Transformations between Signed and Classical Clause Logic

Bernhard Beckert Reiner Hahnle Felip Manya
University of Karlsruhe Universitat de Lleida
Institute for Logic, Complexity Pl. Victor Siurana 1
and Deduction Systems E-25003 Lleida, Spain
D-76128 Karlsruhe, Germany felip@eup.udl.es
{beckert,reiner }@ira.uka.de
Abstract signs are partially ordered, polarities can be assigned to sig-

ned literals in a natural way which gives rise to generalised
In the last years two automated reasoning techniques for notions of a Horn set. It turns out that many problems can
clause normal form arose in which the use of labels are be represented more succinctly using formulae over signed
prominently featuredsigned logiandannotated logic pro-  literals whose proof procedures and complexities are often
gramming which can be embedded into the first. The un- (but not always) similar as in classical logic.
derlying basic idea is to generalise the classical notion ofa  In the present paper we relate signed logic and classi-
literal by adorning an atomic formula with a sign or label cal logic more closely than it has been done before. This
which in general consists of a possibly ordered set of truth is done by defining two new transformations between them.
values. In this paper we relate signed logic and classical After formal definition of some basic notions in the next
logic more closely than before by defining two new transfor- section we start in Section 3 with transforming arbitrary
mations between them. As a byproduct we obtain a numberclassical formulae in conjunctive normal form (CNF) into
of new complexity results and proof procedures for signed signed CNF formulagvith at most two literals per clause
logics. This provides an alternative proof of NP-hardness of signed
2-SAT (first proved by [14]) and creates the possibility to
compare classical and signed deduction procedures experi-
1 Introduction mentally._ In Section 4.1 we take the reverse direc_tion and
reduce signed Horn formulae based on certain partial orders
. . to classical logic. In the case of lattice orders this yields the
In the last years two automateq reasoning technigues 1Eornew result that generalised Horn problems turn out to have
cIaus_e normal form arose in wh|c_h the use of labels are il polynomial complexity with respect to formula size and
promment!y featured:_ from generic treatments of many- number of truth values (Section 4.2). We can also extract an
valuedlogic, so-calleshgngd Iogloemerged_ (see, forexe_lm- efficient decision procedure based on generalised unit res-
ple, [6, 7, 3, 4, 14, 15]) whilannotated I.og|c programming |, 1ion (Section 4.3). A major advantage of our reduction
(see, fqr gxamplt_a, [12, 8.’ 9) was _mot|vated by attempts to to classical logic is that it scales up: we demonstrate this by
deal with inconsistency in deductive databases. Both ap'sketching generalisations to infinite orders in Section 4.4
proaches are closely connected to each other [13, 10] and t

traint lodi ina 1111, In fact tated loai %nd to partial orders that are not lattices in Section 4.5.
constraint logic programming [ ].' ntact, annotated1ogic e 1o space limitations, most proofs had to be omitted.
can be embedded into signed logic [13].

: b . . A full version of this paper is available from the authors on
In each case the underlying basic idea is to generalise therequest
classical notion of a literal by adorning an atomic formula '

with a sign or label, which in general consists of a finite ) o
set of (truth) values. Whenever the values appearing in the2 ~Basic Definitions
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Definition 2. Let X be apropositional signaturgi.e., a de-
numerable set of propositional variables. We definestte
of atomic signed formulagr signed atoms for short) as:

{S:p;i | SCN,p;ex} .

Definition 3. Given a signed aton§ : p, thenS is said to
be itssign Let> be a partial order on the truth value $ét

let 17 denote the sefj € N | j > i} and let] i denote the
set{j € N | j <i}. IfasignsS is equal to eithet i or | i,

for somei € N, then it is called aegular sign A signed
atom with a regular sign is calledregular atom

Definition4. A signed clause”' is an expression of the
form

St:pty.. ., Sk ipr — S{:ql,...,Sl':ql ,

where Sy :p1,..., Sk :pr @and Sy : qi,...,S] : q are sig-
ned atoms and,! > 0.

We say the signed atonss : py, ..., Sk : pr OCcur with
negative polarityin C, the signed atom8{ : ¢1,...,S] : ¢
occur withpositive polarity The expression on the left of
— is called thehodyof the clause and the expression on the
right is called thehead A signed formulain conjunctive
normal form (CNF) is a finite set of signed clauses.

A signed clause is calleggularif (N, >) is alattice and
it only contains regular atoms with signs of the fotm! A
signed CNF formula is callegularif it only contains reg-

ular clauses. A regular clause containing at most one atom

with positive polarity is aregular Horn clause A regular

CNF formula consisting solely of regular Horn clauses is a

regular Horn formula

In signed clausek = 0 and/ = 0 are allowed; thus, for
signed atoms, ¢, bothp, ¢ — () and({) — p, q are signed
clauses, and we represent themjpy — and — p,q.
Whenk = 0 and/ = 0 we have the signed empty clause,
denoted by.

Definition5. Thelengthof asigned atons : p, denoted by
|S : p|,is|S|+1, where| S| denotes the cardinality ¢f. The
lengthof a signed claus&”, denoted byC|, is the sum of
the lengths of the signed atoms occurringin Thelength
of asigned CNF formuld’, denoted byT|, is the sum of
the lengths of the clausesih

2.2 Semantics of Signed Logic
Definition 6. An interpretationis a mapping that assigns

to every propositional variable of the signatitea truth
value of N. An interpretation/ satisfiesa signed atom

1Regular clauses could also be defined containing only sifjtseo
form | 7 instead of signs of the formz. The results of this paper are also
valid for regular clauses defined that way.

S:p,insymbolsl |= S : p,iff I(p) € S; I satisfiesasigned
clauseC = Si :p1,...,Sk:pr = Si:qu,..., S 1 q, de-
noted! |= C, iff the following holds: If I satisfies all of

St :p1, ..., Sk pr thenI must also satisfy at least one of
Stigr,...,S]q. Asigned CNF formuld is satisfiable

iff there exists an interpretatioh that satisfies all the sig-
ned clauses i. We say then thaf is a model ofl" and

we writeI |= T'. A signed CNF formula that is not satis-
fiable isunsatisfiable The signed empty clause is always
unsatisfiable and the signed empty CNF formula is always

satisfiable.

In particular,I satisfies - S} :¢q1,...,S] : ¢ iff it sat-
isfies at leastone &} : ¢1,..., 5] : q;; similarly, I satisfies
St:p1, ..., Sk pr — iffitdoesnotsatisfy at least one of
S1:p1y---, Sk k-

Observe that if we tak&v = {true, false}, assuming
true > false, and consider only regular atoms of the form
T true : p, then we obtain the logic of classical conjunc-
tive normal form: 1 true : p is equivalent to the classical
atomp if it occurs with positive polarity, and to the negated
classical atom-p if it occurs with negative polarity. So,
the classical clausgy,...,pr — q1,...,q IS equivalent
to the regular clause

T true:py, ..., T true : pr —
Ttrue:q,...,Ttrue: q .

In the following, when we refer to classical clauses we use
the former notation.

In classical propositional logic, clauses are sometimes
defined as a finite disjunction of literals (i.e., signed atoms
or negated signed atoms). It is easy to see from the pre-
vious definitions thapy,...,pr = q1,...,q is logically
equivalent to-py V---V-pr Vg1 V-V q. So, classi-
cal atoms occurring with negative polarity are implicitly
negated. In our definition of signed clauses, signed atoms
occurring with negative polarity are implicitly negated as
well in the sense that a signed atém p with negative po-
larity is satisfied by an interpretatidniff I | S : p. Nev-
ertheless, we do not define regular clauses as a disjunction
of regular atoms with arbitrary regular signs since, as we
assumeV to bepartially ordered, an occurrence ¢f : p
with negative polarity is not, in general, logically equivalent
tol] j:pforanyj € N and can therefore not be represented
by a positive occurrence of some litetg : p.

2.3 Satisfiability Problems

The propositional satisfiability problem, briefly called
SAT, is the problem to determine whether a classical CNF
formula is satisfiable, and is known for being the original
NP-complete problem [1]. However, there exist linear-time
algorithms for solving the SAT problem when we consider



Horn formulae (Horn SAT) [2] or CNF formulae with only
two literals per clause (2-SAT) [5]. When a CNF formula
admits three literals per clause (3-SAT), it is again an NP-
complete problem.

and+, and for each claus@,, in I" there is a propositional
variablep;, in ¥'. The idea is that!, has the truth valug;

or p; in a (non-classical) interpretatiafi if the classical
atomp; is the one that makes the clausg true in the cor-

Inthe last years, some results about the complexity of theresponding classical interpretatiénThat is,I' (p,,) = p;

satisfiability problems for different versions of signed CNF

if p; is false inI and occurs with negative polarity i,

formulae have been published. These problems have theandI'(p),) = p; if p; is true inI and occurs with positive

truth value sefV (resp.(V, >)) as a second input parameter
(besides the formulR to be tested for satisfiability). Thus,
signed SATis the problem of deciding for an arbitrary for-
mulaTl over an arbitrary thruth value saf, whether there

is an interpretation ovelN satisfyingl'. We also consider
decision problems wherd is not an input parameter but
fixed, which we denote by attaching the fixed truth value
setN as an index to the name of the decision problem. For
example, given a fixed truth value s&t, signed SAYL is

the problem of deciding for an arbitrary formulaover N
whether there is an interpretation ovérsatisfyingT'.

The classical SAT problem is trivially reducible to sig-
ned SAT e, faiseys therefore, the latter and the more gen-
eral problem signed SAT are NP-complete. Signed 2-9AT
is known to be NP-complete fdiV| > 3 [14] (thus, the
general problem signed 2-SAT is NP-complete). But, the

polarity in C,,,. An atom can only have a single truth value
whereas a clausg,, can be “made true” by more than one
of its literals, in which case an arbitrary one may be chosen
to be the truth value gf},,. For each clause

m = Pimasce s Pim iy, Pjm.1s s Pim i,
in I there is a unit clause
! _ - + + e
Cn = — {pz’m,la---apzm,km’py’m1---'=pjm,zm}'pm

in I'. The signed atom i@}, represents the fact thét,,
(them-th clause of") is made true. ThuE' represents only
satisfying truth assignments bf

This is, of course, not enough. We must ensure at
in fact represents solely such truth assignments for atoms
in " which are consistent or, in usual terminology, which are

restriction of signed 2-SAT to the case where all signs arewell-defined interpretations. For this purpoé,contains

singletons, called monosigned 2-SAT, is polynomially solv-
able [14]. Concerning regular CNF formulae, it is known

that regular Horn SAT [7, 3] and regular 2-SAT [14] are

both polynomially solvable in case the partial order defined
over the set of truth values is total.

3 Transforming Classical SAT into
Signed 2-SAT

3.1 The Transformation

In this section, a mappingis defined that transforms
classical CNF formulae into signed (not necessarily regu-
lar) 2-CNF formulae, in other words, a reduction of clas-
sical SAT to signed 2-SAT; the transformation is shown to
be computable in polynomial time. We defihas follows:
LetI" be a classical CNF formula with claus€s, ..., C.

(r > 1) over a signatur&. Assume thapy,...,ps (s > 1)
are the propositional variables occurrindirthus, the clau-
ses inl are of the form

Cm =pimv1,...

We associate with® a signed 2-CNF formul&@’ over the
truth value setV). = {p7,...,p;.pf,...,p}} and signa-
ture¥ = {p},...,p.}, i.e., the truth values are the clas-
sical atoms annotated with the two possible polarities

2Recall from Section 2 that the atomdirreally are sighed atoms of the
form 1 true : p, but the signs are not shown in representations of classical
CNF formulae.

for all (classical) clause€’,, andC,, in T'. resp., for all
propositional variables;,, andp!, in ¥’ (1 < m,n < r)and
for all atoms, resp., truth values (1 < i < s) additional
clauses
DI

mni

= {pi} v = (Sp \ {7 }) iy

where

[ gee - + +
Sn - {pin,ﬂ Lt ’pin,k" 7pjn’17 e 7pj",l"} .

The signed clauseP)’,,,,; express that if an atom is used
with positive polarity to “make true” some clauék, of T,
then it cannot be used with negative polarity to “make true”
any other clause df.

The clauseD! .. may be omitted fronl” if p; does not

occur with positive polarity irC',, or does not occur with

negative polarity inC,,. Instead of the clauses,, ;. the
clauses
Epni = Api Yo = (Sp\{piD) :py,

can be used. The proof of Theorem 7 shows that it is indeed
sufficient to either use only the clausgs,,,; or only the
clausess!

mni*

Example 1.Consider the classical CNF formulaconsist-
ing of the clauses

(C1) »p—yq
(C2)  q—p
(C3) - p,q



The only modell of T is defined byl (p) = I(q) = true.

The result of applying the mappirigo T is a signed 2-
CNF formulal” over the signatur&’ = {p}, p},p4} and
using the truth value sé{]. = {p=,¢~,p*,¢*}; I’ consists
of the clauses

(C1) = {p,q¢"} P
(C3) — {q7,p*} b
(C3) - {p*, ¢} :ph
(Dy1y)  A{p*}:ipy = {a*}:p
(D311)  A{p*}:ips = {a*}:p
(Di22)  {a*}:pi = {p*}:ps
(D390)  {a*}:py — {p*}:ps

In (non-classical) interpretation$ satisfyingI”, the truth
value ofp] is ¢*, and the truth value qf}, is p*. The truth
value ofp} can be eithep* or ¢+, according to the fact that
both atoms in the claus€; are satisfied by the classical
interpretatiorn/.

3.2 Results

The following theorem states the correctness of the trans

formation’:

Theorem 7. A classical CNF formuld’ is satisfiable if and
only if there is an interpretation ove¥}. satisfyingl”.

Proof sketch. Only-if-partAssume that the classical inter-
pretation/ satisfies". Define the interpretatioff over N},
as follows: In each claugé,, € I' there has to be an atgm
such that (1Y (p) = true andp occurs positively inC,,, or
(2) I(p) = false andp occurs negatively irC,,, because
otherwiseC',, were not satisfied by. If there is more than
one such atorp in C,,,, then choose an arbitrary one. If (1)
holds forp, then defind’(p!,,) = p*, otherwise (i.e., if (2)
holds forp) definel’(pl,,) = p~. Itis easy to show tha¥’
satisfies the clause€g,, andD!, . foralll < m,n < rand
1< <s.

If-part: Assume that the interpretatidh satisfies’. We
define the classical interpretatidrfor all atomsp € ¥ as
follows: If, for any1 < m < r, there is an atomp!, such
that I'(p!,,) = p*, then letI(p) = true; let 1(p) = false
otherwise. It is easy to show thatatisfies all clauses,,
inT. O

The size ofl” is easily seen to be

S+l +1) + > (kn+1a+2)

m =\ m,n,i

7]

:‘D:ﬂni‘

which is less than or equal t&'| + r + 2r?s wherer is
the number of clauses i, ands is the number of differ-
ent atoms occurring ili. Asr,s < |T'|, this placegI”| in

O(|T|?). Obviously,['" can be constructed in time which is
linear in its own size and, thus, the time complexity of its
construction is irO(|T|?).

Theorem 8. The transformatiori is computable in cubic
time.

In [14], NP-hardness of signed 2-SAT was proven with
a poly-time reduction from 3-colourability of graphs to sig-
ned 2-SATy with |[N| = 3. As classical SAT is NP-com-
plete, NP-hardness of signed 2-SAT (with as an input
parameter) follows as well as a corollary from Theorem 8.

Corollary9. Signed 2-SAT is NP-complete.

An additional benefit of the transformatidnis that it
makes it possible to compare classical decision procedures
with specific procedures for signed CNF.

4 Transforming Regular Horn SAT into
Classical Horn SAT

4.1 The Transformation

In this section, we define a mappirigthat transforms
lattice-ordered regular Horn formulae into classical Horn
formulae; and we prove that it is linear in the size of the
transformed formula and quadratic in the size of the truth-
value lattice.

We assume in the following that the formula to be trans-
formed does not contain a signed atom of the fgrim: p,
where — is the bottom element of the truth value lattice.
This is not a real restriction, as such atoms are true in all
interpretations; they can be removed from a formula in lin-
ear time preserving satisfiability as follows: (1) if a clause
contains a negative occurrencefof : p, then remove that
occurrence from the clause; (2) if a clause contains a pos-
itive occurrence oft — : p, then remove the whole clause
from the formula.

The mapping is defined as follows: L&l be a regular
Horn formula over the truth-value lattidgV, >) not con-
taining the signt —. Let Cy,...,C, be the clauses iff
(r > 1), letpy,...,ps € ¥ be the propositional variables
occurring inl" (s > 1).

We associate with' a classical Horn formulB* over the
signature

Y*={ti:p|lie N,pe X},

that is signed atoms—including their signs—are used as
propositional variables. A transformation based on the same
principle is described in [16]; it allows to transform formu-
lae from certain finite-valued logics whose truth value lat-
tice is distributive into classical CNF formulae.



For eachl < m < r the classical Horn formulB* con-
tains the clause€¢’), = C,, from I', which inT* are re-
garded as classical clauses o¥ér In addition, for all truth
valuesi, 7 € N and all propositional variablgs occurring
inT (1 <k <s), '™ contains

1. the clause
Dy = Tiipe = 1J:pe

provided that (aJ > j and (b) there is ng’ € N such
thati > j' > 7,

2. the clause

Ef, = Titpe,tiipe = T(@EUJ) tpr s
if neither; > j norj > i, wherei Ul j is the supremum

of ¢ andj in the truth value lattice.

As T'* contains the clauses fro, the classical inter-
pretations satisfyind™* satisfyI" as well. The additional
clausesD};;, andE};, ensure that such a classical interpre-
tation7* over the signatur®* corresponds to a well defined
interpretation/ over the signatur&.

The clausesD;;;, represent the fact that, if satisfies
1i:pg,i.e., I(py) > iandi > j, thenl(pg) > j andl sat-
isfies? j : pi, as well.

The clausesz;;,, on the other hand, represent the fact
that, if I satisfies botl i : py andti:pg,i.e.,I(py) > i and
I(p) > j,thenl(py) > iU jand, thus] =1 (iU j): p.

The precondition (a) > j for the inclusion of the clau-
sesD};, in ' is necessary for the correctness of the trans-
formation; in casenoti > j, the claused;;, are (in gen-
eral) not satisfied by arbitrary interpretations. Contrary to
that, the precondition (b) for the inclusion of i, and
the precondition for the inclusion of the clauggs,, is only
needed to avoid redundancies.

The following lemma shows that clauséy;, for val-
ues ofi, j violating precondition (b) are redundant. They
are true in all interpretations satisfyimj. Therefore, their
inclusion would not impose any further restriction on the
models ofl™*.

Lemma 10. LetT be a regular Horn formula over a signa-
ture X, let I* be a classical interpretation satisfyifdg, let
p € ¥, and letj, ' be truth values inV such that

-/

J=>7J
and
I*(1 :p) = true ;
then
I*(14":p) = true .

2

everi > j orj > i; in particular, they are not needed if the
ordering> on the truth value sV is total.

According to the following lemma, it is not necessary to
include inT* clauses of the form

The clause#;;, are tautological (and redundant), when-

forq > 2.

Lemma1l. LetT be a regular Horn formula over a signa-
ture X, let I'* be a classical interpretation satisfyidgf, let

p € 3, and letM C N be a non-empty set of truth values
such that, for allj € M,

I*(1j:p) = true ;

then
I*(Tl_lM:p) = true .

Example 2.Assume thatV = {—, T, true, false} and the
partial order ovetV is the lattice shown below:

T
7\
true false
N/

Given a regular Horn formulB (over signatur&’), for each
propositional variablg occurring inl” we add the following
classical Horn clauses (over the signatkirg to obtainl™:

(DY) TT:p = Ttrue:p
(D3) TT:p = 1false:p
(D3) Tirue:p — T —:p
(Dy) tfalse:p — 1+ —:p
(EY) Ttrue :p,Tfalse:p — 1T T:p

The following theorem states the correctness of the trans-
formation*:

Theorem12. A regular Horn formulal is satisfiable over
some truth-value latticéN, >) if and only if T* is satisfi-
able.

4.2 Results

The size off™* is easily seen to have
IT| + 3s|N|?

as an upper bound whegés the number of different atoms
occurring inl.

As s < |T'|, this placesl™*| in O(|T|| N|?); and, since the
time complexity of constructing* is linear in its size, the
reduction* is in O(|T||N|?).



If the ordering> on the truth value set is total, the size
of I'* is bounded by

Tl + 2s|N|

as in that case there are orjlyy| many claused;; for
eachk in I'*, and no clause&;;; are needed. Then, the
transformatiort is in O(|T'||N|).

Theorem 13. The transformatiorf is computable in time
linear in the size of the transformed formula and quadratic
in the size of the truth value set.

If the ordering> is total, it is linear in both the size of
the transformed formula and the size of the truth value set.

Because classical Horn SAT is solvable in linear time [2],
we obtain the following corollaries (for distributive lattices
similar results were proven in [16]):

Corollary 14. Regular Horn SAT can be solved in time lin-

Our regular reduction rule can be seen as an improve-
ment of the rule presented in [8]. Whereas they provide a
top-down, Prolog-like proof procedure, we have defined a
bottom-up procedure based on unit resolution. An alternate
solution with an extended notion of signs that avoids reduc-
tion rules altogether can be found in [9]. In [8, 9], however,
complexity issues are not discussed.

4.4 Infinite Truth Value Lattices

The results of this section so far have only been proven
for finite truth value lattices; for example, it is essential for
Lemma 11 to hold that the set of truth values is finite.

Nevertheless, the results apply in many casesftoite
truth value lattices as well, because it suffices to consider
the sub-lattice that is generated by the truth values actually
occurring in a formula and the bottom element.

Definition 18. Given a regular Horn formulB over a (pos-

ear in the size of the formula and quadratic in the size of the SiPly infinite) truth value lattic¢ N, >), we defing(Nr, >)

truth value lattice.

Corollary 15. For all fixed truth-value lattice$ N, >), reg-
ular Horn SAT v > can be solved in linear time.

to be the sub-lattice dfV, >) generated by the elements in
{i € N|ioccursinf}uU{-} .

The following theorem states that if the satisfiability of
a formulal is to be checked, it suffices to only consider

In the special case of totally ordered truth values, regular ihe truth value latticé Ny, >). Thus, if Ny is finite and

Horn SAT is of even smaller complexity (which was already
known, see [7]).

Corollary 16. Regular Horn SAT with ¢otally ordered set

of truth values can be solved in time linear in both the size
of the formula and the size of the truth value set.

4.3 Regular Unit Resolution

In this subsection, we define a regular unit resolution cal-

culus and state its completeness for regular Horn clauses
The calculus is based on the inference rules shown in Ta-

ble 1.

Theorem17. A regular Horn formulal’ is unsatisfiable if
and only if there exists a derivation of the empty clause
from T" using the calculus formed by the PRUR rule and
the RR rule.

Proof sketch.Theorem 12 states thBtis satisfiable iff"* is
satisfiable. Thus, we know thatis unsatisfiable iff there
exists a derivation of the empty clause frérhusing classi-
cal positive unit resolution (PUR), since this rule is refuta-
tion complete for classical Horn formulae. One proves, by
induction on the number of deduction steps in that deriva-
tion using one of the additional clauses that arE*ifut not

in T, that it is possible to construct from a classical (PUR)
derivation of the empty clause froff* a deduction of the
empty clause fron’ using the PRUR and RR rules. O

effectively computable for all', then all previous results of
this section can be made use of by considering the lattice
(Nr, >) instead of( NV, >).

Theorem 19. LetT be a regular Horn formula over a (pos-
sibly infinite) truth value latticé N, >). The formulal is
satisfiable by an interpretation over the lattic¥, >) if and
only if it is satisfiable over the latticeVr, >).

Proof. The if-part of the theorem is trivially true, because
every interpretation ovefNr, >) is an interpretation over
(N, >) as well.

To prove the only-if part, assume that theinterpreta-
tion I satisfiesI". Define theNr-interpretationl for all
atomsp € X by Ir (p) = | | M, where

Mp,={ieNr|I(p)>i} .
It suffices to show that for all truth valuésoccurring inl’
(and thus inNt): I = ti:pifandonlyif It = 114 : p.
a. Assume thaf |=1i:p, i.e., I(p) >i. In that case,
i € M, and, by definition oflr, we havelr(p) > i and,
thus,Ir |= 14 :p.
b. Assume thalp = 1i: p,i.e.,Ir(p) > i. Sincel(p) > j
forall j € M,, we have

I(p) > | | M, = In(p) > i

and, thus/] |= 1 : p (note that the supremum operators
the same in both lattices). O



Positive Regular Unit Resolution (PRUR) Regular Reduction (RR)

— Ti:p = Ti:p

Tiripy,. o tiip, . Tikipe = 17:¢ = 1j:p
Til:pla---aTilfl:plflaTil+l5pl+1;---aTik5pk — Tj:q — T(z’l_lj):p
provided that > i;. provided that neither > j norj > i.

Table 1. Inference rules of the regular unit resolution calculus.

Since the formuld’ is finite, the set of elements gener- atom with positive polarity is eegular Horn clauseA reg-
ating (Nr, >) is finite as well. Therefore, the sub-lattice ular CNF formula consisting solely of regular Horn clauses

(Nr, >) isfinite if (IV, >) islocally finite, i.e., if every sub-  is aregular Horn formula

lattice generated by a finite subset is finite. This is, for in-

stance, the case if the latti¢&r, >) is distributive. The next question is which partial orders can be cap-
tured if we want to retain an efficient decision procedure

4.5 Extension to Partial Orders with Maximum for regular Horn formulae. One such necessary condition

is that there must be a maximum To see this consider

One of the main advantages of our transformational ap-~N = {false, true} with false £ true andtrue £ false.
proach to signed logic is that it becomes completely trans- !N this case{false} = t{false} and{true} = 1 {true},
parent which additional deductive machinery is required as SC €ach classical CNF clause can be expressed as a regular
compared to the classical case. This becomes clearer evef{O™ clause. Given
when we go beyond lattice-ordered regular Horn formulae.

We start with two considerations that somewhat limit the
terrain. A core feature of any efficient deduction procedure
for Horn formulae is the possibility to represent the con-
junction of two unit clauses as a single unit clause as wit- T{true} :p1,..., T {true} : pg,
nessed by the reduction rule in the previous section. This t{false} : qu,..., 1 {false} :q_1 — 1 {true} :q
amounts to saying that signs of atoms must be closed under
conjunction. When signs are upsets this condition can be Hence, we cannot expect to obtain a polynomial decision
expressed as: procedure for such Horn formulae. The problem is that by

conjoining regular sign$ false and? true we can express
Foralli, j € N thereis & € N such that (1)  faisity atany time on the object level which is as good as to
tintj=1k admit contrapositives of clauses.
o - Finally, we sketch how partial orders with maximum lead
finite poset that satisfies 1, 5 reasonable notion of generalised Horn formulae. This
can be done via a reduction to lattice-ordered Horn formulae

Therefore. it is inevitable t neralise the lan fhandled in the previous sections. For a partial of@ér<)
eretore, it 1S inevitable 1o generalise e fanguage ot v, mayimumT consider the latticeF ™ () of its non-

signs if we want to go beyonq Iattlces._A natu_ral candidate empty order filters. Its elements can be represented as the
for an enriched language of signs are finite unions of upsets

which can also be seen as finitely generated filters. In theO"-empty anti-chains gV, <), thatis

following we writet {iy, ..., } instead ofti; U--- U7 iy {S|0#SCN,and

and similar for]. We extend our notion of regularity (and for all i?j €S:ifi#jtheni £ 4,j £} .
hence of Horn formulae) as follows:

C = P1y--sPk — Q1.5 Q1

rewrite C, for example, into:

Proposition 20. Every non-empty,
(1) is an upper semi-lattice.

_ _ , . . The orderC on F+(N) is defined asS C S’ iff 5 D
Def|n|t|0n 21. If a S|gn$ is of t.he formt {iy,... i} or 15", wheref} S is the filter generated b§ in N. To apply
Y {in, .. yix} for some{iy,....ix} C N andk > 1,then e results of the previous sections it is sufficient to show:

3 3 3

it is called aregular sign

A signed clause is calletegular if it contains regular  proposition 22. A regular literal + S : p is satisfiable w.r.t.

atoms with signs only of the formh {i1,...,ir}.> Asig-  a poset with maximurV, <) iff it is satisfiable w.rt. the
ned CNF formula is called regular if it only contains regu- lattice 7+ (N).4

lar clauses. A regular clause containing at most one regular

4In the latter case, of cours§,is interpreted as a single lattice element
3The remark made at the end of Section 2.2 applies here as well. in F+(N).




There is a price to pay for the increased generality: The References

lattice 7+ (N) can be considerably larger than the poset
(N, <), in the worst case exponentially larger. This proves:
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Example 3.Consider the poseN depicted below on the

left. The lattice 7+ () is shown on the right. It can be

seen as a lattice-completion df.
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From a deductive point of view it is important to com-
pute the supremumd andC in F (), because these are
required in the reduction and unit resolution rule, respec-

tively. This is done as follows:

LettS = f{i1,...,ix} and NS’ = N {j1,..., 0}
be given. We denote W|tbmzx(z,]) the set of m|n|mal
elements above andj in N w.rt. <. Now S U S' =
SN S’ ={k| k € max(i,j), i € S, j € S'}. Fromthe

resulting set any elements not minimal in it can be deleted

to arrive at an anti-chain representation. Finafly S’ iff
IS D S iff forall j, € S’ thereis ai, € S such that
is < Jr-

5 Future Work

An investigation of the lattice theoretic aspects of lattice-
ordered regular Horn formulae could lead to useful new re-
sults. In particular, in the infinite case, for which only first
ideas have been presented in Section 4.4, representation the-
ory and dualities should be further studied. Priestley duality
has already been successfully exploited in the case of dis-

tributive lattices [15].

As another line of work, experiments should be carried
out to compare our tailored decision procedures for regular
Horn formulae with procedures for classical Horn formulae [15]

after applying the transformationdefined in Section 4.
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