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Abstract

Signed conjunctive normal form (signed CNF) is a clas-
sical conjunctive clause form using a generalized notion of
literal, called signed atom. A signed atom is an expression
of the formS : p, wherep is a classical atom andS, its
sign, is a subset of a domainN . The informal meaning is
“ p takes one of the values inS”.

Applications for deduction in signed logics derive from
those of annotated logic programming (e.g., mediated de-
ductive databases), constraint programming (e.g., schedul-
ing), and many-valued logics (e.g., natural language pro-
cessing). The central rôle of signed CNF justifies a detailed
study of its subclasses, including algorithms for and com-
plexities of associated SAT problems.

Continuing our previous work [1], in this paper we present
new results on the complexity of the signed 2-SAT problem;
i.e., the case in which all clauses of a signed CNF formula
have at most two literals.

1 Introduction

Signed formulas are a logical language for knowledge
representation that lies in the intersection of the areascon-
straint programming(CP),many-valued logic(MVL), and
annotated logic programming(ALP).

Signed conjunctive normal form(signed CNF) is a clas-
sical conjunctive clause form using a generalized notion of
literal, calledsigned atom. A signed atom is an expression
of the formS : p, wherep is a classical atom andS, its sign,
is a subset of a domainN (in this paper, we only consider�This work has been partially supported by EC COST Action 15Many-
valued Logics for Computer Science Applications.yPartially supported by the project TIC96-1038-C04-03 funded by the
CICYT. This work was carried out during a visit to the University of Karls-
ruhe with a postdoctoral fellowship of the “Comissionat pera Universitats
i Recerca” (1997BEAI400138).

the case whereN is finite). The informal meaning ofS : p
is “p takes one of the values inS”.

WhenN is considered to be a truth value set, signed
CNF formulas turn out to be a generic representation for
finite-valued logics: The problem of deciding the satisfia-
bility of formulas (SAT problem) of any finite-valued logic
is in a natural way polynomially reducible to the problem
of deciding satisfiability of formulas in signed CNF (signed
SAT) [11].

An important and well investigated subclass of signed C-
NF formulas areregular CNF formulas (Def. 4): IfN is e-
quipped with a partial order�, a sign is regular if it is either
of the formfj 2 N j j � ig or fj 2 N j j � ig for somei 2 N . Regular CNF formulas are those signed CNF for-
mulas where all occurring are regular or are complements
of regular signs. See Section 2 for a formal definition of the
logic of signed (and regular) CNF formulas.

Regular literals can be assigned polarities, which gives
rise to a generalized notion of Horn clauses (Def. 5). The
particular case whereN is lattice-ordered andS is an order
filter is investigated in annotated logic programming [14]
(there,S is called anannotation); therefore, annotated logic
programs can be considered to be particular signed logic
formulas.

Moreover,S : p can be interpreted as “p is constrained to
the values inS” and, hence, as an instance of finite-domain
constraint programming [13, 4].

Applications for deduction in signed logics derive from
those of annotated logic programming (e.g., mediated de-
ductive databases), constraint programming (e.g., schedul-
ing), and many-valued logics (e.g., natural language pro-
cessing). The central rôle of signed CNF and, in particu-
lar, regular CNF in automated deduction justifies a detailed
study of its subclasses, including algorithms for and com-
plexities of associated SAT problems; the interested reader
may consult our recent survey [2]. Previously known com-
plexity results for subclasses of signed SAT, including those
from [1], are summarized in Section 4.
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In this paper we present new results on the complexity of
the signed 2-SAT problem; i.e., the case in which all clauses
of a signed CNF formula have at most two literals.

It was known before that the 2-SAT problem of signed
CNF formulas is NP-complete and that the 2-SAT problem
of regular CNF formulas is polynomially solvable in case
the truth value setN is totally ordered [16, 1], but there
were no results for the general regular 2-SAT problem.

In Section 5 we prove that:� The 2-SAT problem for regular CNF formulas is NP-
complete—even if the truth value setN is a complete,
distributive or modular lattice.� The 2-SAT problem for regular CNF formulas is poly-
nomially solvable in caseN is a lattice and all signs
occurring in the formulas are regular (signs that are
complements of regular signs but are not regular them-
selves are excluded).

2 Syntax and Semantics of
Signed CNF Formulas

We assume that a signature, i.e., a denumerable set of
propositional variables is given. To form signed atoms (lit-
erals), the propositional variables (atoms) are adorned with
a sign that consists of a finite set of (truth) values.

Definition 1. A truth value setis a non-empty, finite setN = fi1; i2; : : : ; ing wheren 2 N . The cardinality ofN
is denoted byjN j. A partial order� is associated withN ,
which may be the empty order.

Definition 2. A sign is a setS � N of truth values. Asig-
ned atom(a literal) is of the formS :p whereS is a sign andp is a propositional variable. Thecomplementof a signed
atomS : p, denoted byS : p, is (N n S) : p.

A signed clauseis a finite set of signed atoms (literals).
A signed clause containing exactly one literal is called a
signed unit clause; and a signed clause containing exactly
two literals is called asigned binary clause. The empty
signed clause is denoted by2.

A signed CNF formulais a finite set of signed clauses.
A signed CNF formula whose clauses are binary is called a
signed 2-CNF formula.

The clauses of a signed CNF formula are implicitly con-
junctively connected; and the literals in a signed clause are
implicitly disjunctively connected. In the following, we useS1 : p1 _ � � � _ Sk : pk to represent a signed clause of the
form fS1 : p1; : : : ; Sk : pkg.

Definition 3. Thesizeof a signed clauseC, denoted byjCj,
is its cardinality. The size of a signed formula�, denoted
by j�j, is the sum of the sizes of its signed clauses.

Definition 4. For each elementi of the truth value setN ,
let " i denote the signfj 2 N j j � ig and let# i denote the
signfj 2 N j j � igwhere� is the partial order associated
with N . A signS is regular if it is identical to" i or to # i
for somei 2 N .

A literal S :p is aregular literal if (a) its signS is regular
or (b) its signS = S0 is the complement of a regular signS0.
A signed clause (a signed CNF formula) is aregular clause
(a regular CNF formula) if all its literals are regular.

Example 1.Let the truth value setN = f1; 2; 3; 4g be or-
dered as shown below, i.e., we use the standard order on
natural numbers except that1 and2 are incomparable.431 2
Then, the signs" 1 = f1; 3; 4g and# 1 = f1g are regular;
and" 1 = f2g and" 3 = f1; 2g are complements of regu-
lar signs. The signsf3g andf1; 4g are neither regular nor
complements of regular signs.

The complement" 3 of the regular sign" 3 is not regular
as it cannot be represented as" i or # i for anyi 2 N . Thus,
a regular literal can have a sign that is not regular (but is the
complementof a regular sign only).

Definition 5. A regular signS is of positive(resp.negative)
polarity if it can be represented as" i (resp.# i) for somei 2 N . A regular literal is ofpositive(negative) polarity if
its sign is of positive (negative) polarity.

A regular clause is aregular Horn clauseif it contains at
most one literal of positive polarity and the signs of all its
other literals are complements of signs with positive polari-
ty. A regular CNF formula is aregular Horn formulaif all
its clauses are regular Horn clauses.

Example 2.Using the truth value setN and the associated
ordering from the previous example, the clause" 1 : p, the
clause" 2 : p _ " 3 : q, and the clause" 4 : q are Horn clau-
ses. The regular clause" 1 : p _ " 2 : q is not a Horn clause
as it contains more than one literal of positive polarity. As# 1 = " 2 but # 4 6= " i for all i 2 N , the clause# 1 : p is
Horn whereas# 4 : p is not Horn (both clauses are regular).

Definition 6. An interpretationis a mapping that assigns to
every propositional variable an element of the truth value
set. An interpretationI satisfiesa literalS : p iff I(p) 2 S.
It satisfiesa signed clauseC iff it satisfies at least one of the
literals inC; and it satisfiesa signed CNF formula� iff it
satisfies all clauses in�.

A signed CNF formula (a signed clause) issatisfiableiff
it is satisfied by at least one interpretation; otherwise it is
unsatisfiable.

By definition, the empty signed clause is unsatisfiable
and the empty signed CNF formula is satisfiable.
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3 Satisfiability Problems of Signed Logics

Similar to the classical case, the SAT problem of signed
CNF formulas (signedSAT) is NP-complete, but some of
its sub-classes are polynomially solvable.

Satisfiability problems of signed CNF formulas have the
truth value setN as a second input parameter (besides the
formula� to be tested for satisfiability). Thus,signed SAT
is the problem of deciding for an arbitrary signed formu-
la � over an arbitrary truth value setN , whether there is an
interpretation overN satisfying�. One also considers deci-
sion problems whereN is not an input parameter but fixed,
which is denoted by attaching the fixed truth value setN as
an index to the name of the decision problem. For example,
given a fixed truth value setN , regular 2-SATN is the prob-
lem of deciding, for a regular CNF formula� overN such
that each clause in� has at most two literals, whether there
is an interpretation overN satisfying�.

4 Previously Known Complexity Results

In this section we summarize previously know results on
the complexity of subclasses of signed SAT.

It is well-known that the classical SAT problem is NP-
complete [5]. It is, however, polynomially solvable under
certain restrictions. For example, there are linear-time al-
gorithms for solving the classical SAT problem in case all
clauses of the formula have at most one positive literal (clas-
sical Horn SAT) [6] and in case all clauses of the formula
have at most two literals (classical 2-SAT) [8]. In recent
years, complexity results for the regular Horn SAT and sig-
ned 2-SAT problems have been established.

If N is totally ordered, regular Horn SATN can be solved
in time linear in the sizen of the formula, and regular Horn
SAT can be solved in time linear inn logn [12, 15] (an
algorithm for deciding satisfiability of a particular subclass
of this type of regular Horn formulas appeared before [7]).

If N is a finite lattice, regular Horn SAT is solvable in
time linear in the size of the formula and polynomial in the
cardinality ofN [1]. For distributive lattices, the more pre-
cise boundn � jN j2 was found independently [17].

Signed 2-SATN for jN j � 3 and, thus, signed 2-SAT are
NP-complete [15, 1]. However, signed 2-SAT is polynomi-
ally solvable in case (a) the CNF formula is monosigned,
i.e., all occurring signs are singletons, or (b) the CNF for-
mula is regular and the ordering ofN is total [16, 15]. The
complexity of regular 2-SATN for non-total orderings was
previously unknown; we present new results for that class
of problems in Section 5.

As it is of relevance for the following section, we pro-
vide the original proof for the NP-completeness of signed
2-SAT [16, 15].

Signed SAT is obviously in NP (NP-easy), as a non-
deterministic algorithm can guess a satisfying interpretation
and check that it satisfies the formula in polynomial time.
Therefore, all sub-problems of signed SAT that are consid-
ered in the following are NP-easy as well.

Theorem 7. Signed 2-SATf1;2;3g is NP-complete, even with
the restriction that all occurring signs are of cardinality2.

Proof. The NP-easyness of signed 2-SATf1;2;3g is obvious
(see the above remark).

To prove NP-hardness, we shown that the3-colorability
problem, which is known to be NP-complete [9], is polyno-
mially reducible to signed 2-SATf1;2;3g.

The 3-colorability problem is to decide, for a given undi-
rected graphG = (V;E), whether there is a coloring of its
nodes with three colors such that any two nodes connected
by an edge are colored differently. Formally, the problem is
to decide whether there is a function
 : V ! f1; 2; 3g such
that
(u) 6= 
(v) for all edgeshu; vi 2 E.

Given a graphG = (V;E), we construct an instance�
of signed 2-SATf1;2;3g that is satisfiable if and only ifG is
3-colorable. For each edgehu; vi 2 E, the formula� con-
tains the following three binary signed clauses:f2; 3g : u _ f2; 3g : vf1; 3g : u _ f1; 3g : vf1; 2g : u _ f1; 2g : v
It is easy to check that these clauses are satisfied by an in-
terpretationI if and only if I(u) 6= I(v). Therefore, if the
formula� is satisfied by an interpretationI , a 3-coloring

of G can be defined by setting
(u) := I(u) for all u 2 V ;
and, if
 is a 3-coloring ofG, then an interpretationI satisfy-
ing � can be defined by settingI(u) := 
(u) for all u 2 V .

The formula� can obviously be computed fromG in
polynomial time. 2
Corollary8. Signed 2-SAT and signed 2-SATN for jN j � 3
are NP-complete.

In the next section, Theorem 7 is used to prove that reg-
ular 2-SAT is NP-complete.

5 The Regular 2-SAT Problem

In this section, we first prove that regular 2-SAT is an
NP-complete problem. NP-hardness is established in two d-
ifferent ways, but each time by a polynomial reduction from
signed 2-SATf1;2;3g to regular 2-SAT. By analyzing the
proofs, we obtain NP-completeness of two different frag-
ments of regular 2-SAT (Sections 5.1 and 5.2). On the other
hand, we show that regular 2-SATN is polynomially solv-
able ifN is a lattice and only regular signs occur in literals,
that is, all signs can be represented as" i or# i (Section 5.3).
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5.1 NP-completeness of Regular 2-SAT: First Ver-
sion

Theorem 9. Regular 2-SATN is NP-complete, even if the
truth value setN is a modular lattice and with the restric-
tion that all occurring signs must be representable as com-
plements of regular signs.

Proof. NP-easyness of regular 2-SATN is obvious (see the
remark before Theorem 7).

For NP-hardness, by Theorem 7, it is sufficient to give
a polynomial reduction of signed 2-CNF formulas� overN = f1; 2; 3g, where all signs in� have cardinality2, to a
regular 2-CNF formula�0 over a truth value setN 0 fulfilling
the restrictions expressed in the theorem, i.e.,N 0 is a mod-
ular lattice and all signs occurring in�0 are representable as
complements of regular signs.

The idea is to complete the unordered truth value setN
to the latticeN 0 shown below by adding a top element>
above alli 2 N and a bottom element? below alli 2 N .>1 2 3?

Now, each binary signed clauseC = S1 : p1 _ S2 : p2
in �, wherejS1j = jS2j = 2, is expressed by the regular 2-
CNF clauseC 0 in �0:(C 0) " (N n S1) : p1 _ " (N n S2) : p2 ;
where we use the convention" fig = " i and recall thatjSij = 2.

It is easy to check thatC 0 contains exactly the same lit-
erals asC up to? 2 N 0, which occurs additionally in its
signs. Therefore, we must add clauses to�0 expressing that? cannot be taken on by satisfying interpretations. This is
achieved by adding to�0 the unit clauseC 0p for each propo-
sitional variablep occurring in�:(C 0p) #? : p

Obviously,�0 has the required form, and� is satisfiable
(overN ) iff �0 is satisfiable (overN 0). Note that> does
not occur in�0 as merely a semi-lattice is needed for the
construction. 2
Corollary10. Regular 2-SAT is NP-complete.

5.2 NP-completeness of Regular 2-SAT:
Second Version

In this section, we use a similar construction as in Theo-
rem 9 to prove NP-hardness of the regular 2-SAT fragment

where all signs are regular signs of positive polarity or com-
plements of regular signs of positive polarity, that is, signs
can be represented as" i or " i.

This subproblem of regular 2-SAT is considered sepa-
rately for two reasons:� If N is a lattice, this particular class of regular CNF

formulas gives rise to clausal annotated logics [14];� This kind of regular signs are those used to general-
ize the concept of Horn formulas (Def. 5). As already
mentioned, the SAT problem of regular Horn formu-
las is polynomially solvable in caseN is a lattice [1].
Here, we show that, in contrast to the Horn fragment,
the 2-SAT fragment of that particular subclass of reg-
ular CNF formulas is NP-complete.

Theorem 11. Regular 2-SATN is NP-complete, even if the
truth value setN is a distributive lattice and with the re-
striction that all occurring signs must be representable as
regular signs of positive polarity or complements of regular
signs of positive polarity.

Proof. As before, NP-easyness is straightforward.
For NP-hardness, we use again a polynomial reduction

of signed 2-CNF formulas� overN = f1; 2; 3g, where all
signs in� have cardinality2, to a regular 2-CNF formula�00
over a truth value setN 00 fulfilling the restrictions expressed
in the theorem, i.e.,N 00 is a distributive lattice and all signs
in �00 can be represented as" i or " i.

This time, the idea is to designate an arbitrary elemen-
t i 2 N as the top element and then completeN to a lat-
ticeN 00 (shown below) with a bottom element?.31 2?
This construction avoids the need for signs that can only be
represented as# i, as will shortly be seen.

Each binary signed clauseC = S1 : p1 _ S2 : p2 in �,
wherejS1j = jS2j = 2, is expressed by the regular 2-CNF
clauseC 00 in �00:(C 00) 8>><>>: " 3 : p1 _ " 3 : p2 if S1 = S2 = f1; 2g" 3 : p1 _ " (S2 n f3g) : p2 if S1 = f1; 2g 6= S2" 3 : p2 _ " (S1 n f3g) : p1 if S2 = f1; 2g 6= S1" (S1 n f3g) : p1 _ " (S2 n f3g) : p2 otherwise

again using the convention" fig = " i and recalling thatjSij = 2.
As before,C 00 contains exactly the same literals asC up

to ? 2 N 00, which occurs additionally in its signs. There-
fore, we must add clauses to�00 which express that? can-
not be taken on by satisfying interpretations. This is clearly
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achieved by adding to�00 the clauseC 00p for each proposi-
tional variablep occurring in�:(C 00p ) " 1 : p _ " 2 : p

It is trivial to check that�00 has the required form and
that� is satisfiable (overN ) iff �00 is satisfiable (overN 00).2

An analog result can be established for the case where
all the signs are regular signs of negative polarity or com-
plements of regular signs of negative polarity.

5.3 Regular 2-SAT with Signs of the Form" i and# i
In this section, we prove that regular 2-SATN is polyno-

mially solvable ifN is a lattice and only regular signs occur,
that is, all signs can be represented as" i or # i.

To do so, we first prove that the resolution rule (1) below
is refutation complete for lattice-based regular CNF formu-
las that contain only regular signs. Then we prove that,
whenever such a formula contains at most two literals per
clause, the number of its possible resolvents is polynomi-
al in the number of distinct regular literals occurring in the
formula. " i : p _D1 # j : p _D2D1 _D2 if j 6� i

regular binary resolution

(1)

Lemma 12. Let N be a lattice. Every unsatisfiable set�
of regular unit clauses whose signs are all regular contains
clauses" i : p and# j : p such thatj 6� i.
Proof. By way of contradiction, assume that for all propo-
sitional variablesp, for all " ik : p 2 � (1 � k � r) and all# jl : p 2 � (1 � l � m), it is the case thatjl � ik.

SinceN is a lattice, for eachjl (1 � l � m), we have
that jl � i�(p) = (i1 t � � � t ir); and, therefore, the inter-
pretationI defined asI(p) = i�(p) for every propositional
variablep satisfies�. This contradicts the unsatisfiability
of �, so� must contain two regular unit clauses" i : p and# j : p such thatj 6� i. 2

Soundness of rule (1) is straightforward, we only prove
completeness.

Theorem 13. Regular binary resolution is refutation com-
plete for regular CNF formulas� overN if N is a lattice
and only regular signs occur in�.

Proof. Let � = fC1; C2; : : : ; Cmg be an unsatisfiable reg-
ular CNF formula as stated. Letr be the number of excess

literals in�, that isr = (�mi=1jCij)� j�j, and proceed by
induction onr.

Without loss of generality, we assume that2 62 �; hence,
if r = 0, then every clause is a unit clause. By Lemma 12,
there are clauses" i :p and# j :p in � such thatj 6� i. Since
they are unit clauses, their regular binary resolvent is the
empty clause.

Suppose now that there is a regular binary resolution
refutation of every unsatisfiable regular CNF formula with
at mostr excess literals, and assume that� hasr + 1 excess
literals.

At least one clause in�, sayC, contains at least two
literals. LetC 0 be the result of removing one literal, sayL,
fromC, and let�0 be the result of replacingC in � with C 0.

Since any satisfying interpretation for�0 would satisfy�
as well,�0 must be unsatisfiable. In addition,�0 has onlyr
excess literals, so there exists a regular binary resolution
derivation of the empty clause from�0. Thus, if the same
derivation is used on�, it will either end with the empty
clause or with the unit clause containingL.

We now have a regular binary resolution derivation of the
unsatisfiable regular CNF formula�00 = (�� fCg) [ fLg
from�. The formula�00 is unsatisfiable because every satis-
fying interpretation would satisfy� as well (sinceL 2 C).
As�00 has fewer excess literals than�, there is a regular bi-
nary resolution derivation of the empty clause from�00; the
two derivations together provide a refutation of�. 2
Theorem 14. Regular 2-SAT is polynomially solvable when
restricted to instances where the truth value set is a lattice
and all occurring signs are regular.

Proof. Using rule (1), regular binary resolvents of clauses
of a regular 2-SAT instance have at most two literals. There-
fore, the number of different resolvents that can be derived
is polynomial in the number of distinct regular literals oc-
curring in the formula (rule (1) does not introduce any new
literals). Since rule (1) is refutation complete for regular
2-SAT instances whose signs are regular (Theorem 13), it
suffices to generate all (polynomially many) possible resol-
vents and check whether the empty clause is among them.2
6 Conclusion & Future Work

In this paper we shed some new light on the complexi-
ty of the 2-SAT problem of regular CNF formulas. When
aiming at implementation and application of signed logic
[10, 3, 15], it is important to identify which fragments are
easy and which are hard (in the sense of P versus NP). Our
main findings were: in contrast to classical logic,N -valued
regular 2-SAT becomes NP-complete relatively soon—ifN
is restricted to finite modular lattices and only complements
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of regular signs may occur in the input (Theorem 9) or ifN is restricted to finite distributive lattices and only regular
signs of uniform polarity and their complements may occur
in the input (Theorem 11). Interestingly, the latter regular
CNF fragment has polynomial complexity under the Horn
restriction [1]. On the other hand, the regular 2-SAT prob-
lem is polynomially solvable ifN is a finite lattice and on-
ly regular signs occur in the input (Theorem 13). Further
polynomial results were obtained elsewhere for the totally
ordered case [16]. Our findings indicate that the complexi-
ty of the 2-SAT problem of regular CNF formulas depends
crucially on the form of the signs occurring in the input,
once the ordering ofN is non-linear. Specifically, any neg-
ative information (that is: complemented signs) make the
problem hard.

In the future, one might look at the following questions:
In the proof of Theorem 9, a modular but non-distributive
lattice was used—is it possible to prove the theorem with
the help of a distributive lattice? It would be good to have
more polynomial results like Theorem 13. We also would
like to generalize our findings to the infinite-valued case as
much as possible. Finally, our theoretical findings need to
be implemented and evaluated in decision procedures for
signed logic [3].
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