3sjN j2
as an upper bound wheres is the number of different atoms
occurring in�.

As s < j�j, this placesj��j inO(j�jjN j2); and, since the
time complexity of constructing�� is linear in its size, the
reduction� is inO(j�jjN j2).



If the ordering� on the truth value set is total, the size
of �� is bounded by j�j+ 2sjN j ;
as in that case there are onlyjN j many clausesDijk for
eachk in ��, and no clausesEijk are needed. Then, the
transformation� is inO(j�jjN j).
Theorem 13. The transformation� is computable in time
linear in the size of the transformed formula and quadratic
in the size of the truth value set.

If the ordering� is total, it is linear in both the size of
the transformed formula and the size of the truth value set.

Because classical Horn SAT is solvable in linear time [2],
we obtain the following corollaries (for distributive lattices
similar results were proven in [16]):

Corollary14. Regular Horn SAT can be solved in time lin-
ear in the size of the formula and quadratic in the size of the
truth value lattice.

Corollary15. For all fixed truth-value lattices(N;�), reg-
ular Horn SAT(N;�) can be solved in linear time.

In the special case of totally ordered truth values, regular
Horn SAT is of even smaller complexity (which was already
known, see [7]).

Corollary16. Regular Horn SAT with atotally ordered set
of truth values can be solved in time linear in both the size
of the formula and the size of the truth value set.

4.3 Regular Unit Resolution

In this subsection, we define a regular unit resolution cal-
culus and state its completeness for regular Horn clauses.
The calculus is based on the inference rules shown in Ta-
ble 1.

Theorem 17. A regular Horn formula� is unsatisfiable if
and only if there exists a derivation of the empty clause
from � using the calculus formed by the PRUR rule and
the RR rule.

Proof sketch.Theorem 12 states that� is satisfiable iff�� is
satisfiable. Thus, we know that� is unsatisfiable iff there
exists a derivation of the empty clause from�� using classi-
cal positive unit resolution (PUR), since this rule is refuta-
tion complete for classical Horn formulae. One proves, by
induction on the numbern of deduction steps in that deriva-
tion using one of the additional clauses that are in�� but not
in �, that it is possible to construct from a classical (PUR)
derivation of the empty clause from�� a deduction of the
empty clause from� using the PRUR and RR rules. ut

Our regular reduction rule can be seen as an improve-
ment of the rule presented in [8]. Whereas they provide a
top-down, Prolog-like proof procedure, we have defined a
bottom-up procedure based on unit resolution. An alternate
solution with an extended notion of signs that avoids reduc-
tion rules altogether can be found in [9]. In [8, 9], however,
complexity issues are not discussed.

4.4 Infinite Truth Value Lattices

The results of this section so far have only been proven
for finite truth value lattices; for example, it is essential for
Lemma 11 to hold that the set of truth values is finite.

Nevertheless, the results apply in many cases toinfinite
truth value lattices as well, because it suffices to consider
the sub-lattice that is generated by the truth values actually
occurring in a formula and the bottom element.

Definition 18. Given a regular Horn formula� over a (pos-
sibly infinite) truth value lattice(N;�), we define(N�;�)
to be the sub-lattice of(N;�) generated by the elements infi 2 N j i occurs in�g [ f?g :

The following theorem states that if the satisfiability of
a formula� is to be checked, it suffices to only consider
the truth value lattice(N�;�). Thus, ifN� is finite and
effectively computable for all�, then all previous results of
this section can be made use of by considering the lattice(N�;�) instead of(N;�).
Theorem 19. Let� be a regular Horn formula over a (pos-
sibly infinite) truth value lattice(N;�). The formula� is
satisfiable by an interpretation over the lattice(N;�) if and
only if it is satisfiable over the lattice(N�;�).
Proof. The if-part of the theorem is trivially true, because
every interpretation over(N�;�) is an interpretation over(N;�) as well.

To prove the only-if part, assume that theN -interpreta-
tion I satisfies�. Define theN�-interpretationI� for all
atomsp 2 � by I�(p) = FMp whereMp = fi 2 N� j I(p) � ig :
It suffices to show that for all truth valuesi occurring in�
(and thus inN�): I j= " i : p if and only if I� j= " i : p.

a. Assume thatI j= " i : p, i.e., I(p) � i. In that case,i 2Mp and, by definition ofI�, we haveI�(p) � i and,
thus,I� j= " i : p.

b. Assume thatI� j= " i : p, i.e.,I�(p) � i. SinceI(p) � j
for all j 2Mp, we haveI(p) �GMp = I�(p) � i
and, thus,I j= " i : p (note that the supremum operatort is
the same in both lattices). ut



Positive Regular Unit Resolution (PRUR) Regular Reduction (RR)! " i : p" i1 : p1; : : : ; " il : p; : : : ; " ik : pk ! " j : q" i1 : p1; : : : ; " il�1 : pl�1; " il+1 : pl+1; : : : ; " ik : pk ! " j : q ! " i : p! " j : p! " (i t j) : p
provided thati � il. provided that neitheri � j nor j � i.

Table 1. Inference rules of the regular unit resolution calculus.

Since the formula� is finite, the set of elements gener-
ating (N�;�) is finite as well. Therefore, the sub-lattice(N�;�) is finite if (N;�) is locally finite, i.e., if every sub-
lattice generated by a finite subset is finite. This is, for in-
stance, the case if the lattice(N�;�) is distributive.

4.5 Extension to Partial Orders with Maximum

One of the main advantages of our transformational ap-
proach to signed logic is that it becomes completely trans-
parent which additional deductive machinery is required as
compared to the classical case. This becomes clearer even
when we go beyond lattice-ordered regular Horn formulae.

We start with two considerations that somewhat limit the
terrain. A core feature of any efficient deduction procedure
for Horn formulae is the possibility to represent the con-
junction of two unit clauses as a single unit clause as wit-
nessed by the reduction rule in the previous section. This
amounts to saying that signs of atoms must be closed under
conjunction. When signs are upsets this condition can be
expressed as:

For all i; j 2 N there is ak 2 N such that" i \ " j = " k (1)

Proposition20. Every non-empty, finite poset that satisfies
(1) is an upper semi-lattice.

Therefore, it is inevitable to generalise the language of
signs if we want to go beyond lattices. A natural candidate
for an enriched language of signs are finite unions of upsets
which can also be seen as finitely generated filters. In the
following we write" fi1; : : : ; ikg instead of" i1 [ � � � [" ik
and similar for#. We extend our notion of regularity (and
hence of Horn formulae) as follows:

Definition 21. If a signS is of the form" fi1; : : : ; ikg or# fi1; : : : ; ikg for somefi1; : : : ; ikg � N andk � 1, then
it is called aregular sign.

A signed clause is calledregular if it contains regular
atoms with signs only of the form" fi1; : : : ; ikg.3 A sig-
ned CNF formula is called regular if it only contains regu-
lar clauses. A regular clause containing at most one regular

3The remark made at the end of Section 2.2 applies here as well.

atom with positive polarity is aregular Horn clause. A reg-
ular CNF formula consisting solely of regular Horn clauses
is aregular Horn formula.

The next question is which partial orders can be cap-
tured if we want to retain an efficient decision procedure
for regular Horn formulae. One such necessary condition
is that there must be a maximum>. To see this considerN = ffalse ; trueg with false 6� true and true 6� false .
In this caseffalseg = " ffalseg andftrueg = " ftrueg,
so each classical CNF clause can be expressed as a regular
Horn clause. GivenC = p1; : : : ; pk ! q1; : : : ; ql ;
rewriteC, for example, into:" ftrueg : p1; : : : ; " ftrueg : pk;" ffalseg : q1; : : : ; " ffalseg : ql�1 ! "ftrueg : ql

Hence, we cannot expect to obtain a polynomial decision
procedure for such Horn formulae. The problem is that by
conjoining regular signs" false and" true we can express
falsity at any time on the object level which is as good as to
admit contrapositives of clauses.

Finally, we sketch how partial orders with maximum lead
to a reasonable notion of generalised Horn formulae. This
can be done via a reduction to lattice-ordered Horn formulae
handled in the previous sections. For a partial order(N;�)
with maximum> consider the latticeF+(N) of its non-
empty order filters. Its elements can be represented as the
non-empty anti-chains of(N;�), that isfS j ; 6= S � N , and

for all i; j 2 S: if i 6= j theni 6� j, j 6� ig :
The orderv on F+(N) is defined asS v S0 iff *S �*S0, where*S is the filter generated byS in N . To apply
the results of the previous sections it is sufficient to show:

Proposition 22. A regular literal"S : p is satisfiable w.r.t.
a poset with maximum(N;�) iff it is satisfiable w.r.t. the
latticeF+(N).4

4In the latter case, of course,S is interpreted as a single lattice element
in F+(N).



There is a price to pay for the increased generality: The
lattice F+(N) can be considerably larger than the poset(N;�), in the worst case exponentially larger. This proves:

Theorem 23. Regular Horn SAT formulae based on posets
with maximum can be solved in time linear in the size of the
formula and exponential in the size of the truth value set.

Example 3.Consider the posetN depicted below on the
left. The latticeF+(N) is shown on the right. It can be
seen as a lattice-completion ofN .>i0 j0i j

f>gfi0g fj0gfi0; j0gfig fjgfi; jg
From a deductive point of view it is important to com-

pute the supremumt andv in F+(N), because these are
required in the reduction and unit resolution rule, respec-
tively. This is done as follows:

Let *S = * fi1; : : : ; ikg and *S0 = * fj1; : : : ; jlg
be given. We denote withmax(i; j) the set of minimal
elements abovei and j in N w.r.t. �. Now S t S0 =*S\*S0 = fk j k 2 max(i; j); i 2 S; j 2 S0g. From the
resulting set any elements not minimal in it can be deleted
to arrive at an anti-chain representation. Finally,S v S0 iff*S � *S0 iff for all jr 2 S0 there is ais 2 S such thatis � jr.
5 Future Work

An investigation of the lattice theoretic aspects of lattice-
ordered regular Horn formulae could lead to useful new re-
sults. In particular, in the infinite case, for which only first
ideas have been presented in Section 4.4, representation the-
ory and dualities should be further studied. Priestley duality
has already been successfully exploited in the case of dis-
tributive lattices [15].

As another line of work, experiments should be carried
out to compare our tailored decision procedures for regular
Horn formulae with procedures for classical Horn formulae
after applying the transformation� defined in Section 4.
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