
A Usability Evaluation of Interactive Theorem
Provers Using Focus Groups

Bernhard Beckert, Sarah Grebing(B), and Florian Böhl

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,sarah.grebing,boehl}@kit.edu

Abstract. The effectiveness of interactive theorem provers (ITPs)
increased such that the bottleneck in the proof process shifted from effec-
tiveness to efficiency. While in principle large theorems are provable, it
takes much effort for the user to interact with the system. A major
obstacle for the user is to understand the proof state in order to guide
the prover in successfully finding a proof. We conducted two focus groups
to evaluate the usability of ITPs. We wanted to evaluate the impact of
the gap between the user’s model of the proof and the actual proof per-
formed by the provers’ strategies. In addition, our goals are to explore
which mechanisms already exist and to develop, based on the existing
mechanisms, new mechanisms that help the user in bridging this gap.

1 Introduction

Motivation. The degree of automation of interactive theorem provers (ITPs)
has increased to a point where complex theorems over large formalisations for
real-world problems can be proven effectively. But even with a high degree of
automation, user interaction is still required on different levels. On a global level,
users have to find the right formalisation and have to decompose the proof task
by finding useful lemmas. On a local level, when automatic proof search for a
lemma fails, they have to either direct the proof search or understand why no
proof can be constructed and fix the lemma or the underlying formalisation. As
the degree of automation increases, the number of interactions decreases. But
the remaining interactions get more and more complex as ITPs are applied to
more and more complex problems.

When proving theorems, the automated proof search often leads the proof
into a direction that differs from the way a human would conduct the proof. To
interact with the theorem prover in a meaningful way during the proof process,
users have to understand the prover’s strategy and the state of proof construction
and, thus, have to bridge the gap between their own model of the proof search
and the current proof state of the tool. Open goals in partial proofs are the
result of syntactic transformations that may not be intended to make it easy
for humans to understand them. The intention of the transformations is rather

This work is part of the project Usability of Software Verification Systems within the
BMBF-funded Software Campus. Florian Böhl was funded by MWK grant “MoSeS”.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-15201-1 1



4 B. Beckert et al.

to get the automated proof search closer to a complete proof. Therefore, users
need to understand the prover’s strategy and often have to look at intermediate
proof states, resulting from rule applications onto the original proof obligation,
to comprehend the current state.

Although it is easy to accept that there is a gap between a human user’s
model of the proof resp. proof search and the actual automated proof search,
it is rather unclear how large its impact on interactive theorem proving is for
typical proof obligations. Nevertheless, the following is a central hypothesis for
our work, which we wanted to test during the usability evaluation:

Bridging the gap between the user’s model of the proof state and the
state of the theorem prover at interaction points is the paramount and
prominent challenge for efficient and effectively usable general theorem
provers.

In addition, we are interested in evaluating which tools or mechanisms are
already present in today’s provers that help to bridge the gap and how to extend
existing mechanisms to help the user in understanding the proof states.

Our contribution in this work is that we conducted an experiment using the
survey method focus groups to get a first evaluation of whether our hypothesis
is true and to gain answers to our two questions: (a) Which mechanisms of this
kind are already used in theorem provers? (b) What mechanisms are missing?

Survey method. We have carried out two experiments, where we applied the
focus group method [10,16] to two different ITPs: the tactical theorem prover
Isabelle/HOL [18] and the interactive program verification system KeY [7].

Focus groups are a qualitative survey method typically used in an early stage
of the usability engineering process [12,17]. Based on their results, (prototypi-
cal) mechanisms for improving usability can be developed, which can then be
evaluated with methods such as usability testing and user questionnaires to
quantitatively measure increases in usability. While focus groups explore the
subjective experience of users, they are designed to eliminate experimenter-bias
and to provide more objective results. The number of participants required to
get significant results is much smaller than for quantitative evaluations, which
makes focus groups well-suited for the relatively small user base of ITPs.

Background. Our work is part of the BMBF-funded Software Campus pro-
gramme. We apply various methods known from the field of human-computer-
interaction (HCI) to ITPs, including focus group discussions, usability testing,
and user experience questionnaires. Since expertise from both fields (ITP and
HCI) is required, we cooperate with user experience experts from DATEV eG
who are well-versed in the ergonomic evaluation of standard software.

Structure of this paper. Section 2 briefly reviews related work on usability eval-
uations of ITPs. The focus group method is introduced in Sect. 3. In Sect. 4
we present the results of the experiments and relate them to our hypothesis.
Section 4.5 presents our results regarding mechanisms and tools for understand-
ing the proof state. We conclude and discuss future work in Sect. 5.



A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 5

2 Related Work

The ITP community has noticed the need to evaluate and improve usability, but
so far structured usability evaluation methods have rarely been applied to ITPs.

In previous work [5], we have performed a questionnaire-based evaluation of
the KeY system based on Green and Petre’s Cognitive Dimensions questionnaire
[9] to get a first impression of the user’s perception and to develop first hypothe-
ses about the usability of the KeY system. Beyond that Kadoda et al. [14] evalu-
ated proof systems using Green and Petre’s Cognitive Dimensions questionnaire
to develop a list of desirable features for educational theorem provers.

Aitken and Melham [1–3] evaluated the interactive proof systems Isabelle
and HOL using recordings of user interactions with the systems in collabora-
tion with HCI experts. During the proof process the users were asked to think
aloud and after the recordings the users were interviewed. The goal of this work
was to study the activities performed by users of interactive provers during the
proof process to obtain an interaction model of the users. They propose to use
typical user errors as usability metric and they compared provers w.r.t. these
errors. Also, suggestions for improvements of the systems have been proposed by
the authors based on the evaluation results, including, besides others, improved
search mechanisms and improved access to certain proof-relevant components.

Jackson et al. used co-operative evaluation methods on the CLAM Proof
Planner [13]. Users were asked to perform predefined tasks while using the
“think-aloud technique” to comment on what they were doing.

Vujosevic and Eleftherakis used questionnaires and interviews to explore why
Formal Methods Tools are not used in industry [20]. Their work includes eval-
uations of usability aspects of several formal methods tools, such as the Alloy
Analyzer. For improving the interface of the prover NuPRL, a self-designed ques-
tionnaire was used to evaluate the users’ perceptions of the interface [11].

Similar to our findings, Archer and Heitmeyer [4] also realized the gap between
the prover’s and the user’s model of the proof. They have developed the TAME
interface on top of the prover PVS to reduce the distance between manual proofs
and proofs by automation. TAME is able to prove properties of timed automata
using so called human-style reasoning. Proof steps in TAME are intended to be
close to the large proof steps performed in manual proofs. The authors have devel-
oped strategies on top of the PVS strategies that match more closely the steps per-
formed by humans. The goal is to provide evidence and comprehension of proofs
for domain but not proof experts.

Lowe et al. describe in their work [15] their approach to building a co-operative
theorem prover and describe some undesirable features of ITPs focussing on feed-
back of the system. They have implemented the BARNACLE interface for the
CLAM prover which allows explanations for failing preconditions, which should
make proofs more comprehensible for the users.

Ouimet identified different issues, e.g., large proof size and number of proof
steps, that have to be addressed in order to have a widespread use of theorem
provers in [19] and evaluated the system ESC/Java against these issues. The
issues were identified by examining a large case study conducted at Motorola.



6 B. Beckert et al.

3 Survey Method: Focus Groups

Focus group discussions are a qualitative method to explore opinions of users
about specific topics or products, e.g., in market research. In the field of human-
computer interaction (HCI) they are used to explore user perspectives on soft-
ware systems and their usability in an early stage of the usability engineering
process [12,17]. As already mentioned in the introduction, they provide the sub-
jective experience of the users and require only a small number of participants
(five to ten). The duration of the discussion groups is around one to two hours
and it is guided by a moderator who uses a script to structure the discussion.
Focus groups have three phases: Recruiting participants, performing the discus-
sion and post-processing. In the following we will briefly give an insight into the
script which was used to guide the discussion. The full description of the setup
and script can be found in [6].

Script for the discussions. The main questions and tasks in the script were the
same for both conducted focus groups as we wanted to compare the results.
Adaptations of the questions and presented mock-ups to the specifics of the two
systems were the main differences. As a warm-up task, we asked about typical
application areas of the systems and about their strengths and weaknesses related
to the proof process. In the main part of the discussion, we had two topics: (1)
Support during the proof process and (2) Mechanisms for understanding proof
states. As a cool-down task, we asked the participants to be creative and imagine
their ideal interactive proof system. The full scripts with all questions for our
experiments are available at http://formal.iti.kit.edu/∼grebing/SWC.

4 Evaluation of the Focus Groups and Analysis Results

4.1 The User’s and the Tool’s Model of the Proof Process

ITPs are used to aid users in proving complex theorems in many areas of com-
puter science and mathematics. For using such systems, the user needs to have
a certain level of experience in proving theorems. In general, the user has a con-
cept or plan of how to prove the desired theorem. We call this concept user’s
model of the proof. This can either be already a whole proof plan or just first
ideas on the proof process. This model also includes an assumption about the
theorem prover’s strategies as we do not consider the proof plan for a pen and
paper proof as being the user’s model, but the proof plan for how the user would
prove the problem using a theorem prover.

One big difference between the user’s model of the proof and the current
partial proof is that the proof steps in the model are coarser and have an intu-
itive (summing up) semantic for the user (such as “simplification of the proof
obligation”), whereas the prover’s steps are more fine-grained and are a syntac-
tic manipulation of the proof state. While an intuitive semantic for each rule
application exists (as given by the rule’s author), a sequence of consecutive rule
applications in the system may not have a clear intuitive semantic for the user.

http://formal.iti.kit.edu/~grebing/SWC


A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 7

P
r
o
o
f
p
r
o
c
e
s
s

Start

Interaction

δUser
Tool

Interaction

Anchor
point

u
p

point

Fig. 1. Model of the proof
process

In Fig. 1 we have sketched our idea of the rela-
tion between the actual proof performed by the
prover’s search strategy (p) and the user’s proof
model (u). At the beginning of the proof process
the user’s model is identical with or close to the
proof obligation in the proof system. However, the
more the automatic strategies of the prover try to
prove the proof obligation (arrow p), the more the
actual proof state in the system differs from the
user’s model (arrow u). As the user has to guide
the prover by interacting with it, the user has to
understand the process of the prover and relate the

actual proof state to the user’s model. For this relation the user has to inspect
the current proof state (interaction point) and find a corresponding state in the
own model (anchor point). After the user interacts with the prover, the proof
of the system below the interaction point is proceeding to some extent into the
direction of the user’s model, reducing the gap.

In some cases, no useful anchor point may exist. Then the user has to follow
and understand the automatic proof construction and, in doing so, construct a
new model u that is identical with or an abstraction of p. In contrast, if the user
only applies rules manually and there is no automatic proof search, then p is
identical to u (in case the user fully understands the effect of the applied rules).

In the standard case, however, where there is a gap between u and p, there
should be mechanisms in the systems that help the user in relating the anchor
point with the interaction point (dotted line). In general, we can identify two
parameters which can differ from system to system: the size of the gap between
the actual proof and the user’s model (δ), and the mechanisms that help to
relate the user’s model and the current proof state to aid the user in compre-
hending the proof state (dotted line between anchor and interaction point).

Apart from the gap it could be that the user does not have a clear model of
the proof or even none at all. Here the gap, as described is not applicable. In
this case the user uses the automation of the prover without any model in mind
in order to use the resulting proof state to concretize the own fuzzy model and
therefore the user has to comprehend the resulting proof state.

4.2 The Participants of Our Focus Group Discussions

We conducted two focus groups, one for the Isabelle system and one for the
KeY system. To categorize the participants, we draw a distinction between tool
knowledge and domain knowledge. Most of them were at expert or intermediate
level w.r.t. domain knowledge. With respect to tool expertise, the Isabelle group
consisted of five participants: one less experienced, two intermediate, and two
expert users. The KeY group consisted of seven participants: one less experi-
enced, two intermediate, and four expert users.



8 B. Beckert et al.

4.3 Targets of Evaluation

In the following we will briefly introduce the two systems under evaluation with
the focus on those parts that were mentioned by the participants. Here, we start
with the application areas of the systems as given by the participants.

KeY system. The KeY system is an interactive verification system for programs
written in Java annotated with the Java Modelling Language (JML). As such it
is mostly used for the verification of Java programs w.r.t. a formal specification
(usually a functional specification but also, for example, information-flow prop-
erties). KeY is also used for teaching and demonstrating formal methods, and
as verification condition generator for other systems. KeY has an explicit proof
object, i.e., all intermediate proof states can be inspected by the user. KeY uses
a sequent calculus for Java Dynamic Logic [8]. Its user interface shows proofs
as a tree, the nodes of the tree contain intermediate proof goals (i.e., sequents).
Each node N is annotated with the rule that was applied to some formula in
N ’s parent node to construct N .

Isabelle. Isabelle is a theorem prover for higher-order logic. As mentioned by the
participants, it is especially used for the formalization, verification and execution
of algorithms, for proving in general and for the development of formal models.
It has an implicit proof object, i.e., not all intermediate proof states are shown to
the user, only goal-states where the system stops its automatic strategies. These
automatic strategies are called methods, however the participants used the term
tactics, therefore we use this term throughout the paper. Isabelle’ proof tactics
are basically sets of rules or lemmas that can be applied to the goal state. In this
paper, the auto tactic will often be mentioned, which applies a large number of
rule sets automatically, and the simp tactic, which applies rules that simplify
the goal-state. Within Isabelle also different tools can be invoked that generate
counterexamples (e.g., nitpick, quickcheck) or that invoke SMT solvers to find a
(sub-)proof (e.g., sledgehammer).

4.4 Strengths and Weaknesses of the Targets of Evaluation

Here, we discuss the strengths and weaknesses of the systems with respect to the
proof process as mentioned by the participants. Interestingly, some characteris-
tics of the systems that were first named as a strength lead to lively discussions in
later phases, which often brought up negative aspects of the same characteristics.

Strengths. First, we discuss results of the focus groups w.r.t. the strengths of
the systems, which are summarized in Table 1.

KeY System. The group on KeY agreed that the expressiveness of the system is
an important strength. The participants like how the Java Modeling Language
can be used to annotate Java code. They appreciated that a proof with the
KeY system always follows a certain structure, that this structure is visualized



A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 9

Table 1. Strengths of the two systems according to the participants. The labels indicate
whether a characteristic is linked to our (M)odel of the proof process (see Sect. 4.1) or
rather to (O)ther aspects of interactive theorem proving (the classification is our own
and not the focus group’s).

KeY Isabelle

· Expressive specification language (O) · Underlying language very intuitive (M)

· Proof can be inspected in detail (M) · Helpful community (O)

· KeY tries to simplify open goals (M) · Large public library of theorems (O)

· High degree of automation for simple
problems (O)

· Automatic tactics and tools ease proof
process (M)

· All proofs follow a similar structure (M) · Proofs can be modularized (M)

· Intuitive presentation of proof by using
macros and proof tree (M)

· Flexible w.r.t. use of top down or
bottom up approach (O)

· Allows user-defined rules (M) · Code export for testing the model (M)

· Support of JML (O) · User-adjustable syntax (M)

in form of the proof tree, and that this tree can be inspected at an arbitrary
level of detail. Macros, which group rules similar to tactics in Isabelle, ease the
interaction process and help to give the proof the direction intended by the user.
According to the participants, the KeY system can solve easy problems without
any or with only very little interaction. Furthermore, KeY supports user-defined
rules. These rules can be of help during the proof process.

Isabelle. The group on Isabelle considers the underlying proof input language
Isar to be one of the system’s main advantages. It allows for proofs to be struc-
tured and presented in a standard textbook style that is very intuitive for
humans. The large user community of Isabelle is considered to be an impor-
tant strength. It provides a growing (and already quite extensive) library of
theorems available to everyone. Furthermore, the community is a good resource
of knowledge and friendly towards beginners. Isabelle provides a variety of tools
that help during the proof process, e.g., sledgehammer and nitpick. The system
can be used for a top-down as well as for a bottom-up proof approach.

Weaknesses. The results of the focus groups w.r.t. weaknesses of the systems,
i.e., room for improvements are shown in Table 2. For this brief overview, we
omit some of the more technical remarks by participants that are not related
to the general proof process in our opinion. For example, regarding KeY there
were complaints about an unstable proof loading mechanism and memory leaks.
Some Isabelle users complained about specific features of jEdit – a widespread
editor for Isabelle proofs.

KeY System. Interestingly, several characteristics of KeY that were named as
strengths by the focus group were also identified as areas with potential for



10 B. Beckert et al.

Table 2. Weaknesses of the two systems according to the participants. The labels
indicate whether a characteristic is linked to our (M)odel of the proof process (see
Sect. 4.1) or rather to (O)ther aspects of interactive theorem proving (the classification
is our own and not the focus group’s).

KeY Isabelle

· Necessity of repeated trivial manual
interactions (M)

· Finding the right tactic for a proof
state is a non-trivial explorative
task (M)

· Not possible to get practically usable
counterexamples (M)

· Unexpected inference of types leads
to unintuitive errors (M)

· Proof tree too detailed (M) · Bloated formulas (M)

· Interaction on low-level logic formulas
required (M)

· No insight into automatic tactics;
unintuitive (M)

· Unintuitive mapping between formula and
program (M)

· Messy downward compatibility for
older proofs in newer system
versions (O)

· Performance of automatic strategy (O) · No support for proof refactoring (O)

· Practical scalability (O) · Library: important mathematical
foundations are missing (O)

improvement. The proof tree – whose existence was perceived as a strength of
KeY – was considered to be too detailed. Some stated that linking proof states to
Java code would be helpful. Interaction on the low-level logic formulas is neces-
sary, sometimes trivial and tedious. Manual interaction often has to be repeated
in similar situations. There are no useful tools to generate counterexamples.

Isabelle. According to the participants, an important downside of Isabelle is
that the process of choosing the right tactics and tactic parameters to conduct
a proof is not always intuitive. If a tactic cannot be applied successfully in a
situation it is hard to find the reason. A technical problem is that type inference
sometimes leads to very unintuitive errors. Additionally, formulas belonging to
different properties that could be checked (and thus presented) independently
are all combined in a single goal state which increases the size of the formula
(e.g., invariants encoding type information for functions).

An often recurring task when working with Isabelle is to refactor proofs
towards better understandability, however, tools for refactoring are missing.
While the public library of theorems was also mentioned as a strength, a weak-
ness is that some important mathematical foundations are still missing, i.e., in
some theories lemmas are still missing.

Observations and Relation of Results to Our Model. Here, we relate
results of the focus groups to our model of the proof process (Sect. 4.1) and to
our hypothesis. We evaluate the characteristics (Tables 1 and 2) w.r.t. to three
challenges an ITP has to solve:



A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 11

(A) Keeping the gap small. In general, mechanisms that help to keep the gap
between the tool’s proof state and the user’s mental model small are seen as
strengths of the systems – unintuitive behavior of the tools in the proof process
is often mentioned as a problem. Several strengths of KeY help to keep the gap
small: Proofs follow the same structure, macros help to guide the proof into
the expected direction (similar to tactics which were mentioned as a strength
of Isabelle), and users can introduce new rules that match their intuition (these
rules have to be proven correct). Both tools allow the proof to be modularized
(in Isabelle it can be split up into lemmas, in KeY into contracts) – this allows
structuring the proof as a sequence of statements intuitive for humans. Some KeY
users stated that they use the automatic proof search only if it closes a branch
as otherwise the resulting state is too unintuitive to continue interactively.

(B) Bridging the gap. Understanding a given proof state is an important chal-
lenge for users of both systems during the proof process. Consequently, mecha-
nisms and characteristics of the systems that help the user’s understanding are
considered to be important strengths. Here, Isabelle provides a couple of useful
tools (quickcheck and nitpick to name two). Furthermore, the intuitive structure
of the underlying language Isar is named as an important strength. Correspond-
ingly, the absence of suitable mechanisms for certain situations is an important
weakness. For example, our participants criticized that KeY does not provide
a useful tool to generate counterexamples. Such a tool is necessary to detect
whether the prover is stuck because further user input is needed or the property
does not hold and no proof exists. While there are tools to generate counterex-
amples for Isabelle, the counterexample representation could be improved in the
eyes of some participants in case proof obligations contain functions. Currently
it is difficult to find the part of a proposition that is not provable.

(C) Supporting Interaction. Finally, as soon as users have a sufficient under-
standing of the proof state, they need to interact with the tool in an effective
way. In this area there still seems to be a lot of room for improvement for both
tools. The participants of the KeY focus group criticized that the interaction
often has to be performed not on the annotation level but on low-level logic
formulas. Furthermore, low-level steps have to be repeated by hand in similar
situations. The Isabelle users were unhappy about the tedious task of finding
the correct tactic to continue.

Conclusion. We observe a strong connection between the named strengths and
weaknesses and our model of the proof process from Sect. 4.1. More than half
of the mentioned characteristics can be associated with concepts introduced by
the model. Furthermore, the results support our hypothesis that bridging the
gap between the user’s model of the proof and the ITP’s proof state is very
important during the proof process.



12 B. Beckert et al.

4.5 User Support During the Proof Process

We divided the part of the discussion about the proof processes into two parts,
namely the global proof process (finding the right formalization and decomposing
the proof task) and the local proof process (proving a single lemma or theorem).
The participants were asked to describe their typical proof process respectively,
and to name feedback mechanisms that the systems provide. Our expectations
were that existing prover support and mechanisms to aid the user are adapted
to the respective abstraction levels of the two processes.

4.6 State-of-the-Art in User Support

Global proof process. For both, KeY and Isabelle, the participants described a
similar proof process: it starts with the formalization of the system/problem and
its main properties. Users considered the modeling task to be among the most
time-consuming ones. However, system feedback in this phase is restricted to
syntactical and simple consistency tests. Instead, feedback causing the user to
revise the model on the global level results from the local proof process. It is
not surprising that there is only little user support for the global process, as the
tasks often require creativity and depend on the particular problem.

Local proof process. In the local proof process, the users are guided by their
individual impression of the complexity of open goals/proof obligations. If the
user considers the obligation to be“easy enough”, he or she tries a fully auto-
matic strategy. Otherwise, or if the automation fails, the user tries to prove
the obligation interactively. In this case there are two options: structured proofs
(Isar/macros) or proof exploration (manual application of rules resp. tactics).

The case where the problem is considered to be easy and is tried to be proven
automatically fits our model: It is the case where the user’s proof plan has only
one step leading to the proof state “proof complete”. In the other case, proof
exploration corresponds to the user having only a partial proof model, or a set of
different models from which the appropriate one has to be determined. In terms
of Fig. 1, we observe multiple arrows originating from the proof obligation.

Both KeY and Isabelle aid the user by providing search mechanisms or sug-
gestion mechanisms for proof rules resp. lemmas: As stated by the participants,
Isabelle supports the user in finding the right proof technique with a search
mechanism for theorems in the library. KeY offers different search mechanisms
and suggests applicable rules for a user-selected formula.

System feedback for the local process. In the local processes the systems give dif-
ferent kinds of feedback, e.g., counterexamples, open or closed goals, and (partial)
proofs. Some of these are explicit (e.g., message boxes), others are implicit in a
changed proof state.

The main difference between both tools is that KeY provides the full path to
the open goals as proof tree, while no explicit tree is available in Isabelle.



A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 13

Which part of the system (e.g., sequent, proof tree, formalization) is inspected
by the user to decide on how to continue the proof depends on the problem, but
we also learned that different users use different information.

From an abstract perspective the approach of inspecting the proof state,
especially in KeY, corresponds to top-down analysis of the proof: the focus
moves from the specification to single goals/sequents. At the beginning of the
proof process, the specification is inspected more often and the shape of the proof
tree plays an important role. Later in the process, the branches in the proof tree
and the sequents in the open goals become more important. Also, problem com-
plexity influences whether the sequents of the open goals are helpful or not.

In Isabelle, the strategy try (that carries out the complexity estimation in a
simple form) and other tools and tactics (e.g., sledgehammer, quickcheck, nitpick,
auto) give feedback about the goal-state. If the tactics cannot find a proof, the
resulting goal-states have to be inspected by the user. However, Isabelle does
not provide information about the used rules or lemmas leading to an open goal.
As stated especially in the Isabelle group, it is a matter of experience to decide
how proof search should proceed.

The comments on the feedback mechanisms of the proof systems support our
hypothesis: the user has to understand the system’s proof. The different proof
artifacts are inspected and the user tries to recognize certain familiar shapes, for
which he or she knows from experience how to continue in the proof process.

Proof granularity in the local process. One part of our hypothesis is that the
granularity of the automatic strategies as presented to the user does not match
the granularity in the user’s proof model.

When the application of automatic strategies and tools does lead to open
goals instead of a closed proof, information about used lemmas or rules is often
missing. An example is the auto tactic: if it finds a proof, showing only a single
proof step is appropriate. If it does not find a proof, it does not provide infor-
mation about the concrete proof rules it applied and the resulting intermediate
states (although this information is available internally). Only the remaining
goal-states are presented to the user. Better feedback is provided by sledgeham-
mer, as it displays the lemmas used in the underlying SMT proof.

Granularity of the proof and feedback of single steps also plays a role when
publishing or refactoring a proof depending on the intended audience. In user-
constructed proofs Isabelle allows different levels of granularity. Often proofs in
Isabelle are more fine grained than proofs on paper.

In KeY, there are three different granularity levels (in this case for proof
construction): (a) each rule application individually, (b) using the full automatic
strategy, and (c) proof macros together with one step-simplification as middle-
course. Proof macros are a preferred way of proving. However, they are not
applicable in every proof situation.

In both systems, the granularity of the proof steps can be too fine-grained or
too coarse, depending on the proof situation (e.g., failed proof attempts) and the
purpose of the proof (e.g., publishing a proof). We conclude that there should
be a compromise between the two extremes, e.g., a mechanism that allows to get



14 B. Beckert et al.

insight into the Isabelle tactics if required. For the KeY system, a mechanism
would be useful that summarizes steps in the proof tree and only unfolds them
on user inspection – extending existing mechanisms that collapse/unfold certain
kind of proof nodes like intermediate steps or closed proof branches.

Time-consuming tasks during the proof process. We suspected that inspecting
open goals resp. finding relations between different proof artifacts would be time-
consuming tasks. To test this, we asked for time-consuming actions in the proof
processes. As mentioned above, in the global process the modelling and specifi-
cation task is time-consuming as well as the proof attempts in the local process.
Additionally, when the user wants to minimize the proof attempts in the local
process, the setup for the automatic strategies is time-consuming in both sys-
tems. Other time-consuming tasks that were mentioned, are the decision when to
reconsider the whole model, proof refactoring (in Isabelle), and model refactoring
(in KeY).

In the local process, the following time-consuming actions are related to
understanding the proof state: analyzing open goals, finding counterexamples,
identifying the cause of a failed proof, as well as systematic proof exploration
(in KeY), and find theorems and proof exploration by using apply scripts (in
Isabelle). These answers support our hypothesis, as they provide evidence that
understanding the proof state is a laborious task. Also, other costly tasks were
mentioned: automatic proofs (as the user has to wait for the prover) and trivial
repetitive instantiations on different branches (in KeY), as well as redoing a proof
and especially finding the correct point to which to backtrack before correcting
the model or specification. In Isabelle, cleaning up proofs takes time as well.

Conclusion. Our observation is that a lot of answers focused on understanding
the proof state. For example, Isabelle users spend a lot of time cleaning up
their proofs to make them accessible and understandable for other users. The
answers related to the topic “understanding the proof state” in the part about
time-consuming actions also support this observation. To conclude, the answers
support our hypothesis that understanding a proof is a central and important
task in theorem proving. The participants spend time on understanding the
proof state in order to be able to proceed with the proof or find the cause for a
failed proof attempt. Comprehending the proof state is also necessary for proof
exploration, e.g., when the user only has parts of the proof process in mind or
when the user does not know how to start or proceed.

4.7 Mechanisms Supporting the Comprehension of the Proof State

Prior to the discussion, we developed paper mock-ups of mechanisms for both
verification tools which we believe aid the user in understanding the proof (state)
and therefore help to overcome the discrepancy between the proof model of the
user and the actual proof of the system. Implementing these remains for future
work. These mock-ups were presented to the focus groups as a sequence of screen-
shots that show how to invoke the mechanism and the effect of the mechanism



A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 15

in a particular proof situation.1 Our intention was to gain feedback whether our
developed mechanisms are comprehensible, serve our intended purpose (bridge
or reduce the gap) and are of interest for the participants. The task for the par-
ticipants was to describe the purpose and effect of the mechanism (as they saw
it) and share their opinion about it.

Tracing Terms/formulas/variables. We showed two mock-ups (designs) for
each system for the mechanism of tracing the origin of formulas respectively
variables in an open goal: In Isabelle we showed the parent formula of an open
goal with renamed variables. Additionally, the relation between the original and
the renamed variables was depicted. As a second mock-up we showed a state
with a number of open goals. By clicking on one of the goals, some of the used
lemmas and definitions leading to that goal were shown.

For the KeY system, the starting point for both designs was the same: we
selected one (sub-)formula of the sequent in the open goal. Then, for the first
design, we depicted a new window showing the selected formula and its ancestors
up to the original proof obligation (we summarized some of the intermediate
parent formulas to not clutter up the screen). In addition, the names of the rules
producing the formulas were given. The top-most parent shown was that part of
the specification where the formula had its origin. In the second design we did
not use a new window, instead we highlighted the parents in each inner node of
the proof tree up to the root, which contains the original proof obligation.

When the groups where shown the mock-up of the mechanism for tracing for-
mulas, the first reaction was clearly positive, particularly in the Isabelle group
for the first mock-up. Almost all participants intuitively understood the mech-
anism. One participant reported that he simulates this mechanism by manual
“reverse-renaming” in an external text editor. However, the question came up
whether the additional information may be confusing or clutter the screen. It
was suggested to implement the mechanism carefully, possibly using mouse-over
tags and – in particular for KeY – include it into the existing GUI concept.

Inspired by the second mechanism for Isabelle (showing the used lemmas)
some participants stated that it would be useful to have a mechanism showing
the path or case distinctions leading to selected open goals on demand.

The second design in the KeY group triggered a new idea: some participants
suspected a filtering mechanism and discussed about filtering the sequent and
the proof tree.

What Needs to Be Proven? For the Isabelle system, a mock-up was given,
showing which lemmas and theorems contribute to a proof (depicted as a simple
coloured graph). Unproven lemmas were coloured red, lemmas whose proofs used
unproven lemmas were coloured orange, and fully proven lemmas were coloured
green. The lemmas already proven were depicted with a box with an ellipsis
as description. The red and orange boxes were labelled with the name of the
1 The screenshots may be found at http://formal.iti.kit.edu/∼grebing/SWC/.

http://formal.iti.kit.edu/~grebing/SWC/


16 B. Beckert et al.

lemma that still needs to be proven resp. uses unproven lemmas. The participants
described the mechanism as separating the used from the unused lemmas and
that it would be useful in combination with, e.g., the automatic strategy simp.

Most of the participants showed a positive reaction to this mechanism. Some
participants would prefer a textual representation of the used and unused lem-
mas. The design of our mock-up can be improved in general. The level of detail
should be chosen carefully in order not to clutter up the screen (e.g., fold proven
lemmas with the option to unfold) and the view should be hierarchic.

What Happened During the Proof Process? For the KeY system, the
mock-up showed a diff mechanism relating two nodes in the proof tree (not
necessarily adjacent nodes). We designed the mock-up such that all unchanged
parts of the sequent were blurred out and the relevant changes were shown
directly above each other. The participants needed some time to understand
the idea and the blurring was found to be confusing, as the presentation of two
different sequent parts can be mistaken as belonging to the same single sequent.

One participant noticed that something similar is implemented in the KeY
system already as string diff mechanism, where the diff between two sequents
is shown in one new window. However, this participant also claimed that the
mechanism needs improvement, which supports our idea that such a functionality
should be implemented in the KeY system.

Already during the discussion, ideas for improvement came up, e.g., that the
diff between two sequents should be shown in two windows adjacent to each
other or above each other. Also, like in a text-diff viewer, the changes should be
marked using colours or typographical presentations. And in the proof tree, the
two nodes which are being compared should be marked.

In conclusion, we suggest to develop a user-configurable diff mechanism which
shows the two sequents being compared in two windows. One window depicts
the old sequent and one depicts the new sequent. In addition, the algorithm
for comparing two sequents has to be chosen carefully and consider the tree-
structure of the sequent. A string diff algorithm is not sufficient for comparing
tree-shaped sequents, as certain differences are recognized in the wrong way. For
example, it is wrong to assume that replacing n by null results from appending
ull to n.

4.8 The Ideal Interactive Proof System

As a cool-down task, we asked the participants to name properties that an ideal
interactive verification system should or should not have. Our goal here was
twofold – we wanted to collect more ideas about desirable features of ITPs and
evaluate our hypothesis at the same time. For the sake of brevity, we can only
present some of the mentioned features here. We decided to omit comments that
were of technical nature (e.g., “It should not have memory leaks.”) as well as
points that have already been mentioned in previous phases.



A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 17

Intuitive proof process. Both groups wished that an ideal interactive proof system
would produce proofs “close to what an experienced user would expect.”

This perfectly supports our paradigm of reducing the gap resp. keeping the
gap small between the user’s model of the proof and the ITP’s current proof
state.

Understandable proof states. The focus group on KeY prefers more interaction
in terms of the original proof obligation (e.g., specification and program) while
the Isabelle group wishes for semi-automatic proof steps (instead of the fully
automatic tactics). In our opinion this illustrates that too many as well as too
few details have a negative effect on understandability of the ITP.

Convenient interaction. One important feature that was wished for by both
groups is a good performance of the ITP. The performance can impede usability
if the user has to wait too long between interaction steps.

Conclusion. In summary, participants of our focus groups asked for an ITP that
(i) produces intuitive proofs, (ii) can present proof steps in an understandable
way (and give counterexamples if the proof can not be closed), and (iii) provides
a convenient interface for interaction.

5 Conclusion and Future Work

We conducted two focus group discussions to evaluate the usability of ITPs. Our
goal was to find evidence that a gap between the user’s model of the proof and
the system’s current proof state exists and that this gap is a central problem for
the usability of ITPs. In addition, we have developed mock-ups for mechanisms
that help to bridge this gap or keep it small. We have developed a first model
of the proof process with the focus on the relation between the user’s (partial)
model of the proof process and the current proof state.

In this evaluation we have found evidence that our model of the proof process
is reasonable: the model does not fully represent the complexity of interactive
proof search but captures already a lot of peculiarities. Our findings also indicate
that the gap between the user’s model of the proof and the system’s current proof
state is a central problem in interactive theorem proving.

We have also encountered related topics, such as counterexample generators
and finding the correspondence between the current proof state and the program
(in the KeY system) that clearly show that our model does not capture all the
details of proving yet and therefore for future work this model will be extended.
We have also discovered other usability issues in the systems not related to
our hypothesis. These are often either technical or relate to other topics, e.g.,
performance of the automatic strategies. We believe that attention has to be
drawn to these as well to enhance the user experience for ITPs.

We have presented functionalities that should help to bridge the gap or reduce
the gap concentrated on providing the user insights into what happened dur-
ing the automatic proof search. The participants reacted positively towards the



18 B. Beckert et al.

mechanisms and provided feedback for improvements or new ideas, such as user
defined filter mechanisms for the proof tree in KeY.

For future work we will extend the proposed mechanisms and prototypi-
cally implement them in the KeY system and perform usability tests to evaluate
our solutions. Additionally, we plan to extend the model to take into account
that there are also different proof strategies for one proof and it is often user-
dependent which proof style is used for a proof.

Acknowledgements. We thank the participants of our focus group discussions on
the usability of KeY and of Isabelle and, in particular, the two moderators for their
great work. In addition, we thank our project partners from DATEV eG for sharing
their expertise in how to prepare and analyse focus group discussions.

References

1. Aitken, J.S., Gray, P., Melham, T., Thomas, M.: Interactive theorem proving: an
empirical study of user activity. J. Symb. Comp. 25(2), 263–284 (1998)

2. Aitken, J.S., Melham, T.F.: An analysis of errors in interactive proof attempts.
Interact. Comput. 12(6), 565–586 (2000)

3. Aitken, S., Gray, P., Melham, T., Thomas, M.: A study of user activity in inter-
active theorem proving. In: Task Centred Approaches To Interface Design, pp.
195–218. GIST Technical. Report G95.2, Department of Computing Science (1995)

4. Archer, M., Heitmeyer, C.: Human-style theorem proving using PVS. In: Ait
Mohamed, O., Muoz, C., Tahar, S. (eds.) LNCS. Springer, Heidelberg (1997)

5. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems.
In: Proceedings, 1st International Workshop on Comparative Empirical Evalua-
tion of Reasoning Systems (COMPARE), Manchester, UK, June 30, 2012, CEUR
Workshop Proceedings, vol. 873, pp. 3–17. CEUR-WS.org (2012)

6. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. In: Benzmüller,
C., Woltzenlogel Paleo, B. (eds.) Proceedings, Workshop on User Interfaces for
Theorem Provers (UITP), Vienna. EPTCS, July 2014 (to appear)

7. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4337. Springer, Heidelberg (2007)

8. Beckert, B., Klebanov, V., Schlager, S.: Dynamic logic. In: Beckert et al. [7], chapter
3, pp 69–175

9. Blackwell, A., Green, T.R.: A cognitive dimensions questionnaire (v. 5.1.1) Feb
2007. www.cl.cam.ac.uk/∼afb21/CognitiveDimensions/CDquestionnaire.pdf

10. Caplan, S.: Using focus group methodology for ergonomic design. Ergonomics
33(5), 527–533 (1990)

11. Cheney, J.: Project report - theorem prover usability. Technical report, 2001.
Report of project COMM 641. http://homepages.inf.ed.ac.uk/jcheney/projects/
tpusability.ps

12. Ferré, X., Juzgado, N.J., Windl, H., Constantine, L.L.: Usability basics for software
developers. IEEE Softw. 18(1), 22–29 (2001)

13. Jackson, M., Ireland, A., Reid, G.: Interactive proof critics. Formal Aspects Com-
put. 11(3), 302–325 (1999)

www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps


A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 19

14. Kadoda, G., Stone, R., Diaper, D.: Desirable features of educational theorem
provers: a cognitive dimensions viewpoint. In: Proceedings of the 11th Annual
Workshop of the Psychology of Programming Interest Group (1996)

15. Lowe, H., Cumming, A., Smyth, M., Varey, A.: Lessons from experience: making
theorem provers more co-operative. In: Proceedings 2nd Workshop User Interfaces
for Theorem Provers (1996)

16. Morgan, D.L.: Focus groups. Annu. Rev. Sociol. 22(1), 129–152 (1996)
17. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San

Francisco (1993)
18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
19. Ouimet, M., Lundqvist, K.: Formal software verification: model checking and the-

orem proving. Technical report, March 2007
20. Vujosevic, V., Eleftherakis, G.: Improving formal methods’ tools usability. In:

Eleftherakis, G. (ed.) 2nd South-East European Workshop on Formal Methods
(SEEFM 05), Formal Methods: Challenges in the Business World, Ohrid, 18–19
Nov 2005. South-East European Research Centre (SEERC) (2006)


	A Usability Evaluation of Interactive Theorem Provers Using Focus Groups
	1 Introduction
	2 Related Work
	3 Survey Method: Focus Groups
	4 Evaluation of the Focus Groups and Analysis Results
	4.1 The User's and the Tool's Model of the Proof Process
	4.2 The Participants of Our Focus Group Discussions
	4.3 Targets of Evaluation
	4.4 Strengths and Weaknesses of the Targets of Evaluation
	4.5 User Support During the Proof Process
	4.6 State-of-the-Art in User Support
	4.7 Mechanisms Supporting the Comprehension of the Proof State
	4.8 The Ideal Interactive Proof System

	5 Conclusion and Future Work
	References


