
A Sequent Cal
ulus forFirst-order Dynami
 Logi
 with Tra
e ModalitiesBernhard Be
kert and Ste�en S
hlagerUniversity of KarlsruheInstitute for Logi
, Complexity and Dedu
tion SystemsD-76128 Karlsruhe, Germanybe
kert�ira.uka.de, s
hlager�ira.uka.deAbstra
t. The modalities of Dynami
 Logi
 refer to the �nal state ofa program exe
ution and allow to spe
ify programs with pre- and post-
onditions. In this paper, we extend Dynami
 Logi
 with additional tra
emodalities \throughout" and \at least on
e", whi
h refer to all the statesa program rea
hes. They allow to spe
ify and verify invariants and safety
onstraints that have to be valid throughout the exe
ution of a program.We give a sound and (relatively)
omplete sequent
al
ulus for this ex-tended Dynami
 Logi
.1 Introdu
tionWe present a sequent
al
ulus for an extended version of Dynami
 Logi
 (DL)that has additional modalities \throughout" and \at least on
e" referring to theintermediate states of program exe
ution.Dynami
 Logi
 [9, 5, 8℄
an be seen as an extension of Hoare logi
 [2℄. It is a�rst-order modal logi
 with modalities [�℄ and h�i for every program �. Thesemodalities refer to the worlds (
alled states in the DL framework) in whi
h theprogram � terminates when started in the
urrent world. The formula [�℄� ex-presses that � holds in all �nal states of �, and h�i� expresses that � holdsin some �nal state of �. In versions of DL with a non-deterministi
 program-ming language there
an be several su
h �nal states (worlds). Here we
onsidera Deterministi
 Dynami
 Logi
 (DDL) with a deterministi
 while programminglanguage [4, 6℄. For deterministi
 programs there is exa
tly one �nal world (if� terminates) or there is no �nal world (if � does not terminate). The for-mula �! h�i is valid if, for every state s satisfying pre-
ondition �, a runof the program � starting in s terminates, and in the terminating state thepost-
ondition holds. The formula �! [�℄ expresses the same, ex
ept thattermination of � is not required, i.e., must only holf if � terminates.Thus, �! [�℄ is similar to the Hoare triple f�g�f g. But in
ontrast toHoare logi
, the set of formulas of DL is
losed under the usual logi
al operators.In Hoare logi
, the formulas � and are pure �rst-order formulas, whereas inDL they
an
ontain programs. That is, DL allows to involve programs in theformalisation of pre- and post-
onditions. The advantage of using programs isthat one
an easily spe
ify, for example, that some data stru
ture is not
y
li
,whi
h is impossible in pure �rst-order logi
.In some regard, however, standard DL (and DDL) is still la
king expressivity:The semanti
s of a program is a relation between states; and formulas
an only beused to des
ribe the input/output behaviour of programs. Standard DL
annotbe used to reason about program behaviour not manifested in the input/outputrelation. It is inadequate for reasoning about non-terminating programs, and it
annot be used to verify invariants or safety
onstraints that have to be validthroughout program exe
ution.

We over
ome this de�
ien
y and in
rease the expressivity of DDL by addingtwo new modalities [[�℄℄ (\throughout") and hh�ii (\at least on
e"). In the ex-tended logi
, whi
h we
all (Deterministi
) Dynami
 Logi
 with Tra
e Modal-ities (DLT), the semanti
s of a program is the sequen
e of all states its exe-
ution passes through when started in the
urrent state (its tra
e). It is possi-ble in DLT to spe
ify properties of the intermediate states of terminating andnon-terminating programs. And su
h properties, whi
h are typi
ally safety
on-strains,
an be veri�ed using the
al
ulus presented in Se
tion 4. This is of greatimportan
e as safety
onstraints o

ur in many appli
ation domains of programveri�
ation (the simplest type of su
h
onstraints is that the value of a variablemust never get out of
ertain bounds).Previous work in this area in
ludes Pratt's Pro
ess Logi
 [9, 10℄, whi
h isan extension of propositional DL with tra
e modalities (DLT
an be seen asa �rst-order Pro
ess Logi
). Also, Temporal Logi
s have modalities that allowto talk about intermediate states. In Temporal Logi
s, however, the programis �xed and
onsidered to be part of the stru
ture over whi
h the formulas areinterpreted. Temporal Logi
s, therefore, do not have the
ompositionality ofDynami
s Logi
s.The
al
ulus for DDL des
ribed in [6℄ (whi
h is based on the one given in [4℄)has been implemented in the software veri�
ation systems KIV [11℄ and VSE [7℄.It has su

essfully been used in pra
ti
e to verify software systems of
onsiderablesize.The work reported here has been
arried out as part of the KeY-Projekt [1℄.1The goal of KeY is to enhan
e a
ommer
ial CASE tool with fun
tionality forformal spe
i�
ation and dedu
tive veri�
ation and, thus, to integrate formalmethods into real-world software development pro
esses. In the KeY proje
t, aversion of DL for the Java Card programming language [3℄ is used for ver-i�
ation. Dedu
tion in DL (and DLT) is based on symboli
 program exe
u-tion and simple program transformations and is, thus,
lose to a programmer'sunderstanding of a program's semanti
s. Our motivation for
onsidering tra
emodalities was that in typi
al real-world spe
i�
ations as they are done withthe help of CASE tools, there are often program parts for whi
h invariants andsafety
onstraints are given, but for whi
h the user did not bother to give a fullspe
i�
ation with pre- and post-
onditions.The stru
ture of this paper is as follows: The syntax of DLT is de�ned inSe
tion 2 and its semanti
s in Se
tion 3. In Se
tion 4, we des
ribe our sequent
al
ulus for DLT. Theorems stating soundness and (relative)
ompleteness arepresented in Se
tion 5 (due to spa
e restri
tions, the proofs are only sket
hed,they
an be found in [12℄). In Se
tion 6, we give an example for verifying that anon-terminating program preserves a
ertain invariant. Finally, in Se
tion 7, wedis
uss future work.2 Syntax of DL with Tra
e ModalitiesIn �rst-order DL, states are not abstra
t points (as in propositional DL) butvaluations of variables. Atomi
 programs are assignments of the form x := t.Exe
uting x := t
hanges the program state by assigning the value of the term tto the variable x. The value of a term t depends on the
urrent state s (namelythe value that s gives to the variables o

urring in t). The fun
tion symbols areinterpreted using a �xed �rst-order stru
ture. This domain of
omputation, overwhi
h quanti�
ation is allowed,
an be
onsidered to de�ne the data stru
turesused in the programs. The logi
 DLT as well as the
al
ulus presented in Se
tion 4are basi
ally independent of the domain a
tually used. The only restri
tion is1 More information on KeY
an be found at i12www.ira.uka.de/~key.2

that the domain must be suÆ
iently expressive. In the following, for the sakeof simpli
ity, we use arithmeti
 as the single domain. In pra
ti
e, there willbe additional fun
tion and predi
ate symbols and di�erent types of variablesranging over di�erent sorts of a many-sorted domain (di�erent data stru
tures).Equality := must be de�ned on ea
h type.The arithmeti
 signature �N
ontains{ the
onstant 0 (zero) and the unary fun
tion symbol s (su

essor) as
on-stru
tors (in the following we abbreviate terms of the form s(� � � s(0) � � �)with their de
imal representation, e.g. \2" abbreviates \s(s(0))"),{ the binary fun
tion symbols + (addition) and � (multipli
ation), and{ the binary predi
ate symbols � (less or equal than) and := (equality).In addition, there is an in�nite set Var of obje
t variables, whi
h are also usedas program variables. The set TermN of terms over �N is built as usual in �rst-order predi
ate logi
 (FOL) from the variables in Var and the fun
tion symbolsin �N.The syntax of DLT-formulas is de�ned in three steps. First, we de�ne|in the usual way|the set FOL-formulas, i.e., formulas of �rst-order predi
atelogi
 without modal operators (Def. 1). Then we de�ne what the programs ofthe deterministi
 programming language of DDL and DLT are (Def. 2). They
ontain FOL-formulas as
onditions in if-then-else and loop statements. The laststep is to de�ne the formulas of full DLT (Def. 3).We use the
lassi
al
onne
tives ^ (
onjun
tion), _ (disjun
tion), ! (impli-
ation), and : (negation), and the quanti�er symbols 8 and 9.De�nition 1. The set of FOL-formulas is re
ursively de�ned by:{ true and false are FOL-formulas.{ If t1; t2 2 TermN, then t1 � t2 and t1 := t2 are (atomi
) FOL-formulas.{ If �; are FOL-formulas, then so are :�, � _ , � ^ , and �! .{ If � is an FOL-formula and x 2 Var, then 9x� and 8x� are FOL-formulas.The programming
onstru
ts for forming the
omplex programs of DDL andDLT from the atomi
 assignments are the
on
atenation of programs, if-then-else
onditionals, and while loops.De�nition 2. The set of programs of DLT is re
ursively de�ned by:{ If x 2 Var and t 2 TermN, then x := t is a program (assignment).{ If � and � are programs, then �;� is a program (
on
atenation).{ If � and � are programs and � is a quanti�er-free FOL-formula (Def. 1),then if � then � else � is a program (
onditional).{ If � is a program and � is a quanti�er-free FOL-formula (Def. 1), thenwhile � do � is a program (loop).The programs of DLT form a
omputationally
omplete programming lan-guage. For every partial re
ursive fun
tion f : N ! N there is a program �f (x)that
omputes f , i.e., if �f (x) is started in an arbitrary state in whi
h the valueof x is some n 2 N , then it terminates in a state in whi
h the value of x is f(n).We now pro
eed to de�ne the formulas of DLT. Note, that the �rst four
on-ditions in De�nition 3 are identi
al to those in the de�nition of FOL-formulas(Def. 1). Only the last
ondition is new, whi
h adds the modalities (and pro-grams) to the formulas.De�nition 3. The set of DLT-formulas is re
ursively de�ned by:{ true and false are DLT-formulas.{ If t1; t2 2 TermN, then t1 � t2 and t1 := t2 are (atomi
) DLT-formulas.3

{ If �; are DLT-formulas, then so are :�, � _ , � ^ , and �! .{ If � is a DLT-formula and x 2 Var, then 9x�, 8x� are DLT-formulas.{ If � is a DLT-formula and � is a program (Def. 2), then [�℄�, h�i�, [[�℄℄�,and hh�ii� are DLT-formulas.De�nition 4. A sequent is of the form �1; : : : ; �m ` 1; : : : ; n (m;n � 0),where the �i and j are DLT-formulas. The order of the �i resp. the j isirrelevant, i.e., �1; : : : ; �m and 1; : : : ; n are treated as multi-sets.In �rst-order DL, not only quanti�ers but also modalities
an bind variables.De�nition 5. A variable x 2 Var is bound in a DLT-formula � if it o

ursinside the s
ope of (i) a quanti�
ation 8x resp. 9x, or (ii) a modality [�℄, h�i,[[�℄℄, or hh�ii
ontaining an assignment x := t. The variable x is free in � if thereis an o

urren
e of x in � that is neither bound by a quanti�er nor a modality.De�nition 6. A substitution assigns to ea
h obje
t variable in Var a term inTermN. A substitution � is applied to a DLT-formula � by repla
ing all freeo

urren
es of variables x in � by �(x).If a substitution fx=tg instantiates only a single variable x, its appli
ation toa formula � or a formula sequen
e � is denoted by �tx resp. � tx.A substitution � is admissible w.r.t. a DLT-formula � if there are no variablesx and y su
h that x is free in �, y o

urs in �(x), and, after repla
ing �(x) forsome free o

urren
e of x in �, the o

urren
e of y in �(x) is bound in ��.3 Semanti
s of DL with Tra
e ModalitiesSin
e we use arithmeti
 as the only domain of
omputation, the semanti
s of DLTis de�ned using a single �xed model, namely hN; INi. It
onsists of the universe Nof natural numbers and the
anoni
al interpretation fun
tion IN assigning thefun
tion and predi
ate symbols of �N their natural meaning in arithmeti
.The states (worlds) of the model (only) di�er in the value assigned to theobje
t variables. Therefore, the states
an be de�ned to be variable assignments.De�nition 7. A state s assigns to ea
h variable x 2 Var a number s(x) 2 N .Let x 2 Var and n 2 N ; then s0 = sfx ng is the state that is identi
al to sex
ept that x is assigned n, i.e., s0(x) = n and s0(y) = s(y) for all x 6= y.To de�ne the semanti
s of DLT-formulas (Def. 10), we �rst have to de�ne thesemanti
s of terms and FOL-formulas|whi
h is done in the usual way (Def. 8)|and the semanti
s of programs (Def. 9).De�nition 8. Given a state s, the valuation fun
tion vals assigns to ea
h termt 2 TermN a natural number vals(t) 2 N and to ea
h formula one of the truthvalues t and f. For terms, vals is de�ned by:{ vals(x) = s(x) for variables x 2 Var.{ vals(f(t1; : : : ; tk)) = IN(f)(vals(t1); : : : ; vals(tk)) for k � 0.For FOL-formulas, vals is de�ned by:{ vals(true) = t, and vals(false) = f.{ vals(t1 :=t2) = t i� vals(t1) and vals(t2) are equal, and vals(t1�t2) = t i�vals(t1) is less than or equal to vals(t2).{ vals(� ^) = t i� vals(�) = t and vals() = t.{ vals(� _) = t i� vals(�) = t or vals() = t.{ vals(�!) = t i� vals(�) = f or vals() = t.{ vals(8x�) = t i�, for all n 2 N , valsfx ng(�) = t.4

{ vals(9x�) = t i�, for at least one n 2 N , valsfx ng(�) = t.Note, that the valuation fun
tion depends on the interpretation fun
tion ofthe domain of
omputation, whi
h in our
ase is IN.In DDL, where the modalities only refer to the �nal state of a programexe
ution, the semanti
s of a program � is a rea
hability relation on states: Astate s0 is �-rea
hable from s if � terminates in s0 when started in s. In DLT thesituation is di�erent. The additional modalities refer to the intermediate statesas well. Sin
e the programs are deterministi
, their intermediate states form asequen
e. Thus, the semanti
s of a program � w.r.t. a state s is the|�nite orin�nite|sequen
e of all states that � rea
hes when started in s,
alled the tra
eof �. It in
ludes the initial state s (and the �nal state in
ase � terminates).In the following de�nition, T1 Æ T2 denotes the
on
atenation of two tra
esT1 and T2 (the tra
e T1 must be �nite, T2 may be in�nite). The last element ofa tra
e T is denoted with last(T); and jjjsjjj is the tra
e
onsisting of the singlestate s.De�nition 9. A tra
e is a non-empty, �nite or in�nite sequen
e of states.Given a state s, the valuation fun
tion vals assigns a tra
e to ea
h program �.It is de�ned by vals(�) = jjjsjjj Æ val0s(�) where2{ val0s(x := t) = jjjsfx vals(t)gjjj;{ val0s(�;�) = val0s(�) Æ val0last(vals(�))(�) provided vals(�) is �nite, otherwiseval0s(�;�) = vals(�);{ val0s(if � then � else �) is de�ned to be equal to val0s(�) if vals(�) = t andto be equal to val0s(�) if val0s(�) = f;{ val0s(while � do �) is de�ned as follows: Let sn be the initial state of the n-thiteration of the loop body �, i.e., s1 = s and, for n � 1, sn+1 = last(valsn(�))if sn is de�ned and valsn(�) is �nite (otherwise sn+1 remains unde�ned).Case 1 (the loop terminates): If for some n 2 N , (i) valsi(�) is �nite forall i � n, (ii) valsi(�) = t for all i � n, and (iii) valsn+1(�) = f, thenval0s(while � do �) is the �nite sequen
e val0s1(�) Æ � � � Æ val0sn(�).Case 2 (ea
h iteration terminates but the
ondition � remains true su
h thatthe loop does not terminate): If for all n � 1, (i) valsn(�) is �niteand (ii) valsn(�) = t, then val0s(while � do �) is the in�nite sequen
eval0s1(�) Æ val0s2(�) Æ � � � .Case 3 (some iteration does not terminate): If for some n 2 N , (i) valsi(�)is �nite for i < n, (ii) valsn(�) is in�nite, and (iii) valsi(�) = t for i � n,then val0s(while � do �) is the in�nite sequen
e val0s1(�) Æ � � � Æ val0sn(�).Now we
an extend the valuation fun
tion vals to DLT-formulas.De�nition 10. Given a state s, the valuation fun
tion vals assigns to ea
hDLT-formula � one of the truth values t and f as follows:{ If � is an FOL-formula, then it is assigned a truth value vals(�) a

ordingto De�nition 8.{ vals([�℄�) = t i� vals(�) is in�nite or vals0(�) = t where s0 = last(vals(�)).{ vals(h�i�) = t i� vals(�) is �nite and vals0(�) = t where s0 = last(vals(�)).{ vals([[�℄℄�) = t i� vals0(�) = t for all s0 2 vals(�).{ vals(hh�ii�) = t i� vals0(�) = t for at least one s0 2 vals(�).De�nition 11. If vals(�) = t, then � is said to be true in the state s; otherwiseit is false in s. A formula is valid if it is true in all states.A sequent � ` � is valid i� the DLT-formula V� ! W� is valid.2 Contrary to val, the valuation fun
tion val0 does not in
lude the initial state intothe tra
e. It is only used in this de�nition.5

Axioms �; � ` �; � (R1) � ` true ; � (R2) �; false ` � (R3)Rules for : �; � ` �� ` :�; � (R4) � ` �; ��; :� ` � (R5)Rules for ^ � ` �; � � ` ; �� ` � ^ ; � (R6) �; �; ` ��; � ^ ` � (R7)Rules for _ � ` �; ; �� ` � _ ; � (R8) �; � ` � �; ` ��; � _ ` � (R9)Rules for ! �; � ` ; �� ` �! ; � (R10) � ` �; � �; ` ��; �! ` � (R11)Rules for 8 � ` �x0x ; �� ` 8x�; �where x0 is neww.r.t. �; �;� (R12) �; 8x�; �tx ` ��; 8x� ` �where the substitution fx=tgis admissible w.r.t. �(R13)Rules for 9 �; �x0x ` ��; 9x� ` �where x0 is neww.r.t. �; �;� (R14) � ` �tx; 9x�; �� ` 9x�; �where the substitution fx=tgis admissible w.r.t. �(R15)Weakening � ` �� ` �; � (R16) � ` ��; � ` � (R17)Cut rule �; � ` � � ` �; �� ` � (R18)Table 1. The elementary rules of the
al
ulus.4 A Sequent Cal
ulus for DL with Tra
e ModalitiesIn this se
tion, we present a sequent
al
ulus for DLT, whi
h we
all CDLT. Itis sound and relatively
omplete, i.e.,
omplete up to the handling of arithmeti
(see Se
tion 5). The set of those CDLT-rules in whi
h the additional modalities[[�℄℄ and hh�ii do not o

ur forms a sound and (relatively)
omplete
al
ulus forDDL. This restri
tion of CDLT is similar to the DDL-
al
ulus des
ribed in [6℄.Most rules of the
al
ulus are analyti
 and therefore
ould be applied auto-mati
ally. The rules that require user intera
tion are: (a) the rules for handlingwhile loops (where a loop invariant has to be provided), (b) the indu
tion rule(where a useful indu
tion hypothesis has to be found), (
) the
ut rule (wherethe right
ase distin
tion has to be used), and (d) the quanti�er rules (where theright instantiation has to be found).In the rule s
hemata, �;� denote arbitrary, possibly empty multi-sets offormulas, and �; denote arbitrary formulas. As usual, the sequents above thehorizontal line in a s
hema are its premisses and the single sequent below thehorizontal line is its
on
lusion. Note, however, that in pra
ti
e the rules areapplied from bottom to top. Proof
onstru
tion starts with the original proofobligation at the bottom. Therefore, if a
onstraint is atta
hed to a rule thatrequires a variable to be \new", it has to be new w.r.t. the
on
lusion.De�nition 12. The
al
ulus CDLT
onsists of the rules (R1) to (R51) shown inTables 1{4. 6

Ora
le rules � ` �where V� ! W� is avalid arithmeti
al FOL-formula(R19) � 01; �2 ` ��1; �2 ` �where V�1 ! V� 01 is avalid arithmeti
al FOL-formula(R20)Indu
tion � ` �(0); � �; �(n) ` �(s(n)); �� ` 8n�(n); �where n does not o

ur in �;� (R21)Table 2. The rules for handling arithmeti
.A sequent is derivable (with CDLT) if it is an instan
e of the
on
lusion of arule s
hema and all
orresponding instan
es of the premisses of that rule s
hemaare derivable sequents. In parti
ular, all sequents are derivable that are instan
esof the
on
lusion of a rule that has no premisses (R1, R2, R3, R19).4.1 The Elementary RulesThe elementary rules of CDLT are shown in Table 1. The table
ontains rules foraxioms (whi
h have no premisses and allow to
lose a bran
h in the proof tree),rules for the propositional operators and the quanti�ers, weakening rules, andthe
ut rule. Note, that these rules form a sound and
omplete
al
ulus for FOL.4.2 Rules for Handling Arithmeti
Our
al
ulus is basi
ally independent of the domain of
omputation resp. datastru
tures that are used. We therefore abstra
t from the problem of handling thedata stru
ture(s) and just assume that an ora
le is available that
an de
ide thevalidity of FOL-formulas in the domain of
omputation (note that the ora
le onlyde
ides pure FOL-formulas). In the
ase of arithmeti
, the ora
le is representedby rule (R19) in Table 2. Rule (R20) is an alternative formalisation of the ora
lethat is often more useful.Of
ourse, the FOL-formulas that are valid in arithmeti
 are not even enu-merable. Therefore, in pra
ti
e, the ora
le
an only be approximated, and rules(R19) and (R20) must be repla
ed by a rule (or set of rules) for
omputing resp.enumerating a subset of all valid FOL-formulas (in parti
ular, these rules mustin
lude equality handling). This is not harmful to \pra
ti
al
ompleteness". Rulesets for arithmeti
 are available, whi
h|as experien
e shows|allow to deriveall valid FOL-formulas that o

ur during the veri�
ation of a
tual programs.Typi
ally, an approximation of the
omputation domain ora
le
ontains arule for stru
tural indu
tion. In the
ase of arithmeti
, that is rule (R21). Thisrule, however, is not only used to approximate the arithmeti
 ora
le but is in-dispensable for
ompleteness. It not only applies to FOL-formulas but also toDLT-formulas
ontaining programs; and it is needed for handling the modalitiesh�i and hh�ii when they
ontain while loops (see Se
tion 4.3).4.3 Rules for Modalities and ProgramsThe rules for the modal operators and the programs they
ontain are shown inTable 3. As is easy to see, they basi
ally perform a symboli
 program exe
ution.There is a one rule for ea
h
ombination of program
onstru
t (assignment,
on
atenation, if-then-else, while loop) and modality ([�℄, h�i, [[�℄℄, hh�ii). To keep7

Assignment� x0x ; x := tx0x ` �; �x0x� ` [x := t℄�; �where x0 is new w.r.t. t; �; �;�(R22) � x0x ; x := tx0x ` �; �x0x� ` hx := ti�; �where x0 is new w.r.t. t; �; �;�(R23)� ` �; � � x0x ; x := tx0x ` �; �x0x� ` [[x := t℄℄�; �where x0 is new w.r.t. t; �; �;� (R24) � x0x ; x := tx0x ` �x0x ; �; �x0x� ` hhx := tii�; �where x0 is new w.r.t. t; �; �;�(R25)Con
atenation� ` [�℄[�℄�; �� ` [�;�℄�; � (R26) � ` h�ih�i�; �� ` h�;�i�; � (R27)� ` [[�℄℄�; � � ` [�℄[[�℄℄�; �� ` [[�;�℄℄�; � (R28) � ` hh�ii�; h�ihh�ii�; �� ` hh�;�ii�; � (R29)If-then-else �; � ` [�℄�; � �; :� ` [�℄�; �� ` [if � then � else �℄�; � (R30)�; � ` h�i�; � �; :� ` h�i�; �� ` hif � then � else �i�; � (R31)�; � ` [[�℄℄�; � �; :� ` [[�℄℄�; �� ` [[if � then � else �℄℄�; � (R32)�; � ` hh�ii�; � �; :� ` hh�ii�; �� ` hhif � then � else �ii�; � (R33)While � ` Inv ; � Inv ; � ` [�℄Inv Inv ; :� ` �� ` [while � do �℄�; �where Inv is an arbitrary DLT-formula (R34)� ` �; � � ` h�ihwhile � do �i�; �� ` hwhile � do �i�; � (R35) � ` :�; � � ` �; �� ` hwhile � do �i�; � (R36)� ` Inv ; � Inv ; � ` [�℄Inv Inv ; � ` [[�℄℄� Inv ; :� ` �� ` [[while � do �℄℄�; �where Inv is an arbitrary DLT-formula (R37)� ` �; � � ` h�ihhwhile � do �ii�; �� ` hhwhile � do �ii�; � (R38)�; :� ` �; � �; � ` hh�ii�; �� ` hhwhile � do �ii�; � (R39)Table 3. Rules for the modal operators.
the des
ription of our
al
ulus
ompa
t we only give rules for the
ase where themodal formula is on the right side of a sequent. That is suÆ
ient for
ompletenessbe
ause using the
ut rule (R18) and the rules for negated modalities (R48)to (R51) (see Table 4), every modal formula on the left side of a sequent
an beturned into an equivalent formula on the right side of the sequent. For example,8

from the proof obligation [[�℄℄� ` we get the proof obligation ` :[[�℄℄� withthe
ut rule, whi
h then
an be turned into ` hh�ii:� applying rule (R50).Rules for Assignments The rules for the modalities [�℄ (R22) and h�i (R23)are the traditional assignment rules of
al
uli for �rst-order DL. They introdu
ea new variable x0 representing the old value of x before the assignment x := t isexe
uted. In the premisses of the assignment rules, both x and x0 o

ur be
ausethe premisses express the relation between the old and the new value of x withoutusing an expli
it assignment. Sin
e assignments always terminate, there is nodi�eren
e between the two rules.Note that the premiss and the
on
lusion of these rules are not ne
essarilyequivalent. But if one is valid then the other is valid as well.Example 1. Consider the valid sequent x := 5 ` hx := x+ 1ix := 6. Applyingrule (R23) yields the new sequent x0 := 5; x := x0 + 1 ` x := 6. It
an be readas: \If the old value of x is 5 and its new value is its old value plus 1, then thenew value of x is 6." This exa
tly
aptures the meaning of the original sequent.Assignments x := t are atomi
 programs. By de�nition, their semanti
s isa tra
e
onsisting of the initial state s and the �nal state s0 = sfx vals(t)g.Therefore, the meaning of [[x := t℄℄� is that � is true in both s and s0, whi
h iswhat the two premisses of rule (R24) express. The formula hhx := tii�, on theother hand, is true (in s) if � is true in at least one of the two states. Note, thatthe two formulas � and �x0x in the premiss of rule (R25), whi
h express that � istrue in s resp. s0, are impli
itly disjun
tively
onne
ted.Example 2. We use rule (R24) to show that x := 5 ` [[x := x+ 1℄℄x � 6 is avalid sequent. This results in the two new proof obligations x := 5 ` x � 6 andx0 � 5; x := x0 + 1 ` x � 6. They state that x � 6 is true in both the initial andthe �nal state of the assignment.Let even(x) be an abbreviation for the FOL-formula 9y (x := 2 � y). To provethe validity of ` hhx := x+ 1iieven(x), we apply rule (R25) and get the newproof obligation x := x0 + 1 ` even(x); even(x0), whi
h is obviously valid.Rules for Con
atenation Again, the rules for the modalities [�℄ (R26) andh�i (R27) are the traditional rules for �rst-order DL. They are based on theequivalen
es [�;�℄�$ [�℄[�℄� resp. h�;�i�$ h�ih�i�.In the
ase of the [[�℄℄ modality, the
on
atenation rule (R28) bran
hes. Toshow that a formula � is true throughout the exe
ution of �;�, one has to prove(a) that � is true throughout the exe
ution of �, i.e. [[�℄℄�, and (b) provided �terminates, that � is true throughout the exe
ution of � that is started in the�nal state of �, i.e. [�℄[[�℄℄�.The
on
atenation rule for hh�ii (R29) does not bran
h. A formula � is trueat least on
e during the exe
ution of �;� if (a) it is true at least on
e duringthe exe
ution of �, or (b) � terminates and � is true at least on
e during theexe
ution of � that is started in the �nal state of �.3Rules for If-then-else The rules for if-then-else
onditionals have the sameform for all four modalities, and for the modalities [�℄ and h�i they are the sameas in
al
uli for standard DDL.3 For non-deterministi
 versions of DL, rule (R29) is only sound provided that thefollowing semanti
s is
hosen for the hh�ii modality: hh�ii� is true i� � is true at leaston
e in some of the (several) tra
es of �. If, however, a non-deterministi
 semanti
sis
hosen where � must be true at least on
e in every tra
e of � (as Pratt did for thepropositional
ase [10℄), then rule (R29) is not
orre
t, and indeed we failed to �nda sound rule for that kind of semanti
s. 9

Rules for While Loops The rules for while loops in the modalities [�℄ and [[�℄℄,(R34) resp. (R37), use a loop invariant, i.e., a DLT-formula that must be truebefore and after ea
h exe
ution of the loop body. Three premisses of (R37) arethe same as the premisses of (R34). The �rst one expresses that the invariant Invholds in the
urrent state, i.e., before the loop is started. The se
ond premissexpresses that Inv is indeed an invariant, i.e., if it holds before exe
uting theloop body �, then it holds again if and when � terminates. And the third pre-miss expresses that �|the formula that supposedly holds after resp. throughoutexe
uting the loop|is a logi
al
onsequen
e of the invariant and the negation ofthe loop
ondition �, i.e., is true when the loop terminates. For the [[�℄℄ modality,this third premiss is only needed for the
ase that � is false from the beginningand the loop body � is never exe
uted. The rule for [[�℄℄ (R37) has an additionalfourth premiss, whi
h requires to show that � remains true throughout the exe-
ution of � if the invariant is true at the beginning (this latter
ondition followsfrom the other premisses).Example 3. Let � be the loop while true do x := 0. Then, be
ause � does notterminate, the sequent x := 0 ` [[�;x := 1℄℄x := 0 is valid. To prove that, we ap-ply rule (R28), whi
h results in the two new proof obligations x := 0 ` [[�℄℄x := 0and x := 0 ` [�℄[[x := 1℄℄x := 0. Both are easy to derive with the rules for whileloops, namely the former one with rule (R37) and the invariant x := 0 and thelatter one with rule (R34) and the invariant true.The modalities h�i and hh�ii are handled in a di�erent way. Two rules areprovided for ea
h of them. One rule, (R35) resp. (R38), allows to \unwind" theloop, i.e., to symboli
ally exe
ute it on
e, provided that the loop
ondition � istrue in the
urrent state. The other rule, (R36) resp. (R39), is used if \unwinding"the loop is not useful. For the h�i modality that is the
ase if � is false and theloop terminates immediately. Rule (R39) for the hh�ii modality applies in
asethe formula �|whi
h supposedly is true at least on
e during the exe
ution ofthe loop|be
omes true before or during the �rst exe
ution of the loop body.The rules for h�i and hh�ii only work in
ombination with the indu
tion rule,as the following example demonstrates.Example 4. Consider the sequent x := 0 ` hhwhile true do x := x+ 1iix := k. Itstates that, if the value of x is 0 initially, then during the exe
ution of the non-terminating loop, x will at least on
e have the value k.To show that this sequent is valid, we �rst use the indu
tion rule to provethat ` 8n�(n) is valid, where�(n) = (x � k ^ n+ x := k)! hhwhile true do x := x+ 1iix := k ;from whi
h then the original proof obligation
an be derived instantiating nwith k. The �rst premiss of the indu
tion rule, ` �(0),
an easily be derivedwith rule (R39) as x := k is immediately true in
ase n = 0. The se
ond premiss,�(n) ` �(n+ 1),
an be derived by �rst applying the
ut rule to distinguishthe
ases x < k and x := k. In the �rst
ase, the unwind rule (R38)
an be usedsu

essfully; and the se
ond
ase is again easily
overed with rule (R39).4.4 Mis
ellaneous Other RulesThere are three types of mis
ellaneous other rules (see Table 4). The �rst typeare the generalisation rules (R40) to (R43), whi
h allow to derive Op � ` Op from � ` where Op is any of the four modal operators.Se
ond, there are rules, (R44) to (R47), that allow to repla
e (universal)quanti�
ations by modalities. They are similar to the quanti�er instantiation10

Generalisation � ` [�℄� ` [�℄ (R40) � ` h�i� ` h�i (R41)� ` [[�℄℄� ` [[�℄℄ (R42) � ` hh�ii� ` hh�ii (R43)Quanti�er/modality rules�; 8x1 : : : 8xk �; [�℄� ` ��; 8x1 : : : 8xk � ` �where Var(�) � fx1; : : : ; xkg (R44) � ` h�i�; 9x1 : : : 9xk �; �� ` 9x1 : : : 9xk �; �where Var(�) � fx1; : : : ; xkg (R45)�; 8x1 : : : 8xk �; [[�℄℄� ` ��; 8x1 : : : 8xk � ` �where Var(�) � fx1; : : : ; xkg (R46) � ` hh�ii�; 9x1 : : : 9xk �; �� ` 9x1 : : : 9xk �; �where Var(�) � fx1; : : : ; xkg (R47)Rules for negated modalities� ` h�i:�; �� ` :[�℄�; � (R48) � ` [�℄:�; �� ` :h�i�; � (R49)� ` hh�ii:�; �� ` :[[�℄℄�; � (R50) � ` [[�℄℄:�; �� ` :hh�ii�; � (R51)Table 4. Mis
ellaneous rules.rules (R13) and (R15) and are based on the fa
t that, for example, [[�(x)℄℄� istrue in a state s if 8x� is true in s and x is the only variable in �(x).And third, there are rules, (R48) to (R51), implementing the equivalen
es:[�℄�$ h�i:� and :[[�℄℄�$ hh�ii:�.5 Soundness and Relative Completeness5.1 SoundnessSoundness of the
al
ulus CDLT (Corollary 1) is based on the following theorem,whi
h states that all rules preserve validity of the derived sequents.Theorem 1. For all rules s
hemata of the
al
ulus CDLT, (R1) to (R51), thefollowing holds: If all premisses of a rule s
hema instan
e are valid sequents,then its
on
lusion is a valid sequent.Proving the above theorem is not diÆ
ult. The proof is, however, quite largeas soundness has to be shown separately vor ea
h rule. For the assignment rules,the proof is based on a substitution lemma and is te
hni
ally involved.Corollary 1. If a sequent � ` � is derivable with the
al
ulus CDLT, then itis valid, i.e., V� ! W� is a valid formula.5.2 Relative CompletenessThe
al
ulus CDLT is relatively
omplete; that is, it is
omplete up to the handlingof the domain of
omputation (the data stru
tures). It is
omplete if an ora
lerule for the domain is available|in our
ase one of the ora
le rules for arithmeti
,11

(R19) and (R20). If the domain is extended with other data types, CDLT remainsrelatively
omplete; and it is still
omplete if rules for handling the extendeddomain of
omputation are added.Theorem 2. If a sequent is valid, then it is derivable with CDLT.Corollary 2. If � is a valid DLT-formula, then the sequent ` � is derivable.Due to spa
e restri
tions, the proof of Theorem 2, whi
h is quite
omplex,
annot be given here (it
an be found in [12℄). The proof te
hnique is the sameas that used by Harel [4℄ to prove relative
ompleteness of his sequent
al
ulusfor �rst-order DL. The following lemmata are
entral to the
ompleteness proof.Lemma 1. For every DLT-formula FDLT there is an (arithmeti
al) FOL-for-mula FFOL that is equivalent to FDLT, i.e., vals(FDLT) = vals(FFOL) for allstates s.The above lemma states that DLT is not more expressive than �rst-orderarithmeti
. This holds as arithmeti
|our domain of
omputation|is expressiveenough to en
ode the behaviour of programs. In parti
ular, using G�odelisation,arithmeti
 allows to en
ode program states (to be more pre
ise, the values of allthe variables o

urring in a program) and (�nite) tra
es into a single number.Note that the lemma states a property of the logi
 DLT that is independent ofthe
al
ulus.Lemma 1 implies that a DLT-formula FDLT
ould be de
ided by
onstru
t-ing an equivalent FOL-formula FFOL and then invoking the
omputation domainora
le|if su
h an ora
le were a
tually available. But even with a good approx-imation of an arithmeti
 ora
le, that is not pra
ti
al (the formula FFOL wouldbe too
omplex to prove automati
ally or intera
tively). And, indeed, the
al
u-lus CDLT does no work that way.It may be surprising that the (relative)
ompleteness of CDLT requires anexpressive
omputation domain and is lost if a simpler domain and less expressivedata stru
tures are used. The reason is that a simpler domain may not allow toexpress the required invariants resp. indu
tion hypotheses to handle while loops.Lemma 2. Let � and be FOL-formulas, let � be a program, and let M� beany of the modalities [�℄; h�i; [[�℄℄; hh�ii.If the sequent � ` M� is valid, then it is derivable with CDLT.Lemma 2 is at the
ore of the
ompleteness of CDLT. It is proven by indu
tionon the
omplexity of the program �, and the proof would not go through if the
al
ulus would la
k important rules.4Besides Lemmata 1 and 2, the
ompleteness proof makes use of the fa
t thatthe
al
ulus has the ne
essary rules (a) for the operators of
lassi
al logi
 (in par-ti
ular all propositional tautologies
an be derived), and (b) for generalisation,(R40) to (R43).6 Extended ExampleConsider the following program:while true doif y := 1 thenx := x+ 1; if x := 2 then y := 0 else y := 1 g =: �elsex := 0; y := 1 g =: �4 Not all rules are indispensable. Some
an be derived from other rules; they arein
luded for
onvenien
e. 12

It
onsists of a non-terminating while loop. The loop body
hanges the valueof x between 0 and 2 and the value of y between 0 and 1. We want to prove that0 � x � 2 is true in all states rea
hed by this program, if it is started in a statewhere vals(x) = 0 and vals(y) = 1.5 The
omplete proof is shown in Figure 1.Its initial proof obligation is the sequentx := 0; y := 1 ` [[while true do if y := 1 then � else �℄℄0 � x � 2 (1)First, the while loop is eliminated applying rule (R37) with the invariantInv := 0 � y � 1 ^ (y := 0 ! x := 1 _ x := 2) ^ (y := 1 ! x := 0) :The formula 0 � x � 2, whi
h is a logi
al
onsequen
e of Inv, does not des
ribethe behaviour of the loop in suÆ
ient detail and, therefore, is not a suitableinvariant itself. The result of applying rule (R37) to (1) are the following fournew proof obligations:x := 0; y := 1 ` Inv (2)Inv; true ` [if y := 1 then � else �℄Inv (3)Inv; true ` [[if y := 1 then � else �℄℄0 � x � 2 (4)Inv; :true ` 0 � x � 2: (5)Proof obligation (2)
an immediately be derived with rule (R19). And, applyingrule (R5) to (5) yields a sequent (50) with true on the right, whi
h
an be derivedwith rule (R2).In the sequel, we
on
entrate on the proof of (4). Proof obligation (3)
an bederived in a similar way as (4); its derivation is omitted due to la
k of spa
e.The next step is the appli
ation of rule (R32) to (4) to symboli
ally exe
utethe if-then-else statement. The result are the following two proof obligations.Inv; true ; y := 1 ` [[x :=x+ 1; if x := 2 then y := 0 else y := 1℄℄0 � x � 2 (6)Inv; true ; :y := 1 ` [[x := 0; y := 1℄℄0 � x � 2 (7)Eliminating the
on
atenations in (6) and (7) with appli
ations of rule (R28)yields (8) and (9) resp. (10) and (11).Inv; true ; y := 1 ` [[x :=x+ 1℄℄0 � x � 2 (8)Inv; true ; y := 1 ` [x :=x+ 1℄[[if x := 2 then y := 0 else y := 1℄℄0 � x � 2 (9)Inv; true ; :y := 1 ` [[x := 0℄℄0 � x � 2 (10)Inv; true ; :y := 1 ` [x := 0℄[[y := 1℄℄0 � x � 2: (11)Next, we simplify (and weaken) the left sides of (8){(11) with the arithmeti
rule (R20) (this is not really ne
essary but the sequents get shorter and easierto understand). The result are the following sequents, respe
tively:x := 0 ` [[x :=x+ 1℄℄0 � x � 2 (12)x := 0 ` [x :=x+ 1℄[[if x := 2 then y := 0 else y := 1℄℄0 � x � 2 (13)x := 1 _ x := 2 ` [[x := 0℄℄0 � x � 2 (14)` [x := 0℄[[y := 1℄℄0 � x � 2 (15)The derivations of proof obligations (12), (14), and (15) need no further expla-nation and are shown in Figure 1. To derive proof obligation (13), we applyrule (R22) and getx0 := 0; x := x0 + 1 ` [[if x := 2 then y := 0 else y := 1℄℄0 � x � 2 (16)5 In this se
tion, we use 0 � x � 2 as an abbreviation for 0 � x ^ x � 2.13

�x := 0 ` 0 � x � 2 (R19) �x0 := 0; x := x0 + 1 ` 0 � x � 2 (R19)x := 0 ` [[x := x+ 1℄℄0 � x � 2 (12) (R24)�x := 0 ` 0 � x � 2 (R19) �x := 0; y := 1 ` 0 � x � 2 (R19)x := 0 ` [[y := 1℄℄0 � x � 2 (R24)` [x := 0℄[[y := 1℄℄0 � x � 2 (15) (R22)�x := 1 _ x := 2 ` 0 � x � 2 (R19) �x0 := 1 _ x0 := 2; x := 0 ` 0 � x � 2 (R19)x := 1 _ x := 2 ` [[x := 0℄℄0 � x � 2 (14) (R24)

�(2) (R19) �....(3) (12)(8) (R20)
�(19) (R19) �(20) (R19)(17) (R24) �(190) (R19) �(200) (R19)(18) (R24)(16) (R32)(13) (R22)(9) (R20)(6) (R28) (14)(10) (R20) (15)(11) (R20)(7) (R28)(4) (R32) �(50) (R2)(5) (R5)(1) (R37)Fig. 1. The derivation des
ribed in Se
tion 6.The if-then-else statement is symboli
ally exe
uted with rule (R32), and we getx0 := 0; x := x0 + 1; x := 2 ` [[y := 0℄℄0 � x � 2 (17)x0 := 0; x := x0 + 1; :x := 2 ` [[y := 1℄℄0 � x � 2 (18)Proof obligation (17) is derived by applying rule (R24), whi
h yields:x0 := 0; x := x0 + 1; x := 2 ` 0 � x � 2 (19)x0 := 0; x := x0 + 1; x := 2; y := 0 ` 0 � x � 2 (20)It is easy to
he
k that (19) and (20) are valid FOL-sequents and
an thereforebe derived with the ora
le rule for arithmeti
 (R19).Applying rule (R24) to (18) yields similar FOL-sequents (190) and (200),whi
h di�er from (19) and (20) in that they
ontain :x := 2 instead of x := 2 andy := 1 instead of y := 0. They, too,
an be derived with the ora
le (R19).14

7 Future WorkFuture work in
ludes an implementation of our
al
ulus CDLT, whi
h would allowto
arry out
ase studies going beyond the simple examples shown in this paperand to test the usefulness of DLT in pra
ti
e.A useful extension of CDLT for pra
ti
al appli
ations may be spe
ial rules forformulas of the form [�℄� ^ [[�℄℄ , su
h that splitting the two
onjun
ts is avoidedand they do not have to be handled in separate|but similar|sub-proofs.Also, it may be useful to
onsider (a) a non-deterministi
 version of DLT,and (b) extensions of DLT with further modalities su
h as \� preserves �",whi
h expresses that, on
e � be
omes true in the tra
e of �, it remains truethroughout the rest of the tra
e. It seems, however, to be diÆ
ult to give a(relatively)
omplete
al
ulus for this modality.A
knowledgementsWe thank W. Ahrendt, E. Habermalz, W. Menzel, and P.H. S
hmitt for fruitfuldis
ussions and
omments on earlier versions of this paper.Referen
es1. W. Ahrendt, T. Baar, B. Be
kert, M. Giese, E. Habermalz, R. H�ahnle, W. Menzel,and P. H. S
hmitt. The KeY approa
h: Integrating obje
t oriented design andformal veri�
ation. In M. Ojeda-A
iego, I. P. de Guzman, G. Brewka, and L. M.Pereira, editors, Pro
eedings, Logi
s in Arti�
ial Intelligen
e (JELIA), Malaga,Spain, LNCS 1919. Springer, 2000.2. K. R. Apt. Ten years of Hoare logi
: A survey { part I. ACM Transa
tions onProgramming Languages and Systems, 1981.3. B. Be
kert. A Dynami
 Logi
 for Java Card. In Pro
eedings, 2nd ECOOP Work-shop on Formal Te
hniques for Java Programs, Cannes, Fran
e, pages 111{119,2000. Also presented at Java Card Workshop (JCW), Cannes, Fran
e, 2000, andsubmitted to the pro
eedings of JCW to be published in Springer LNCS.4. D. Harel. First-order Dynami
 Logi
. LNCS 68. Springer, 1979.5. D. Harel. Dynami
 Logi
. In D. Gabbay and F. Guenthner, editors, Handbookof Philosophi
al Logi
, Volume II: Extensions of Classi
al Logi
, pages 497{604.Reidel, 1984.6. M. Heisel, W. Reif, and W. Stephan. A Dynami
 Logi
 for program veri�
ation. InA. Meyer and M. Taitslin, editors, Pro
eedings, Logi
 at Boti
, Pereslavl-Zalessky,Russia, LNCS 363. Springer, 1989.7. D. Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, andW. Stephan. Dedu
tionin the Veri�
ation Support Environment (VSE). In M.-C. Gaudel and J. Wood
o
k,editors, Pro
eedings, International Sympoium of Formal Methods Europe (FME),Oxford, UK, LNCS 1051. Springer, 1996.8. D. Kozen and J. Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Handbookof Theoreti
al Computer S
ien
e,
hapter 14, pages 89{133. Elsevier, 1990.9. V. R. Pratt. Semanti
al
onsiderations on Floyd-Hoare logi
. In Pro
eedings, 18thIEEE Symposium on Foundation of Computer S
ien
e, pages 109{121, 1977.10. V. R. Pratt. Pro
ess logi
: Preliminary report. In Pro
eedings, ACM Symposiumon Prin
iples of Programming Languages (POPL), San Antonio/TX, USA, 1979.11. W. Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen,editors, KORSO: Methods, Languages, and Tools for the Constru
tion of Corre
tSoftware { Final Report, LNCS 1009. Springer, 1995.12. S. S
hlager. Erweiterung der Dynamis
hen Logik um temporallogis
he Operatoren.Studienarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe, 2000. In German.Available at: ftp://i12ftp.ira.uka.de/pub/be
kert/s
hlager.ps.gz.15

