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Abstract the case wheré/ is finite). The informal meaning of : p

is “p takes one of the values 1.
Signed conjunctive normal form (signed CNF) isa clas- When N is considered to be a truth value set, signed
sical conjunctive clause form using a generalized notion of CNF formulas turn out to be a generic representation for
literal, called signed atomA signed atom is an expression finite-valued logics: The problem of deciding the satisfia-

of the formS : p, wherep is a classical atom and, its bility of formulas (SAT problem) of any finite-valued logic
sign, is a subset of a domaily. The informal meaning is is in a natural way polynomially reducible to the problem
“ p takes one of the values BY. of deciding satisfiability of formulas in signed CNF (signed

Applications for deduction in signed logics derive from SAT) [11].
those of annotated logic programming (e.g., mediated de-  Animportant and well investigated subclass of signed C-
ductive databases), constraint programming (e.g., schedu NF formulas argegular CNF formulas (Def. 4): IfN is e-
ing), and many-valued logics (e.g., natural language pro- quipped with a partial ordet, a sign is regular if it is either
cessing). The centrabie of signed CNF justifies a detailed of the form{j € N |j >4} or {j € N | j < i} for some
study of its subclasses, including algorithms for and com- i € N. Regular CNF formulas are those signed CNF for-
plexities of associated SAT problems. mulas where all occurring are regular or are complements

Continuing our previous work [1], in this paper we presentof regular signs. See Section 2 for a formal definition of the
new results on the complexity of the signed 2-SAT problem;logic of signed (and regular) CNF formulas.

i.e., the case in which all clauses of a signed CNF formula  Regular literals can be assigned polarities, which gives
have at most two literals. rise to a generalized notion of Horn clauses (Def. 5). The
particular case wher# is lattice-ordered anff is an order
filter is investigated in annotated logic programming [14]
1 Introduction (there,S is called arannotation); therefore, annotated logic
programs can be considered to be particular signed logic
formulas.

Moreover,S : p can be interpreted ag‘is constrained to
the values inS” and, hence, as an instance of finite-domain
constraint programming [13, 4].

Applications for deduction in signed logics derive from
those of annotated logic programming (e.g., mediated de-
ductive databases), constraint programming (e.g., s¢hedu
ing), and many-valued logics (e.g., natural language pro-
cessing). The central rdle of signed CNF and, in particu-
lar, regular CNF in automated deduction justifies a detailed
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Signed formulas are a logical language for knowledge
representation that lies in the intersection of the acess
straint programming CP), many-valued logi¢MVL), and
annotated logic programmin@ALP).

Signed conjunctive normal for(signed CNF) is a clas-
sical conjunctive clause form using a generalized notion of
literal, calledsigned atom A signed atom is an expression
of the formS : p, wherep is a classical atom an, its sign,
is a subset of a domailv (in this paper, we only consider




In this paper we present new results on the complexity of Definition 4. For each elemenit of the truth value seiv,
the signed 2-SAT problem; i.e., the case in which all clauseslet 1 i denote the sigfj € N | j > i} and let| i denote the

of a signed CNF formula have at most two literals.

It was known before that the 2-SAT problem of signed
CNF formulas is NP-complete and that the 2-SAT problem
of regular CNF formulas is polynomially solvable in case
the truth value sefV is totally ordered [16, 1], but there
were no results for the general regular 2-SAT problem.

In Section 5 we prove that:

e The 2-SAT problem for regular CNF formulas is NP-
complete—even if the truth value sitis a complete,
distributive or modular lattice.

e The 2-SAT problem for regular CNF formulas is poly-
nomially solvable in casé&v is a lattice and all signs
occurring in the formulas are regular (signs that are

complements of regular signs but are not regular them-

selves are excluded).

2 Syntax and Semantics of
Signed CNF Formulas

sign{j € N | j < i} where< is the partial order associated
with N. A sign S is regular if it is identical to1i orto |
for somei € N.

Aliteral S:p is aregular literal if (a) its signS is regular
or (b) its signS = S’ is the complement of a regular sigh.
A signed clause (a signed CNF formula) iregular clause
(aregular CNF formula if all its literals are regular.

Example 1.Let the truth value selV = {1,2,3,4} be or-
dered as shown below, i.e., we use the standard order on
natural numbers except thaand2 are incomparable.
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Then, the signg'1 = {1,3,4} and] 1 = {1} are regular;
andt1 = {2} and13 = {1, 2} are complements of regu-
lar signs. The sign$3} and{1,4} are neither regular nor
complements of regular signs.

The complement 3 of the regular sigrt 3 is notregular
as it cannot be representedfasor | i for anyi € N. Thus,

We assume that a signature, i.e., a denumerable set o regular literal can have a sign that is not regular (butes th

propositional variables is given. To form signed atoms (lit
erals), the propositional variables (atoms) are adornéd wi
a sign that consists of a finite set of (truth) values.

Definition 1. A truth value setis a non-empty, finite set
N = {i1,i2,...,1,} Wheren € N. The cardinality ofN
is denoted by N|. A partial order< is associated withiV,
which may be the empty order.

Definition 2. A signis a setS C N of truth values. Asig-
ned aton(aliteral) is of the formS': p whereS is a sign and
p is a propositional variable. Theomplemenobf a signed
atoms : p, denoted byS : p, is (N \ S) : p.

A signed clausés a finite set of signed atoms (literals).
A signed clause containing exactly one literal is called a
signed unit clauseand a signed clause containing exactly
two literals is called asigned binary clause The empty
signed clause is denoted by

A signed CNF formulas a finite set of signed clauses.

complemenof a regular sign only).

Definition 5. Aregular signS is of positive(resp.negative
polarity if it can be represented as (resp.| i) for some
i € N. Aregular literal is ofpositive(negative polarity if

its sign is of positive (negative) polarity.

A regular clause is eegular Horn clausef it contains at
most one literal of positive polarity and the signs of all its
other literals are complements of signs with positive gelar
ty. A regular CNF formula is @aegular Horn formulaif all
its clauses are regular Horn clauses.

Example 2.Using the truth value sé¥V and the associated
ordering from the previous example, the cladse: p, the
clauset2:pV 13:q, and the claus¢4 : ¢ are Horn clau-
ses. The regular claugd : p VvV 12 : ¢ is nota Horn clause
as it contains more than one literal of positive polarity. As
11 =712but]4#7iforallic N, the clause,1:p is
Horn whereag 4 : p is notHorn (both clauses are regular).

A signed CNF formula whose clauses are binary is called aDefinition 6. An interpretationis a mapping that assigns to

signed 2-CNF formula

The clauses of a signed CNF formula are implicitly con-
junctively connected; and the literals in a signed clause ar
implicitly disjunctively connected. In the following, wesa
S1:p1 V-V S :pg to represent a signed clause of the
form{S; :p1,..., Sk : pr}-

Definition 3. Thesizeof a signed claus€', denoted byC/,
is its cardinality. The size of a signed formdla denoted
by |T'|, is the sum of the sizes of its signed clauses.

every propositional variable an element of the truth value
set. An interpretatiod satisfiesa literal S : p iff I(p) € S.
It satisfiesa signed clausé€' iff it satisfies at least one of the
literals in C; and itsatisfiesa signed CNF formuld' iff it
satisfies all clauses ih.

A signed CNF formula (a signed clause}atisfiablaff
it is satisfied by at least one interpretation; otherwisa it i
unsatisfiable

By definition, the empty signed clause is unsatisfiable
and the empty signed CNF formula is satisfiable.



3 Satisfiability Problems of Signed Logics Signed SAT is obviously in NP (NP-easy), as a non-
deterministic algorithm can guess a satisfying interpi@ta

d and check that it satisfies the formula in polynomial time.
Therefore, all sub-problems of signed SAT that are consid-
ered in the following are NP-easy as well.

Similar to the classical case, the SAT problem of signe
CNF formulas §ignedSAT) is NP-complete, but some of
its sub-classes are polynomially solvable.

Satisfiability problems of signed CNF formulas have the Theorem 7. Signed 2-SAT ».5) is NP-complete, even with
truth value setV as a second input parameter (besides the ihe restriction that all occurring signs are of cardinaligy
formulaT to be tested for satisfiability). Thusigned SAT

is the problem of deciding for an arbitrary signed formu- Proof. The NP-easyness of signed 2-SA} s is obvious
laT over an arbitrary truth value s@i, whether there isan  (see the above remark).
interpretation ovelN satisfyingl". One also considers deci- To prove NP-hardness, we shown that 8aeolorability
sion problems wher&/ is not an input parameter but fixed, problem which is known to be NP-complete [9], is polyno-
which is denoted by attaching the fixed truth value/Seds mially reducible to signed 2-SAT 5 3;.
an index to the name of the decision problem. For example, The 3-colorability problemis to decide, for a given undi-
given a fixed truth value séY, regular 2-SAT is the prob- rected graplz = (V, E), whether there is a coloring of its
lem of deciding, for a regular CNF formulaover N such nodes with three colors such that any two nodes connected
that each clause ihi has at most two literals, whether there by an edge are colored differently. Formally, the problemis
is an interpretation oveN satisfyingl. to decide whether there is a functien V' — {1, 2,3} such
thatc(u) # c(v) for all edgequ,v) € E.

Given a graphG = (V, E), we construct an instandé
of signed 2-SAT, » 3} that is satisfiable if and only i is
3-colorable. For each edde, v) € E, the formulal’ con-

In this section we summarize previously know results on tains the following three binary signed clauses:
the complexity of subclasses of signed SAT.

4 Previously Known Complexity Results

It is well-known that the classical SAT problem is NP- {2,3}:uv{2,3}:v
complete [5]. It is, however, polynomially solvable under {1,3}:uVv{L,3}:v
certain restrictions. For example, there are linear-titae a {1.2}:uv{1,2}:0

gorithms for solving the classical SAT problem in case all
clauses of the formula have at most one positive literakcla
sical Horn SAT) [6] and in case all clauses of the formula
have at most two literals (classical 2-SAT) [8]. In recent
years, complexity results for the regular Horn SAT and sig-
ned 2-SAT problems have been established.

If N istotally ordered, regular Horn SAfTcan be solved
in time linear in the sizex of the formula, and regular Horn
SAT can be solved in time linear inlogn [12, 15] (an
algorithm for deciding satisfiability of a particular subass Corollary 8. Signed 2-SAT and signed 2-SAfor |[N| > 3
of this type of regular Horn formulas appeared before [7]). are NP-complete.

If N is a finite lattice, regular Horn SAT is solvable in ) )
time linear in the size of the formula and polynomial in the N the next section, Theorem 7 is used to prove that reg-
cardinality of N [1]. For distributive lattices, the more pre- Ular 2-SAT is NP-complete.
cise bound: - | N|?> was found independently [17].

Signed 2-SAF; for |[N| > 3 and, thus, signed 2-SATare 5 The Regular 2-SAT Problem
NP-complete [15, 1]. However, signed 2-SAT is polynomi-
ally solvable in case (a) the CNF formula is monosigned, In this section, we first prove that regular 2-SAT is an
i.e., all occurring signs are singletons, or (b) the CNF for- NP-complete problem. NP-hardness is established in two d-
mula is regular and the ordering 6f is total [16, 15]. The ifferentways, but each time by a polynomial reduction from
complexity of regular 2-SAL, for non-total orderings was  signed 2-SAT,; , 5 to regular 2-SAT. By analyzing the
previously unknown; we present new results for that class proofs, we obtain NP-completeness of two different frag-
of problems in Section 5. ments of regular 2-SAT (Sections 5.1 and 5.2). On the other

As it is of relevance for the following section, we pro- hand, we show that regular 2-SATis polynomially solv-
vide the original proof for the NP-completeness of signed able if N is a lattice and only regular signs occur in literals,
2-SAT [16, 15]. thatis, all signs can be represented asr | i (Section 5.3).

It is easy to check that these clauses are satisfied by an in-
terpretation/ if and only if I(u) # I(v). Therefore, if the
formulal is satisfied by an interpretatiadn a 3-coloringe
of G can be defined by settingu) := I(u) forall u € V;
and, ifc is a 3-coloring of7, then an interpretatiohsatisfy-
ing I can be defined by settinu) := ¢(u) forallu € V.

The formulal’ can obviously be computed frod in
polynomial time. |



5.1 NP-completeness of Regular 2-SAT: First Ver-
sion

Theorem 9. Regular 2-SAY; is NP-complete, even if the
truth value setV is a modular lattice and with the restric-
tion that all occurring signs must be representable as com-
plements of regular signs.

Proof. NP-easyness of regular 2-SATis obvious (see the
remark before Theorem 7).

For NP-hardness, by Theorem 7, it is sufficient to give
a polynomial reduction of signed 2-CNF formulBsover
N ={1,2,3}, where all signs if" have cardinality2, to a
regular 2-CNF formul&@’ over a truth value se¥’ fulfilling
the restrictions expressed in the theorem, \¥.js a mod-
ular lattice and all signs occurring I are representable as
complements of regular signs.

The idea is to complete the unordered truth valueset
to the latticeN' shown below by adding a top element
above alli € N and a bottom element below alli € N.

T
/7 I\
1 2 3
N1/
1
Now, each binary signed clauge = S; : p1 V Ss : po

in T, where|S1| = |S2| = 2, is expressed by the regular 2-
CNF clause”’ inT":

(e TN\S):p VT (N\S2):pa
where we use the conventidn{i} = 14 and recall that
|S;i| = 2.

It is easy to check thaf’ contains exactly the same lit-
erals asC up to L € N', which occurs additionally in its
signs. Therefore, we must add clause§'texpressing that
1 cannot be taken on by satisfying interpretations. This is
achieved by adding tb' the unit clause&”), for each propo-
sitional variablep occurring inl:

(Cy)  ILl:p

Obviously,I'"” has the required form, aridis satisfiable
(over N) iff T' is satisfiable (oveN’). Note thatT does
not occur inI” as merely a semi-lattice is needed for the
construction. |

C

Corollary 10. Regular 2-SAT is NP-complete.

5.2 NP-completeness of Regular 2-SAT:
Second Version

In this section, we use a similar construction as in Theo-
rem 9 to prove NP-hardness of the regular 2-SAT fragment

where all signs are regular signs of positive polarity or eom
plements of regular signs of positive polarity, that isnsig
can be represented 4 or 1.

This subproblem of regular 2-SAT is considered sepa-
rately for two reasons:

e If N is a lattice, this particular class of regular CNF
formulas gives rise to clausal annotated logics [14];

e This kind of regular signs are those used to general-
ize the concept of Horn formulas (Def. 5). As already
mentioned, the SAT problem of regular Horn formu-
las is polynomially solvable in cas¥ is a lattice [1].
Here, we show that, in contrast to the Horn fragment,
the 2-SAT fragment of that particular subclass of reg-
ular CNF formulas is NP-complete.

Theorem 11. Regular 2-SAT; is NP-complete, even if the
truth value setV is a distributive lattice and with the re-
striction that all occurring signs must be representable as
regular signs of positive polarity or complements of regula
signs of positive polarity.

Proof. As before, NP-easyness is straightforward.

For NP-hardness, we use again a polynomial reduction
of signed 2-CNF formulaF over N = {1, 2,3}, where all
signsinlC have cardinality, to a regular 2-CNF formulB"
over a truth value se¥" fulfilling the restrictions expressed
in the theorem, i.e N is a distributive lattice and all signs
in T can be represented s or 1.

This time, the idea is to designate an arbitrary elemen-
ti € N as the top element and then compléfeto a lat-
tice N (shown below) with a bottom element

3
VRN
1 2
N/
1

This construction avoids the need for signs that can only be
represented ajsi, as will shortly be seen.

Each binary signed clausé = Sy :p; V Ss :ps in T,
where|S;| = |S2| = 2, is expressed by the regular 2-CNF
clauseC” inIT"":

T3:p VT3:p if S, =Sy = {1,2}
T_3:p1 VT(S2\{3})p2 if Sy :{1,2};&52
P3ipa VA(SI\ {3}):pr if So ={1,2} # 54
T(S1\{3}):p1 V1(S2\ {3}):po otherwise

again using the convention{i} = 1 and recalling that
i = 2.

As before,C" contains exactly the same literals@sip
to L € N, which occurs additionally in its signs. There-
fore, we must add clauses B which express that can-
not be taken on by satisfying interpretations. This is djear

(")



achieved by adding t6" the clauseC;’ for each proposi-
tional variablep occurring inT":
(C))  tl:pVvt2:p

It is trivial to check thatl”" has the required form and
thatT is satisfiable (ovel) iff I'"' is satisfiable (oveN").
O

An analog result can be established for the case wher

all the signs are regular signs of negative polarity or com-

plements of regular signs of negative polarity.

5.3 Regular 2-SAT with Signs of the Formt: and
Li

In this section, we prove that regular 2-S#s polyno-
mially solvable if V is a lattice and only regular signs occur,
that is, all signs can be represented asr | i.

To do so, we first prove that the resolution rule (1) below
is refutation complete for lattice-based regular CNF formu

las that contain only regular signs. Then we prove that,

€

literals inT, that isr = (£2,|C;|) — |T'|, and proceed by
induction onr.

Without loss of generality, we assume tha¥ T'; hence,
if » = 0, then every clause is a unit clause. By Lemma 12,
there are clausesi:p and| j:pin T such thay # i. Since
they are unit clauses, their regular binary resolvent is the
empty clause.

Suppose now that there is a regular binary resolution
refutation of every unsatisfiable regular CNF formula with
at mostr excess literals, and assume thdtasr + 1 excess
literals.

At least one clause i, say C, contains at least two
literals. LetC' be the result of removing one literal, say
from C, and lefl” be the result of replacing in T with C'.

Since any satisfying interpretation fbf would satisfyl’
as well,I'" must be unsatisfiable. In additiokY, has onlyr
excess literals, so there exists a regular binary resalutio
derivation of the empty clause froffi. Thus, if the same
derivation is used offi, it will either end with the empty
clause or with the unit clause containifig

We now have a regular binary resolution derivation of the
unsatisfiable regular CNF formuld’ = (I' — {C'}) U {L}

whenever such a formula contains at most two literals perfromT'. The formulal™ is unsatisfiable because every satis-

clause, the number of its possible resolvents is polynomi-

al in the number of distinct regular literals occurring ire th
formula.

Ti:p\/Dl \l,']p\/Dz
D,V D,

regular binary resolution

if j 21
T 1)

Lemmal2. Let N be a lattice. Every unsatisfiable st
of regular unit clauses whose signs are all regular contains
clausesti: pandl j: psuchthati 2 i.

Proof. By way of contradiction, assume that for all propo-
sitional variable®, forall tip:p e ' (1 < k <r) and all
In:pel (1 <1< m),itisthe casethat > iy.

Since N is a lattice, for eachy; (1 <1 < m), we have
thatj; > i*(p) = (41 U --- U4,); and, therefore, the inter-
pretation] defined ad (p) = i*(p) for every propositional
variablep satisfiesI'. This contradicts the unsatisfiability
of ', soI" must contain two regular unit clausgs : p and
Jj:psuchthay 2 i. |

Soundness of rule (1) is straightforward, we only prove
completeness.

Theorem 13. Regular binary resolution is refutation com-
plete for regular CNF formulag over N if N is a lattice
and only regular signs occur ifi.

Proof. LetT' = {C1,C-,...,C,,} be an unsatisfiable reg-
ular CNF formula as stated. Letbe the number of excess

fying interpretation would satisf{ as well (sincel € C).
AsT" has fewer excess literals th&nthere is a regular bi-
nary resolution derivation of the empty clause froth the
two derivations together provide a refutationlof a

Theorem 14. Regular 2-SAT is polynomially solvable when
restricted to instances where the truth value set is a lattic
and all occurring signs are regular.

Proof. Using rule (1), regular binary resolvents of clauses
of aregular 2-SAT instance have at most two literals. There-
fore, the number of different resolvents that can be derived
is polynomial in the number of distinct regular literals oc-
curring in the formula (rule (1) does not introduce any new
literals). Since rule (1) is refutation complete for regula
2-SAT instances whose signs are regular (Theorem 13), it
suffices to generate all (polynomially many) possible resol
vents and check whether the empty clause is among them.
|

6 Conclusion & Future Work

In this paper we shed some new light on the complexi-
ty of the 2-SAT problem of regular CNF formulas. When
aiming at implementation and application of signed logic
[10, 3, 15], it is important to identify which fragments are
easy and which are hard (in the sense of P versus NP). Our
main findings were: in contrast to classical logh&;valued
regular 2-SAT becomes NP-complete relatively soonA-if
is restricted to finite modular lattices and only complersent



of regular signs may occur in the input (Theorem 9) or if
N is restricted to finite distributive lattices and only regul
signs of uniform polarity and their complements may occur
in the input (Theorem 11). Interestingly, the latter regula
CNF fragment has polynomial complexity under the Horn
restriction [1]. On the other hand, the regular 2-SAT prob-
lem is polynomially solvable ifV is a finite lattice and on-
ly regular signs occur in the input (Theorem 13). Further
polynomial results were obtained elsewhere for the totally
ordered case [16]. Our findings indicate that the complexi-
ty of the 2-SAT problem of regular CNF formulas depends
crucially on the form of the signs occurring in the input,
once the ordering aN is non-linear. Specifically, any neg-
ative information (that is: complemented signs) make the [9]
problem hard.

In the future, one might look at the following questions:
In the proof of Theorem 9, a modular but non-distributive
lattice was used—is it possible to prove the theorem with
the help of a distributive lattice? It would be good to have
more polynomial results like Theorem 13. We also would
like to generalize our findings to the infinite-valued case as
much as possible. Finally, our theoretical findings need to
be implemented and evaluated in decision procedures for11]
signed logic [3].
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