
Selected Challenges of Software Evolution for

Automated Production Systems

B. Vogel-Heuser, S. Feldmann, J. Folmer

Institute of Automation and Information Systems,

Technische Universität München, Germany

{ vogel-heuser ; feldmann ; folmer }@ais.mw.tum.de

M. Kowal, I. Schaefer

Institute of Software Engineering and Automotive

Informatics, University of Braunschweig, Germany

m.kowal@tu-bs.de ; i.schaefer@tu-braunschweig.de

J. Ladiges, A. Fay

Automation Technology Institute,

Helmut Schmidt University, Germany

{ ladiges ; fay }@hsu-hh.de

C. Haubeck, W. Lamersdorf

Distributed Systems and Information Systems,

Universität Hamburg, Germany

{ haubeck ; lamersd }@informatik.uni-hamburg.de

S. Lity

Institute for Programming and Reactive Systems,

Technische Universität Braunschweig, Germany

lity@ips.cs.tu-bs.de

T. Kehrer

Software Engineering Group,

University of Siegen, Germany

kehrer@informatik.uni-siegen.de

M. Tichy

Software Engineering Division, Chalmers, Sweden |

University of Gothenburg, Sweden

matthias.tichy@cse.gu.se

S. Getir

Reliable Software Systems,

University of Stuttgart, Germany

sinem.getir@informatik.uni-stuttgart.de

M. Ulbrich, V. Klebanov, B. Beckert

Application-oriented Formal Verification, Karlsruhe Institute of Technology, Germany

{ ulbrich ; klebanov ; beckert}@kit.edu

Abstract—Automated machines and plants are operated for

some decades and undergo an everlasting evolution during this

time. In this paper, we present three related open evolution

challenges focusing on software evolution in the domain of

automated production systems, i.e. evolution and co-evolution of

(interdisciplinary) engineering models and code, quality assurance

as well as variant and version management during evolution.

Keywords—automated production systems, evolution, variability,

production automation, software engineerring

I. INTRODUCTION

Automated machines and plants are often in operation for up
to three decades [1]. As a consequence, such automated
production systems (aPS) are subject to changes in customer
requirements such as additional types of products to be produced
as well as novel technological developments. Besides these
changes that can be anticipated beforehand and that are typically
addressed following a well-defined engineering process, e.g.,
the V-Model XT, also unanticipated changes according to
Buckley’s taxonomy [2] occur, e.g., during operation.
Anticipated changes “can be foreseen during the initial
development of the systems and, as such, can be accommodated

in the design decision taken” [2] whereas unanticipated changes
according to [2] are not foreseen during the development phase,
but frequently undertaken at short notice, e.g., during
commissioning and operation. In addition to these incremental
versions that arise due to sequential evolution of the aPS, parallel
evolution results in different variants of the system [3]. To stay
competitive in global markets, companies that operate aPS are
increasingly forced to address these challenges. Therefore,
approaches are necessary to incorporate the (co-)evolution of
aPS (challenge I), to ensure the quality of these systems
(challenge II) and to manage their variability (challenge III).

To address challenges regarding evolution of such long-
living systems from a software perspective, various approaches
already exist. Although these approaches support different
aspects of variant-rich software-intensive systems, e.g.,
verification and validation, consistency management and
modeling, such approaches focusing merely on the software
aspect are often not sufficient to address the challenges in the
aPS domain focusing on machines henceforth. Therefore, the
goal of this research is three-fold: (1) to determine why this is
the case (section III), (2) to show the research goals and
approaches to address the challenges in the aPS (section IV) and

(3) to identify how these approaches can lead to synergetic
research goals and results (section V) focusing on the evolution
of long-living aPS. The contributions presented in this paper are
developed within the German Priority Programme SPP 1593
“Design For Future – Managed Software Evolution”. We derive
the challenges and illustrate our findings at a joined case study
machine (section II), which was developed for the purposes of
exploring and investigating the applicability of research
results [4] and, by that, to facilitate the comparability of different
approaches, ease exchange of research ideas, and enable
research collaboration among different research groups and
disciplines. We conclude with a summary in section VI.

II. AN OPEN DEMONSTRATOR FOR THE MACHINE

MANUFACTURING DOMAIN

To explore and investigate the applicability of fundamental
research results for the challenges in the aPS domain, the Pick
and Place Unit (PPU) serves as an open case study [4]. Although
being a bench-scale, academic demonstration case, the PPU is
complex enough to demonstrate selected challenges that arise
during engineering of aPS. Especially to explore and investigate
evolution of aPS, sixteen scenarios (that is: variants of the PPU)
are defined [3], including both sequential evolution (e.g., to
enlarge the PPU’s functionality and performance) and parallel
evolution (e.g., same functionality on different types of
platforms, i.e. PLCs). An excerpt of these scenarios is illustrated
in Fig. 1. Besides pure software changes that do not incorporate
adaptations in the mechanics and automation hardware of the
PPU, also changes to these disciplines are considered in the
scenarios (e.g., increasing the work piece throughput in Sc12a
up to replacing the control platform in Sc12d [3]).

Fig. 1. Excerpt of the PPU’s scenarios for parallel evolution [3]

For the scenarios developed for the PPU, both the structure
and the behavior are documented using Systems Modeling
Language (SysML) [4]. The documentation is available online –
as Eclipse Papyrus1 models and as textual documentations [4].

1 http://eclipse.org/papyrus/, retrieved on 5/4/2015.
2 http://www.codesys.com, retrieved on 5/4/2015.

Besides, automation software code for Programmable Logic
Controllers (PLC) is available for each scenario – implemented
in CODESYS2, which is an industrial development tool for PLC
control software. For testing purposes, MATLAB/Simulink
models and 3D visualizations based on Virtual Reality Modeling
Language (VRML) were developed. By that, PLC code can be
tested against a simulation of the respective PPU scenario. The
PPU’s documentation is constantly being developed, improved
and provided within the PPU community3.

The PPU with its 22 digital input, 13 digital output, 3 analog
output signals provides simple discrete event automation
tasks [5], which have already been used for several controlled
usability experiments with both technicians and students
applying UML, SysML and IEC 61131-3 [5].

III. SELECTED CHALLENGES FOR EVOLVING APS

Engineering and operation of aPS involves changes.
Therefore, besides the system itself, the models created during
aPS’ engineering are subject to (co-)evolution (challenge I,
section III.A). In addition, the quality of aPS must be ensured
after a change (challenge II, section III.B). Finally, besides
sequential evolution of an aPS, parallel evolution results in
different variants of the aPS that require approaches to manage
aPS’ variability (challenge III, section III.C). These challenges
are highlighted in the following (cp. Fig. 2, top). A holistic
overview on challenges that arise during software engineering
and operation for evolving aPS as well as approaches that
address these challenges can be found in [6].

A. Challenge I: Evolving and Co-Evolving (Interdisciplinary)

Engineering Models

The engineering process in the aPS domain involves
stakeholders from different disciplines, e.g. mechanical,
electrical/electronic and software engineering. As a result, a
variety of models that represent different views on the machine
under consideration is created. Obviously, these models depend
on each other because they overlap at certain points (e.g., sensors
of the PPU can have representations as hardware addresses in
an electrical view on the system and as variables in a software
view on the system), and in case of evolution, they have to co-
evolve consistently. Synchronizing these changes adequately
and identifying the impacts of changes (e.g., if a hardware
address is changed in the electrical view and must be
synchronized with the respective control software) requires
approaches for managing co-evolution of the different views.

Additionally, co-evolution of these different models is
hampered by the infrequency of changes in the different
disciplines involved: whereas changes are performed rarely to
the mechanical subsystem (e.g., every 20 to 50 years), there are
more frequent changes being performed to the
electrical/electronic (every 10 to 15 years) and software
subsystem (1.5 years). The development of the mechanical
subsystem and automation hardware (electrics/electronics)
therefore faces the rapid possibilities to change the respective
control software. Besides, models of a machine exist to specify
functional and non-functional aspects, e.g. regarding

3 http://www.ppu-demonstrator.org, retrieved on 5/4/2015.

dependability and fault handling in scenario Sc12f of the PPU
demonstrator [3]. Therefore, to ensure that the design of an
interdisciplinary aPS is correct, the consistent co-evolution of
these engineering models has to be ensured.

Whereas such anticipated changes typically follow a well-
defined procedure, also unanticipated changes exist [3]. Reasons
for such unanticipated changes in the automation software of a
machine are, e.g., the compensation of unexpected raw material
during the commissioning phase of the aPS. Often, these
changes are not well documented resulting in an insufficient co-
evolution of machine and model [7]. In some cases, updates to
the control software are even necessary while the machine is
running, which requires appropriate techniques to verify such
on-the-fly modifications in aPS [8]. Furthermore, ad-hoc
adaptations are necessary, e.g., though self-organization in case
of changing product requirements [9] or through self-healing in
case of failures of system parts [3]. Additionally, due to high
time and cost pressure, requirements elicitation and specification
seldom follows an entirely model-based procedure, resulting in
informal requirements specifications [10]. This is especially true
for minor evolutionary changes in the software and physical
subsystem of aPS [11] and underlines the need for consistently
co-evolving the (formal) models with the realization of the aPS.

B. Challenge II: Quality Assurance for Evolving aPS

In order to ensure a correct and reliable design that fulfils the
requirements on functional safety and availability of an aPS,
methods to assure the quality of evolving aPS are inevitable.
However, the interdisciplinary nature of an aPS implies that
changes to one discipline (e.g., changing a sensor’s hardware
address in the electrical/electronic subsystem) affect other
disciplines (e.g., the respective software view of the PPU) but
also effects within one discipline arise. Quality assurance
approaches therefore need to incorporate these dependencies –
e.g., by assuring that the system’s behavior is compliant to the
intended behavior as specified in the requirements on the aPS.

However, shortened evolution cycles in the machine
manufacturing domain imply a multitude of different variants
and versions of an aPS. For instance, for the PPU demonstrator,
measuring the crane module’s angular position can be realized
through respective micro switches mounted to the bottom of the
crane or through a potentiometer [4]. Certainly, ensuring the
quality of all variants and versions of the aPS is time- and cost-

intensive. Thus, assuring quality for highly variant-rich aPS is
up to now an open challenge. Furthermore, aPS are special
systems with regard to their error-proneness for events that occur
seldom (e.g., after long operation times or under specific
environmental conditions). Therefore, approaches are necessary
to ensure the quality of the system and its models during
evolution and to verify that such critical events do not occur.

C. Challenge III: Variant and Version Management

One means to increase efficiency during engineering of aPS
is the increase of modularity and reuse of already existing
components [12]. Although approaches and investigations in
academia and industry already exist to address such
modularization issues, e.g. [12, 13, 14], the realization of module
libraries that ultimately increase reuse during engineering of aPS
are not yet state of the art [14]. aPS designs are hence often
created from scratch or by adapting existing solutions as reuse
opportunities seem to be expensive and inefficient at first sight.
Amongst others, reasons for that are missing support to find the
appropriate module from the library and identifying the correct
level of granularity of available solutions [12].

Furthermore, as customer and system requirements are
changing rapidly and continuously, aPS are highly variant-rich.
Therefore, there exists a variety of simultaneously created
module variants (e.g., scenarios Sc12a to Sc12f of the PPU
demonstrator [4]) as well as versions of these variants, which are
created over time [3]. Mechanisms to support the management
of variants and versions are therefore inevitable. Variability can
result from different sources: one is that customers can have
different requirements on the machine. These requirements may
lead to features to be implemented from a developer’s point of
view. For instance, a customer requires a specific type of
controller for the PPU, which leads implications on the control
software. Another source for variability is that the demanded
features can be implemented by different solutions. For instance,
the requirement to measure the current angular position of the
crane module (customer’s point of view) can be implemented
through, e.g., micro switches or a potentiometer (developer’s
point of view). Therefore, both the variability from the
customer’s and from the developer’s point of view need to be
defined. It is hence inevitable to provide novel approaches to
manage module variants and versions and, finally, to support
reuse of such variants and versions for aPS designs.

Fig. 2. Dependencies and relations between challenges (section III), research goals (section IV) and synergetic contributions (section V)

IV. RESEARCH GOALS AND RESULTS

In this section, we present a brief overview on research goals
that can be derived from the challenges that have been illustrated
in section III. An overview on these research goals and their
relations to the challenges are shown in Fig. 2.

A. Reasearch Goal A: Quality Assurance of Interdisciplinary

Models by Means of a Model-checking Approach

To simplify the engineering of aPS, model-driven
engineering is increasingly adopted in machine manufacturing
industry [15]. Nevertheless, it is indispensable to ensure the
correct functionality of the machine under consideration (cf.
challenge II). When focusing on functional aspects of an
evolving machine, mechanical aspects are typically of major
interest and questions such as “Are work pieces correctly
handled by the PPU?” arise. For instance, for handover positions
at the PPU, it must be ensured that work pieces are handled
correctly. To answer such questions and, by that, to ensure the
correct functionality of the aPS, the overall system architecture
and behavior of sensors/actuators, bus, the automation hardware
(especially PLCs), and the control software have to be taken into
account [16]. Various model-checking approaches exist for
specific components, e.g. for verifying real-time behavior of the
field bus behavior [17] or the control software [18, 19, 20], but
an approach, which integrates the different disciplines does not
exist until now. To address this challenge, a Model-Driven
Evolution Management Framework for aPS software is
currently being developed, which will support an
interdisciplinary approach for automatically verifying functional
requirements by means of model-checking [21] to assure quality
during evolution. The framework provides different views for
the involved stakeholders on a strict formal base: the
requirements viewpoint supports the engineer in gaining a
comprehensive understanding of the system under construction
during requirement engineering. Refining the requirements
viewpoint, the process viewpoint is used to model the technical
process of an aPS on an abstract level. It describes a solution for
the fulfillment of requirements with respect to the handling of
material, e.g. work pieces for the PPU [22]. It enables to verify
the technical process’ correctness on an abstract level and to
reason about the functionality of the aPS in an integrated
fashion. The system viewpoint contains the model of an aPS’
components, i.e. the components’ structural description as well
as their behavior by means of automata. This viewpoint
facilitates the verification of functional requirements [21].

B. Research Goal B: Multi-view Modeling for Variability-

aware Performance Analysis

Variability of aPS is increasing (challenge III) due to
continuously evolving software and hardware over long periods
of time. At the same time, quality of these different variants or
versions needs to be assured (challenge II).

A two-fold approach is used to alleviate these challenges.
First, a design-level modeling approach is developed consisting
of three individual perspectives taking advantage of the principle
of separation of concerns. A system is completely modeled
within the workflow, architecture and behavior perspectives,

4 http://cowolf.github.io/, retrieved on 5/4/2015.

which are based on Unified Modeling Language (UML)
diagrams. The workflow represents the actual life cycle of a
work piece throughout the system, e.g. which operations (such
as transporting or stamping for the PPU’s work pieces) are
performed on it. The hardware elements of the machine are
abstracted at the architecture as components and the behavior of
the system components is captured by a state-based modeling
formalism [23]. The creation of new variants or versions is often
done by the well-known copy & paste approach, since no
explicit variability management method is available.
Duplicating all perspectives and conducting the variant-specific
changes afterwards produces lots of redundancies, is ineffective
and leads to an increased maintenance effort [24]. Second, in
order to seamlessly handle variability, delta modeling is applied
to each perspective. In delta modeling, the system has a core and
sets of modifications (the deltas). Hence, a new variant/version
is generated by applying the required deltas to the core [25]. The
notion of delta modeling can be used on all three modeling
viewpoints in a consistent fashion. By separation of concerns in
the different perspectives, the analysis of non-functional system
properties, such as performance requirements (utilization,
throughput, average queue length), is enabled already in early
development phases on the workflow level. This allows to assess
the different variants and versions during the first representation
of the intended manufacturing process before spending more
effort in its detailed technical realization in the architecture and
behavior perspectives [26].

C. Research Goal C: Supporting Co-Evolution by Automatic

Consistency Mechanisms

During the entire lifecycle of an aPS, different aspects of the
aPS need to be kept consistent (challenge I) so that the machine
can correctly fulfill its requirements. Usually, different aspects
are the three disciplines of mechanical hardware, electrical
hardware, and software. However, also other development
artifacts need to be kept consistent. Specifically, quality
evaluation models are important in this regard as they allow for
analyzing the quality of a machine (even before operation) with
respect to properties such as throughput of work pieces in the
PPU, safety as well as reliability of the PPU demonstrator.

Therefore, it is focused on supporting the co-evolution of
these different aspects by using model-transformations and
probabilistic analysis approaches, particularly, for probabilistic
quality evaluation models like Fault Trees and Markov Chains.
Based on the Henshin Model Transformation Language [27], the
CoWolf4 framework has been developed, which supports the
consistent co-evolution of system architecture models, behavior
model in form of state machines, and Fault Trees and as Petri
Nets as modeling languages for quality evaluation models.

Complementary, a lightweight adaptive filtering technique
has been developed to accurately learn time-varying transition
probabilities of discrete time Markov models that provide
robustness to noise and fast adaptation to changes with a very
low overhead [28]. This allows for also keeping the quality
evaluation models consistent with the running system by
monitoring the running system and updating the quality
evaluation models.

D. Research Goal D: Ensuring Consistency of Documentation

and Machine Behavior by Means of Learning Mechanisms

Despite the already existing model-driven engineering
methods and tools supporting formalization of requirements,
direct implementation of informal requirements often takes
place in industrial practice [10]. Expert surveys have shown a
lack of structured and systematic working during aPS
development mainly due to high time pressure [29]. Especially
changes performed during operation are insufficiently
(formally) specified [6]. The result of such performed
adaptations is a missing documentation (challenge I) and a lack
of (quality) evaluation of changes performed to the aPS
(challenge II).

Addressing these challenges, especially under consideration
of shortened evolution cycles, requires a higher degree of self-
awareness of the aPS [30]. One approach to realize self-
awareness while reducing the influence of such countermeasures
is to observe the aPS’ behavior by means of the input-output
signals of controlling PLCs (i.e., the observable behavior of the
PPU) and, by that, to learn machine behavior models [11]. In
terms of evolution, a proper execution of these models allows to
recognize anomalies in the machine behavior by constantly
comparing the actual behavior with the previously learned
models. If an anomaly is detected, a semi-automated evaluation
process could take place [31]. Such a process is able to analyze
models regarding (non-functional) properties, which have been
operationalized properly [32]. With these properties, an operator
can determine with regard to the system requirement, whether
the detected anomaly is part of an intended evolutionary change
and the models should be updated by learning the evolved
behavior. This ensures consistent documentation in steadily
updated models as well as a constant quality evaluation with
regard to requirements of undocumented performed changes
during an evolution process.

E. Research Goal E: Model-based Testing of

Variant-rich aPS

Quality assurance (challenge II) is an important and
resource-intensive task during system development. Due to the
increasing application of model-based engineering in the
automation domain [15], also model-based testing [33] can be
applied allowing for automatic test case generation based on a
behavioral test model specification. In the context of variant-rich
machines (challenge III) applying model-based testing for each
variant in isolation is not feasible in general. Although some
approaches for model-based testing of machines exist [34, 35,
36, 37], the application of model-based testing for variant-rich
aPS is still an open challenge.

Based on the software product line (SPL) paradigm [38], a
model-based testing approach for variant-rich machines is
developed [39] to address the quality assurance of variant-rich
systems. An SPL [38] represents a family of similar software
systems with the specification of commonality and variability by
means of customer-visible properties called features. A common
core as well as reusable development artifacts build the basis for
SPL engineering. Based on a 150% state chart test model, i.e., a
model comprising all variant-specific test models, where
elements are annotated with features to define for which variants
an element is valid, a complete test suite generation for all

variants is realized. For each generated test case, the set of
variants is derived for which the test case is reusable by
analyzing the feature annotations. This leads to an effort
reduction, i.e., the test case generation time and the test suite size
are reduced compared to the test suite generation for each variant
in isolation, where (reusable) test cases are generated for each
variant anew.

F. Research Goal F: Specifying and Recognizing Changes in

aPS Models

Model-based engineering of machines implies that different
types of models are systematically used as primary development
artifacts, which are iteratively developed and which heavily
evolve throughout the lifecycle of an aPS. Thus, a clear picture
of the changes between versions of a model is one of the most
essential preconditions to understand and plan the evolution of
such a model-based system (challenge III). Thereby, exact and
meaningful specifications of changes play two different roles;
(1) a prescriptive role, i.e. as specification of modifications to be
performed on an existing model version, and (2) a descriptive
role as a means to describe the observed difference between two
versions, notably past changes in the history of a model. Such
specifications of changes are a basis for many further tasks, e.g.
for propagating changes in variants of a model [40].

A variety of concepts, technologies and tools are involved in
the specification and the analysis of model evolution; their
development is another research goal. Firstly, we need
sophisticated approaches from the domain of model
transformation which enable the specification of high-level edit
operations (also known as delta operations), e.g. as offered by
visual editors or modern refactoring tools. Secondly, model
comparison techniques are required that deliver model
differences (or deltas) which are based on these high-level edit
operations. In other words, an obtained difference specifies how
the base version can be transformed to the revised one in a step-
wise manner, each step refers to an invocation of a high-level
edit operation.

Formalisms to define such operations and methods to
recognize the resulting changes mutually depend on each other.
First advances in this field, which are based on graph
transformation concepts, can be found in [41, 42].

G. Research Goal G: Regression Verification for PLCs

In the safety-critical context of aPS, evolution of software
must not introduce faults into the system behavior (challenge II).
If a complete specification of the desired system behavior is not
available, one possibility to ensure that the quality of the PLC
software is preserved during an evolution step is to compare the
new system version against the old version.

At this point, regression verification comes to the aid: using
formal methods (based on state-of-the-art model checkers),
regression verification statically analyzes the two software
versions and verifies that the new version does not introduce
unwanted behavior. This is done by conducting a formal proof
that the new plant software behaves equivalently to the old one.
Obviously, an evolution step usually also introduces desired
changes (optimizations, corrections, adaptations) into the system
behavior. It must hence be possible to specify precisely which
parts of the behavior are to be retained.

By design, regression verification cannot make a statement
about features newly introduced since there is no counterpart in
the old version to compare against. Regression verification is
thus a valuable approach that is complementary to other quality
assurance methods during evolution without replacing them. For
the parts where behavior is preserved, regression verification has
advantages over functional verification and testing: No formal
specification is needed to describe the desired safety property of
the new system. The old version, as the reference
implementation, serves this purpose. Moreover, no individual
test cases are needed and the state space is fully explored.

Based on an approach for regression verification on C-
code [43], a tool was implemented [44] that computes a model
regression verification condition for two IEC 61131-3 PLC
implementations. The tool has been applied successfully for the
PPU case study revealing a few flaws in the defined evolution
steps. One research challenge was the efficient encoding of the
differences between PLC software versions, between which
many things have not changed, into a formula that can serve as
model checking input. The approach allows for conditional
verification where equivalence only needs to be shown for those
parts of the state space satisfying a certain condition and for
relational verification where it is not equality of system states
but an equivalence relation specified by the user that is checked.

In many cases, considering the PLC software code as sole
input is not sufficient since the equivalence of the system
versions depends also on behavioral patterns of the aPS. In these
cases, behavioral models of physical entities are needed. It
remains an open research question how equivalence proofs
found during regression verification can be incorporated into the
holistic verification workflow as proposed in research goal A.

V. SYNERGETIC RESEARCH GOALS AND RESULTS

Based on the research goals and approaches described in
section IV, several synergetic research goals and results towards
managing the evolution of long-living aPS can be achieved by
combining these approaches (cp. Fig. 2, bottom).

A. Synergetic Research Goal A: Requirement-aware, Life-

cycle Spreading aPS

Due to market requests, aPS undergo an evolution process
that increasingly shifts traditional development activities for aPS
to later phases of their lifecycle, i.e. a machine is evolved in both
ways, a model-driven (anticipated) way in the development
phase as well as an unanticipated way during the operational
phase. Accordingly, the co-evolution challenges between
different models as well as towards the actual system arise
(challenge I). Furthermore, (semi-automated) requirement
verification mechanisms during evolution in various phases of a
machine’s life cycle are required to assure quality (challenge II).

An approach combining a posteriori and a priori verification
and highlighting synergetic effects is presented in [45] towards
requirement-aware, life-cycle spreading automation systems.
An interdisciplinary modeling framework for model-driven
engineering (research goal A) as well as a PLC-signal based
monitoring technique (research goal C) are applied that enhance
each other by comparing estimated and actual system
characteristics as verifiable requirement description. The
resulting, combined approach and its synergies are illustrated

in [45] by means of two scenarios of the PPU. Firstly, the
combined approach can be used for correcting estimations of
model-driven engineering by signal monitoring of actual values.
This facilitates to identify potentially dangerous situations
which might result from misestimated values in MDE but can be
identified by applying updated values for verifying functional
aspects. Secondly, it was shown that the combined approach can
be beneficial for proving intention and identifying change
sources. To identify the source of the change precisely,
sophisticated models are required which are not available for
monitoring approaches on the signal level, which is able to
detect anomalies precisely. A combined approach leverages the
identification of change sources over different lifecycle phases.

B. Synergetic Research Goal B: Study on Variability

Modeling of Multi-view Models for aPS

Both research goals A and B investigate different aspects of
applying multi-view models. Understanding each other’s
approaches in detail facilitates novel, synergetic aspects: a
collaborative study on variability modeling for multi-view
models in the aPS domain by means of delta modeling [25]
(challenge III). This synergetic research goal is driven by
knowledge exchange between different involved domain
experts: variability modeling experts and automation engineers.

In delta modeling, system variants and versions are
represented by explicit sets of modifications (the deltas). In
order to obtain the software for a particular version or variant of
an automation system, the necessary modifications captured in
the deltas are automatically applied to a designated core system
model. Until now, two case studies have been undertaken:
Firstly, the multi-view model of research goal A was applied to
the PPU [23]. It was shown that the multi-view model can be
used to model different variants of the PPU for generating PLC
state charts. Secondly, delta modeling is applied to the
interdisciplinary model [23] which was developed under
research goal A. The result is two-fold: (1) applying delta
modeling to such formal, interdisciplinary models is possible
and (2) for applying delta modeling, an eased way for defining
deltas in such models is necessary (cf. section E).

C. Synergetic Research Goal C: Identification of Co-

Evolution Rules for Co-Evolving aPS Models

Iterative development and changing requirements lead to
continuously changing models. In particular, this leads to the
problem of consistently co-evolving (challenge I) different
views of a model-based system. Whenever one model undergoes
changes, related models should evolve with respect to this
change. Domain engineers are faced with the huge challenge to
find proper co-evolution rules which can be finally used to assist
developers in the co-evolution process. By integrating aspects
from research goals C and F, an approach to learn about co-
evolution steps from a given history using an extensive analysis
framework [46] can be achieved. The approach uses models and
model transformations as described in research goal C, the
SiLift [47] framework as a result from the work described in
research goal F and the jointly developed co-evolution
framework. The approach is generic as it can be adapted to study
co-evolution of other types of models. For this purpose, the
framework needs the available model transformation rules for
each of the involved types of models as input.

D. Synergetic Research Goal D:Documentation of Changes in

Variability Models and Reasoning about their Semantic

Impact

By integrating research goals E and F, an automated
approach to (1) document the evolution of feature models and
(2) semantically reason about changes between feature models
by using complex edit operations in order to describe the
structural changes between two versions of a feature diagram
can be achieved. Therefore, a set of typical edit operations on
feature diagrams using the model transformation language
Henshin was specified. Henshin is based on graph
transformation concepts and allows to precisely specify edit
operations as so-called edit rules. These edit rules are used by
the model differencing engine SiLift [47] to get a meaningful
description of feature diagram differences. Furthermore, a logic-
based formal framework was developed which allows to reason
about the semantic impact of feature diagram changes.

In particular, complex edit operations and differences which
are described in terms of these edit operations were categorized
using the categories proposed in [48] to reason about the
semantic impact of syntactic changes, i.e., classifying them as
refactoring, specialization, generalization, or arbitrary edit.
Later, this approach will be used in the field of regression testing
to indicate how to change a test suite after changing the SPL.

E. Synergetic Research Goal E: Semi-automated Delta

Extraction by Means of Model Differencing

A delta is a specification of how to transform one valid
variant (called the source variant) of a model being written in
some modeling language into another variant (called target
variant). The manual specification of a large set of deltas is
tedious and prone to errors. To that end, research goal B and
research goal F can be combined to a synergetic contribution to
semi-automated delta extraction. The basic idea is that valid
variants of the SPL are provided by the results from research
goal B and deltas are defined by using techniques from the
domain of model differencing (research goal F). With this
approach, the definition of a delta is achieved in two steps: First,
a particular source variant is modified using a standard editor for
that language (e.g. workflow, architecture and behavior
perspectives as introduced in section IV.B) such that it finally
becomes the desired target variant. Secondly, a delta is
automatically extracted by comparing the original with the
revised version of the model. The result of the comparison is
transformed into an executable delta. Thus, the definition of a
delta becomes much easier and far more reliable.

F. Synergetic Research Goal F: Incremental Model-based

Testing of Variant-rich aPS

aPS evolve continuously, e.g., based on software or
hardware updates. To guarantee quality assurance after
evolution (challenge II), testing strategies are required focusing
on changes and their impacts as, e.g., regression testing. In the
context of variant-rich systems (challenge III), regression testing
further allows for an incremental testing process by exploiting
the reuse potentials when stepping from one variant to another.

Lochau et al. [49] present an approach for incremental
testing of variant-rich systems by combining model-based and
regression testing on the component as well as integration testing

level. Delta modeling [25] (research goal B) is used to specify
changes between component state chart models and architectural
models by means of regression model deltas. Those regression
deltas build the basis for the derivation of changes also for the
remaining test artifacts, i.e., the set of test goals, the test suite
and a test plan captured in a test artifact regression delta. Based
on a complete test suite comprising reusable test cases for each
variant (research goal E), the test artifact regression deltas
allows for an incremental test artifact application when stepping
from one variant to a subsequent one. By exploiting the reuse
potentials of test artifacts and test results, the incremental testing
process leads to a reduction of the testing effort and builds the
basis for quality assurance after evolution. Lity et al. [50]
propose an approach for incremental model slicing based on the
concepts of delta modeling applicable as test case selection
technique for regression testing of variant-rich systems.

VI. CONCLUSION AND OUTLOOK

As aPS are often in operation for up to three decades, they
evolve during their lifecycle. In this paper, we illustrated some
challenges and selected research goals regarding evolving aPS,
showed exemplary approaches to address these challenges and
identified how these research goals can lead to synergetic
contributions in the field of software evolution for aPS.

First results regarding managing the (co-)evolution of long-
living aPS could be achieved – e.g., in the fields of consistency
mechanisms, verification, validation and testing as well as
variability modeling – and transferred and evaluated at a simple
lab size aPS. The Pick and Place Unit [4] as an open case study
served as a valuable demonstration case for the approaches. In
between sixteen options for the adaptation of the PPU case study
for future research, online model and program changes, safety
aspects, deployment, i.e. distributed automation systems, and a
more challenging technical process will be prioritized. Online
changes will address the evolution in the operation phase of the
aPS as it is well known on classical PLC platforms.

ACKNOWLEDGEMENTS

This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP 1593: Design
For Future – Managed Software Evolution (http://www.dfg-
spp1593.de/).

REFERENCES

[1] ZVEI, “Life-Cycle-Management für Produkte und Systeme in der
Automation,” Online:
http://www.zvei.org/Publikationen/Leitfaden_LifeCycle.pdf.

[2] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a
taxonomy of software change,” J. Softw. Maintenance Evolution:
Research and Practice, vol. 7, no. 5, pp. 309–332, 2005.

[3] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Rösch, “Challenges of
parallel evolution in production automation focusing on requirements
specification and fault handling,” Automatisierungstechnik, vol. 62,
no. 11, pp. 755–826, 2014.

[4] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Researching
evolution in industrial plant automation: Scenarios and documentation of
the pick and place unit,” TUM-AIS-TR-01-14-02, Tech. Rep., 2014.

[5] B. Vogel-Heuser, “Usability experiments to evaluate UML/SysML-based
model driven software engineering notations for logic control in
manufacturing automation,” J. Softw. Eng. Appl., vol. 7, no. 11, pp. 943–
973, 2014.

[6] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke, S. Kowalewski,
M. Wollschlaeger, and P.Göhner, “Challenges for software engineering
in automation,” J. Softw. Eng. Appl., vol. 7, no. 5, pp. 440–451, 2014.

[7] C. Haubeck, I. Wior, L. Braubach, A. Pokahr, J. Ladiges, A. Fay, and
W. Lamersdorf, “Keeping pace with changes – towards supporting
continuous improvements and extensive updates in production
automation software,” Electron. Commun. EASST, vol. 56, 2013.

[8] C. Sünder, V. Vyatkin, and A. Zoitl, “Formal verification of downtimeless
system evolution in embedded automation controllers,” ACM Trans.
Embed. Comput. Syst., vol. 12, no. 1, pp. 17:1–17:17, 2013.

[9] J. Barbosa, P. Leitão, E. Adam, and D. Trentesaux, “Dynamic self-
organization in holonic multi-agent manufacturing systems: The
ADACOR evolution,” Computers in Industry, vol. 66, pp. 99–111, 2015.

[10] G. Frey and L. Litz, “Formal methods in PLC programming,” in IEEE Int.
Conf. Syst. Man Cybern., vol. 4, 2000.

[11] J. Ladiges, C. Haubeck, A. Fay, and W. Lamersdorf, “Evolution
management of production facilities by semi-automated requirement
verification,” Automatisierungstechnik, vol. 62, no. 11, 2014.

[12] N. Jazdi, C. Maga, and P. Göhner, “Reusable models in industrial
automation: Experiences in defining appropriate levels of granularity,” in
IFAC World Congr., 2011.

[13] K. Thramboulidis, “Overcoming mechatronic design challenges: The 3+1
SysML-view model,” J. Comput. Sci. Technol., pp. 6–14, 2013.

[14] S. Feldmann, J. Fuchs, and B. Vogel-Heuser, “Modularity, variant and
version management in plant automation – future challenges and state of
the art,” in Int. Design Conf., Dubrovnik, Croatia, 2012, pp. 1689–1689.

[15] V. Vyatkin, “Software engineering in factory and energy automation:
State of the art review,” IEEE Trans. Ind. Informat., vol. 9, no. 3, pp.
1234–1249, 2013.

[16] B. Vogel-Heuser, S. Feldmann, T. Werner, and C. Diedrich, “Modeling
network architecture and time behavior of distributed control systems in
industrial plant automation,” in IEEE Ann. Conf. Ind. Electron. Soc.,
2011.

[17] D. Witsch, B. Vogel-Heuser, J. M. Faure, and G. Marsal, “Performance
analysis of industrial ethernet networks by means of timed model-
checking,” in IFAC Symp. Inf. Control Problems Manuf., 2006.

[18] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: A verification
platform for programmable logic controllers,” in IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2012, pp. 338–341.

[19] T. Mertke and G. Frey, “Formal verification of PLC programs generated
from signal interpreted petri nets,” in IEEE Int. Conf. Syst. Man Cybern.,
vol. 4, 2001, pp. 2700–2705.

[20] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe,
and O. Stursberg, “Verification of PLC programs given as sequential
function charts,” ser. Lecture Notes in Computer Science. Springer, 2004,
vol. 3147, pp. 517–540.

[21] C. Legat, J. Mund, A. Campetelli, G. Hackenberg, J. Folmer, D. Schütz,
M. Broy, and B. Vogel-Heuser, “Interface behavior modeling for
automatic verification of industrial automation systems’ functional
conformance,” Automatisierungstechnik, vol. 62, pp. 815–825, 2014.

[22] G. Hackenberg, A. Campetelli, C. Legat, J. Mund, S. Teufl, and B. Vogel-
Heuser, “Formal technical process specification and verification for
automated production systems,” ser. Lecture Notes in Computer Science.
Springer, 2014, vol. 8769, pp. 287–303.

[23] M. Kowal, C. Legat, D. Lorefice, C. Prehofer, I. Schaefer, and B. Vogel-
Heuser, “Delta modeling for variant-rich and evolving manufacturing
systems,” in Int. Works. Modern Softw. Eng. Methods Ind. Autom., 2014.

[24] M. Lehman, “On understanding laws, evolution, and conservation in the
large-program life cycle,” J. Syst. Softw., vol. 1, pp. 213–221, 1980.

[25] I. Schaefer, “Variability modelling for model-driven development of
software product lines,” in Int. Workshop Variability Modeling Softw.-
intensive Syst., 2010.

[26] M. Kowal, I. Schaefer, and M. Tribastone, “Family-based performance
analysis of variant-rich software systems,” in Int. Conf. Fundamental
Approaches Softw. Eng., 2014.

[27] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced concepts and tools for in-place EMF model transformations,”
in ACM/IEEE Int. Conf. Model Driven Eng. Languages Syst., 2010.

[28] A. Filieri, L. Grunske, and A. Leva, “Lightweight adaptive filtering for
efficient learning and updating of probabilistic models,” in Int. Conf.
Softw. Eng., 2015.

[29] M. Bellgran and E. K. Säfsten, Production Development: Design and
Operation of Production Systems. London: Springer, 2010.

[30] C. Haubeck, W. Lamersdorf, J. Ladiges, and A. Fay, “An active service-
component architecture to enable self-awareness of evolving production
systems,” in IEEE Int. Conf. Emerg. Technol. Factory Autom., 2014.

[31] J. Ladiges, C. Haubeck, A. Fay, and W. Lamersdorf, “Semiautomated
decision making support for undocumented evolutionary changes,” in
Workshop Softw. Reeng. Evolution, 2014.

[32] ——, “Operationalized definitions of non-functional requirements on
automated production facilities to measure evolution effects with an
automation system,” in IEEE Int. Conf. Emerg. Technol. Factory Autom.,
2013.

[33] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, 2007.

[34] R. Hametner, B. Kormann, B. Vogel-Heuser, Winkler, and A. Zoitl,
“Automated test case generation for industrial control applications,” in
Recent Advances in Robotics and Automation, ser. Studies in
Computational Intelligence. Springer, 2013, vol. 480, pp. 263–273.

[35] T. Hussain and G. Frey, “UML-based development process for IEC 61499
with automatic test-case generation,” in IEEE Int. Conf. Emerg. Technol.
Factory Autom., 2006.

[36] B. Kumar, B. Czybik, and J. Jasperneite, “Model-based TTCN-3 testing
of industrial automation systems – first results,” in IEEE Int. Conf. Emerg.
Technol. Factory Autom., 2011.

[37] S. Rösch, D. Tikhonov, D. Schütz, and B. Vogel-Heuser, “Model-based
testing of PLC software: Test of plants’ reliability by using fault injection
on component level,” in IFAC World Congr., 2014.

[38] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[39] M. Lochau, J. Bürdek, S. Lity, M. Hagner, C. Legat, U. Goltz, and
A. Schütt, “Applying model-based software product line testing
approaches to the automation engineering domain,”
Automatisierungstechnik, vol. 62, no. 11, pp. 771–780, 2014.

[40] T. Kehrer, U. Kelter, and G. Taentzer, “Propagation of software model
changes in the context of industrial plant automation,”
Automatisierungstechnik, vol. 62, no. 11, pp. 803–814, 2014.

[41] ——, “A rule-based approach to the semantic lifting of model differences
in the context of model versioning,” in IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2011.

[42] ——, “Consistency-preserving edit scripts in model versioning,” in
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2013.

[43] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich,
“Automating regression verification,” in IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2014.

[44] A. Weigl, “Regression verification for programmable logic control
software,” Master’s thesis, Karlsruhe Institute of Technologie, 2015.

[45] C. Haubeck, J. Ladiges, J. Fuchs, C. Legat, W. Lammersdorf, A. Fay, and
B. Vogel-Heuser, “Interaction of model-driven engineering and signal-
based online monitoring of production systems,” in IEEE Ann. Conf. Ind.
Electron. Soc., 2014.

[46] S. Getir, M. Rindt, and T. Kehrer, “A generic framework for analyzing
model co-evolution,” in Int. Workshop Models Evolution, 2014.

[47] T. Kehrer, U. Kelter, M. Ohrndort, and T. Sollbach, “Understanding
model evolution through semantically lifting model differences with
silift,” in IEEE Int. Conf. Softw. Maintenance, 2012.

[48] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits to feature
models,” in IEEE Int. Conf. Softw. Eng., 2009.

[49] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, and U. Goltz, “Delta-
oriented model-based integration testing of large-scale systems,” J. Syst.
Softw., vol. 91, pp. 63–84, 2014.

[50] S. Lity, H. Baller, and I. Schaefer, “Towards incremental model slicing
for delta-oriented software product lines,” in IEEE Int. Conf. Softw. Anal.
Evolution Reeng., 2015.

