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Abstract—Automated machines and plants are operated for 

some decades and undergo an everlasting evolution during this 

time. In this paper, we present three related open evolution 

challenges focusing on software evolution in the domain of 

automated production systems, i.e. evolution and co-evolution of 

(interdisciplinary) engineering models and code, quality assurance 

as well as variant and version management during evolution. 

Keywords—automated production systems, evolution, variability, 

production automation, software engineerring 

I.  INTRODUCTION 

Automated machines and plants are often in operation for up 
to three decades [1]. As a consequence, such automated 
production systems (aPS) are subject to changes in customer 
requirements such as additional types of products to be produced 
as well as novel technological developments. Besides these 
changes that can be anticipated beforehand and that are typically 
addressed following a well-defined engineering process, e.g., 
the V-Model XT, also unanticipated changes according to 
Buckley’s taxonomy [2] occur, e.g., during operation. 
Anticipated changes “can be foreseen during the initial 
development of the systems and, as such, can be accommodated 

in the design decision taken” [2] whereas unanticipated changes 
according to [2] are not foreseen during the development phase, 
but frequently undertaken at short notice, e.g., during 
commissioning and operation. In addition to these incremental 
versions that arise due to sequential evolution of the aPS, parallel 
evolution results in different variants of the system [3]. To stay 
competitive in global markets, companies that operate aPS are 
increasingly forced to address these challenges. Therefore, 
approaches are necessary to incorporate the (co-)evolution of 
aPS (challenge I), to ensure the quality of these systems 
(challenge II) and to manage their variability (challenge III). 

To address challenges regarding evolution of such long-
living systems from a software perspective, various approaches 
already exist. Although these approaches support different 
aspects of variant-rich software-intensive systems, e.g., 
verification and validation, consistency management and 
modeling, such approaches focusing merely on the software 
aspect are often not sufficient to address the challenges in the 
aPS domain focusing on machines henceforth. Therefore, the 
goal of this research is three-fold: (1) to determine why this is 
the case (section III), (2) to show the research goals and 
approaches to address the challenges in the aPS (section IV) and 



(3) to identify how these approaches can lead to synergetic 
research goals and results (section V) focusing on the evolution 
of long-living aPS. The contributions presented in this paper are 
developed within the German Priority Programme SPP 1593 
“Design For Future – Managed Software Evolution”. We derive 
the challenges and illustrate our findings at a joined case study 
machine (section II), which was developed for the purposes of 
exploring and investigating the applicability of research 
results [4] and, by that, to facilitate the comparability of different 
approaches, ease exchange of research ideas, and enable 
research collaboration among different research groups and 
disciplines. We conclude with a summary in section VI. 

II. AN OPEN DEMONSTRATOR FOR THE MACHINE 

MANUFACTURING DOMAIN 

To explore and investigate the applicability of fundamental 
research results for the challenges in the aPS domain, the Pick 
and Place Unit (PPU) serves as an open case study [4]. Although 
being a bench-scale, academic demonstration case, the PPU is 
complex enough to demonstrate selected challenges that arise 
during engineering of aPS. Especially to explore and investigate 
evolution of aPS, sixteen scenarios (that is: variants of the PPU) 
are defined [3], including both sequential evolution (e.g., to 
enlarge the PPU’s functionality and performance) and parallel 
evolution (e.g., same functionality on different types of 
platforms, i.e. PLCs). An excerpt of these scenarios is illustrated 
in Fig. 1. Besides pure software changes that do not incorporate 
adaptations in the mechanics and automation hardware of the 
PPU, also changes to these disciplines are considered in the 
scenarios (e.g., increasing the work piece throughput in Sc12a 
up to replacing the control platform in Sc12d [3]). 

 

Fig. 1.  Excerpt of the PPU’s scenarios for parallel evolution [3] 

For the scenarios developed for the PPU, both the structure 
and the behavior are documented using Systems Modeling 
Language (SysML) [4]. The documentation is available online – 
as Eclipse Papyrus1 models and as textual documentations [4]. 

                                                 
1 http://eclipse.org/papyrus/, retrieved on 5/4/2015. 
2 http://www.codesys.com, retrieved on 5/4/2015. 

Besides, automation software code for Programmable Logic 
Controllers (PLC) is available for each scenario – implemented 
in CODESYS2, which is an industrial development tool for PLC 
control software. For testing purposes, MATLAB/Simulink 
models and 3D visualizations based on Virtual Reality Modeling 
Language (VRML) were developed. By that, PLC code can be 
tested against a simulation of the respective PPU scenario. The 
PPU’s documentation is constantly being developed, improved 
and provided within the PPU community3.  

The PPU with its 22 digital input, 13 digital output, 3 analog 
output signals provides simple discrete event automation 
tasks [5], which have already been used for several controlled 
usability experiments with both technicians and students 
applying UML, SysML and IEC 61131-3 [5]. 

III.  SELECTED CHALLENGES FOR EVOLVING APS 

Engineering and operation of aPS involves changes. 
Therefore, besides the system itself, the models created during 
aPS’ engineering are subject to (co-)evolution (challenge I, 
section III.A). In addition, the quality of aPS must be ensured 
after a change (challenge II, section III.B). Finally, besides 
sequential evolution of an aPS, parallel evolution results in 
different variants of the aPS that require approaches to manage 
aPS’ variability (challenge III, section III.C). These challenges 
are highlighted in the following (cp. Fig. 2, top). A holistic 
overview on challenges that arise during software engineering 
and operation for evolving aPS as well as approaches that 
address these challenges can be found in [6]. 

A. Challenge I: Evolving and Co-Evolving (Interdisciplinary) 

Engineering Models  

The engineering process in the aPS domain involves 
stakeholders from different disciplines, e.g. mechanical, 
electrical/electronic and software engineering. As a result, a 
variety of models that represent different views on the machine 
under consideration is created. Obviously, these models depend 
on each other because they overlap at certain points (e.g., sensors 
of the PPU can have representations as hardware addresses in 
an electrical view on the system and as variables in a software 
view on the system), and in case of evolution, they have to co-
evolve consistently. Synchronizing these changes adequately 
and identifying the impacts of changes (e.g., if a hardware 
address is changed in the electrical view and must be 
synchronized with the respective control software) requires 
approaches for managing co-evolution of the different views. 

Additionally, co-evolution of these different models is 
hampered by the infrequency of changes in the different 
disciplines involved: whereas changes are performed rarely to 
the mechanical subsystem (e.g., every 20 to 50 years), there are 
more frequent changes being performed to the 
electrical/electronic (every 10 to 15 years) and software 
subsystem (1.5 years). The development of the mechanical 
subsystem and automation hardware (electrics/electronics) 
therefore faces the rapid possibilities to change the respective 
control software. Besides, models of a machine exist to specify 
functional and non-functional aspects, e.g. regarding 

3 http://www.ppu-demonstrator.org, retrieved on 5/4/2015. 



dependability and fault handling in scenario Sc12f of the PPU 
demonstrator [3]. Therefore, to ensure that the design of an 
interdisciplinary aPS is correct, the consistent co-evolution of 
these engineering models has to be ensured. 

Whereas such anticipated changes typically follow a well-
defined procedure, also unanticipated changes exist [3]. Reasons 
for such unanticipated changes in the automation software of a 
machine are, e.g., the compensation of unexpected raw material 
during the commissioning phase of the aPS. Often, these 
changes are not well documented resulting in an insufficient co-
evolution of machine and model [7]. In some cases, updates to 
the control software are even necessary while the machine is 
running, which requires appropriate techniques to verify such 
on-the-fly modifications in aPS [8]. Furthermore, ad-hoc 
adaptations are necessary, e.g., though self-organization in case 
of changing product requirements [9] or through self-healing in 
case of failures of system parts [3]. Additionally, due to high 
time and cost pressure, requirements elicitation and specification 
seldom follows an entirely model-based procedure, resulting in 
informal requirements specifications [10]. This is especially true 
for minor evolutionary changes in the software and physical 
subsystem of aPS [11] and underlines the need for consistently 
co-evolving the (formal) models with the realization of the aPS.  

B. Challenge II: Quality Assurance for Evolving aPS 

In order to ensure a correct and reliable design that fulfils the 
requirements on functional safety and availability of an aPS, 
methods to assure the quality of evolving aPS are inevitable. 
However, the interdisciplinary nature of an aPS implies that 
changes to one discipline (e.g., changing a sensor’s hardware 
address in the electrical/electronic subsystem) affect other 
disciplines (e.g., the respective software view of the PPU) but 
also effects within one discipline arise. Quality assurance 
approaches therefore need to incorporate these dependencies – 
e.g., by assuring that the system’s behavior is compliant to the 
intended behavior as specified in the requirements on the aPS. 

However, shortened evolution cycles in the machine 
manufacturing domain imply a multitude of different variants 
and versions of an aPS. For instance, for the PPU demonstrator, 
measuring the crane module’s angular position can be realized 
through respective micro switches mounted to the bottom of the 
crane or through a potentiometer [4]. Certainly, ensuring the 
quality of all variants and versions of the aPS is time- and cost-

intensive. Thus, assuring quality for highly variant-rich aPS is 
up to now an open challenge. Furthermore, aPS are special 
systems with regard to their error-proneness for events that occur 
seldom (e.g., after long operation times or under specific 
environmental conditions). Therefore, approaches are necessary 
to ensure the quality of the system and its models during 
evolution and to verify that such critical events do not occur.  

C. Challenge III: Variant and Version Management 

One means to increase efficiency during engineering of aPS 
is the increase of modularity and reuse of already existing 
components [12]. Although approaches and investigations in 
academia and industry already exist to address such 
modularization issues, e.g. [12, 13, 14], the realization of module 
libraries that ultimately increase reuse during engineering of aPS 
are not yet state of the art [14]. aPS designs are hence often 
created from scratch or by adapting existing solutions as reuse 
opportunities seem to be expensive and inefficient at first sight. 
Amongst others, reasons for that are missing support to find the 
appropriate module from the library and identifying the correct 
level of granularity of available solutions [12]. 

Furthermore, as customer and system requirements are 
changing rapidly and continuously, aPS are highly variant-rich. 
Therefore, there exists a variety of simultaneously created 
module variants (e.g., scenarios Sc12a to Sc12f of the PPU 
demonstrator [4]) as well as versions of these variants, which are 
created over time [3]. Mechanisms to support the management 
of variants and versions are therefore inevitable. Variability can 
result from different sources: one is that customers can have 
different requirements on the machine. These requirements may 
lead to features to be implemented from a developer’s point of 
view. For instance, a customer requires a specific type of 
controller for the PPU, which leads implications on the control 
software. Another source for variability is that the demanded 
features can be implemented by different solutions. For instance, 
the requirement to measure the current angular position of the 
crane module (customer’s point of view) can be implemented 
through, e.g., micro switches or a potentiometer (developer’s 
point of view). Therefore, both the variability from the 
customer’s and from the developer’s point of view need to be 
defined. It is hence inevitable to provide novel approaches to 
manage module variants and versions and, finally, to support 
reuse of such variants and versions for aPS designs. 

 
Fig. 2.  Dependencies and relations between challenges (section III), research goals (section IV) and synergetic contributions (section V) 



IV. RESEARCH GOALS AND RESULTS  

In this section, we present a brief overview on research goals 
that can be derived from the challenges that have been illustrated 
in section III. An overview on these research goals and their 
relations to the challenges are shown in Fig. 2. 

A. Reasearch Goal A: Quality Assurance of Interdisciplinary 

Models by Means of a Model-checking Approach 

To simplify the engineering of aPS, model-driven 
engineering is increasingly adopted in machine manufacturing 
industry [15]. Nevertheless, it is indispensable to ensure the 
correct functionality of the machine under consideration (cf. 
challenge II). When focusing on functional aspects of an 
evolving machine, mechanical aspects are typically of major 
interest and questions such as “Are work pieces correctly 
handled by the PPU?” arise. For instance, for handover positions 
at the PPU, it must be ensured that work pieces are handled 
correctly. To answer such questions and, by that, to ensure the 
correct functionality of the aPS, the overall system architecture 
and behavior of sensors/actuators, bus, the automation hardware 
(especially PLCs), and the control software have to be taken into 
account [16]. Various model-checking approaches exist for 
specific components, e.g. for verifying real-time behavior of the 
field bus behavior [17] or the control software [18, 19, 20], but 
an approach, which integrates the different disciplines does not 
exist until now. To address this challenge, a Model-Driven 
Evolution Management Framework for aPS software is 
currently being developed, which will support an 
interdisciplinary approach for automatically verifying functional 
requirements by means of model-checking [21] to assure quality 
during evolution. The framework provides different views for 
the involved stakeholders on a strict formal base: the 
requirements viewpoint supports the engineer in gaining a 
comprehensive understanding of the system under construction 
during requirement engineering. Refining the requirements 
viewpoint, the process viewpoint is used to model the technical 
process of an aPS on an abstract level. It describes a solution for 
the fulfillment of requirements with respect to the handling of 
material, e.g. work pieces for the PPU [22]. It enables to verify 
the technical process’ correctness on an abstract level and to 
reason about the functionality of the aPS in an integrated 
fashion. The system viewpoint contains the model of an aPS’ 
components, i.e. the components’ structural description as well 
as their behavior by means of automata. This viewpoint 
facilitates the verification of functional requirements [21]. 

B. Research Goal B: Multi-view Modeling for Variability-

aware Performance Analysis 

Variability of aPS is increasing (challenge III) due to 
continuously evolving software and hardware over long periods 
of time. At the same time, quality of these different variants or 
versions needs to be assured (challenge II).  

A two-fold approach is used to alleviate these challenges. 
First, a design-level modeling approach is developed consisting 
of three individual perspectives taking advantage of the principle 
of separation of concerns. A system is completely modeled 
within the workflow, architecture and behavior perspectives, 

                                                 
4 http://cowolf.github.io/, retrieved on 5/4/2015. 

which are based on Unified Modeling Language (UML) 
diagrams. The workflow represents the actual life cycle of a 
work piece throughout the system, e.g. which operations (such 
as transporting or stamping for the PPU’s work pieces) are 
performed on it. The hardware elements of the machine are 
abstracted at the architecture as components and the behavior of 
the system components is captured by a state-based modeling 
formalism [23]. The creation of new variants or versions is often 
done by the well-known copy & paste approach, since no 
explicit variability management method is available. 
Duplicating all perspectives and conducting the variant-specific 
changes afterwards produces lots of redundancies, is ineffective 
and leads to an increased maintenance effort [24]. Second, in 
order to seamlessly handle variability, delta modeling is applied 
to each perspective. In delta modeling, the system has a core and 
sets of modifications (the deltas). Hence, a new variant/version 
is generated by applying the required deltas to the core [25]. The 
notion of delta modeling can be used on all three modeling 
viewpoints in a consistent fashion. By separation of concerns in 
the different perspectives, the analysis of non-functional system 
properties, such as performance requirements (utilization, 
throughput, average queue length), is enabled already in early 
development phases on the workflow level. This allows to assess 
the different variants and versions during the first representation 
of the intended manufacturing process before spending more 
effort in its detailed technical realization in the architecture and 
behavior perspectives [26]. 

C. Research Goal C: Supporting Co-Evolution by Automatic 

Consistency Mechanisms 

During the entire lifecycle of an aPS, different aspects of the 
aPS need to be kept consistent (challenge I) so that the machine 
can correctly fulfill its requirements. Usually, different aspects 
are the three disciplines of mechanical hardware, electrical 
hardware, and software. However, also other development 
artifacts need to be kept consistent. Specifically, quality 
evaluation models are important in this regard as they allow for 
analyzing the quality of a machine (even before operation) with 
respect to properties such as throughput of work pieces in the 
PPU, safety as well as reliability of the PPU demonstrator. 

Therefore, it is focused on supporting the co-evolution of 
these different aspects by using model-transformations and 
probabilistic analysis approaches, particularly, for probabilistic 
quality evaluation models like Fault Trees and Markov Chains. 
Based on the Henshin Model Transformation Language [27], the 
CoWolf4 framework has been developed, which supports the 
consistent co-evolution of system architecture models, behavior 
model in form of state machines, and Fault Trees and as Petri 
Nets as modeling languages for quality evaluation models. 

Complementary, a lightweight adaptive filtering technique 
has been developed to accurately learn time-varying transition 
probabilities of discrete time Markov models that provide 
robustness to noise and fast adaptation to changes with a very 
low overhead [28]. This allows for also keeping the quality 
evaluation models consistent with the running system by 
monitoring the running system and updating the quality 
evaluation models. 



D. Research Goal D: Ensuring Consistency of Documentation 

and Machine Behavior by Means of Learning Mechanisms  

Despite the already existing model-driven engineering 
methods and tools supporting formalization of requirements, 
direct implementation of informal requirements often takes 
place in industrial practice [10]. Expert surveys have shown a 
lack of structured and systematic working during aPS 
development mainly due to high time pressure [29]. Especially 
changes performed during operation are insufficiently 
(formally) specified [6]. The result of such performed 
adaptations is a missing documentation (challenge I) and a lack 
of (quality) evaluation of changes performed to the aPS 
(challenge II).  

Addressing these challenges, especially under consideration 
of shortened evolution cycles, requires a higher degree of self-
awareness of the aPS [30]. One approach to realize self-
awareness while reducing the influence of such countermeasures 
is to observe the aPS’ behavior by means of the input-output 
signals of controlling PLCs (i.e., the observable behavior of the 
PPU) and, by that, to learn machine behavior models [11]. In 
terms of evolution, a proper execution of these models allows to 
recognize anomalies in the machine behavior by constantly 
comparing the actual behavior with the previously learned 
models. If an anomaly is detected, a semi-automated evaluation 
process could take place [31]. Such a process is able to analyze 
models regarding (non-functional) properties, which have been 
operationalized properly [32]. With these properties, an operator 
can determine with regard to the system requirement, whether 
the detected anomaly is part of an intended evolutionary change 
and the models should be updated by learning the evolved 
behavior. This ensures consistent documentation in steadily 
updated models as well as a constant quality evaluation with 
regard to requirements of undocumented performed changes 
during an evolution process.  

E. Research Goal E: Model-based Testing of  

Variant-rich aPS 

Quality assurance (challenge II) is an important and 
resource-intensive task during system development. Due to the 
increasing application of model-based engineering in the 
automation domain [15], also model-based testing [33] can be 
applied allowing for automatic test case generation based on a 
behavioral test model specification. In the context of variant-rich 
machines (challenge III) applying model-based testing for each 
variant in isolation is not feasible in general. Although some 
approaches for model-based testing of machines exist [34, 35, 
36, 37], the application of model-based testing for variant-rich 
aPS is still an open challenge. 

Based on the software product line (SPL) paradigm [38], a 
model-based testing approach for variant-rich machines is 
developed [39] to address the quality assurance of variant-rich 
systems. An SPL [38] represents a family of similar software 
systems with the specification of commonality and variability by 
means of customer-visible properties called features. A common 
core as well as reusable development artifacts build the basis for 
SPL engineering. Based on a 150% state chart test model, i.e., a 
model comprising all variant-specific test models, where 
elements are annotated with features to define for which variants 
an element is valid, a complete test suite generation for all 

variants is realized. For each generated test case, the set of 
variants is derived for which the test case is reusable by 
analyzing the feature annotations. This leads to an effort 
reduction, i.e., the test case generation time and the test suite size 
are reduced compared to the test suite generation for each variant 
in isolation, where (reusable) test cases are generated for each 
variant anew.  

F. Research Goal F: Specifying and Recognizing Changes in 

aPS Models 

Model-based engineering of machines implies that different 
types of models are systematically used as primary development 
artifacts, which are iteratively developed and which heavily 
evolve throughout the lifecycle of an aPS. Thus, a clear picture 
of the changes between versions of a model is one of the most 
essential preconditions to understand and plan the evolution of 
such a model-based system (challenge III). Thereby, exact and 
meaningful specifications of changes play two different roles; 
(1) a prescriptive role, i.e. as specification of modifications to be 
performed on an existing model version, and (2) a descriptive 
role as a means to describe the observed difference between two 
versions, notably past changes in the history of a model. Such 
specifications of changes are a basis for many further tasks, e.g. 
for propagating changes in variants of a model [40]. 

A variety of concepts, technologies and tools are involved in 
the specification and the analysis of model evolution; their 
development is another research goal. Firstly, we need 
sophisticated approaches from the domain of model 
transformation which enable the specification of high-level edit 
operations (also known as delta operations), e.g. as offered by 
visual editors or modern refactoring tools. Secondly, model 
comparison techniques are required that deliver model 
differences (or deltas) which are based on these high-level edit 
operations. In other words, an obtained difference specifies how 
the base version can be transformed to the revised one in a step-
wise manner, each step refers to an invocation of a high-level 
edit operation. 

Formalisms to define such operations and methods to 
recognize the resulting changes mutually depend on each other. 
First advances in this field, which are based on graph 
transformation concepts, can be found in [41, 42]. 

G. Research Goal G: Regression Verification for PLCs 

In the safety-critical context of aPS, evolution of software 
must not introduce faults into the system behavior (challenge II). 
If a complete specification of the desired system behavior is not 
available, one possibility to ensure that the quality of the PLC 
software is preserved during an evolution step is to compare the 
new system version against the old version. 

At this point, regression verification comes to the aid: using 
formal methods (based on state-of-the-art model checkers), 
regression verification statically analyzes the two software 
versions and verifies that the new version does not introduce 
unwanted behavior. This is done by conducting a formal proof 
that the new plant software behaves equivalently to the old one. 
Obviously, an evolution step usually also introduces desired 
changes (optimizations, corrections, adaptations) into the system 
behavior. It must hence be possible to specify precisely which 
parts of the behavior are to be retained. 



By design, regression verification cannot make a statement 
about features newly introduced since there is no counterpart in 
the old version to compare against. Regression verification is 
thus a valuable approach that is complementary to other quality 
assurance methods during evolution without replacing them. For 
the parts where behavior is preserved, regression verification has 
advantages over functional verification and testing: No formal 
specification is needed to describe the desired safety property of 
the new system. The old version, as the reference 
implementation, serves this purpose. Moreover, no individual 
test cases are needed and the state space is fully explored. 

Based on an approach for regression verification on C-
code [43], a tool was implemented [44] that computes a model 
regression verification condition for two IEC 61131-3 PLC 
implementations. The tool has been applied successfully for the 
PPU case study revealing a few flaws in the defined evolution 
steps. One research challenge was the efficient encoding of the 
differences between PLC software versions, between which 
many things have not changed, into a formula that can serve as 
model checking input. The approach allows for conditional 
verification where equivalence only needs to be shown for those 
parts of the state space satisfying a certain condition and for 
relational verification where it is not equality of system states 
but an equivalence relation specified by the user that is checked. 

In many cases, considering the PLC software code as sole 
input is not sufficient since the equivalence of the system 
versions depends also on behavioral patterns of the aPS. In these 
cases, behavioral models of physical entities are needed. It 
remains an open research question how equivalence proofs 
found during regression verification can be incorporated into the 
holistic verification workflow as proposed in research goal A. 

V. SYNERGETIC RESEARCH GOALS AND RESULTS  

Based on the research goals and approaches described in 
section IV, several synergetic research goals and results towards 
managing the evolution of long-living aPS can be achieved by 
combining these approaches (cp. Fig. 2, bottom). 

A. Synergetic Research Goal A: Requirement-aware, Life-

cycle Spreading aPS 

Due to market requests, aPS undergo an evolution process 
that increasingly shifts traditional development activities for aPS 
to later phases of their lifecycle, i.e. a machine is evolved in both 
ways, a model-driven (anticipated) way in the development 
phase as well as an unanticipated way during the operational 
phase. Accordingly, the co-evolution challenges between 
different models as well as towards the actual system arise 
(challenge I). Furthermore, (semi-automated) requirement 
verification mechanisms during evolution in various phases of a 
machine’s life cycle are required to assure quality (challenge II). 

An approach combining a posteriori and a priori verification 
and highlighting synergetic effects is presented in [45] towards 
requirement-aware, life-cycle spreading automation systems. 
An interdisciplinary modeling framework for model-driven 
engineering (research goal A) as well as a PLC-signal based 
monitoring technique (research goal C) are applied that enhance 
each other by comparing estimated and actual system 
characteristics as verifiable requirement description. The 
resulting, combined approach and its synergies are illustrated 

in [45] by means of two scenarios of the PPU. Firstly, the 
combined approach can be used for correcting estimations of 
model-driven engineering by signal monitoring of actual values. 
This facilitates to identify potentially dangerous situations 
which might result from misestimated values in MDE but can be 
identified by applying updated values for verifying functional 
aspects. Secondly, it was shown that the combined approach can 
be beneficial for proving intention and identifying change 
sources. To identify the source of the change precisely, 
sophisticated models are required which are not available for 
monitoring approaches on the signal level, which is able to 
detect anomalies precisely. A combined approach leverages the 
identification of change sources over different lifecycle phases.  

B. Synergetic Research Goal B: Study on Variability 

Modeling of Multi-view Models for aPS 

Both research goals A and B investigate different aspects of 
applying multi-view models. Understanding each other’s 
approaches in detail facilitates novel, synergetic aspects: a 
collaborative study on variability modeling for multi-view 
models in the aPS domain by means of delta modeling [25] 
(challenge III). This synergetic research goal is driven by 
knowledge exchange between different involved domain 
experts: variability modeling experts and automation engineers.  

In delta modeling, system variants and versions are 
represented by explicit sets of modifications (the deltas). In 
order to obtain the software for a particular version or variant of 
an automation system, the necessary modifications captured in 
the deltas are automatically applied to a designated core system 
model. Until now, two case studies have been undertaken: 
Firstly, the multi-view model of research goal A was applied to 
the PPU [23]. It was shown that the multi-view model can be 
used to model different variants of the PPU for generating PLC 
state charts. Secondly, delta modeling is applied to the 
interdisciplinary model [23] which was developed under 
research goal A. The result is two-fold: (1) applying delta 
modeling to such formal, interdisciplinary models is possible 
and (2) for applying delta modeling, an eased way for defining 
deltas in such models is necessary (cf. section E).  

C. Synergetic Research Goal C: Identification of Co-

Evolution Rules for Co-Evolving aPS Models 

Iterative development and changing requirements lead to 
continuously changing models. In particular, this leads to the 
problem of consistently co-evolving (challenge I) different 
views of a model-based system. Whenever one model undergoes 
changes, related models should evolve with respect to this 
change. Domain engineers are faced with the huge challenge to 
find proper co-evolution rules which can be finally used to assist 
developers in the co-evolution process. By integrating aspects 
from research goals C and F, an approach to learn about co-
evolution steps from a given history using an extensive analysis 
framework [46] can be achieved. The approach uses models and 
model transformations as described in research goal C, the 
SiLift [47] framework as a result from the work described in 
research goal F and the jointly developed co-evolution 
framework. The approach is generic as it can be adapted to study 
co-evolution of other types of models. For this purpose, the 
framework needs the available model transformation rules for 
each of the involved types of models as input. 



D. Synergetic Research Goal D:Documentation of Changes in 

Variability Models and Reasoning about their Semantic 

Impact 

By integrating research goals E and F, an automated 
approach to (1) document the evolution of feature models and 
(2) semantically reason about changes between feature models 
by using complex edit operations in order to describe the 
structural changes between two versions of a feature diagram 
can be achieved. Therefore, a set of typical edit operations on 
feature diagrams using the model transformation language 
Henshin was specified. Henshin is based on graph 
transformation concepts and allows to precisely specify edit 
operations as so-called edit rules. These edit rules are used by 
the model differencing engine SiLift [47] to get a meaningful 
description of feature diagram differences. Furthermore, a logic-
based formal framework was developed which allows to reason 
about the semantic impact of feature diagram changes.  

In particular, complex edit operations and differences which 
are described in terms of these edit operations were categorized 
using the categories proposed in [48] to reason about the 
semantic impact of syntactic changes, i.e., classifying them as 
refactoring, specialization, generalization, or arbitrary edit. 
Later, this approach will be used in the field of regression testing 
to indicate how to change a test suite after changing the SPL. 

E. Synergetic Research Goal E: Semi-automated Delta 

Extraction by Means of Model Differencing 

A delta is a specification of how to transform one valid 
variant (called the source variant) of a model being written in 
some modeling language into another variant (called target 
variant). The manual specification of a large set of deltas is 
tedious and prone to errors. To that end, research goal B and 
research goal F can be combined to a synergetic contribution to 
semi-automated delta extraction. The basic idea is that valid 
variants of the SPL are provided by the results from research 
goal B and deltas are defined by using techniques from the 
domain of model differencing (research goal F). With this 
approach, the definition of a delta is achieved in two steps: First, 
a particular source variant is modified using a standard editor for 
that language (e.g. workflow, architecture and behavior 
perspectives as introduced in section IV.B) such that it finally 
becomes the desired target variant. Secondly, a delta is 
automatically extracted by comparing the original with the 
revised version of the model. The result of the comparison is 
transformed into an executable delta. Thus, the definition of a 
delta becomes much easier and far more reliable. 

F. Synergetic Research Goal F: Incremental Model-based 

Testing of Variant-rich aPS 

aPS evolve continuously, e.g., based on software or 
hardware updates. To guarantee quality assurance after 
evolution (challenge II), testing strategies are required focusing 
on changes and their impacts as, e.g., regression testing. In the 
context of variant-rich systems (challenge III), regression testing 
further allows for an incremental testing process by exploiting 
the reuse potentials when stepping from one variant to another. 

Lochau et al. [49] present an approach for incremental 
testing of variant-rich systems by combining model-based and 
regression testing on the component as well as integration testing 

level. Delta modeling [25] (research goal B) is used to specify 
changes between component state chart models and architectural 
models by means of regression model deltas. Those regression 
deltas build the basis for the derivation of changes also for the 
remaining test artifacts, i.e., the set of test goals, the test suite 
and a test plan captured in a test artifact regression delta. Based 
on a complete test suite comprising reusable test cases for each 
variant (research goal E), the test artifact regression deltas 
allows for an incremental test artifact application when stepping 
from one variant to a subsequent one. By exploiting the reuse 
potentials of test artifacts and test results, the incremental testing 
process leads to a reduction of the testing effort and builds the 
basis for quality assurance after evolution. Lity et al. [50] 
propose an approach for incremental model slicing based on the 
concepts of delta modeling applicable as test case selection 
technique for regression testing of variant-rich systems. 

VI. CONCLUSION AND OUTLOOK 

As aPS are often in operation for up to three decades, they 
evolve during their lifecycle. In this paper, we illustrated some 
challenges and selected research goals regarding evolving aPS, 
showed exemplary approaches to address these challenges and 
identified how these research goals can lead to synergetic 
contributions in the field of software evolution for aPS.  

First results regarding managing the (co-)evolution of long-
living aPS could be achieved – e.g., in the fields of consistency 
mechanisms, verification, validation and testing as well as 
variability modeling – and transferred and evaluated at a simple 
lab size aPS. The Pick and Place Unit [4] as an open case study 
served as a valuable demonstration case for the approaches. In 
between sixteen options for the adaptation of the PPU case study 
for future research, online model and program changes, safety 
aspects, deployment, i.e. distributed automation systems, and a 
more challenging technical process will be prioritized. Online 
changes will address the evolution in the operation phase of the 
aPS as it is well known on classical PLC platforms. 
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