Noname manuscript No.
(will be inserted by the editor)

KeYGenU:

Combining Verification-Based and Capture and Replay
Techniques for Regression Unit Testing

Bernhard Beckert -
Amiram Yehudai

Received: date / Accepted: date

Abstract Unit testing plays a major role in the soft-
ware development process. Two essential criteria to
achieve effective unit testing are: (1) testing each unit
in isolation from other parts of the program and (2)
achieving high code coverage. The former requires a lot
of extra work such as writing drivers and stubs, whereas
the latter is difficult to achieve when manually writing
the tests. When changing existing code it is advocated
to run the unit tests to avoid regression bugs. However,
in many cases legacy software has no unit tests. Writing
those tests from scratch is a hard and tedious process,
which might not be cost-effective.

This paper presents a tool chain approach that com-
bines verification-based testing (VBT) and capture and
replay (CaR) test generation methods. We have built a
concrete tool chain, KeYGenU, which consists of two
existing tools — KeY and GenUTest. The KeY sys-

An earlier and shorter version of this paper was presented at
the 4th International Conference on Tests and Proofs, Malaga,
Spain [19].

B. Beckert

Karlsruhe Institute of Technology, Department of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

E-mail: beckert@kit.edu

C. Gladisch

Karlsruhe Institute of Technology, Department of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

E-mail: gladisch@ira.uka.de

S. Tyszberowicz

School of Computer Science, The Academic College of Tel
Aviv Yaffo

61083 Tel Aviv Yaffo, Israel

E-mail: tyshbe@tau.ac.il

A. Yehudai

School of Computer Science, Tel Aviv University
69978 Tel Aviv, Israel

E-mail: amiramy@tau.ac.il

Christoph Gladisch - Shmuel Tyszberowicz -

tem is a deductive verification and test-generation tool.
GenUTest automatically generates JUnit tests for a cor-
rectly working software. This combination provides iso-
lated unit test suites with high code-coverage. The gen-
erated tests can also be used for regression testing.

1 Introduction

We present an approach for the automatic generation of
unit and regression tests in the context of verification.
Our goal is to improve test suites that are generated by
verification-based testing (VBT) tools and capture and
replay (CaR) tools. The proposed approach maintains
the high test coverage provided by VBT tools while
at the same time reduces the complexity of the tests
through automatic generation of mock objects.

Verification-based Testing

Testing techniques are powerful for detecting software
faults and for gaining some degree of confidence that the
program under test (PUT) behaves correctly in its run-
time environment. Formal verification is a powerful ap-
proach for ensuring functional correctness of software.
Verification techniques that use symbolic execution and
theorem proving, for example [2,7,6], can prove com-
plex properties of a program when it is sufficiently an-
notated.

The combination of software verification and testing
techniques is increasingly encouraged due to their com-
plementary strengths. Failing verification attempts do
not necessarily imply a fault in the program. To help the
user in finding the cause of a failure, some verification
tools have extensions for test case generation, e.g., [13,
8,34]. Such VBT techniques use rich information about

Bernhard Beckert et al.

[]
@
.
=]
[F]
[a]
)
=
=
2
£
[m]
=]
=
=
o
[+ F]
l—
[- Dependent - State
O - Mon dependent - Stateless

Fig. 1 A typical unit dependency graph.

the program gained from the verification process. These
tests are strong at detecting software faults during the
implementation and verification phases, and to further
increase the confidence in the final software product.
Furthermore, verification techniques based on model
checking, e.g. [41,7], can also be regarded as VBT tech-
niques.

Unit Testing

Unit testing plays a major role in the software devel-
opment process. Unit tests explore particular behaviors
of the units that are tested. They consist of a fixed se-
quence of method invocations with fixed arguments. We
refer to the class that one or more of its methods are
tested as the class under test, hereafter CUT. A group
of related tests is called a test suite [26]. Extreme Pro-
gramming (XP) [47] adopts an approach that requires
that all the software classes have unit tests; code with-
out unit tests may not be released.

Unit testing enables programmers to refactor [16]
code safely and make sure it still works, thus assisting
also the maintenance phase — the most expensive part
of the software life cycle. Regression bugs caused by
changes to the system will be uncovered by rerunning
the tests. It is even claimed that “refactoring cannot be
done effectively without a set of automated developer
tests” (e.g., [12, page 200]). Unit tests also document
the use of the units, thus providing an example to pro-
grammers on how to correctly use a particular unit.

Writing unit tests is a hard and time-consuming
task. Two independent characteristics of the CUT in-
fluence the level of difficulty of writing unit tests: (i) the
number of units it depends on, and (ii) the complexity
of its state. Figure 1 shows a typical dependency graph
of units in a system. The circle shaped nodes represent
units not depending on other units in the SUT; test-

ing those units is usually quite simple. The rectangle-
shaped nodes represent units that do depend on other
units, and thus are harder to test. Testing units that
have states requires some setup code that enables to
bring the unit to the desired state before running a
particular test case.

The behavior of a CUT usually depends on inter-
nal or external services, some of them not even existing
yet. Such services can be writing to a database sys-
tem, interaction with a web-services, calling a method
to perform calculation, etc. Testing units that depend
on other units in the system requires the use of mock
objects [29] in order to test the unit in true isolation.
A mock object is a unit-testing pattern [5] that is clas-
sified under the category of simulation patterns. Mock
objects are used to simulate or mock the behavior of a
real unit. Mock objects respond to method calls in the
same manner as the real units would have responded.
However, mock objects do not perform any action and
immediately return to the caller. They only work for
values occurring in a test run and not in general. Run-
ning tests in isolation using mock objects highly in-
creases the speed of test execution.

The number of unit tests for a given project may be
very large. A unit-testing framework should be used to
manage unit tests effectively, execute them frequently,
and analyze their results [47]. This framework auto-
matically executes all unit tests and reports their re-
sults. One of the most popular unit testing frameworks
is JUnit [50,26], which helps to standardize the way
unit tests are written and executed. JUnit automates
the execution of unit tests in a convenient manner.

A set of unit-tests is considered good if — besides
testing units in isolation — the tests provide high cov-
erage [21]. High code coverage increases confidence in
the test results.

Our Approach and Contribution

VBT techniques use information gained from a verifi-
cation attempt to generate test suites. These test sets
may either be small and targeted at revealing particular
program faults, or they may be larger and provide high
code coverage. We found that more traditional test-
ing techniques have complementary strengths to VBT
techniques. One such technique is capture and replay
(CaR), whose strengths are the generation of isolated
unit tests [32,33] and regression test oracles [32,43,11].

Some existing CaR tools enable to create mock ob-
jects, facilitating the isolation of the unit under test.
On the other hand, CaR tools do not provide means
to achieve high code coverage. They can therefore ben-
efit from being combined with coverage-guaranteeing

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 3

tools such as VBT tools. Another advantage of using
VBT tools is that the verification process can be used
to ensure that only correct behavior is captured by the
CaR tool. We identified that high code coverage and
isolation are separate issues. They can be achieved in-
dependently using the two groups of techniques which
have complementary strengths. Therefore we concluded
that those groups of techniques are ideal candidates for
the following tool-chain. The first phase produces, for a
given system, a test suite with high code coverage. The
second phase captures the various executions of the pro-
gram, monitored by the output of the first phase. The
output of the second phase is a set of unit tests with
high coverage, which uses mock objects to test the units
in isolation.

We have created KeYGenU, a concrete tool chain
which combines two existing tools that have been devel-
oped by the authors independently and with different
goals in mind. The tools are the VBT tool KeY and the
CaR tool GenUTest. With KeY we can obtain the de-
sired high coverage of the code. However, the generated
tests are not isolated, thus running them would result
in a high cost of testing. We therefore use these tests
as input to GenUTest, an automatic unit test genera-
tor, that turns the tests into truly isolated unit tests by
creating mock-object entities.

The rest of the paper is organized as follows. We first
introduce both techniques that we have used, namely
VBT (Section 2.1) and CaR (Section 2.2). The comple-
mentary strengths of the VBT and CaR techniques is
discussed in Section 2.3. Section 3 presents a novel tool-
chain approach for unit regression testing in the context
of verification and for unit regression testing in general.
KeYGenU combines two existing tools: GenUTest, de-
scribed in Section 4, and KeY, presented in Section 5.
We have applied KeYGenU to a small banking applica-
tion, providing a proof of concept for our approach, as
described in Section 6. In Section 7 we describe related
work and we conclude with Section 8.

2 The Techniques Used

In this section we describe the two approaches that
we have used to for test generation: verification-based
testing (VBT, Section 2.1) and capture and replay
(CaR, Section 2.2). Then we discuss the complemen-
tary strength of these approaches (Section 2.3).

2.1 Verification-based Testing

Verification can prove the correctness of a program with
respect to a specification and software faults can be de-

tected deductively based on a failed proof attempt. The
question that may then arise is: Why should testing be
integrated into this approach? We consider three use
cases in which VBT complements verification and de-
ductive fault detection.

Firstly, tests are helpful to find software faults be-
cause when a program is executed in its runtime en-
vironment, i.e., not symbolically, a program debugger
can be utilized. When the deductive software fault-
detection approach detects the existence of a bug, it
also provides the program execution trace which reveals
the fault and a counter example which represents the
initial state of the program to reveal the fault. This in-
formation can, then, be used to initialize a program in
its runtime environment enabling the use of a program
debugger to find the software fault. Secondly, testing
further increase the confidence in the correct behavior
of a program — even if a verification attempt of the pro-
gram was successful. It is usually not practical to apply
formal verification rigorously to all relevant components
that are responsible for the behavior of the program,
e.g., the compiler and the hardware and software envi-
ronment of the program. Thirdly, as software evolves,
existing tests can be quickly repeated for regression
testing. Regression testing is used to ensure that modi-
fications made to software, such as adding new features
or changing existing features, do not worsen (regress)
existing software features that should not change. The
construction of proofs is more expensive and therefore
it is reasonable to run a set of tests before proceeding
to a verification attempt after the software has been
modified.

With testing also other problems of a program can
be detected such as high resource consumption or non-
termination of the program. However, with our ap-
proach these properties are not explicitly checked as
our approach is to check if the program satisfies its
functional requirement specification.

Different software testing techniques exist for all
kinds of software, for different sizes of software, for dif-
ferent phases of a software life cycle, and for testing
different kinds of properties. It is therefore clear that
there is no best overall testing technique. The VBT
technique can be used as a stand-alone test generation
method that uses the underlying verification technol-
ogy in order to analyze the program but not with the
intention to verify it, but the intention to provide input
for various testing techniques. VBT is best applicable
to programs that could in principle be verified with the
underlying verification technology. These programs are
typically much smaller than those programs that are
typically tested by traditional testing techniques. How-
ever, in contrast to traditional approaches, VBT checks

Bernhard Beckert et al.

more complex properties as they can be expressed in
first-order logic and the code coverage achieved by VBT
is higher. The VBT technique described in [13,14] gen-
erates test suites that are used in KeY (see Section 5).

2.2 Capture and Replay

CaR is an approach that allows to generate unit tests
automatically. CaR tools, e.g. [44,33,31,10], capture
and record method sequences, argument values, return
values, and thrown exceptions which are observed in
real (or test) executions of the software. The recorded
data can be used to generate test cases and/or mock
objects. These tools can also be used for the creation
of test assertions. This is done by comparing the values
obtained during the execution of tests with the recorded
values. Unit-test creation using CaR tools requires gen-
erating test inputs, i.e., method call sequences, and pro-
viding test assertions which determine whether a test
passes.

The CaR technique allows to record software execu-
tions and to replay them later. A common use of this
technique is in regression testing of graphical user inter-
faces (GUIs). CaR tools, e.g., WinRunner [48], record
a sequence of GUI actions in the form of a test script.
This script is replayed to verify the behavior of new ver-
sions of the GUI. Those tools may also automate the
comparison of actual and expected screen output.

CaR tools can also record cross system interactions
and inner software interactions. For instance, jRap-
ture [35] is a tool for capturing and replaying the execu-
tions of Java programs during beta testing. It captures
interactions between a Java program and the system,
including GUI, file, and console inputs, etc. The cap-
tured data can be analyzed by testing personnel. The
process provides feedback and information that can not
be provided by regular feedback and bug reports sub-
mitted by beta testers. Tools such as SCARPE [31] cap-
ture and replay inner software interactions of Java ap-
plications. SCARPE allows to capture events that oc-
cur in the field. These can then be used to generate test
cases, to perform expensive dynamic analysis, and even
to create unit tests.

There are various approaches to implement CaR
tools. We focus on instrumentation techniques. i.e.,
techniques that change a program in order to modify or
to extend its behavior. For example, profiling tools such
as VTune [49] instrument a given program with special
code. When the instrumented program is executed, per-
formance parameters are measured and recorded. The
recorded data is analyzed by the tool to assist develop-
ers in finding performance bottlenecks.

In order to correctly replay executions, CaR tools
must be able to capture and record execution data in
a comprehensive and precise manner. This requires so-
phisticated and extended modification of the given pro-
gram’s bytecode. The modifications may include chang-
ing or replacing the Java runtime libraries, adding in-
terfaces, adding new class members and methods to ex-
isting classes. Special language constructs such as re-
flection, callbacks, native calls, classloader, etc., must
also be handled by these techniques.

2.3 Complementary Strengths of VBT and CaR
Techniques

In the introduction we have described the complemen-
tary strengths of verification and testing in general. The
two approaches should be combined to achieve reliable
software and to optimize the verification and testing
process. In this section we discuss, by means of simple
examples, advantages and disadvantages of CaR tools
and coverage-guaranteeing tools like VBT tools that are
used in our tool-chain approach.

Regression Test Oracles Code that checks whether the
result of a test-run is as expected is called test oracle.
A regression-test oracle checks if the result is the same
as in a previous version of the tested software.

Suppose there exists a well functioning applica-
tion P. Let evalExam(int points, int id) be one of
the methods of P returning a boolean value.

— Java (2.1)

1 public class Exam{

2 boolean[] passed;

3 public boolean evalExam(int points,
4 int id){
5 boolean res=false;

6 if (points > 50){

7 res=true;

s 3

9 passed[id] = res;

10 return res;

11 }

12 }

JAvA —

Suppose that P has no regression test oracles and that
P has been changed. Regression testing should be per-
formed to avoid regression bugs. A CaR tool (e.g.,
[32,11]) can be used to create regression tests for the
system. When executing evalExam(40,2), for exam-
ple, the CaR tool captures the return value of this
method which is false. It then creates a unit test

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 5

that executes evalExam(40,2) and compares the re-
sult with the previously observed value false. If, in the
course of changes, the user mistakenly changes Line 5
to res=true;, the generated test will detect the bug as
the return value is true and it differs from the previ-
ously captured return value false.

Assume now that the user enters a mistake in Line 7
rather than in Line 5, by changing it to res=false;.
Then the generated unit test does not detect the bug,
because the execution of this branch was not captured.

Code Coverage Using a VBT tool on the very same
program produces a unit test suite with a high code
coverage, i.e., a test is generated for both execution
paths through evalExam. In order to create meaningful
tests using the VBT tool, the user has to provide a
requirement specification for evalExam. In our example
we use the following JML requirement specification:

— Java + JML (2.2)

/*@ public normal_behavior
ensures \result ==
(points>507true:false); @/
public boolean evalExam(int points, int id){

}
Java + JML —

Let us assume now that Line 5 has been changed
to res=true; or that Line 7 has been changed to
res=false;. In both cases the unit test suite generated
by the VBT tool detects the bug.

By contrast, some CaR regression testing tools do
not require writing a requirement specification, or even
writing unit tests in advance, but there is a coverage
problem with using CaR tools — unit tests are created
only for the specific program run executed by the user
or by a system test.

Testing in Isolation Suppose the user changes the im-
plementation of the method evalExam() by replacing
the array boolean[] passed by a database manage-
ment system. Line 9 is replaced by a method call up-
dating the database:

— Java (2.3)

3 public boolean evalExam(int points,
4 int id){

5 boolean res=false;

6 if (points > 50){

7 res=true;

s X

0 passedDB.write(id,res);

10 return res;

11 }
JAvA —

The strength of VBT tools is the generation of test
inputs that ensure a high test coverage. The tests, how-
ever, are not isolated unit tests because the execution
of evalExam leads to the execution of passedDB.write.

Some existing CaR tools (e.g., [33,32]) can auto-
matically create unit tests, using mock objects (see
Section 3.1). This allows to perform unit testing in
isolation, which in this case means that the gener-
ated unit test results in the execution of evalExam but
not of passedDB.write(id,res). Instead of calling the
method passedDB.write(id,res) the generated mock
object is activated which mimics a subset of input and
output behavior of the database.

Note that the assumption is that the captured be-
havior of the object for which a mock object is created,
e.g. the call to the database in Line 9, is correct. This is
similar to the rely-guarantee assumption made in mod-
ular verification such as in Design by Contract [30].

3 The Proposed Approach

In this section we describe the approach we have chosen
to generate isolated unit tests which also provide high
code coverage. We then discuss the advantages and lim-
itations of this approach.

We have analyzed the advantages and the problems
of verification-based testing (VBT) tools and of cap-
ture and replay (CaR) tools separately. VBT tools sup-
port the verification process by helping to find software
faults. They can generate test cases with high code cov-
erage. These tools, however, usually generate neither
mock objects nor regression test oracles that are based
on previous program executions. CaR tools are strong
at abstracting complicated program behavior and at
automatically generating regression-test oracles. This,
however, can be done only for specific program runs,
that have to be provided somehow. The comprehen-
siveness of the tests generated depends on the specific
software execution. Therefore the tests cannot guaran-
tee a high coverage. In contrast, VBT tools can generate
program inputs for distinct program runs.

From this analysis it becomes clear that these kinds
of tools should be combined into a tool chain, where
the output of the VBT tool serves as input to the CaR
tool, as shown in Figure 2.

Our approach consists of two steps. In the first one
the user tries to verify the program P using a verification
tool that supports VBT. When a verification attempt
fails, VBT is activated to generate a unit test suite JT

Bernhard Beckert et al.

improve/debug
£ o
p VBT tool CaR tool > JT’
coverage, - JT isolation, -
correctness regression oracle_.--~ .

) next Version e

P

Fig. 2 The creation of a tool chain and its application to unit
regression testing.

for P. The so generated tests help in debugging P and
the process is repeated until P is verifiable. When the
verification succeeds the VBT tool is activated to gen-
erate a test suite JT that ensures coverage of the code
of P. The generated test suite consists of one or more
executable programs that are provided as input to the
CaR tool. Thus when JT is executed the execution of
the code under test is captured. The CaR tool in turn
creates another unit test suite — JT”. If the CaR tool re-
plays the observed execution of each test, consequently
the high code coverage of JT is preserved by JT’. Fur-
thermore, JT’ benefits from the improvements that are
gained by using the CaR tool. Depending on the ca-
pabilities of the CaR tool this can be the isolation of
units and the extension of tests with regression-test ora-
cles. Hence the tool chain employs the strengths of both
kinds of tools involved. The test suite JT’ can then be
used to regression test P’ that is the next development
version of P.

3.1 Building a Tool-chain

The details of building and using a concrete tool chain
depend on the particular chosen VBT and CaR tools.
Hence, the approach is described generally. In this sec-
tion we describe different tools that could be used in a
concrete tool chain and describe a concrete tool chain
in Section 6.

Step I The goal of this step is to ensure the correct-
ness of the code and to generate the test suite JT that
ensure a high execution coverage. This can be achieved
by using verification tools with their VBT extensions.
In the following we describe such tools.

Bogor/Kiasan combines symbolic execution, model
checking, theorem proving, and constraint solving to
support design-by-contract reasoning of object-oriented
software [7]. Its extension that we categorize as VBT
is KUnit [8]. The tool focuses on heap-intensive Java
programs and uses a lazy initialization algorithm with

backtracking. The algorithm is capable of exploring
all execution paths up to a bound on the configura-
tions of the heap. KUnit then generates test data for
each path and creates JUnit test suites. Similar fea-
tures are provided by the KeY tool [2] that we de-
scribe in more detail in Section 5. ESC/Java2 [6] is
a static checker that can automatically prove proper-
ties that go beyond simple assertions. A VBT exten-
sion of ESC/Java2 is Check’n’Crash [34]. It generates
JUnit tests for assertions that could not be proved us-
ing ESC/Java2. In this way false warnings featured by
ESC/Java2 are filtered out. This approach could be ex-
tended by providing unsatisfiable assertions that would
stimulate Check’n’Crash to explore all execution paths
of the PUT. Java PathFinder [41] is an explicit-state
model checker. It is build on top of a custom-made Java
Virtual Machine with nondeterministic choice and fea-
tures the generation of test inputs. Thus it can be com-
bined with a unit testing frame work like JUnit [26] to
create JT.

Step II The goal of the second step is to further im-
prove the test suite JT using a CaR tool. When JT is
executed, the CaR tool executes and captures each path
through the method, generating JT’, a test suite for
the PUT with the same coverage provided by JT. De-
pending on the used CaR tool, JT’ may be a unit test
suite supporting isolation or it may be extended with
regression-test oracles.

In [33], test factoring is described that turns sys-
tem tests into isolated unit tests by creating mock ob-
jects. For the capturing phase a wrapper class is created
that records the program behavior to a transcript, and
the replay step uses a mock class that reads from the
transcript. The approach addresses complications that
arise from field access, callbacks, object passing across
boundaries, arrays, native method calls, and class load-
ers. The generation of mock objects is also supported by
KUnit. The approaches, however, have different prop-
erties because in the latter approach mock objects are
created from specifications instead of from runtime ex-
ecutions.

Some VBT tools can generate test oracles from the
specifications that are used in the verification process.
Such oracles are suitable for regression testing. Yet, not
all parts of the system that are executed by JT may
be specified. Our approach can be even applied if no
test oracles are generated for JT. In this case a CaR
tool like Orstra [43] can be used. During the captur-
ing phase, Orstra collects object states to create as-
sertions for asserting behavior of the object states. It
also creates assertion that check return values of pub-
lic methods with non-void returns. The assertions are

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 7

then checked when the system is modified. In [11], a
CaR approach is presented that creates regression tests
from system tests. Components of the exercised system
that may influence the behavior of the targeted unit
are captured. A test harness is created that establishes
the prestate of the unit that was encountered during
system test execution. From that state, the unit is re-
played and differences with the recorded unit poststate
are detected.

3.2 Advantages and Limitations

We regard our approach from two perspectives. On the
one hand, CaR tools can be used to further increase
the quality of VBT. On the other hand, CaR tools can
benefit from being combined with VBT tools. The VBT
generated tests can be used to drive a program’s execu-
tion to ensure the coverage of the whole code. From this
perspective our approach can be generalized by allow-
ing general coverage ensuring tools for the first phase.
However, for CaR tools, such as [11,43,32], it is impor-
tant that during the capture phase only correct pro-
gram behavior is observed (see Section 2.3) — and this
can be best ensured when a verification tool is used in
the first phase. In modular verification different parts of
a program are verified separately. The more parts of the
program are verified the higher is our confidence in the
correctness of the generated regression test oracles and
in the correct behavior of the generated mock objects.
If a fault is detected in a part of the program for which
a mock object was used, then after fixing the code the
process has to be repeated in order to create new mock
objects reflecting the new behavior. Similarly, modular
proofs have to be updated.

The approach combines also the limitations of the
involved tools. CaR-based regression testing tools can
discover changes in the behavior when a program is
modified, but they cannot distinguish between inten-
tional and non-intentional changes. Another problem
occurs with CaR tools that generate mock entities. It is
often unclear under what preconditions the behavior of
a mock entity is valid when the mock entity is executed
in a state not previously observed by the CaR tool.
Some advantages and limitations are specific to the par-
ticular tools and techniques. So are also the choices of
the test target and the mock objects. We advise the
reader to refer to the referenced publications.

Verification tools are typically applicable to much
smaller programs than testing tools. The process of ver-
ification can be expensive, therefore our main target is
quality assurance of small systems that are safety or
security critical, i.e. where verification is cost-effective.

Objegt

Fig. 83 The traditional test selection (left) versus our ap-
proach (right).

Building a tool-chain adds complexity to the verifica-
tion process. We expect, however, a payoff on the work-
load when the target system is modified and the qual-
ity of the software has to be maintained. Most VBT
techniques are based on symbolic execution which is a
challenging issue. Considering Listing 2.3 of Section 2.3,
when symbolic execution reaches Line 9 the source code
of write() may not be available or it may be too
complicated for symbolic execution. Typically, in such
situation method contracts that abstract the method
call can be provided. Alternatively techniques such as
Pex [38] can be used that combine symbolic execution
and runtime-execution.

3.3 Test Selection

Regression testing techniques such as [23], for example,
are often concerned with test selection and test priori-
tization. The goal is to reduce the execution time of the
regression test suite and thus to save costs. Graves et
al. [20] describe test selection techniques for given re-
gression test suites. They reduce the scope of the PUT
that is executed by selecting a subset of the test suite.
Our approach provides an alternative partitioning of
the PUT (Figure 3) that can reduce its tested scope
and should be considered in combination with test se-
lection techniques. Instead of reducing the number of
tests, parts of the program are substituted by mock en-
tities.

When using selection techniques, a typical regres-
sion testing is usually described as follows (e.g., [20]).
Let P be the original version of the program, P, the
modified version that we would like to test, and let T
be the test suite for P, then:

1. Select T C T

2. Test Ppe, with T, establishing the correctness of
P,.., with respect to T".

3. If necessary, create T,4q, a set of new functional or
structural test cases for Py -

4. Test Pyeqy with Tyq4, establishing the correctness of
Py with respect to Thaq.-

Bernhard Beckert et al.

5. Create T, a new test suite and test execution
profile for Py, from T, TV, and Tp44.

The authors of [20] point out the following problems
associated with each of the steps:

1. It is not clear how to select a “good” subset T’ of T
with which to test Peq -

2. The problem of efficiently executing test suites and
checking test results for correctness.

3. The coverage identification problem: the problem of
identifying portions of P, or its specification that
require additional testing.

4. The problem of efficiently executing test suites and
checking test results for correctness.

5. The test suite maintenance problem: the problem of
updating and storing test information.

We use a slightly different model, which seems to solve
the above issues. This model can be summarized as
follows. Let P be the original version of the program,
P, the modified version that we would like to test,
and let T be the test suite which was generated for P
after running the proposed tool-chain.

1. Introducing mock objects produces P,.., C Phew-
2. Test P/, with T.

3. Rerun the tool-chain for the modified parts of P
to produce Thew, covering new branches.

The problems are solved as follows:

1. There is no need to select a subset TV of T. In-
stead we have to consider how to create P/, ,
which parts of the system P, should be replaced
by mock objects.

2. The problem of efficiently executing test suites and
checking test results for correctness is solved by us-
ing mock objects, thus not executing the whole sys-
tem.

3. The coverage identification problem is solved since
the whole program may be tested.

4. Same as problem 2.

5. The problem of updating and storing test informa-
tion is solved by rerunning the tool-chain on the
modified system parts.

ie.,

Safe regression test selection techniques guarantee
that the selected subset contains all test cases in the
original test suite that can reveal regression bugs [20]. If
a part of the program is changed, then only the tests for
this part of the program are executed and other parts
are mocked. By executing only the unit tests of classes
that have been modified, a safe and simple selection
technique can be obtained.

4 The GenUTest Tool

The CaR tool that we use in our prototypical imple-
mentation of the tool-chain approach is GenUTest [32].
GenUTest captures and logs inter-object interactions
occurring during the execution of Java programs. The
recorded interactions are then used to generate JUnit
tests and mock-object-like entities called mock aspects.
These can be used independently by developers to test
units in isolation. Hence, each test is fully isolated from
the unit’s environment.

The comprehensiveness of the generated unit tests
depends on the software execution. Software executions
covering a high percentage of functional requirements
are likely to obtain high code coverage and in turn gen-
erate unit tests with similar code coverage. Such ex-
ecutions can of course be planned by the developers
with the assistance of the quality assurance personnel,
who are responsible for creating test scenarios that ex-
ercise the functional requirements of the software and
ensure their correctness. Hence, a unit testing suite can
be formed, assisting the development of the project us-
ing agile development methodologies. Nevertheless, an
approach that will guarantee a high coverage of the
tests is definitely preferred.

Figure 4 presents a high level view of GenUTest’s ar-
chitecture and highlights the steps in each of the three
phases of GenUTest: the capture phase, the generation
phase, and the test phase. In the capture phase the
program is modified to include functionality to cap-
ture its execution. When the modified program exe-
cutes, inter-object interactions are captured and logged.
The generation phase utilizes the log to generate unit
tests and mock aspects, mock object like entities. In the
test phase, the unit tests are used by the developer to
test the code of the program. The interactions are cap-
tured by utilizing AspectJ, the most popular Aspect-
Oriented Programming (AOP) extension for the Java
language [45,27].

In this section we shortly describe the two first
stages of using GenUTest; the full details can be found
in [32]. First we describe how interactions between ob-
jects are captured and logged. We start with a brief sur-
vey of Capture and Replay (CaR) and with a short ex-
planation of conventional instrumentation techniques.
Then we describe how the actual unit tests are gener-
ated.

4.1 The Capture Phase

The Capture and Replay (CaR) technique allows to
record software executions and to replay them later.

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 9

Capture Phase
Capture Code

Program Code % AspectJ

________ - =38

Generation Phase

Instrumented
System - P

Mock Aspects
Inter-object
interactions logs

Unit tests &
Mock Aspects
Generator

Unit Tests

%Unit Testing Phase

Class Under Test
weaved with
mock advices

Fig. 4 The architecture of GenUTest.

Test Results

A common use of this technique is in regression test-
ing of graphical user interfaces (GUIs). CaR tools can
also record cross system interactions and inner software
interactions.

GenUTest implements CaR by utilizing AspectJ. In-
corporating aspects into a program using the weaving
process is ultimately an instrumentation of the pro-
gram. This is a clean, structured, and intuitive method
for instrumenting code. Our approach makes it easy to
implement the tool for other aspect-oriented program-
ming languages as well.

For illustration of our ideas we employ an integer
stack implemented using a linked list. Besides the con-
ventional stack operations, the stack also supports a
reverse operation, which reverses the order of the items
in the stack. Figure 5 presents a UML sequence dia-
gram which describes a possible scenario of the stack
behavior.!

In order to perform the capture phase for a given
program P, specific capture functionality has to be
added to P. The functionality is added by weaving
the capture code into P at the designated join points.
Since the generated unit tests are black box tests of
the CUT, the advice implementing the capture code
should be weaved at the following join points in P: all
public constructor calls, all public method calls, and all
public read/write field-accesses. In the rest of the ar-
ticle we refer to constructor calls, method calls, and
read/write field accesses as events. The above men-

1 The numbers in italic are used to denote event intervals
which are introduced later in this section. In order to make
it easier to follow the example, we use dashed lines to denote
return from a call even for the constructor.

i nem)
—® IntStack_2| 5 new) Ist)
PP ‘Irt Stack 34--.- ‘Linkedl ist

5 push@’ i !

& | =darm
P —
B eenes
g push(‘S)I E

—'fO addFimtcs) |
IR PR Ll o ekl I:I

rewersel _;_ :
s nehg o Newist
24 geened : :

. '

23 LPO' remonq.First() __'
28 -l : !

Fig. 5 A sequence diagram describing a scenario of the stack
behavior.

tioned join points can be matched using either a static
approach or a dynamic one.

In the first approach we statically analyze the code
of the target program in order to obtain information
regarding the classes and their respective constructors,
methods and fields. With the signatures of all con-
structors, all methods, and all public read/write field-
accesses, we can easily define pointcuts that match each
and every one of those events. In GenUTest we chose
the dynamic approach, that does not need an extra
step in order to pre-process the target program to ob-
tain information about the constructors, methods, and
fields. Pointcuts are defined in a general manner that
enable them to match all the required events. However,
the tradeoff of utilizing such general declarations is ap-
parent in the repeated use of reflection whenever an
event is captured in order to discover the arguments
of the event. We define several pointcuts in order to
match those events. For instance, to match all the pub-
lic method calls, we define the following pointcut:

— AspectJ

pointcut publicMethodCall():
call(public * *(..)) &&
lwithin(GenUTest.*);

Aspect —

The !'within(GenUTest.*) join point ensures that only
designated join points within P are matched. The two
wildcards (“*’ and ‘..”) enable matching a set of signa-
tures.

The advices are implemented using the around ad-
vice mechanism. This enables GenUTest to record the
time that the event starts execution, to execute the

10

Bernhard Beckert et al.

1 @Test public void testpopl() {

2 // test execution statements

3 IntStack IntStack_2 = new IntStack();
4 IntStack_2.push(2);

5 IntStack_2.push(3);

6 IntStack_2.reverse();

7 int intRetVal6 = IntStack_2.pop(Q);
8
9
0
1

// test assertion statements

1 assertEquals(intRetVal6,2) ;

11}

Fig. 6 Unit test generated for the pop() method call.

event, to record the event, and to record the time it
ends. Capturing an event involves recording its signa-
ture and the target object of the call. Returned values
and thrown exceptions are recorded as well. The instru-
mented program P’ is executed and the actual captur-
ing begins. The capture code, which is specified by the
advice, is responsible for obtaining the above mentioned
attributes. This is achieved using the AspectJ reflective
construct (thisJoinPoint).

The capturing process ends after all events have
been logged.

4.2 The Unit Test Generation Phase

We now explain how unit tests are generated from the
captured method calls. Unit tests are created for those
methods that can be examined, i.e., methods that either
return a value or throw an exception. Void-functions
cannot be caught — a limitation of AspectJ that we
plan to avoid in future versions. In the example, when
IntStack serves as the CUT, GenUTest generates a
unit test only for the pop() method call (cf. Figure 6).

Test generation is a two step operation followed by
a post-processing stage. In the first step GenUTest gen-
erates the Java statements that execute the test. In the
second one assertion statements are generates to deter-
mine whether the test has passed. We will illustrate this
by means of an example:

Table 1 shows the method calls occurring at consec-
utive event intervals for three different objects: obj1,
obj2, and obj3. Suppose that GenUTest encounters the
method call obj1.fool(obj2) which occurred at time
stamp 31. In order to invoke the method call, GenUTest
must restore the target object obj1 to its correct state
at time stamp 31. The algorithm eventually generates
the statements as shown in Figure 7.

The algorithm then performs some post processing
tasks. One of those tasks is the removal of spurious
statements. For example, when replacing the method
call objl.fool(obj2) in the previous example with the

Table 1 Method calls invoked on the objects objl, obj2, and
obj3.

Method Interval | obj1 obj2 obj3
1.2 obj1 =new Typel()
[3.4] ohj3 = new Type3d()
[6.8] ohj2 = new Type 2()
[@.20] ohj3.initialize()
[21,300 obj2.goat{okid)
[31.50] obj1.foo1(obj2)
[51.64] obj2.gooZ()
[65,80] ohj1.fon2()
— Java

Typel objl = new Typel();
Type3 obj3 = new Type3();
Type2 obj2 = newType2();
obj3.initialize();
obj2.goo1(obj3);
objl.fool(obj2);

JAavA —

Fig. 7 Statements generated to restore the correct state of
objl and obj2.

call obj1.fool(obj2,0bj3), the statements at Lines 2
and 4 in Figure 7 would be generated twice. This leads
to an incorrect sequence of statements which in some
cases might affect the state of the objects. The post
processing task detects and disposes of such statements.

The assertion statements generated by GenUTest
determine whether the test has passed successfully.
In case the method returns a value, GenUTest gener-
ates statements to compare the value returned by the
test with the captured return value. In case a method
throws an exception, GenUTest generates a statement
that informs JUnit that an exception of a specific
kind is to be expected. In practice, this is achieved by
adding the expected parameter to the @Test annota-
tion: @Test (expected=ExceptionClassName.class).

The exception type is obtained from the captured
attributes of the method call. For example, suppose the
method pop() is invoked on a newly created object
IntStack_3. As this is an attempt to remove an item
from an empty stack, an exception is thrown, which is
of type NoSuchElementException. GenUTest informs
JUnit to expect an exception of this type. Figure 8
presents the generated code for this scenario.

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 11

—— Junit

QTest (expected=NoSuchElementException.class)
public void testpop2() {
// test execution statements
IntStack IntStack_3 = new IntStack();
IntStack_3.pop();
}

Junit —

Fig. 8 Unit test generated for exception throwing by the
method pop().

5 The KeY System

The VBT tool that we use in our prototypical imple-
mentation of the tool-chain approach is KeY. The KeY
system is the main software product of the KeY project,
a joint effort the Karlsruhe Institute of Technology and
Chalmers University of Technology in Géteborg.

The KeY system is a formal software development
tool that aims to integrate design, implementation,
formal specification, and formal verification of object-
oriented software as seamlessly as possible. At the core
of the system is a deductive verification component,
which also can be used as a stand-alone prover.

The KeY project is constantly working on tech-
niques to increase the returns of using formal meth-
ods in the industrial setting. Recent efforts concen-
trate on applying verification technology to traditional
software processes. These have resulted in develop-
ment of such approaches as symbolic debugging and
verification-based testing. A full description of KeY can
be found in [2].

Full Coverage of a Real-world Programming Language
The KeY prover and its calculus [2] support the full
Java CaArD 2.2.1 language. This includes all object-
oriented features, JAva CARD’s transaction mechanism,
the (finite) JAVA integer types, abrupt termination (lo-
cal jumps and exceptions) and even a formal specifi-
cation (both in OCL [28] and JML) of the essential
parts of the Java CArD API. Moreover, some Java fea-
tures that are not part of JAvA CARD are supported as
well: multi-dimensional arrays, Java class initialization
semantics, char and String types. In short, JAVA pro-
grams that respect the limitations of Java CARD (no
floats, no concurrency, no dynamic class loading) can
be verified as well using KeY. This is important to en-
able the combination with GenUTest.

5.1 Foundations of KeY

The Logic KeY is a deductive verification system, i.e.,
its core is a theorem prover, which proves formulas of

PUT (Program Under Test)+
Requirement Specification

:> Symbolic Execution + ﬁ>
FOL Theorem Proving <

Add setter- and| || Testoracle Testdata
getter-methods|) | Generator Generator

T

JUnit Test Suite
@ Uses
-

TestMethod_0
PUT'

Proof Tree

TestMétHod_n

Fig. 9 Overview of verification-based test generation in KeY.

a suitable logic. The KeY approach employs a logic
called Java CArD DL, which is an instance of Dynamic
Logic (DL) [22]. DL, like Hoare Logic [25], has the ad-
vantage of transparency with respect to the program
to be verified. The logic and the calculus “work” di-
rectly on the source code, i.e., JavA CARD DL integrates
programs and formulas within a single language. This
transparency is extremely helpful for proving problems
that require a certain amount of human interaction. Us-
ing DL, one can express program correctness as well as
security properties, correctness of program transforma-
tions, or the validity of assignable clauses. Also, a pre-
or postcondition can contain programs themselves, for
instance to express that a linked structure is acyclic.

Verification as Symbolic Ezxecution The actual verifi-
cation process in KeY can be viewed as symbolic ex-
ecution of source code. Unbounded loops and recur-
sion are either handled by induction over data struc-
tures occurring in the verification target or by speci-
fying loop invariants and variants. Symbolic execution
plus induction as a verification paradigm was originally
suggested for informal usage by Burstall [4]. The idea
to use Dynamic Logic as a basis for mechanizing sym-
bolic execution was first realized in the Karlsruhe In-
teractive Verifier (KIV) tool [24]. Symbolic execution
is very well suited for interactive verification, because
proof progress corresponds to program execution, which
makes it easy to interpret intermediate stages in a proof
and failed proof attempts.

In the KeY approach to symbolic execution, the ap-
plication of substitutions on formulas to record state
changes of a program is delayed as much as possible;
instead, the state change effect of a program is made
syntactically explicit and accumulated in a construct

12

Bernhard Beckert et al.

called updates. Only when symbolic execution has com-
pleted are updates turned into substitutions.

The second foundation of symbolic execution in
KeY, besides updates, is local program transformation.
Java (Card) is a complex language, and the calculus for
Java Card DL performs program transformations to re-
solve all the complex constructs of the language, break-
ing them down to simple effects that can be moved into
updates. For instance, in the case of try-catch blocks,
symbolic execution proceeds on the “active” statement
instde the try block, until normal or abrupt termina-
tion of that block triggers different transformations.

KeY implements a VBT technique [14] with several
extensions [13,17]. The test generation capabilities are
based on the creation of a proof tree (see Figure 9) for a
formula expressing program correctness. The proof tree
is created by interleaving first-order logic and symbolic
execution rules where the latter execute the PUT with
symbolic values in a manner that is similar to lazy eval-
uation. Case distinctions in the program are therefore
reflected as branches of the proof tree; these may also
be implicit distinctions like, e.g., the raising of excep-
tions. Proof tree branches corresponding to infeasible
program paths, i.e., paths that can never be executed
due to contradicting branch conditions in the program,
are detected and not analyzed any further. Soundness
of the system ensures that all paths through the PUT
are analyzed, except for parts where the user chooses
to use abstraction. Based on the information contained
in the proof tree, KeY creates test data using a built-
in constraint solver. The PUT is initialized with the
respective test data of each branch at a time. In this
way execution of each program path in the proof tree
is ensured.

Since KeY uses symbolic execution to generate unit
tests, every bounded feasible path is explored.? In the
basic version of test case generation with KeY a bound
is set on the number of loop iterations (chosen by the
user), so that full bounded feasible path coverage is
achieved by the generated tests. By adapting KeY’s
rules on which paths are to be explored separately, one
can also generate test sets fulfilling other coverage cri-
teria such as condition coverage.

Automated Proof Search For automated proof search,
a number of predefined strategies are available in KeY,
which are optimized, for example, for symbolically ex-
ecuting programs or proving pure first-order formulas.

KeY uses a proof confluent sequent calculus, which
means that automated proof search does not require
backtracking over rule applications.

2 A path is feasible if it can be executed. An infeasible path
cannot be executed because its path condition is unsatisfiable.

User-friendly Graphical User Interface The KeY sys-
tem has a user-friendly graphical user interface (GUI).
When proving a property which is too involved to be
handled fully automatically, certain rule applications
need to be performed in an interactive manner, in dia-
logue with the system. In the case of human-guided rule
application, the user is asked to solve tasks like: select-
ing a proof rule to be applied, providing instantiations
for the proof rule’s schema variables, or providing in-
stantiations for quantified variables of the logic.

6 KeYGenU: A Prototypical Implementation of
the Tool-chain Approach

6.1 A Detailed Example

Both tools we have described have advantages and
drawbacks regarding unit testing. GenUTest does not
automatically guarantee high code coverage, whereas
the unit tests generated by KeY are not isolated. To
overcome these problems, we have developed KeY GenU
combining KeY and GenUTest in a manner seen in Fig-
ure 2.

This section describes the results of applying the
new tool KeYGenU to a simplified banking applica-
tion, The example was adopted from case studies on
verification [3] and JML-based validation [9]. The bank
customer can check his or her accounts as well as make
money transfers between accounts. The customer can
also set some rules for periodical money transfer. Fig-
ure 10 presents part of the case-study source-code.

The first step is to load the banking application into
KeY and to select a method for symbolic execution;
following the code excerpt in Figure 10, this is either
transfer () or registerSpendingRule(). KeY gener-
ates a JUnit test suite from the obtained proof tree. It
consists of a test method for every execution path of
the method under test. Thus the test suite provides a
high test coverage. Figure 11 shows one of the gener-
ated test methods for testing the method transfer().
In Lines 4-7 variables are declared and assigned ini-
tial values; Lines 10-16 assign test data to variables
and fields; in Line 19 the method under test is exe-
cuted; and in Line 24 the test oracle, implemented as
subformula5(), is evaluated.

This test suite is the data that is exchanged from
KeY to GenUTest. It is, however, a fully functioning
test suite and should be executed before the continua-
tion of the tool-chain, in order to automatically detect
program bugs with respect to the JML specification.
In particular, this step turned out to be important be-
cause KeY is very good at detecting implicit program
branches caused by, e.g., NullPointerExceptions, but

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 13

— Java + JML
/* Copyright (c) 2002 GEMPLUS group. */

-

2 package banking; import ...;
3 public class Transfers_src {
4 protected MyRuleVector rules=new MyRuleVector();
5 private AccountMan_src accman;
6 . //field and method declarations
7
8 /*@ requires true;
9 modifies rules.size(), Rule.nbrules;
10 ensures ((account<0 || spending_account<0) &&
11 (threshold>0 && period>=0))
12 ==> \result==3;
13 ensures (threshold<=0 && period>=0 &&
14 account>=0 && spending_account>=0)
15 ==> \result==5;
16 ensures (threshold>0 && period<0 &&
17 account>=0 && spending_account>=0)
18 ==> \result==6;
19 ce
20 signals (Exception e) false; @%/
21 public int registerSpendingRule (
22 String date, int account,
23 int threshold, int spending_account,
24 int period) {
25 if (account<0||spending_account<0) return 3;
26 Account accountl = accman.getRef (account);
27 Account account2 =
28 accman.getRef (spending_account) ;
29 if ((accountl==null) ||
30 (account2==null)) return 3;
31 if (threshold <= 0) return 5;
32 if (period < 0) return 6;
33 Rule rule=new SpendingRule (date,account,
34 threshold, spending_account,
35 period,accman) ;
36 .
37 }
38
39 /%@ requires true;
40 ensures (amount<=0 ==> \result==1); @x/
41 public int transfer(int from_account,
42 int to_account, int amount){
43 Account fromAccount =
44 accman.getRef (from_account) ;
45 Account toAccount = accman.getRef(to_account);
46 if (fromAccount!=null && toAccount!=null &&
a7 amount>0) {
48 if (amount<fromAccount.getBalanceamount ()){
49 fromAccount .debit (amount) ;
50 toAccount.credit (amount) ;
51 return O;
52 }else
53 return 1;
54 }
55 return 1;
56 }
57 }//class declaration
Java + JML —

Fig. 10 Excerpt from the banking case study.

— JAva

1 public void testcode0 () {

2

3 /**declare vars**/

4 int from_account=0; int to_account=0; int res=0;
5 int _to_account=0; int _from_account=0;

6 int _amount=0; int amount=0; Throwable exc=null;
7 Transfers_src o=null;

8

9 /**datax*/

10 int testDatal0=2; int testDatal=2;

11 o=new Transfers_src();

12 o._setrulesMyRuleVector (new MyRuleVector());

13 o._setaccmanAccountMan_src(new AccountMan_src());
14 from_account=testDatal; to_account=testDatal;

15 _amnt=amount; _from_account=from_account;

16 _to_account=to_account;exc=null;

17

18 try { /** method under test **/

19 res=o.transfer (_from_account,_to_account,_amnt);
20 } catch (java.lang.Throwable e) { exc=e; }

22 StringBuffer buffer=new StringBuffer();

23 boolean _oracleResult=

24 subformulab (amount,exc,res,buffer);
25 assertTrue(buffer.toString(),_oracleResult);
26}

Java —

Fig. 11 JUnit test method generated by KeY.

on the other hand GenUTest expects the executed code
not to throw any exception during capturing phase.
Thus we have either extended the specifications, stating
that certain fields are non-null, or we simply have re-
moved from the test suite generated by KeY those test
methods that have detected exceptions not indicating
bugs.

Capturing code of GenUTest is weaved-in into the
KeY-generated test methods, such as in Figure 11, by
running the test suite as an AspectJ application in the
Eclipse IDE. After the capturing phase, GenUTest pro-
duces another JUnit test suite consisting of test meth-
ods like, e.g., in Figure 12, and mock aspects such as
in Figure 13. As expected, the coverage of the KeY-
generated tests is preserved by the GenUTest-generated
tests; for instance, changes to any of the return values of
the method registerSpendingRule() or the method
transfer () have been detected.

Figure 12 presents the test method generated by
GenUTest. The method invocations that were observed
during the capture phase are replayed in Lines 7-21.
GenUTest tries to minimize this code using some static
analysis. The calls to setSection() are important for
choosing the correct mock aspect as explained below.
In Line 22 the actual method under test is called and its
return value is compared in Line 23 with the value that

14

Bernhard Beckert et al.

— Java

1 @Test public void testtransfer1(){

2 AccountMan_src AccountMan_src_11;

3 MyRuleVector MyRuleVector_8;

4 TestGenericO TestGenericO_1;

5 Transfers_src Transfers_src_4;

6 int intRet;

7 setSection("TestGeneric0",1,2);

8 TestGenericO_1 = new TestGenericO0();

9 setSection("Transfers_src",4,37);

10 Transfers_src_4= new Transfers_src();

11 setSection("MyRuleVector",40,67);

12 MyRuleVector_8 = new MyRuleVector();

13 setSection("Transfers_src",68,73);

14 Transfers_src_4._setrulesMyRuleVector(

15 MyRuleVector_8);
16 setSection("AccountMan_src",76,129);

17 AccountMan_src_11 = new AccountMan_src();

18 setSection("Transfers_src",132,137);

19 Transfers_src_4._setaccmanAccountMan_src(

20 AccountMan_src_11);
21 setSection("Transfers_src",140,149);

22 intRetValb = Transfers_src_4.transfer(2,2,0);
23 assertEquals(intRet,1);

24 }

Java —

Fig. 12 JUnit test method generated by GenUTest.

was observed during capturing phase. Thus a regression
test is performed.

In our experiments the calls to methods getRef (),
getBalanceamount (), debit () and credit () (see Fig-
ure 10) were replaced, as expected, by mock aspect
invocations, because these methods belong to classes
different from the current class Transfers_src. For
instance, Lines 5-7 in Figure 13 match the call to
getRef () and Lines 11-16 check which occurrence of
getRef in the call tree is currently processed, as dif-
ferent invocations may yield different return values.
Line 16 checks if the given parameter value of getRef ()
has been actually observed during the capturing phase
by using the reflection API. If this is not the case, then
the original code is invoked with the current parame-
ter value via the AspectJ keyword proceed, as shown
in Line 17. Otherwise, the previously recorded return
value is returned in Line 19, and thus unit testing in
isolation is performed.

6.2 A Short Evaluation

KeYGenU has automatically generated isolated unit-
regression tests for the classes of the banking applica-
tion. Selecting, for instance, the method transfer as
the method under test, KeYGenU generated the set of
test suites displayed in Figure 14. Each element in the
set is a unit test suite of isolated tests. The number of

—— AspectJ

1 pointcut restriction():

2 ladviceexecution() &&

3 this(Transfers_src) &&

4 'target (Transfers_src);

5 Account around(int paramil):

6 call(banking.AccountMan_src.getRef (int)) &&
7 args(paraml) && restriction() {

8 MockAspectHandler.Section currentSection =
9 MockAspectHandler.getInstance().

10 getClassSection("Transfers_src");
11 if (currentSection.start == 884 &&

12 currentSection.end == 905){

13 if (currentSection.statementCounter==1){
14 currentSection.statementCounter++;

15 Account Account_157 = new Account();
16 if (reflectionCompare(paraml,1) !=0){

17 return proceed(paraml);

18 }

19 return Account_157;

20 }

21 }

22 ... /* case distinctions */ ...

23 }

Aspect] —

Fig. 13 Mock aspect generated by GenUTest for the method
getRef ().

U Unit 53 =0
Finished after 0,109 seconds =
g BH | @ g -
Runs: 123/123 B Errars: 0 B Failures: 0

Eit unittests_TestGenericl_kransfer, AccountMan_srcTestS
Fit unittests_TestGenericl_transfer, AccountMan_srcTest?
fit| unittests_TestGenericl_kransfer, AccountMan_srcTeskS
Fit unitkests_TestGenericl_kransfer, AccountMan_srcTeskl
Ft unittests_TestGenericl_transfer, AccountMan_srcTestd
k] unittests_TestGenericl_transfer, AccountMan_srcTests
Fit unittests_TestGenericl_transfer, AccountMan_srcTeskd
[t unittests_TestGenericl_kransfer, AccountMan_srcTeskd
Fit unittests_TestGenericl_transfer, AccountMan_srcTesk?
Fit| unittests_TestGenericl_transfer, Accountfan_srcTestll
Fit unitkests_TestGenericl_transfer, Transfers_srcTest3 (R
Ft unittests_TestGenericl_transfer, AccountMan_srcTeskl
Eit unittests_TestGenericl_transfer, Transfers_srcTestd [R
Fit| unittests_TestGenericl_transfer, Transfers_srcTestZ [R
fit unittests_TestGenericl_kransfer, AccountTest [Runner:
Fit unitkests_TestGenericl_transfer, AccountMan_srcTest [
Fit] unittests_TestGenericl_transfer, Transfers_srcTest [Fu

[o B Ry O O O O O B O 3 O = O

B

Fig. 14 Unit test suites generated when executing the
method transfer

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 15

] consale | (@ Caverage £2 | ook -

Transfers_srcTesk (23 (04.05.2011 17:50:09)

menk Coverage Covered Instructions |
= banking . 10,7 1039
= m Transfers_src.java . e 5 51
=R C] Transfers_src B 725 % 51
@ transfer{int, ink, int) B 00,0 % 32
@ transfer{Account, Accour BN 0,0 % 1]
@ reqgisterSpendingRuledStri = 0,0 %% u]
@ registerSavingRuledString =l 0,0 % a
@ getRulesSize) . 00% 1]
@ getRulesiink) . 00% 1]
@ _setrulesMyRulevector(M B9 100,0 % 4
@ _setaccmanfAccountian_ B9100,0 % 4
@ _rulesMyRulevector() . 00% 1]
@ _accmanAccountian_src B 100,0 % 3
& Transfers_sro(fccountiz =8 0,0 % u]
& Transfers_src() B 100,0 %]
+ m TestGenericl.java B 704 % S66
#1- [J] TestGeneric.java . 00% 0w
< b

= <)===> = = 0| | E console | [@ Coverage i3

m X R DE- DGO
Transfers_srcTest (1) {04.05.2011 17:20:37)

ment Coverage | Cowvered Instructions
=~ H} banking .31 % 1334
= m Transfers_src.java . 295 67
=R C] Transfers_src B 795 % 67
@ transferfint, ink, ink) 00 % i}
@ transfer{Account, Accour N 0,0 9 0
@ reqgisterspendingRulefStri BN 100, 0 % 43
@ registerSavingRulefString Bl 0,0 9%, 0
@ getRulesSizel) 00 % i}
@ getRules{int) 0% 0
@ _setrulesMyRuleVector(B9 100,0 % 4
@ _setaccmanfccountMan_ B9 100,0 9% 4
@ _rulesMyRulevector() 00 % i}
@ _accmanAccountiMan_src B 00,0 9% 3
e Transfers_src{fccounthz =8 0,0 % i}
& Transfers_src{) B 00,0 % 3
+ Teshizenericl . java 00 % i}
+ Teskzenericl, java B 330 % 1074 »
< >

Fig. 15 Coverage of test suites generated by KeYGenU for the methods transfer (left) and registerSpendingRule (right),

respectively, as measured by EclEmma [46]

gu Unit 52 = O
Finished after 0,063 seconds =
HE! ug {%D & -
Runs; 1717 E Errors; 0 A Failures: 0

= Ht] unittests_TestGenericl_transfer, Transfers_srcTest [R#
EEl testtransferi (0,000 5)
EE! testtransfer2 (0,016 5)
EE testtransfers (0,000 5)
gl test_accrmandcoountMan_srcl (0,000)
EE testtransferd (0,000 5)
EE test_accmandccountMan_src2 (0,015 5)
EE! testtransferS (0,000 5)
EE test_accmandccountMan_src3 (0,000 5)
EE! test_accmandccountMan_srcd (0,000 5)
EE testtransferd (0,000 5)
gEl test_accmanfccountMan_srcS (0,000 5)
EE test_accmandcoountMan_srcd (0,000 5) w

£

Failure Trace =

Fig. 16 Selected test suite for the method transfer

tests (123) is large because an isolated test has been
created for each method that has been called, directly
or indirectly, by the method transfer. From this set
of unit test suites we have selected the highlighted test
suite for the method transfer resulting in only 17 tests
as can be seen in Figure 16.

An example of coverage results generated by KeYGenU
is presented in Figure 15. The figure shows on the
left hand-side the instruction coverage for the method
transfer and on the right hand-side that of the method
registerSpendingRule. Note that these are the meth-
ods under test but the figures also present coverage of
other methods and classes that have been executed by
the tests. The results are measured using EclEmma [46].
The test suite generated by KeY in the first phase
of the tool chain achieved full code coverage. This
coverage is preserved by the test suite generated by
GenUTest in the second phase. KeY generates a test
suite for one selected method at a time, therefore a
test suite guarantees full coverage only for that method.
GenUTest generates tests for all executed methods, in-
cluding the methods in the files TestGenericO.java
and TestGenericl.java which are the test suites gen-
erated by KeY. Those tests have, however, no meaning.

As described, redundant tests have been created.
This may affect the scalability of the tool, therefore we
plan to avoid the generation of such tests in the next
version of KeYGenU. This can be achieved by making
GenUTest aware of the fact that it is used in a tool
chain; i.e., avoiding tests (a) for methods which are not
the methods under test and (b) for methods that belong
to the test driver generated by KeY.

Using the KeY-generated tests we have found sev-
eral bugs in the application with respect to the provided
JML specification. This result confirms the observations
made in [3,9] that the available specification was incom-
plete; e.g., many errors were caused by throwing Null-
PointerExceptions that should have been excluded by
appropriate method preconditions. We have therefore

16

Bernhard Beckert et al.

extended the specification where it could be easily fixed.
In difficult cases we have ignored these error-detecting
test cases, as our focus was on regression testing.

We have also used KeYGenU to generate unit tests
for an older version of a Java implementation of the
command line tool diff. Then, the unit tests have been
executed with newer versions of the software. The dis-
crepancies have been examined to determine if they un-
cover regression bugs. GenUTest generated a test suite
that was able to detect all changes to any branch of the
tested methods, also confirming the high test coverage.

7 Related Work

In Section 3.1 we have described tools representing
VBT techniques [13,8,34,41] as well as tools that repre-
sent CaR techniques [32,33,43,11]. In Section 3.2 we re-
lated our work to test selection and prioritization tech-
niques [20,23].

DiffGen [37] is another tool that automatically gen-
erates regression unit-tests. This tool is neither base on
VBT nor on CaR. The approach used is to instrument
the PUT with additional branches and then a coverage-
based test generation tool is used to detect regression
bugs. In contrast, the approach presented in [36] sug-
gests to use a verification tool for proving an equiva-
lence relation between two version of a program. These
approaches differ from ours as they do not use CaR
techniques. In [43] the usage of a coverage guarantee-
ing tool is considered in combination with the CaR tool
Orstra. However, the approaches used in [36,43] do not
consider the generation of isolated unit tests and they
do not provide means to guarantee that during capure
phase the observed program behavior is correct.

Besides creating an approach for regression unit
testing, our goal was also to investigate the combina-
tion of dynamic (runtime execution based) and static
(symbolic execution based) analysis tools. Ernst [15]
and Smaragdakis et al. [34] discuss the synergies and
differences between static and dynamic analysis. The
strength of static analysis is data generality and preci-
sion of code coverage, whereas the strength of dynamic
analysis is speed of program execution and handling
of black-box behavior without providing abstractions.
While in [38], for example, static and dynamic analy-
sis are combined in a rather coherent way, we suggest
a tool-chain approach whose strength is the simplicity
of the interface between the tools and their indepen-
dence. Another tool-chain approach where KeY is used
to obtain high code coverage has been realized in [1].
However, while in [1] a JML-specification is exchanged
between the tools, in the here presented approach a unit

test suite is exchanged from the VBT tool to the CaR
tool.

8 Conclusion and Future Work

We have described an approach for automatic genera-
tion of unit tests that can also be used for regression
testing. We aim at achieving high coverage of the tested
code while testing each unit in isolation. This is accom-
plished by creating a tool chain that combines two tools,
a verification-based testing (VBT) and a capture and
replay (CaR) test generation tool. We first run a VBT
tool to generate tests for each path in a given system.
This achieves a high coverage of the code, as desired.
These tests are then used as input to a CaR tool that
turns the tests into truly isolated unit tests by creating
mock-object like entities. The advantage of using VBT
tools is that the verification process can be used to en-
sure that only correct behavior is captured by the CaR
tool.

To examine our ideas we have developed KeYGenU,
a concrete tool chain consisting of the VBT tool KeY
and the CaR tool GenUTest. The tests that we have
executed provide a proof of concept. The integration
of different tools may, however, cause some additional
work. For example, in the case of KeYGenU, the fact
that both tools have been developed independently
caused some difficulties. Running the tools in combi-
nation has revealed some bugs in each of the tools that
have been fixed and that helped to improve both tools.
GenUTest creates tests only for methods that return
a value and only the returned value is analyzed by the
generated regression tests. A considerable improvement
would be to handle also void methods, e.g., by analyz-
ing the state of the object on which the method was
invoked.

Verification tools, such as KeY, are typically appli-
cable to much smaller programs than testing tools. The
scalability of the approach is bound by the scalability
of the particular VBT and CaR tools. Our approach
targets therefore at quality assurance of small systems
that are safety or security critical. Due to the increas-
ing maturity level of verification techniques and tools,
they can be applied to increasingly realistic programs.
For example, in the Mondex case study a JAvA CARD
implementation of an electronic purse has been verified
with the KeY tool [39]. In the project Verisoft [40] a
complete software and hardware system consisting of
a CPU, an operating system, and applications running
on the operating system have been verified using Is-
abelle/HOL [42]. Other examples are described, e.g.,
in [18]. Building the proposed tool chain adds complex-
ity to the verification process. The expected payoff on

KeYGenU: Combining Verification-Based and Capture and Replay Techniques for Regression Unit Testing 17

the workload is, however, when the target system is
modified and the quality of the software has to be main-
tained.

Acknowledgements We are grateful to Benny Pasternak for
modifying GenUTest as needed to combine it with KeY. We
also thank Jean-Louis Lanet for providing the banking appli-
cation that served as our case study.

References

1.

10.

B. Beckert and C. Gladisch. White-box testing by
combining deduction-based specification extraction and
black-box testing. In Y. Gurevich and B. Meyer, ed-
itors, Proceedings, Tests and Proofs, First International
Conference, TAP 2007, Zurich, Switzerland, volume 4454
of LNCS, pages 207-216. Springer, 2007.

. B. Beckert, R. Héhnle, and P. H. Schmitt, editors. Ver-

ification of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer, 2007.

. L. Burdy, A. Requet, and J.-L. Lanet. Java applet cor-

rectness: A developer-oriented approach. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, Formal Methods, In-
ternational Symposium of Formal Methods Europe, FME
2008, Pisa, Italy, volume 2805 of LNCS, pages 422-439.
Springer, 2003.

. R. M. Burstall. Program proving as hand simulation with

a little induction. In Information Processing ’74, pages
308-312. Elsevier/North-Holland, 1974.

. M. Clifton. Advanced Unit Test, Part V - Unit Test Pat-

terns, January 2004. http://www.codeproject.com/gen/
design/autp5.asp. Visited May 2011.

. D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java

and JML. In G. Barthe, L. Burdy, M. Huisman, J.-L.
Lanet, and T. Muntean, editors, Proceedings, Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart
Devices, International Workshop, CASSIS 2004, Marseille,
France, volume 3362 of LNCS, pages 108-128. Springer,
2004.

. X. Deng, Robby, and J. Hatcliff. Kiasan: A verification

and test-case generation framework for Java based on
symbolic execution. In Proceedings, Leveraging Applica-
tions of Formal Methods, Second International Symposium,
ISoLA 2006, Paphos, Cyprus, pages 137-137. IEEE Com-
puter Society, 2006.

. X. Deng, Robby, and J. Hatcliff. Kiasan/KUnit: Auto-

matic test case generation and analysis feedback for open
object-oriented systems. In TAICPART-MUTATION ’07:
Proceedings of the Testing: Academic and Industrial Con-
ference Practice and Research Techniques - MUTATION,
pages 3-12, Washington, DC, USA, 2007. IEEE Com-
puter Society.

. L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, and J.-

L. Lanet. Case study in JML-based software validation.
In Proceedings, 19th IEEE International Conference on Au-
tomated Software Engineering, ASE 2004, Linz, Austria,
pages 294-297. IEEE Computer Society, 2004.

S. Elbaum, H. Chin, M. Dwyer, and J. Dokulil. Carv-
ing differential unit test cases from system test cases. In
M. Young and P. T. Devanbu, editors, Proceedings of the
14th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, F'SE 2006, Portland, Oregon,
USA, pages 253-264. ACM, 2006.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT

23.

24.

25.
26.
27.

28.

29.

S. G. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde.
Carving and replaying differential unit test cases from
system test cases. IEEE Trans. Software Eng., 35(1):29-
45, 2009.

A. Elssamadisy. Agile Adoption Patterns: A Roadmap to
Organizational Success. Pearson Education, 2009.

C. Engel, C. Gladisch, V. Klebanov, and P. Riimmer. In-
tegrating verification and testing of object-oriented soft-
ware. In B. Beckert and R. Hahnle, editors, Proceedings,
Tests and Proofs, Second International Conference, TAP
2008, Prato, Italy, volume 4966 of LNCS, pages 182-191.
Springer, 2008.

C. Engel and R. Hahnle. Generating unit tests from for-
mal proofs. In Y. Gurevich and B. Meyer, editors, Pro-
ceedings, Tests and Proofs, First International Conference,
TAP 2007, Zurich, Switzerland, volume 4454 of LNCS,
pages 169-188. Springer, 2007.

M. D. Ernst. Static and dynamic analysis: synergy and
duality. In C. Flanagan and A. Zeller, editors, Pro-
ceedings of the 2004 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering,
PASTE’04, Washington, DC, USA, page 35. ACM, 2004.
M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 2000.

C. Gladisch. Verification-based testing for full feasible
branch coverage. In A. Cerone and S. Gruner, editors,
Proceedings, Sizth IEEE International Conference on Soft-
ware Engineering and Formal Methods, SEFM 2008, Cape
Town, South Africa, pages 159-168. IEEE Computer So-
ciety, 2008.

C. Gladisch. Verification-based Software-fault Detection.
PhD thesis, Karlsruhe Institute of Technology (KIT),
2011. http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000023056.

C. Gladisch, S. S. Tyszberowicz, B. Beckert, and A. Yehu-
dai. Generating regression unit tests using a combi-
nation of verification and capture & replay. In Pro-
ceedings, Tests and Proofs, 4th International Conference,
TAP2010, Mdlaga, Spain, volume 6143 of LNCS, pages 61—
76. Springer, 2010.

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test se-
lection techniques. TOSEM, 10(2):184-208, 2001.

P. Hamill. Unit test frameworks. O’Reilly, 2004.

Press, 2000.

M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. SIGPLAN
Not., 36(11):312-326, 2001.

M. Heisel, W. Reif, and W. Stephan. Program verification
by symbolic execution and induction. In K. Morik, edi-
tor, Proceedings, 11th German Workshop on Artificial Intel-
ligence, GWAI 87, volume 152 of Informatik Fachberichte,
pages 201-210. Springer, 1987.

C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Commaun. ACM, 12(10):576-580, Oct. 1969.
T. Husted and V. Massol. JUnit in Action. Manning
Publications Co., 2003.

R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning, 2003.

D. Larsson and W. Mostowski. Specifying Java Card API
in OCL. In P. H. Schmitt, editor, OCL 2.0 Workshop at
UML 2003, volume 102 of ENTCS, pages 3—19. Elsevier,
November 2004.

T. Mackinnon, S. Freeman, and P. Craig. Endo-testing:
unit testing with mock objects. In Ezxtreme Programming
Ezamined, pages 287-301. Addison-Wesley, 2001.

18

Bernhard Beckert et al.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

B. Meyer. Design by contract: Making object-oriented
programs that work. In Proceedings, TOOLS 1997: 25th
International Conference on Technology of Object-Oriented
Languages and Systems, Melbourne, Australia, page 360.
IEEE Computer Society, 1997.

A. Orso and B. Kennedy. Selective capture and replay of
program executions. In Proceedings of the 2005 Workshop
on Dynamic Analysis, pages 1-7, 2005.

B. Pasternak, S. Tyszberowicz, and A. Yehudai.
GenUTest: a unit test and mock aspect generation
tool. Journal on Software Tools for Technology Transfer,
11(4):273-290, 2009.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Au-
tomatic test factoring for Java. In D. F. Redmiles,
T. Ellman, and A. Zisman, editors, Proceedings, 20th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2005, Long Beach, CA, USA, pages
114-123. ACM, 2005.

Y. Smaragdakis and C. Csallner. Combining static and
dynamic reasoning for bug detection. In Y. Gurevich
and B. Meyer, editors, Proceedings, Tests and Proofs, First
International Conference, TAP 2007, Zurich, Switzerland,
volume 4454 of LNCS, pages 1-16. Springer, 2007.

J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRap-
ture: A Capture/Replay tool for observation-based test-
ing. Proceedings of the International Symposium on Soft-
ware Testing and Analysis, pages 158-167, 2000.

O. Strichman. Regression verification: Proving the equiv-
alence of similar programs. In A. Bouajjani and O. Maler,
editors, Proceedings, Computer Aided Verification, 21st In-
ternational Conference, CAV 2009, Grenoble, France, vol-
ume 5643 of LNCS, pages 63-68. Springer, 2009.

K. Taneja and T. Xie. DiffGen: Automated regression
unit-test generation. In Proceedings, 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering,
ASE 2008, L’Aquila, Italy. IEEE Computer Society, 2008.
N. Tillmann and J. de Halleux. Pex-white box test gen-
eration for NET. In B. Beckert and R. Hahnle, editors,
Proceedings, Tests and Proofs, Second International Confer-
ence, TAP 2008, Prato, Italy, volume 4966 of LNCS, pages
134-153. Springer, 2008.

I. Tonin. Verifying the Mondex case study - the KeY ap-
proach. Technical Report ISSN: 1432-7864, Fakultat fir
Informatik (Fak. f. Informatik) Institut fiir Theoretische
Informatik (ITI), 2007.
The Verisoft Project.

May 2011.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In G. S. Avrunin and
G. Rothermel, editors, Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis,
ISSTA 2004, Boston, Massachusetts, USA, pages 97-107.
ACM, 2004.

M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle
Framework. In O. A. Mohamed, C. Mufioz, and S. Tahar,
editors, Proceedings, Theorem Proving in Higher Order Log-
ics, 21st International Conference, TPHOLs 2008, Mon-
treal, Canada, volume 5170 of LNCS, pages 33-38.
Springer, 2008.

T. Xie. Augmenting automatically generated unit-test
suites with regression oracle checking. In D. Thomas,
editor, Proceedings, European Conference Object-Oriented
Programming, ECOOP, Nantes, France, volume 4067 of
LNCS, pages 380-403. Springer, 2006.

H. Yuan and T. Xie. Substra: a framework for automatic
generation of integration tests. In H. Zhu, J. R. Horgan,
S.-C. Cheung, and J. J. Li, editors, Proceedings of the 2006

http://www.verisoft.de. Visited

45.

46.
47.

48.

49.

50.

International Workshop on Automation of Software Test,
AST 2006, Shanghai, China, pages 64—70. ACM, 2006.
AspectJ. http://www.eclipse.org/aspectj. Visited May
2011.

EclEmma. http://www.eclemma.org. Visited May 2011.
Extreme Programming. http://www.extremeprogramming.
org. Visited May 2011.

HP WinRunner software. http://www.cbueche.de/
WinRunner\%20User\%20Guide.pdf. Visited May 2011.
Intel VTune Performance Analyzer. http://www.intel.
com/cd/software/products/asmo-na/eng/239144 .htm. Vis-
ited May 2011.

JUnit. http://www.junit.org. Visited May 2011.

