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Abstract. Deductive program verification is a difficult task: in general,
user guidance is required to control the proof search and construction.
Providing the right guiding information is challenging for users and usu-
ally requires several reiterations. Supporting the user in this process can
considerably reduce the effort of program verification.
In this paper, we present an interaction concept for deductive program
verification systems that combines point-and-click interaction with the
use of a proof scripting language. Our contribution is twofold: Firstly,
we present a concept for a flexible and concise proof scripting language
tailored to the needs of program verification. Secondly, we explore the
correspondences between program debugging and proof debugging and
introduce a concept for analysing failed proof attempts which leverages
well-established concepts from software debugging. We illustrate our con-
cepts on examples – including small Java programs with non-trivial spec-
ifications – using an early prototype implementation of our interaction
concepts that is built on top of the program verification system KeY.

1 Introduction

Research in automatic program verification has made a huge progress in recent
years. Nevertheless, in the foreseeable future, there will always be programs and
properties that are of importance in practice but for which verification systems
cannot find correctness proofs automatically without user guidance [1]. Finding
the right guiding information that allows a verification system to find a proof is,
in general, an iterative process of repeated failed attempts.

Program verification proofs have characteristics considerably different from
proofs of mathematical theorems (e.g., properties of algebraic structures). In
particular, they consist of many structurally and/or semantically similar cases
which are syntactically large, but usually of less intrinsic complexity. The mech-
anism for providing user guidance should reflect this peculiarity of proofs in the
program verification domain and provide appropriate means for interaction.

We present an interaction concept based on using a proof scripting language
together with a proof development and debugging approach, tailored to the
needs of program verification. Our first contribution is a concept for a concise
and flexible proof scripting language which allows the user to formulate proof
statements which are applied to a group of syntactically or semantically similar



subproblems. The core of the language concept is the possibility to define selec-
tion criteria that choose several goals at a time that are then treated uniformly.
These selection criteria are resilient to change in the sense that small changes in
the proof require small changes in the proof script describing that proof.

Two interaction paradigms have emerged in state-of-the-art interactive ver-
ification systems: text-based interaction (proof scripts and source code annota-
tions) and point-and-click interaction. Compared to scripting languages where
single proof statements apply to only one goal, and to a textual recording of
pure point-and-click interactions, a scripting language with multi-matching al-
lows creating more compact proof scripts.

However, powerful concepts like multi-matching, which allow proof scripts
whose structure is different from the proofs they describe, have to be comple-
mented with a suitable method to debug failed proof attempts. Thus, as a second
contribution of this paper, we introduce a concept for interactive proof devel-
opment. The focus of this concept is to aid the user in comprehending failed
proof attempts and identifying the next step to successfully continue the proof.
Proofs can be constructed using a proof scripting language as well as direct
manipulation of the proof object using point-and-click interaction.

We showcase our concept, which is particularly well suited for verification
systems with explicit proof objects using a sequent calculus, by applying the
concept for the interactive program verifier KeY [2].

The remainder of this paper is structured as follows: In Sections 2 and 3, we
discuss the proof characteristics of interactive program verification and related
work. Then, we introduce the concepts for a proof scripting language tailored to
the peculiarities of proofs in this domain in Section 4; and we present a concept
for debugging proofs performed using a scripting language in Section 5, making
use of functionalities that are adapted from program debugging. We conclude
and discuss future work in Section 6.

2 Interactive Program Verification

Program verification proofs differ from mechanised proofs of mathematical theo-
rems, particularly in the size and complexity of the occurring formulas and in the
number of different cases to investigate. Program verification proofs often have
a large number of individual subgoals reflecting the control-flow possibilities in
the program.

Each subgoal represents the effect of a possible program execution path,
and subgoals for similar paths often have a high degree of similarity since they
share common path- and postconditions. Such related subgoals may be treated
uniformly, using a common proof strategy. During proof construction, the user
typically switches between focusing on one particular proof goal and looking at
a number of proof branches to decide which ones are semantically similar.

With increasing complexity of programs and specifications, users normally
develop proofs in an iterative and explorative manner, as subtleties of the proofs
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are often only discovered after an attempt fails. These iterations include mod-
ifying the specification or the program, as well as adding information to guide
the proof search. Until the verification succeeds, (a) failed attempts have to be
inspected in order to understand the cause of failure and (b) the next step in
the proof process has to be chosen.

Both (a) and (b) are complex tasks. One reason is the inherent difficulty of
understanding a mechanised, formal proof for a non-trivial program property. In
addition, proofs generated by verification systems are of fine granularity. This
makes is difficult for users to understand the big picture of a proof – the abstract
argumentation for why the program fulfils its specification. To succeed with sub-
task (b), performing the next proof step, the user has to understand the nature
of why the proof failed: Is it a mismatch between specification and program or
is the guidance for the proof system insufficient? State-of-the-art tools support
the user in both tasks by, e.g., providing counterexamples and means to inspect
the (incomplete or failed) proof object. However, performing the proof process
is still characterised by trial-and-error phases. We claim that support for debug-
ging large proofs is needed, providing means for explicating the correspondence
between parts of the proof and parts of the program and its specification, for
automating repetitive tasks and applying them to a number of uniform proof
goals, and for analysing failed proof attempts.

The interaction has to use a suitable level of granularity. However, most ex-
isting verification tools with explicit proof object – i.e., a concrete proof object
consisting of atomic rule applications, – only support the most detailed granu-
larity, whereas systems using proof scripts – i.e., the proof object is implicitly
known to exist but not actually constructed, – support interaction on a more
abstract level and also allow repetition of proof steps (but mostly, repetition can
only be applied to single or to all proof goals, but not to matching subsets).

The KeY system. The design of our concept is based on the results of
two focus group experiments [3,4] and is targeted towards rule-based program
verification systems operating on program logics. Our primary target, in which
we exemplarily realize the concept, is the interactive Java verification tool KeY.

The typical workflow of KeY is depicted in Fig. 1: Initially, the user provides
a Java program, together with a specification formulated in the Java Modelling
Language [5] (step 1a). Proof obligations in KeY are formalised in a program
logic called Java DL, and proofs are conducted using a sequent calculus [2]. The
result of an automatic proof search (step 2) is (a) the successful verification of
the program or (b) either a counterexample or an open proof with goals that
remain to be shown. In the latter case, the user may interact directly with KeY
(step 3a) by interactively applying calculus rules (e.g., quantifier instantiations
or logical cuts). Alternatively, the user may revise the program or specification
(step 3b). Often, verifying programs in KeY involves both kinds of interactions,
interspersed by automated proof search.

Proofs in KeY are organised in directed, labelled trees whose vertices are
called proof nodes. Each node is labelled with a sequent, the root is labelled
with the original proof obligation. Inner nodes are additionally labelled with the
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Fig. 1. Interactive Program Verification using scripts

calculus rule that was used to construct the node. When interactively applying
rules, KeY allows the user to inspect the whole proof tree with all applied rules.
Proof search and guidance is done by using point-and-click interaction, where
the user points to a formula and mouseclicks on it to apply a rule. Besides the
application of single calculus rules, it is also possible to apply sets of rules in so
called macro steps, which we also call prover strategies. Two important strategies
in this paper are auto and symbex. While auto applies all admissible rules,
symbex only applies rules performing symbolic execution of the Java program.
In this work, we introduce proof scripts (step 1b) to provide an additional way
of interacting with the program verification system.

3 Related Work

Many general purpose proof assistants using higher-order logic feature text-based
interaction (e.g., Isabelle/HOL [6] and Coq [7]). They mostly use an implicit
proof object, where the user can only inspect the goal states but not the in-
termediate atomic proof states. Proofs are performed either using the system’s
programming language or by using a language that directly communicates with
the system’s kernel and builds an abstraction layer on top of the kernel. All
such languages have in common that they serve as the only interaction method.
Therefore, care has been taken to design proof languages that are both a human-
readable input method for proofs and a proof guidance language with which it
is possible to control the prover’s strategies (also called tactics). Isar [8] is the
most prominent state-of-the-art language that serves these purposes. Proof ex-
ploration can be done by providing proof commands or by postponing proof
tasks using a special keyword.

On top of the proof language the aforementioned systems offer languages
that allow to write strategies (e.g., Eisbach [9] for Isabelle or MTac [10] for
Coq) to enable users to program their own tactics tailored to the proof problem.
ProofScript [11] is a proof language inspired by the programming language B-17
and the proof language Isar. It is intended for the use in collaborative proving
in ProofPeer and is designed to overcome the language stack present in the
aforementioned systems, providing one language that fits all purposes. All these
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languages contain mechanisms for matching terms and formulas to select proof
goals for rule application. We refer to [9] for an overview of proof languages.

There also exist approaches to debugging proof tactics and gain more insight.
For example, Tinker2 [12] is a graphical tool for inspecting the flow of goals in
proof tactics. And Hentschel [13] applies debugging concepts to the verification
domain in his symbolic execution debugger built into KeY. This debugger sup-
ports the user in case the cause of a failed proof attempt is a mismatch between
the program and its specification. However, it does not give significant insights
if the proof fails because of insufficient user guidance.

4 Concept for a Proof Scripting Language

It is part of our interaction concept to support the combination of point-and-
click with scripting. The control-structures of our proof scripting language can
be used to control the application of strategies of the underlying verification
system. The basic principles of the language are introduced in the following.

Important Features. The characteristics of proofs for program verification
(Sect. 2) lead to the following important elements of our concept for a proof
scripting language:

1. integration of domain specific entities like goal, formula, term and rule as
first-class citizens into the language;

2. an expressive proof goal selection mechanism
– to identify and select individual proof branches,
– to easily switch between proof branches,
– to select multiple branches for uniform treatment (multi-matching);

that is resilient to small changes in the proof;
3. a repetition construct which allows repeated application of proof strategies;
4. support for proof exploration within the language.

The objects manipulated during proof construction are called proof goals. We
assume that each proof goal is unique and identifiable by its contents (e.g., its
sequent, when using a sequent calculus).

Applying calculus rules or proof strategies to a proof goal results in the
creation of new proof goals that are added to the proof.

Performing proof construction is characterised by explorative phases in which
the user tries to determine the best way to approach the remaining proof tasks.
One example for this is when the user suspects that a fact is derivable but is
not certain. In such cases, the user may try different proof strategies or different
lightweight techniques (such as, bounded model-checkers to find counterexam-
ples). These exploration activities have to be considered for the design of a proof
scripting language – for example by supporting (hypothetical) queries to the un-
derlying proof system or other reasoning systems without disturbing the current
proof state.
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4.1 Preliminaries for the Proof Scripting Language

In the following, we introduce a concept for a proof scripting language taking the
aforementioned principles into account. We present it using an abstract syntax
and demonstrate the language constructs on smaller examples within the KeY
system.

The script language supports local variables of types boolean and integer,
and of domain-specific types such as goal, formula and term. Expressions can be
constructed using arithmetic operators, boolean connectives, subterm selection,
and substitution expressions for concrete and schematic terms and formulas.
Evaluations of expressions and assignments to variables are defined as usual.

We distinguish between two kinds of states for the evaluation of a proof
script: (a) proof states of the verification system characterised by the set of open
proof goals and (b) script states, which in addition to a proof state contain the
value of state variables that are local for each open proof goal.

There are three cases in which the evaluation of a script terminates: (1) there
are no further statements to execute (the end of the script is reached), (2) an
error state is reached, or (3) the set of remaining open proof goals is empty.

Running Example. Our example (see Listing 1) uses a Java class Simple
with a method transitive(int[] a), which creates a copy of the argument
array, sorts it, and copies the result. The goal is to prove (using KeY) that, after
the execution of transitive(), the output array is a permutation of the input
array. After applying KeY’s symbolic execution strategy and a simplification
strategy, the user is left with eleven open goals of which four cases correspond
to the post states of the two conditional statements (in lines 11 and 12). These
cases are similar as they share the same postcondition and differ only a little in
their path conditions. For each of these cases, it has to be shown that the output
array is a permutation of the input array, i.e., that the permutation property is
preserved across the method calls in the body of transitive().

The informal argument for why this holds is that the invoked methods
copyArray() and sort() each preserve the permutation property (as speci-
fied in lines 17 and 25), and that the method log() does not change the heap
(line 30). These methods are called in the body of transitive() on the array
a (lines 8–13).

In the following, we first demonstrate script language features on smaller
examples but will finally return to our running example at the end of this section
and show a full script for the proof.

4.2 Script Language Constructs

The three main building blocks of the scripting language are mutators, control-
flow structures, and selectors for proof goals. We describe the general concepts
and use the KeY system as a showcase for our examples. The abstract syntax of
our language concept is summarised in Fig. 2.

Mutators. Mutators (M in Fig. 2) are the most basic building blocks that
when executed change the script state and the proof state by adding nodes to
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1 public final class Simple {
2 boolean b1, b2;
3
4 /*@ public normal_behavior
5 @ ensures seqPerm(array2seq(\result), \old(array2seq(a)));
6 @ assignable \everything; */
7 public int[] transitive(int[] a){
8 a = Simple.copyArray(a);
9 sort(a);

10 int[] b = Simple.copyArray(a);
11 if(b1) { b = Simple.copyArray(a); }
12 if(b2) { log(b); }
13 return b;
14 }
15
16 /*@ public normal_behavior
17 @ ensures seqPerm(array2seq(a), \old(array2seq(a)));
18 @ assignable a[*]; */
19 public void sort(int[] a) { /* in-place sorting */ }
20
21 /*@ public normal_behavior
22 @ ensures (∀ int i; 0 <= i < input.length; input[i]==\result[i])
23 @ && \result.length == input.length;
24 @ ensures \fresh(\result);
25 @ ensures seqPerm(array2seq(\result), array2seq(input));
26 @ assignable \nothing; */
27 public /*@ helper @*/ static int[] copyArray(int[] input) { /* deep-copy */ }
28
29 /*@ public normal_behavior
30 @ assignable \strictly_nothing; */
31 public void log(int[] a) { /* ... */}
32 }

Listing 1. Java program with JML annotations (running example).

the proof tree. Proof commands that correspond to calculus rule applications
or strategy applications are called native as their implementation is not written
in the proof scripting language. Additionally, the language allows calling other
scripts as mutators.

The semantics for both mutator types is similar: they change the set of
open proof goals of the proof state. However, native proof commands are only
applicable to a single goal in our concept. If the goal set of a proof state consists
of more than one goal, it is ambiguous to which of these the command should
be applied. To avoid confusing results, we define this to result in an error state.

The termination of native proof commands depends on the underlying proof
system. Native commands that may run indefinitely long thus allow the specifi-
cation of a timeout or a maximal number of rules application as arguments.

Example 1. The mutator

applyEq on=
mutation target︷ ︸︸ ︷
’==> x==y’ with=

side condition︷ ︸︸ ︷
’y==1 ==>’

in KeY has the semantics that an equality y==1 occurring in the antecedent (the
part to the left of ==> in the goal) is to be applied to the formula x==y in the
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M ::= (script name | native command) args
C ::= C1; C2 | var := expression | repeat {C} | foreach {C} | theonly {C}

| cases {case S1 : {C1} . . . case Sn : {Cn} } | S

S ::= expression | matchSeq schemaSeq | closes {C} |
| matchLabel regexp | matchRule rulename

Fig. 2. Abstract syntax of the proof scripting language.

succedent (the part right of ==>), replacing x==y with the formula x==1.

state before applyEq︷ ︸︸ ︷
x==1, y==1 ==> x==y  

state after applyEq︷ ︸︸ ︷
x==1, y==1 ==> x==1

If either of the formulas y==1 and x==y is not present in the goal, this mutator
is not applicable.

Control Flow. Besides sequential composition and variable assignment, the
language supports control structures (C in Fig. 2) targeting command appli-
cation to one or more proof goals. To be able to apply proof commands to a
single goal node repeatedly, we include a repeat statement. The semantics of
the statement is that the command following repeat is applied until it does not
modify the state anymore.

Example 2. Consider the following example script for KeY containing a repeat
command: repeat { andLeft }. As long as the non-splitting rule andLeft is
applicable in a sequent, it is applied. This is a typical situation for the verifi-
cation tasks in the KeY system where the original proof obligation contains a
conjunction of formulas resulting from the method’s preconditions.

After applying this script to the sequent A && (B && C) ==> D && E, we
get the new sequent A, B, C ==> D && E. The rule andLeft does not have
arguments, therefore the underlying verification system needs to find the right
formulas to apply the rule to. In case there is more than one formula that the
rule can be applied to, an argument indicating the right formula is needed. Note
that, by its definition, the rule andLeft is only applied to the conjunctions in
the antecedent.

Selectors. As the application of calculus rules can cause a proof goal to
split into different cases, it would be ambiguous to apply a proof command after
a split. Therefore, one must be able to indicate to which proof goals a proof
command is to be applied. Selectors (S in Fig. 2) can be used to select one or more
proof goals. Our language concept includes the cases-command for this purpose.
It is tailored to the needs of proving in the domain of program verification,
allowing the formulation of proof goal sets using matching conditions. These
are expressions evaluated for each proof goal; all goals which satisfy a matching
condition Si are then subject to the corresponding proof command Ci. Thus
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uniform treatment for several goals can be realised. If a proof goal satisfies more
than one matching condition, the first one wins. The application of a cases
command results in a script state consisting of the union of all open goals of
each case, after the corresponding commands have been executed.

In our language concept, we support three fundamentally different types of
matching conditions: State conditions consist of an expression over the script
variables. Script evaluation selects those proof goals in which the specified ex-
pression evaluates to true. Syntactical conditions (keyword matchSeq) allow the
specification of a logical sequent with schematic placeholders. The condition sat-
isfies those proof goals for which the schematic sequent can be unified with the
proof goal’s sequent. Semantic conditions (notated as closes {C}) involve the
deductive capacities of the verification system to decide the selection of proof
goals. A proof goal is selected if and only if the evaluation of the proof command
C would close this goal.

Syntactic matching is not limited to the goal’s sequent (using matchSeq) but
can also be applied to rule names (using matchRule) and to labels put on the
branches of a rule application (using matchLabel).

In addition to the cases command, foreach {C} and theonly {C} are in-
cluded for convenience purposes. Both apply command C to each goal in the
state and are semantically equivalent to cases { case true: {C} }. Command
theonly can be used in situations where the user expects that there is exactly
one goal in the proof state. If there is more than one when the command is
evaluated, a warning is passed to the user.

Schematic placeholders used for syntactic goal matching have names that
start with ‘?’. When they are instantiated while matching against the sequent
of a proof goal, these instantiations can be accessed also in the embedded proof
command (e.g., as argument for a calculus rule) to direct the proof using informa-
tion present on the sequent. If there is more than one possibility for instantiating
the schema variables during constraint solving, the first match is used.
Example 3. Consider the following simple example for the use of a matching con-
dition within a cases selector, where the template matches sequents containing
an implication in the succedent:

case matchSeq ’==> ?A -> ?B’ : { impRight; andLeft on=’?A’ }

In case of a match, the left side of the implication is assigned to the variable ?A
and the right side is assigned to ?B. Then, the proof command is executed. After
applying the rule impRight, the rule andLeft is applied to the formula bound
to ?A. This example reveals a requirement for the underlying verification system:
it needs to check whether the formula bound to ?A is still on the sequent when
applying the rule andLeft. If there is more than one occurrence in the sequent,
one of them is chosen for rule application. If the formula is not present anymore
(because other rules have been applied before) the rule is not applicable, which
results in an error state.

Proof Exploration. To support proof exploration in the scripting language,
we include the statement “closes { C }”. It examines whether applying the proof
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command C would close the current goal (without actually effecting the current
state). Besides its use for exploration, closes can be used in the cases statement
as matching condition.
Example 4. Assume that a proof command is (only) to be applied to those goals,
which can be closed once some formula F is added to the succedent of the
goal’s sequent (i.e., the formula F is derivable from the sequent). This can be
expressed using closes as follows: closes (assume ’==> F’; auto), where
assume ’==> F’ is a proof command adding F to the succedent. Adding ar-
bitrary formulas to the proof obligation during proof construction is unsound.
Thus, the assume command is only allowed in closes statements. The proof
command auto is then used to try to prove the newly created proof obligation.

Explorations that check whether a certain formula is derivable (as shown in
the above example), come in handy, when we want to match a formula, such as
x > 0, but on the sequent a stronger formula, such as x > 1, is present. While
case matchSeq ’x > 0’ would miss the goal node, an expression checking for
derivability of x > 0 would match the sequent.

Running Example. In Fig. 2, a proof script for proving the correctness of
the method transitive (see Fig. 1) is shown, which uses the building blocks
described above. After symbolic execution and some simplification steps (lines
2–3), the KeY system stops in a state with 11 open goals. The tricky cases are
those where the postcondition of the method transitive has to be shown to
be consequences of the postconditions of the called methods copyArray, sort
and log. Corresponding schematic sequent templates (lines 6–10 and 22–25) are
then used in a cases statement to select the relevant goal nodes which need
user interaction. The cases statements select goal nodes that contain predicates
seqPerm(seq1, seq2) formalising that sequence seq1 is a permutation of se-
quence seq2. Rules deriving relations about different heaps using the symmetry
and transitivity properties of the permutation predicate are applied (lines 11–
18 and 26–31). Each condition matches two goals, the commands close them.
To all other goal nodes not selected by the two matching conditions, the proof
command auto is applied with at most 10000 rule applications (line 34).

Without the script and the matching feature it uses, the rule applications
in the two cases statements would have to be applied separately to each of the
four open branches. Additionally, the two cases are similar, so the user is able to
copy-paste the first case and adjust it to the situation of the second case. Note
that the scripting language is especially useful when used together with the
point-and-click features of the system, to ease the selection process for applying
rules/strategies onto terms. This allows one to make use of the mechanism for
suggesting applicable rules of the underlying system.

5 Concept for Debugging Proof Attempts

5.1 Analogy between Programs and Proof Scripts
Scripts formulated in a scripting language like the one presented in the previous
section can be considered to be “programs” that construct (partial) proofs for
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1 script prove_transitive() {
2 symbex; // perform symbolic execution of the program
3 foreach { heapSimplification; } // simplify heap terms
4 cases {
5 case matchSeq
6 ’seqPerm(?Res0Copy, ?Arr),
7 seqPerm(?Res0Sort, ?Res0Copy),
8 seqPerm(?Res1Copy0, ?Res0Sort),
9 seqPerm(?Res2Copy1, ?Res0Sort) ==>

10 seqPerm(?Res2Copy1, ?Arr)’:
11 { SeqPermSym on=’seqPerm(?Res0Copy, ?Arr) ==>’; // symmetry rule
12 SeqPermSym on=’seqPerm(?Res0Sort, ?Res0Copy) ==>’; // symmetry rule
13 SeqPermSym on=’seqPerm(?Res1Copy0, ?Res0Sort)==>’; // symmetry rule
14 SeqPermSym on=’seqPerm(?Res2Copy1, ?Res0Sort) ==>’; // symmetry rule
15 SeqPermTrans on=’seqPerm(?Res0Copy, ?Arr) ==>’; // transitivity rule
16 SeqPermTrans on=’seqPerm(?Arr, ?Res0Sort) ==>’ // transitivity rule
17 with=’seqPerm(?Arr,?Res2Copy1)’; // with specific term
18 SeqPermSym on=’seqPerm(?Arr,?Res2Copy1)’;
19 auto maxSteps=10000 // automatic strategy with 10000 rule applications
20 }
21 case matchSeq
22 ’seqPerm(?Res0Copy, ?Arr),
23 seqPerm(?Res0Sort, ?Res0Copy),
24 seqPerm(?Res1Copy0, ?Res0Sort) ==>
25 seqPerm(?Res1Copy0, ?Arr)’:
26 { SeqPermSym on=’seqPerm(?Res0Copy, ?Arr)’;
27 SeqPermSym on=’seqPerm(?Res0Sort, ?Res0Copy)’;
28 SeqPermSym on=’seqPerm(?Res1Copy0, ?Res0Sort)’;
29 SeqPermTrans on=’seqPerm(?Res0Copy, ?Arr)’;
30 SeqPermTrans on=’seqPerm(?Arr, ?Res0Sort)’
31 SeqPermSym 0n=’==> seqPerm(?Res1Copy0, ?Arr)’;
32 auto maxSteps=10000
33 }
34 case true: { auto maxSteps=10000 }
35 }
36 }

Listing 2. Example proof script for method transitive().

a proof obligation. They take the initial proof goal as input and derive a set of
new goals. The input goal is successfully proved if the derived goal set is empty.
The similarity between proof scripts and imperative programs allows us to draw
an analogy between implementing and debugging programs on the one hand and
coming up with proof scripts and analysing failed proof attempts on the other.
The main analogies between the two processes are summarised in Table 1.

Note that evaluating a proof script corresponds to executing a multi-threaded
program because of the proof-forking nature of some proof commands (which
implement case distinctions). Proof commands on different open goals can be
handled independently and in parallel. In that sense, executing a cases com-
mand (see Sect. 4) corresponds to forking threads, which are joined again when
the cases command terminates. The proof tree that is built when executing a
script corresponds to the set of traces of all threads when executing a program.

However, there is also an important difference between proof scripts and
general programs: The result of a successful proof script evaluation is known a
priori (the empty set of goals). Since no output object needs to be constructed,
in many cases predefined operations lead to success. This is the reason why users
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Table 1. Analogies between program debugging and debugging failed proof attempts.

Proof Debugging ↔ Program Debugging

proof script ↔ program source code
script state (incl. proof state) ↔ program state

sources and open proof goal(s) ↔ program input
proof tree ↔ traces of all threads

proof branch ↔ trace of an individual thread
partial proof ↔ trace of an incomplete program run

completed proof ↔ trace of a successfully terminating program run

often at first follow a try-and-error approach: Just using the auto command for
automatic proof search works for many simple proof goals – which is not possible
for arbitrary simple computation tasks if these differ in their expected outputs.

5.2 Analogy between Debugging and Failed Proof Analysis

Software debugging is the analysis process of understanding unexpected program
behaviour, localising the responsible piece of code, and mending it. Typically,
a concrete run of the program exposing the bug is analysed using specialised
software (a debugger) which supports the user in the process by various means
of visualisation and abstraction. The features help the user comprehend and
explore both individual program states at various points of the execution and
paths through the program taken by the execution. Powerful modern debugging
tools also allow the engineer to modify an intermediate system state (e.g., by
changing the values of variables) to conduct what-if-analyses which help them
understand and explore the system.

When mechanising a formal proof, the user often has the main arguments
of an abstract proof plan in mind which (supposedly) lead to a closed proof.
However, this plan is often at a high abstraction level such that it cannot be
transformed directly and easily into proof script commands; the user has to
refine the proof plan first to be able to formulate it as a proof script. Especially
in early stages of a proof process, the evaluation of a proof script is likely to fail.
The typical reasons for a failed proof attempt include that auxiliary annotations
(such as loop invariants) may be insufficient, that there may be defects in the
source code or the specification, or that the proof script itself may be misleading
or not detailed enough. Eliminating all such deficiencies is an iterative process,
which may also affect other proofs of the same overall verification task (since
there are interfaces and interdependencies between system components even if
they are verified separately).

When the evaluation of a proof script does not lead to a closed proof, the
user needs to be able inspect the intermediate and final proof states in order to
understand the undesired behaviour. This process involves localising the respon-
sible part of the proof and identifying the type of failure: Does the underlying
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verification system require more or better guidance? Is there a defect in the
program, the specification, or the proof script?

The same kind of questions arise in conventional program debugging (Are
the data as expected at this point? Is the next statement in the program the
correct? Are all parameters to a routine call correct?). Hence, the user needs
tool support to decide these questions also for debugging proof scripts. Similar
inspection possibilities are required to come up with actions in the proof process.
It must be, in particular, possible to link proof states to commands in the proof
script and to the user’s mental proof plan. To find a suitable course of action,
the user needs to have means to explore the proof state and to test hypotheses
about the cause of failure and about effects of next steps to the proof.

5.3 Adoption of Program Debugging Methods for Proof Debugging

The analogy between proof scripts and programs and the similarities between
the software debugging process and the process for the analysis of failed proof at-
tempts allow us to adopt well-known techniques from software debugging to the
debugging of (failed) proofs. We focus on user support for the activities of locali-
sation, comprehension, and exploration. Additionally, we adapt the presentation
of program states for script states, allowing a detailed inspection.

A screenshot of our early prototype1 (based on the KeY system) realising
these concepts is shown in Fig. 3.

State Presentation. Program states in software debugging may be very
complex. To support the user in inspecting and understanding a state, debugging
systems present the state’s information in a structured manner.

Our concept for proof states includes a structured presentation and func-
tionalities for inspecting the state similar to program debugging systems. For
this, we have identified the following parts of a state that should be visualised
in isolation: (a) the proof tree with a visual highlight of the current node (i.e.,
the node containing the open goal to which the currently active proof command
is being applied), (b) sequent of the current node (i.e., the current open goal),
(c) the currently active proof command in the script, (d) the path in the program
that corresponds to the currently selected proof branch, and (e) the values of all
local variables in the script state.

Localisation. To support the user in localising the cause of a defective be-
haviour, debugging systems provide breakpoints. These allow the user to inspect
the program execution in detail when a program location is reached.

In the setting of program verification, defective behaviour corresponds to a
proof with open goals, and the user is mostly interested in understanding these.
In our concept, using point-and-click interaction with the explicit proof object,
users have the flexibility to navigate in the proof tree in both directions: from
the root to the open goals (leaves) and backwards from the leaves to the root.
The user can follow two possible strategies: (a) Inspecting an open goal that
contains unexpected formulas or terms and performing a backwards search to
1 http://formal.iti.kit.edu/key-psdebugger
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Fig. 3. Screenshot of our proof debugger prototype based on the KeY system. On the
left (1) is the proof script editor (in this case containing the script from Listing 2);
the currently active proof command is highlighted in blue. In the middle (2), the open
goals of the current proof state are listed; here, the last goal is selected. Below, the
sequent of the selected goal is shown (3). The source code panel (4) shows the Java
program and highlights the symbolic execution path traversed for the selected sequent.
The toolbar (5) shows UI elements for stepping through the proof script.

localise where this information was introduced into the proof. (b) Starting from
a familiar and expected state and tracing the proof in a forward fashion. In order
to support these strategies, we adopt the idea of breakpoints in two ways: regular
breakpoints and (reverse) conditional breakpoints.

A regular breakpoint is a syntactical marker that represents a location in
the proof script. If, in debug mode, execution of the proof script reaches the
breakpoint, execution is stopped and the current proof state is presented to
the user. Similar to program debugging, breakpoints may be conditional. Such
conditional breakpoints include boolean expressions indicating that execution
shall only stop if conditions on the state are true when the breakpoint is reached.

For backwards search, we provide reverse conditional searchpoints, which con-
sist of a boolean condition and a goal node. While breakpoints are the endpoint
of a search, searchpoints are the starting point. The backwards search in the
(partial) proof – from the searchpoint towards the root node – stops at the first
intermediate proof node for which the condition is evaluated to true.

Conditions in breakpoints and searchpoints can be boolean expression from
the script language, in particular all matching conditions can be used here. This
design allows the user to find states where certain formulas are introduced into
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the sequent or nodes in the proof tree where certain rules are applied. Break-
points can also be used to select states where the complexity or number of
formulas in the sequent reaches a certain threshold.

Stepping, Tracing, and Comprehension. Once the user has located an
entry point from where to perform a detailed inspection, the next activity is
to stepwise retrace what state changes are made by the proof script. To sim-
plify this process, the proof debugger allows the user to limit the inspection to
interesting parts of the script (step-into) and to omit the details of subscripts
that are deemed irrelevant (step-over). This stepwise retracing allows the user
to comprehend the effects of proof commands and subscripts and the creation
of proof goals.

Expression Evaluation. Software debugging systems support the task of
forming hypotheses about the cause of a defect by allowing the evaluation of user-
provided expressions in the current state. A functionality for proof debugging
corresponding to expression evaluation is to allow the user to provide a set of
formulas, which may or may not be a subset of formulas present in the proof
state, and to evaluate whether these formulas are derivable in the context of a
node in the proof tree.

One may use external solvers or verification systems to determine whether
the set of formulas is satisfiable or not and to get a model in the first case.
This is particularly helpful in cases where the size of the sequent prevents the
underlying proof system from finding a counterexample.

Changing the State: “What-if”? We adopt the idea of allowing the user
to explore the behaviour of the proof script by actively changing the proof state
in debug mode. Thus, the user may gain information about which changes are
necessary to advance the proof search. In a second step, this knowledge may
then be used to, e.g., analyse whether the origin of the part of state that was
changed (e.g., the precondition of the program) has to be adapted.

Hot-Swapping. A further element of the proof debugging concept is to
allow hot swapping, i.e., the user can change parts of the proof script while the
script is executed in debug mode, in order to explore hypotheses about how the
proof construction can proceed in a successful way.

6 Conclusion and Future Work

We have presented an interaction concept for deductive program verification sys-
tems that combines point-and-click interaction with the use of a proof scripting
language. This concept introduces a flexible and concise proof scripting language
tailored to the needs of program verification. In this domain, proofs often consist
of many structurally and/or semantically similar cases which are syntactically
large but of small intrinsic complexity. Using matching mechanisms, the language
provides means taylored to this type of proofs.

Further, we have explored the correspondences between program debugging
and proof debugging and introduced a concept for analysing failed proof at-
tempts, which leverages well-established concepts from software debugging.
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A prototypical implementation using the KeY system and a case study is
currently work in progress. It remains for future work to evaluate the effectiveness
of the concepts by performing usability studies.
Acknowledgements. Special thanks go to Alexander Weigl who provided valu-
able comments concerning the proof debugging concept, the realisation of the
script language, and the prototype.
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