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Abstract. We present a methodology for the formalization of human-
computer interaction under security aspects. As part of the methodology,
we give formal semantics for the well-known GOMS methodology for user
modeling, and we provide a formal definition of an important aspect
of human-computer interaction security. We show how formal GOMS
models can be augmented with formal models of (1) the application
and (2) the user’s assumptions about the application. In combination,
this allows the pervasive formal modeling of and reasoning about se-
cure human-computer interaction. The method is illustrated by a simple
eVoting example.

1 Introduction

1.1 Overview

We present a methodology for the pervasive formal specification and verifica-
tion of user interfaces under security aspects. We define formal semantics for
GOMS [10], a well-established user modeling methodology. We augment formal
GOMS models with formal models of (1) the application and (2) formal models
of the user’s assumptions about the application. We adapt the common defini-
tions of computer security to the field of human-computer interaction (HCI). For
Integrity, an important aspect of HCI security, we provide a formal definition.
In combination with a formal definition of human-computer interaction (HCI)
security, this allows formal reasoning about the security of user interfaces. Our
approach is illustrated by a simple eVoting example.

While formal methods are used extensively in many fields of computer secu-
rity, they are rarely used in HCI—even for security critical systems. The reason
is that HCI does not deal with the interaction of two machines but with the
interaction of a machine and a human. While the behavior of a machine can be
described precisely with formal methods, human behavior is more difficult to
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describe in a precise way and it can be formalized to a limited extend only. This
makes comprehensive modeling of all aspects of user behavior an unreachable
goal. However, we argue that, nevertheless it is possible to formally describe
human behavior under computer security aspects.

Our approach addresses real world security threats and shows how to counter
them. It is directly applicable for the security evaluation of existing systems, as
well as to the specification of new systems.

The user modeling methodology presented in this paper is based on the well-
established GOMS methodology [10]. GOMS is extensively used for the modeling
of user behavior. For our purposes, however, it has two weaknesses: A strict
formal semantics is missing, and GOMS models the user behavior independently
from the behavior of the system. Both of these short-comings are overcome in
this paper.

The structure of this paper is as follows. In Section 2, we develop a formal
semantics for GOMS models and illustrate it with an example. In Section 3, that
example is completed by adding components representing the application and the
user’s assumptions about the application. In Section 4, the common definition of
computer security is adapted for HCI-security, an a formal definition of Integrity,
an important aspect of HCI-security, is developed. In Section 5, our approach
is extended to hierarchical models. This allows the pervasive description of HCI
security and to prove security for all aspects of a user interface—from the pixel
level up to high-level functionality of the user interface. Finally, in Section 6, we
summarize our work.

1.2 User Modeling Formalisms

User models are routinely used in computer system usability studies. Such user
models usually draw on psychological models of the user. They model the user’s
tasks, goals, motivations, etc. While this is essential under a usability point of
view, it makes a comprehensive formal modeling of the effects of user actions
infeasible because complex psychological activities can be modeled to a limited
extend only. From a usability point of view, this is not necessarily a severe draw-
back. To guarantee a certain level of usability, it suffices to give plausible evidence
that the application’s interface is usable, assuming certain goals and behaviors of
the user. Security, however, requires a stricter notion of human-computer inter-
action. While a usability glitch in some dialog window may decrease the general
usability of the application a bit, a security glitch can have more severe conse-
quences. Even worse, a security glitch will encourage attackers to seek methods
to actually exploit the glitch. The different view on the user and the different
goals of usability and security, make it possible and advisable to apply formal
methods to security aspects of user interfaces with user models adapted to the
particular needs of security.

The computer security problem of proper visual representation of system
state is addressed by Duke, Harrison, and others in a number of papers[1,6-8|.
Their focus is to define the relationship between the functional component and
the representational component of applications. In [8], they present a theory



of how to describe representations of system state. Our approach is orthogonal
to the approach of Duke et al. We present a formal method to reason about
correspondonce of the application’s state and the user’s representation of the
state under the assumption that the visualization is adequate.

Process oriented formalisms like the well known PIE model developed by Dix
and Runciman [5] and its more recent variations (e.g. [4]) allow to describe the
interaction of the system and a user formally, but they focus on describing the
computer system’s side of the interaction. In PIE, the behavior of a user interface
is described by a sequence of commands (issued by the user) leading to a sequence
of effects. While PIE and similar formalisms put an emphasis on describing the
I/O behavior of a computer system and are suitable for automated reasoning
(e.g., with model checkers), other approaches like Task Knowledge Structures
(TKS) [9], (Extended) Task Action Grammar ((E)TAG) [2], and Goals Operators
Methods Selection-rules (GOMS) [10] focus on providing cognitive models of the
user. TKS provides an explicit representation of the cognitive model of the user.
GOMS is more oriented towards psychological analysis of user behavior and
timed measurement of user activity. TAGs allow a precise formal description of
the user actions, the user’s knowledge and the user’s internal representation of
the system (what the user thinks about the system).

We base our formalization on GOMS, because GOMS is a well established
formalism, and—in the incarnation CMN-GOMS [10]—it allows to describe user
models hierarchically. This is an important property for modeling a user interface
under security aspects because of the large variety of errors in human-computer
interaction. Some of these errors are on a very low level (for example, the user
may push the mouse button twice instead of once), while others are on a very
high level of abstraction (e.g., the user may misinterpret the meaning of an
error message). A hierarchical modeling mechanism allows to model all kinds of
errors within one formalism. GOMS models are semi-formal. We provide formal
semantics for GOMS models. The formal GOMS model is augmented by formal
models of the application and formal models of the user’s assumptions about
the application. With a formal definition of secure human-computer interaction,
this allows to determine the security of a user interface by automated reasoning.

2 Formal Semantics for GOMS User Models

In this section we define formal semantics of GOMS models. In Section 2.1 the
formal methods used throughout this paper are defined. Based on these formal
methods, formal semantics for GOMS are defined in Section 2.2, and the example
used throughout this paper is introduced. In Section 2.3, the formal semantics
are extended by defining semantics of selection criteria. In combination with
the formal model of the application (Section 3), and a formal definition of HCI
security (Section 4), automated reasoning about the security of a HCI interaction
model becomes possible.



2.1 Components

Our methodology for the formal description of and reasoning about GOMS
makes use of Input Output Labeled Transition Systems (IOLTS) and Linear
Temporal Logic (LTL). Below, we define these concepts and some related no-
tions used throughout this paper.

Definition 1. A Labeled Transition System (LTS) is a tuple L = (S, X, sp, —)

where S is a set of states, sop € S is an initial state, X is a set of labels,

and — C 8§ x X x S is a transition relation. We use the notation p < q for

(p,0,q) € —

Definition 2. An Input Output Labeled Transition System (TOLTS) is an LTS
= (S8, X, s9,—) with X = 27U XU XI. We call X7 the input alphabet, X! the

output alphabet, and XTI the internal alphabet.

We use state transition diagrams to visualize IOLTS. An example is shown
in Figure 1.

OO0
o?

X7 X
— (%) —

o?

Fig. 1. State Transition Diagram representation of an IOLTS.

The combination of two IOLTSs L, and L; where the output alphabet of L,
is the input alphabet of L; is called a composition:

Definition 3. Let L, = (Sa, X4, S04 —a), Lb = (Sb, b, S0p, —) be two IOLTS
with X, = X?y,. The composition (Lg || Ly) = (S, X, so,—) of L and Ly is
defined by:

S =8, %x8
=237,
X=X

ST = XI,USI, U,

0 = (804, S05)

— ={((5a,5),0,(5.,8)) | 85a Zoa s with o € £?, UXI,}U
{((3a, $p), 0, (sa,sb)) | sy 2o sy, with o € Xy UXT,}U
{((5a,88),0, (55, 80)) | 8a 24 s, and s, Loy sp with o € X1,}



Often, components are combined by mutual composition. In mutual compo-
sition, the output of L, serves as input for L;, and the output of L, serves as
input of L, (this is illustrated in Figure 2).

Definition 4. Let L, = (Sa, X4, S04 —a) and Ly = (Sp, Xy, s0, —p) be IOLTS.
We assume the input and output alphabets of L, and Ly to consist of in-
ternal and external subsets, where the internal input is denoted with Y71, the
external input with X771, the internal output with X1, and the external output
with X'E. And we demand that these subsets are chosen such that X[, = X71,
and X\, = X71,.
Then, the mutual composition (Lg ||m Ls) = (S, X, s0, —) of Lo and Ly is
defined by:
S =8, %5

Xr=37E,UXTE,

X =XE,UXIE,

XI=XI,UXI,uX\I,uXI,

S0 = (SOaa Sob)

— ={(54,5),0,(5,,5)) | 8a 20 s, witho € X?E, US\E, UXI,}U
{(84,80),0, (5a,8)) | 86 =5 s, with 0 € L7E, U XIE, U STy} U
{(3a,5),0,(54,5)) | Sa —a s, and s, =, 5| with

oce X, uX,}
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—
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Fig. 2. Mutual composition of IOLTSs.

The input/output behavior of a component is described by traces, which are
(possibly infinite) sequences of elements from the alphabet X', and paths, which
are corresponding sequences of states.

Definition 5. Let L = (S, X, s9,—) be an IOLTS. Then, a path is a sequence
(80, 81,...) of states from S with s; — s;y1 for all i > 0. A trace (of L) is a



sequence {og,01,...) of elements of X such that there is a path (sg, s1,...) with
S; i> Si+1 (Z Z 0)

We use Linear Temporal Logic (LTL) to describe properties of components.
The syntax of LTL is defined as usual, i.e., given a set P of atomic propositions,
LTL formulae ¢ are constructed inductively by:

pu=ploVolond|-¢|Xo|oUs|Go|Fo  (peP)

Now, we can use IOLTSs to interpret LTL formulas—in combination with
valuations A that map atomic propositions to the states in which they are true.
The satisfaction relation is extended to more complex formulae as usual.

Definition 6. Given an IOLTS L = (S, X, so,—) and a set P of atomic propo-
sitions, a valuation \ is a mapping from P to S. An atom p € P is said to be
true in s € S iff s € A(p).
Given a path ¢ = (sg, 51, ...), by c¢* we denote the sub-path of ¢ starting at s;.
Whether an LTL formula ¢ is satisfied by a path ¢ and a valuation A, denoted
by L, \, ¢ |E &, is inductively defined as follows:

- LAcET

— LA\ clE¢ ifp € P and sy € A(d)

— L \cE-¢ifnot LA\ cE¢

—LANcEoANYIfLANcE@and L\ clE1

—LANcEoVUIfLANcEYorLA\cEY

— L\ cEXpif LA\ cEo

— LA\, cEoU if (a) L\, c =1 or (b) there is some i > 1 s.t. L\, ¢t =)
and L\, c* = ¢ for all 0 < k < i

— LA\ ckEGoifLct = ¢ foralli>0

— L\ cEF¢if L,c' = ¢ for somei >0

An LTL formula ¢ is said to be satisfied by a valuation \, denoted by L, \ = ¢,
iff L\, ¢ |= ¢ for all paths ¢ of L. And ¢ is said to be satisfied by L, denoted by
L ¢ iff L\ |E ¢ for all valuations .

2.2 Using IOLTS Traces to Define the Semantics of GOMS Models

We now provide a formal semantics for the GOMS user modeling methodology.
GOMS describes human behavior in categories of

Goals The user’s goals
Operators Atomic actions available to the user
Methods Sequences of operators and sub-goals

Selection Rules  Rules to decide between alternative methods

We formalize the CMN-GOMS variant of GOMS [10]. In difference to other
GOMS variants, CMN-GOMS satisfies the two core requirements for the for-
mal description of human behavior under security aspects: It allows to model



user behavior on different levels of abstractions, and CMN-GOMS’s informal
semantic is suitable for formalization. In CMN-GOMS, methods for achieving a
goal consist of sequences of sub-goals and atomic operators (the only difference
between sub-goals and atomic operators is that operators cannot be further de-
composed). If there is more than one way to reach a goal, a selection rule is used
to choose between alternatives.

GOAL: VOTE FOR CANDIDATE(“Bob”)
OPERATOR: WAIT FOR UNLOCK OF VOTING MACHINE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE
SELECT:
OPERATOR: CONFIRM VOTE...if candidate “Bob” selected
GOAL: CHANGE VOTE ...otherwise
OPERATOR: CANCEL VOTE
OPERATOR: CHOOSE CANDIDATE(“Bob”)
GOAL: REVIEW VOTE(2)
SELECT:
OPERATOR: CONFIRM VOTE...if candidate “Bob” selected
OPERATOR: FAIL ...otherwise

Fig. 3. GOMS model for eVoting.

Figure 3 gives an example. It models the user of an eVoting machine. In
order to achieve the goal “VOTE FOR CANDIDATE(‘Bob’)”, the user executes
the method consisting of the atomic operations “WAIT FOR UNLOCK OF
VOTING MACHINE” and “CHOOSE CANDIDATE(‘Bob’)”. Then he reviews
his vote. The sub-goal “REVIEW VOTE” can be achieved in two ways: (1) If
the user has selected the right candidate, he confirms. (2) If he has selected the
wrong candidate, he pursues sub-goal “CHANGE VOTE”. Changing the vote
leads to the sub-goal “REVIEW VOTE(2)”. If the user has selected the right
candidate this time, he confirms; otherwise, voting fails.

We give a formal semantics for GOMS models using the notion of IOLTS
traces. That is, an IOLTS corresponds to a GOMS model if the traces of the
IOLTS are identical to the possible sequences of user decisions (selections) and
operations. In order to formally define, which IOLTS correspond to a given
GOMS model, we use the following formal syntax for GOMS models:

Definition 7. Given a GOMS model, the corresponding formal GOMS model
18

T= (G307M7R7 0790)
where

— G is the set of (sub-)goals;



— O is the set of operators;

— C is the set of selection criteria;

— M is a function mapping goals to their sequences of sub-goals/operators.

— The function R: G x C — G is defined by: R(g,c) =g iff the goal g is
achieved by sub-goal/operator g’ in case criteria ¢ holds;

— qo 18 the top-level goal.

The formal GOMS model corresponding to the eVoting GOMS model from Fig-
ure 3 is shown in Figure 4.

T =(G,0,M,R,C,g) with

G = {VOTE_FOR_CANDIDATE(“Bob”), REVIEW_VOTE,
CHANGE_VOTE, REVIEW_VOTE(2)}

O = {WAIT_FOR_UNLOCK, CHOOSE_CANDIDATE,
CONFIRM_VOTE, CANCEL_VOTE, FAIL}

C = {Candidate “Bob” selected, —=(Candidate “Bob” selected)}

(WAIT_FOR_UNLOCK, CHOOSE_CANDIDATE, REVIEW_VOTE)
M(g) = if g = VOTE_FOR_-CANDIDATE
(CANCEL_UNLOCK, CHOOSE_CANDIDATE, REVIEW_VOTE(2))
if g = CHANGE_VOTE

CONFIRM_VOTE if ¢ = REVIEW_VOTE and

¢ = Candidate “Bob” selected
CHANGE_VOTE if ¢ = REVIEW_VOTE and
Rlg, c) = ¢ = - (Candidate “Bob” selected)

’ CONFIRM_VOTE if ¢ = REVIEW_VOTE(2) and

¢ = Candidate “Bob” selected
FAIL if g = REVIEW_VOTE(2) and

¢ = — (Candidate “Bob” selected)

Fig. 4. Formal GOMS model for the eVoting model from Figure 3.

We define a formal semantics for GOMS models by translating the formal
GOMS model into an IOLTS. The idea is to represent operators as elements of
the output alphabet, selections as elements from the input alphabet, and meth-
ods as (sub-)paths. Selection rules are branching points in the IOLTS. Figure 5
illustrates this translation.

Definition 8. Let T = (G, O, M, R, C, go) be a formal GOMS model. And let
(S, X, Sy, —) be the (generalized) IOLTS constructed for T and Sy = {so} by the
algorithm shown in Figure 6.

Then (S, X, sg, —) is the IOLTS corresponding to T

Note that the algorithm in Figure 6 constructs an IOLTS that is generalized
in the sense that is may have more than one initial state. If the algorithm is
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Fig. 5. Translating GOMS categories to state transition diagrams.

started with a singleton set Sy = {sp} of initial states, a standard TIOLTS is
constructed (the more general case is only needed for the recursive calls within
the algorithm). An implementation of the algorithm in the Perl programming
language has been used for constructing the example IOLTSs presented in this

paper.

Applying the algorithm to the eVoting example results in the following IOLTS
that corresponds to the GOMS model shown in Figure 3 resp. 4. The IOLTS is
shown graphically in Figure 7.

S: {50,...,511}
Y =XruXx!
X7 ={“Bob” selected, = (“Bob” selected}

X!l = {WAIT_FOR_UNLOCK, CONFIRM_VOTE, CANCEL_VOTE, FAIL,
CHOOSE_CANDIDATE}



Require: GOMS model T = (G, O, M, R, c, go), and a set Sp of initial states
Ensure: (Generalized) IOLTS L = (S, X, So, —) and set F of states,
s.t. X7 =C, X!= 0, and F contains the final states of L
if go € O then
{initial goal is an atomic operator}
create new state sp

S =Sy U {51}

X1i=0

2= {g()}

— = {(So,go7 81) | S0 € So}
F = {81}

else if M(go) = (m1,..., my) then
{initial goal has sub-goals gi,...,gn}

S:=90
2=
Y=g
— =0
F:= 5

fori=1...ndo
create an IOLTS L; = (S;, X4, Sa, —;) with final states F;
for Ti = (G, 0, M, R, c, g;) and set Si := F of initial states
by recursion

S:=5US;
Xr=X7TUX7;
Yl=x1ux
— = —U—
F=F
end for
else

{initial goal is a selection point}
for all g¢;, ¢; such that R(go, ¢i) = ¢g; do
create a new state s;
S :=8SU{s}
— =—U {(So, Ci,Si) | So € So} ‘
create an IOLTS L; = (i, X4, Sg, —:) with final states F}
for Ti = (G, 0, M, R, c,g;) and set S& := {s;} of initial state
by recursion
S:=5UG5;
X7=X70uX7
J=XIuX U {Cl}

— = — U —;

F=FUF;
end for
end if

Fig. 6. Algorithm for constructing an IOLTS corresponding to a given GOMS model.
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— = {(50, WAIT_FOR,_UNLOCK, 51),
(s1, CHOOSE_CANDIDATE(“Bob”), 55),
(s2, “Bob” selected, s3),

(s3, CONFIRM_VOTE, s,),

(82, (“Bob selected), s5),

(s5, CANCEL_VOTE, s5),

(35, CHOOSE_CANDIDATE(“Bob”), s7),
(s7, “Bob” selected, sg),

(ss, CONFIRM_VOTE, sy),

(s7, (“Bob” selected), s10),

(510, FAIL, 511)}

I WAIT_FOR_UNLOCK

CHOOSE_CANDIDATE “Bob”

|

“Bob" selected — “Bob" selected

Fig. 7. IOLTS corresponding to the eVoting GOMS model.
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2.3 Assumptions as Selection Rules

Selection rules in GOMS models require decision criteria. In GOMS, these cri-
teria are only specified in an informal way. Since our goal is to provide a formal
semantics for GOMS models suitable for automated reasoning, a methodology
for the formal description of selection criteria is required.

If a user is in the situation to choose between multiple options, his decision
will be based on the current system configuration or, more precisely, on his
perception of the system configuration. In the eVoting example, the decision
whether to confirm his vote or to change it, depends on the candidate selection
shown by the voting machine and the user’s corresponding perception of the
machine’s internal configuration.

Following our component-based approach, we define the user’s assumption
about the system configuration as a component. This component is combined
with the (IOLTS corresponding to the) formal GOMS model by mututal com-
position. The rational behind mutual composition is that not only do the user’s
presumptions about the applicaton state influence his behavior but his assump-
tions about the state of the application are influenced by his actions as well. For
example, when the user pushes the “confirm vote” button, he will asume that the
voting process is completed, even if it takes some time before the next message
appears on the screen. The other input for the assumption component—besides
the users actions, i.e., the operators in the GOMS model—comes from the output
of the application (application output is defined in Section 3). Figure 8 illustrates
the composition of an interactive formal user model.

Interpretation Selection GOMS Model

Operator

Device Output Operator

Fig. 8. Combination of GOMS model and user’s interpretation of the application’s
configuration..

Definition 9. An IOLTS L = (S, X, so, —) is called a user assumption IOLTS,
if

- Y=Xrux]

— X7 =X7p UX?4 where X?7p atomic application (device) output and X7 4
are GOMS operators,

— X\ consists of GOMS selection criteria.

12



An interactive formal user model L = (L4 ||m Lr) is the mutual composition
of the IOLTS Ly corresponding to a formal GOMS model (user model) and a
user assumption IOLTS L.

2.4 Formal HCI Model: Summary

We have defined formal semantics for GOMS models and for selection criteria.
Selection criteria are defined by a component modeling the user’s assumptions
about the application. The combination of a formal GOMS models of the user
and a model of the user’s assumptions allows the formal description of human
behavior.

In order to reason about security of HCI, a formal application model and
a formal definition of HCI security is required in addition. In Section 3, we
complete the eVoting example. We provide an application model and two alter-
native user assumption components. In Section 4, definitions of generic formal
HCI security requirements are given and applied to the eVoting example.

3 Completing the eVoting Model

In order to apply automated reasoning to human-computer interaction, we need
three components: (1) A formal GOMS model and its corresponding IOLTS; (2) a
component representing the assumptions of the user about the application; and
(3) a component representing the application itself. In this section, we provide the
missing two components for the eVoting example, starting with the application.
We assume that the eVoting machine is initially in a locked state. After some
time, the machine is unlocked and the user can cast his vote. After he has selected
a candidate, the machine shows the user’s choice and asks for confirmation. If
he confirms, the voting process finishes. If he cancels, he can change the vote.
Figure 9 sketches an IOLTS modeling the voting machine. The input alphabet
is identical to the output alphabet of the user model IOLTS, i.e., the operators
available to the user. The output alphabet is an abstract representation of the
application’s output (in Section 5 we introduce hierarchical models which allow
to model application output down to the pixel level). In order to make the
example interesting, we have built a bug into the IOLTS: If a user votes for
“Bob”, the eVoting machine may mistakenly interpret this as a vote for “Fred”:
§ = (50,51, 92} U U, camadases 50 54 872 87
Y =x7ruXx
Y7 ={WAIT_FOR_UNLOCK, CONFIRM_VOTE, CANCEL_VOTE, FAIL,
CHOOSE_CANDIDATE}

X! = {locked, unlocked} U | J {Vote cast(c), Vote confirmed(c)}

c€Candidates

13



— {(50, WAIT_FOR_UNLOCK, s1),

(81, unlocked, s2)} U
(82, CHOOSE_CANDIDATE]¢], s.) | ¢ € Candidates} U
(sc, Vote cast(c), s.) | ¢ € Candidates} U
(s., CHANGE_VOTE, s3) | ¢ € Candidates} U
(s, CONFIRM_VOTE, s/) | ¢ € Candidates} U
(s”,Vote confirmed(c), ’”) | ¢ € Candidates} U
(5“Bob” Vote cast (“Fred”), stpeqrr)

{
{
{
{
{
{

l Operator

High-Level App. Behavior

Cancel

WaitForUnlock m Confirm
un- \ICand] cg; Vote Vote Conf.
locked W Cand]

l Device Output

Fig. 9. Application Model for the eVoting example.

For the completion of the example, we still need a model of the user’s as-
sumptions. As defined in the last section, a user assumption component has
an input alphabet consisting of the application’s output and the user’s opera-
tors, and an output alphabet consisting of the user’s selection criteria. In this
example we use user assumption components that only use the application’s
output as input (in order to keep the example simple). Selection rules are used
at two points in the GOMS model: When the user reviews his voting decision
for the first time, and when he reviews his voting decision for the second time.
The user’s assumption is that the eVoting application works correctly. Thus,
the assumption component will output “candidate ‘Bob’ selected” for the in-
put “Vote cast(‘Bob’)”, and “—(Candidate ‘Bob’ selected)” for the input “Vote
cast(c¢)” with ¢ # “Bob”. This “error-free” model corresponds to the following
user assumption IOLTS:

S = {5075bob75other}
Yy =X7uXx!

2?7 = {locked, unlocked} U | J {Vote cast(c), Vote confirmed(c)}

c€Candidates

14



X! = {Candidate ‘Bob’ selected, —(Candidate ‘Bob’ selected)}

— = {(s0,0, 50) | o # Vote cast(c) for all candidates ¢} U
{(s0, Vote cast(‘Bob’), spop) } U
{(s0, Vote cast(c), Sother) | ¢ # “Bob”} U
{(8pob, Candidate ‘Bob’ selected, sp)} U
{(Sother,  (Candidate ‘Bob’ selected), sp)

While standard GOMS does not allow to model user errors, our component-
based approach does. As an example, we model a user who may think the system
is in a state where he voted for “Bob” while in fact he voted for someone else.
The changed relation — is shown below:

— = {(s0,0,%) | 0 # Vote cast(c) for all candidates ¢} U
{(s0, Vote cast(c), spop) | ¢ € Candidates} U
{(s0, Vote cast(c), Sother) | ¢ # “Bob”} U

{(8pob, Candidate ‘Bob’ selected, sp)} U

{(Sother, — (Candidate ‘Bob’ selected), sp)

State

User’s Interpretation of App. |- User Behavior
Operator

A
Device Output Operator

Application -

Fig. 10. Basic system model.

In this section, we showed how system models are created from formal GOMS
models, user assumption components, and application models. The mutual com-
positions of these three components—as shown in Figure 10—provide a complete
model. With this, complete formal modeling of human-computer interaction be-
comes possible. In difference to traditional methods, our method also allows to
model erroneous user behavior.

In the next section, we define HCI security properties as LTL formulae. With
the formal definition of HCI security properties and the modeling methodology
developed in this section, formal methods can be used for reasoning about secu-
rity of user interaction.

4 HCI Security Definitions

The aim of computer security is to guarantee access to services and resources
to authorized persons, while preventing access and manipulation by unautho-
rized parties. The basic security threats are Data Leaking, Data Manipulation,
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and Program Manipulation [3]. These are countered by the core security require-
ments, usually abbreviated as CIA:

Confidentiality: Information is available to authorized parties only.

Integrity: Both the assumptions of the user about the application, and the
assumptions of the application about the user are correct.

Availability: Accessibility of services and data is guaranteed.

Adapting these concepts to user interface security is straightforward:

HCI Confidentiality: No secret information is leaked via the user interface.

HCI Integrity: There is a correspondence between the configuration of the
application (defined by its internal state and data), and the user’s assumption
about the data and the state.

HCI Availability: The user interface must guarantee reachability of desirable
states, and it must prevent user interactions that lead to transitions into
undesirable states.

In the following, we concentrate on formalizing the integrity requirement. Infor-
mally, we define HCI Integrity as follows:

Definition 10. HCI Integrity: Whenever the system is in a critical state, all
critical properties are the same in the application and in the user’s assumption
about the application.

Let the set P of atomic propositions contains the following atoms:

— appCritical is true whenever the application is in a critial state.
- ag,...,a, represent the critical properties of the application.
— ug,..., U, represent the user’s assumption about critical properties.

Then, we can formalize HCI Integrity using the LTL formula
G (appCritical — ((ag < up) A (a1 — w) A ... A (an < uyp)))

In the eVoting example, the critical property is the user’s vote, and the critical
state is reached once the user has finished voting. If in that state the user thinks
he selected the candidate of his choice, while in fact he voted for some other
candidate, human-computer interaction was erroneous. Thus, we choose ug to
represent “the user has voted for ‘Bob”’ and ag to represent “the user thinks
he has voted for ‘Bob”’. Critical states are those states of the application model
where a vote has been confirmed.

We can now use automated reasoning techniques (e.g., model checking) to
confirm that, whenever the valuation A reflect this interpretation of the atoms,
the HCI Integrity formula holds.

In the example, despite the bug in the application model (choosing “Bob”
may be credited to “Fred”), the Integrity requirement holds for the model where
the user makes correct assumptions about the system state, because the user will
recognize the error when he is asked to confirm the vote for “Fred”. In the variant
of the eVoting model with the erronous user assumptions model, Integrity does
not hold, because the user may mistakely confirm the vote for “Fred”.
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5 Hierarchical Model

In the models introduced so far, the application, the user’s actions, and the
user’s assumptions are modeled as monolithic components. When we start to
add more details to our models—for example, when application output and user
perception is modeled in more detail—the components become unwieldy.

Assumptions Behavior
State -~
Assumptions about App. - | User Behavior
StateOp
T Windows l Window Op.
Sem.Widgel

Assumptions about Windows Window Manipulation

A

Sem.WidgetOp

T Widgets l Widget Op.
Widget
Assumptions about Widgets |« Widget Manipulation
WidgetOp
T Symbols l Symbol Op.
Symbols _
Assumptions about Symbols | | Symbol Manipulation
SymbolsOp -
T Pixels l Atomic Op.

Fig. 11. Generic Hierarchical User Model

To counter this problem, we introduce hierarchical components. In a model of
hierarchical components, components of different levels of abstraction are layered
above each other. This allows to describe user interfaces and human-computer
interaction at all levels of detail with model still managable by humans and
computers.

Both in the construction of graphical user interfaces and in the perception
(and interpretation) of graphical user interfaces, there are generic abstraction
levels shared over a large class of interfaces. By identifying these abstraction
levels and modeling user interfaces along these lines, it becomes possible to model
complex user interfaces (and potential error sources in complex user interfaces)
while still preserving maintainability of the models. The proposed model pattern
is shown in Figure 11.

The sub-concepts of the user interface follow the well established hierarchical
view of interfaces. On the uppermost level, a user interface consists of distinct
screens. Each screen represents a specific view on the application. Screens them-
selves are built from a number of windows, windows are built from widgets, and
these are built from elementary symbols.

Creating a hierarchical user interface where each component represents one
level of abstraction makes it possible to model typical errors on their respective
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levels. For example, the typical error that a user misses a button and pushes a
wrong one, is modeled on a low level, while the error that a user misinterprets a
screen is modeled on a high level.

In our eVoting example, a user may accidently push the button for “Fred” if it
is next to the button for “Bob.” This error can be modeled on the symbol manip-
ulation level by the GOMS sub-model for the “CHOOSE_CANDIDATE(‘Bob’)”
operator shown in Figure 12 and the following assumption component about
widget manipulation:

S:{‘SOvSlv"'asn}
Y=XruX!
X7 = {(“Bob’s Button” =1
(“Bob’s Button” = 2),

(“Bob’s Button” = n)}

2! ={(“Bob’s Button” = 1),
(“Bob’s Button” = 2),

(“Bob’s Button” = n)
— = {(s0, (“Bob’s Button” =1),s;,) |1 <i<n}U
{(s0, (“Bob’s Button” =i —1),s;)) |1 <i<n}U
{(s0, (“Bob’s Button” =i+ 1),s;) |1 <i<n}

GOAL: CHOOSE_CANDIDATE(“Bob”)
SELECT: OPERATOR: PUSH_BUTTON(0) ...if “Bob’s Button” = 0
OPERATOR: PUSH_.BUTTON(1) ...if “Bob’s Button” =

OPERATOR: PUSH_.BUTTON(2) ...if “Bob’s Button”

I
RO =

Fig. 12. Sub-Model for CHOOSE_CANDIDATE(“Bob”).

Our approach to the construction of sub-models of GOMS models is depicted
in Figure 13. Each method for achieving a sub-goal becomes a GOMS model
on its own. The IOLTSs corresponding to these GOMS models can then be
combined into one component such that the operators from the higher GOMS
model become selection criteria. Formally, this is defined as follows:

Definition 11. Let

- T=(G,0,M,R,C,qg) be a GOMS model with the corresponding IOLTS
L=(S,%,s,—), and let

— Ti = (Gi, 03, M;, R;, Ci, g8) be GOMS models (1 <1i < n) with the corre-
sponding IOLTSs L; = (S;, X, s¢, —)
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Goal l

> GOMS Model

Goal
\

GOMS Sub—Models

sssssss K
Sub-Task

O—O—O\O [Sub-Goal] [[TT][ [Sub-Goal] 6} C :é
é@ O—0 O—0—0~

E—
S
[Sub-Goal] [Sub-Goal]
[Sub—-Goal] [Sub—-Goal]
Operator l

Fig. 13. Hierarchical GOMS model.

such that O = {g},...,gl'}, i-e., the operators of T are the top-level goals of
Ty,..., Ty.

Then, the IOLTS L' = (S', X', s§,—") for the hierarchical model consisting
of T and Ty,..., T, is defined by
S = {S(I)} U U1§z‘§n Si
y=xrux?
2= U1<i<n 27
2= U1<i<n ALY

H/:{56g—o’séﬂ1§i§”}UU1gignﬂi

6 Summary

In this paper, we have introduced a methodolgy for formalizing, analyzing, and
verifying user interfaces and human-computer interaction under computer secu-
rity aspects. The main point of this work is to provide a formal semantics for
an extended version of GOMS that is suitable for automatic reasoning. In this
paper:

— We have introduced a formal semantics for GOMS models describing user be-
havior, which is based on input/output latbelled transition systems (IOLTS).
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We showed how the component-based formalization of GOMS can be aug-
mented with components modeling the user’s assumptions about the appli-
cation. That allows to model both successful HCI and erroneous HCI.

The method used to formalize GOMS models and the user’s assumption can
be applied to model the application as well. Combining all three compo-
nents leads to a complete model of human-computer interaction suited for
automated reasoning.

We have introduced a methodology to formally describe hierarchical user
interfaces. That allows to pervasively model all aspects of user interface
security.

We have formalized generic concepts of user interface security in linear tem-
poral logic. In combination with a formal model of HCI, that allows to use
automated reasoning to determine if a user interface is secure.
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