CHAPTER 1

EQUALITY AND OTHER THEORIES
BY BERNHARD BECKERT

1 INTRODUCTION

Theory reasoning is an important technique for increasiegefficiency of au-
tomated deduction systems. The knowledge from a given dofoaitheory) is
made use of by applying efficient methods for reasoning indbenain. The gen-
eral purposdoreground reasonecalls a special purpod®ackground reasoneo
handle problems from a certain theory.

Theory reasoning is indispensable for automated deduatioeal world do-
mains. Efficient equality reasoning is essential, but mpstcidications of real
world problems use other theories as well: algebraic tesoin mathematical
problems and specifications of abstract data types in stétwaification to name
a few.

Following the pioneering work of M. Stickel, theory reasogiimethods have
been described for various calculi; e.g., resolution J&tic1985; Policriti and
Schwartz, 1995], path resolution [Murray and Rosentha8,71), the connection
method [Petermann, 1992; Baumgartner and Petermann,, 888! elimination
[Baumgartner, 1992], connection tableaux [Baumgartteal, 1992; Furbach,
1994; Baumgartner, 1998], and the matrix method [MurrayRosenthal, 1987a].

In this chapter, we describe how to combine background ressowith the
ground, the free variable, and the universal formula vesaf semantic tableaux.
All results and methods can be adapted to other tableauomsrsor first-order
logic: calculi with signed formulae, with differemtrules, with methods for re-
stricting the search space such as connectedness or grdesinictions, with
lemma generation, etc. Difficulties can arise with adapteito tableau calculi
for other logics, in particular if the consequence relativmaffected (e.g., hon-
monotonic logics and linear logic); and care has to be takéheory links or
theory connections have to be considered [Petermann, B#iBngartner, 1998;
Baumgartner and Petermann, 1998].

Background reasoners have been designed for various e¢ksedmi particular
for equality reasoning; an overview can be found in [Baurtrgaret al., 1992;
Furbach, 1994; Baumgartner, 1998], for set theory in [Caméd al., 1989]. Rea-
soning in single models, e.g. natural numbers, is discusg@&lirckert, 1990].

1

One main focus of this chapter is efficient equality reasgpmmsemantic ta-
bleaux. Equality, however, is the only theory that is disedsin detail. There is
no uniform way for handling theories, which is, after alletteason for using a
background reasoner but which makes it impossible to ptegmd background
reasoners for all possible theories. The second main fddinésachapter is there-
fore on the interaction between foreground and backgroeasbmers, which plays
a critical role for the efficiency of the combined system.

The chapter is organized as follows: in Section 2, the basicepts of theory
reasoning are introduced, and the main classificationsof{treasoning methods
are discussed. The ground, the free variable, and the saiMermula version of
semantic tableaux, which are the versions that have to begligsshed for the-
ory reasoning, are defined in Section 3, and methods arenpeelse add theory
reasoning to these versions of tableaux. Soundness of tietb®ds is proven in
Section 4. In Section 5, completeness criteria for backgdowasoners are de-
fined. Total and partial background reasoners for the egubkory are presented
in Sections 6 and 7. Incremental theory reasoning, whichmg#hod for improv-
ing the interaction between foreground and backgrounareas, is introduced in
Section 8. Finally, in Section 9, methods for handling etjyalre described that
are based on modifying the input formulae.

2 THEORY REASONING

2.1 First-Order Logic: Syntax and Semantics

We use the logical connectives(conjunction),v (disjunction),> (implication),
+ (equivalence); (negation), and the quantifier symb&land3.

NOTATION 1 A first-order signaturé& = (Ps;, Fx,, ax) consists of a sePs, of
predicate symbo|sa setFx, of function symbolsand a functionvs, assigning
an arity n > 0 to the predicate and function symbols; for each arity, thame
infinitely many function and predicate symbols. Functiomlsyls of arity O are
called constantsin addition, there is an infinite sét of object variables

Termy, is the set of all terms anderm®, C Termy; is the set of all ground
terms built fron®: in the usual manneformy; is the set of all first-order formulae
overY:; aformula¢ € Formy, must not contain a variable that is both bound and
free in¢ (see Sect. 1.1 in Chap. 3 for formal definitionslefmy, and Forms).
Lits, C Formy is the set of all literals.

DEFINITION 2 A variablex € V isfreein a first-order formulag, if there is an

occurrence of: in ¢ that is not inside the scope of a quantificatiof:) or (3x);

x is boundin ¢ if it occurs ing¢ inside the scope of a quantificatioviz) or (3x).
A sentencés a formulag € Forms not containing any free variables.

NOTATION 3 Substy; is the set of all substitutions, arsthbsts, C Substy; is the
set of all idempotent substitutions with finite domain.

A substitutionr € Substy, with a finite domain{z., ..., »,} can be denoted
by {z) — 11, .. 2, =t} 06 0(x;) =1 (1 <i<n).

The restriction ofr to a setiW’ C V' of variables is denoted byjyy .

A substitutions may be applied to a quantified formuja however, to avoid
undesired results, the bound variablegimust neither occur in the domain nor
the scope of.

DEFINITION 4 Aformulag’ is aninstanceof a formulag if there is a substitution

o=Axy—t,..., 2, —t,} € Subst}, such that
1. ¢' = ¢o,
2. none of the variables,, ..., z, is bound ing, and none of the variables
that are bound irp occurs in the terms,, .. ., ¢,,.

If an instance does not contain any variables, it igraund instance

DEFINITION 5 A formulag € Formsy is universally quantifiedf it is of the form
(Va) - - - (Y2n)4, n > 0, wherey does not contain any quantifications.

In this case, if a formula’ is an instance of) (Def. 4), itis as well called an
instance ofs.

DEFINITION 6 A structureM = (D, T) for a signatureX consists of a non-
empty domain) and an interpretation” which gives meaning to the function and
predicate symbols af.

A variable assignmeri$ a mapping’ : V' — 1 from the set of variables to the
domainD.

The combination of an interpretatioh and an assignment associates (by
structural recursion) with each terme Termsy, an element’” of D.

Theevaluation functional; ,, maps the formulae ifforms; to the truth values
trueand false(in the usual way, see Sect. 1.2 in Chap. 3)vdf; , (¢) = trug
which is denoted byM, v) | ¢, holds for all assignments, then M satisfies
the formulag (is a modelof ¢); M satisfies a seb of formulae if it satisfies all
elements ob.

A formulag¢ is atautologyif it is satisfied by all structures.

DEFINITION 7 Aformulay € Formy is a(weak) consequenad a setd C Formsy
of formulae, denoted b$ |- +, if all structures that are models @ are models
of ¢ as well.

In addition to the normal (weak) consequence relatigiwe use the notion of
strong consequence:

DEFINITION 8 Aformulay € Formy, isastrong consequencda setd ¢ Formsy
of formulae, denoted by |=° v, if for all structuresM = (D, I') and all variable
assignments:

If (M,v) E¢forall ¢ e ®, then(M,v) =1 .

A difference between the strong consequence relatfoand the weak conse-
guence relatiof- is that the following holds foE=° (but not fork=):

LEMMA 9 Given a setb C Formy, of formulae and a formula’ € Formy,, if
& =° o, thendo |=° o for all substitutionsr € Substs;.

2.2 Theories

We define any satisfiable set of sentences to be a theory.
DEFINITION 10 Atheory7 C Formy is a satisfiable set of sentences.

In the literature, often the additional condition (besigatisfiability) is imposed
on theories that they are closed under the logical consequetation. Without
that restriction, we do not have to distinguish between arthand its defining set
of axioms.

EXAMPLE 11 The most important theory in practice is the egydheory£." It
consists of the following axioms:

(1) (V2)(x =~ x) (reflexivity),

(2) for all function symboly € Fy:

(Vo) (Yo)(Yy) - (Y) (1 R A AT & ys) D
e, mn) & fyr,)

wheren = «ax(f) (monotonicity for function symbols),

(3) for all predicate symbols ¢ Ps:

(Vo) (Yo)(Yy) - (V) (1 R AL AT & ys) D
(p(z1, - 70) DP(Y1, - Yn)))

wheren = ax(p) (monotonicity for predicate symbols),

Symmetry and transitivity of are implied by reflexivity (1) and monotonicity for
predicate symbols (3) (observe thate Ps).

' The equality predicate is denoted ye Ps; such that no confusion with the meta-level equal-
ity = can arise.

EXAMPLE 12 The theony@P of partial orderings consists of the axioms
(1) (Va)—(2 < 2) (anti-reflexivity),

(2) (V2)(Vy)(V2)((= < y) A (y < 2) D (= < z)) (transitivity).

OP is a finite theory; contrary to the equality theory, it doe$ cantain mono-
tonicity axioms.

An important class of theories, calleduational theoriesare extensions of the
equality theory£ by additional axioms that are universally quantified ediei
An overview of important equational theories and their ries can be found in
[Siekmann, 1989].

EXAMPLE 13 The AC-theory for the function symbglcontains (besideS) the

additional axiomsVx) (Vy) (Vz) (f(f (7.), z) ~ f(x, f(y. 2))) and(Vz)(Vy)(f(z,y) ~ f(y, 7)),
which state associativity resp. commutativityfofit is an equational theory.

Other typical examples for equational theories are spatifios of algebraic
structures:

EXAMPLE 14 Group theory can be defined using, in additio# tthe equalities

(Ve)(Yy)(V2)((zoy)oz = xo(yoz))
(Va)(roe A~)
(V2)(wox™' =~ e)

The definitions of structure, satisfiability, tautologydalegical consequence
are adapted to theory reasoning in a straightforward way:

DEFINITION 15 Let 7 be a theory. AT -structureis a structure that satisfies
all formulae in7. A formula¢ (a set® of formulae) is7 -satisfiableif there is
a 7 -structure satisfying (resp.®), else it is7-unsatisfiable A sentence is a
T-tautologyif it is satisfied by all7 -structures.

A formula¢ is a (weak)7 -consequencef a setW¥ of formulae, denoted by
¥ =, ¢, if ¢ is satisfied by all7-structures that satisfy. A formula¢ is a
strong7 -consequencef a set¥ of formulae, denoted by = ¢, if for all 7-
structuresM and all variable assignments

If (M,v) Eforally € ¥, then(M,v) E ¢ .

LEMMA 16 Given atheoryr, a set® of sentences, and a sentengethe follow-
ing propositions are equivalent:

1.0, ¢.

2.0UT E 4.

3. U T U {4} is unsatisfiable.
4. & U {—+} is T-unsatisfiable.

2.3 Properties of Theories

The following definitions clarify which properties theasighould have to be useful
in practice:

DEFINITION 17 A theory7 is (finitely) axiomatizabldf there is a (finite) de-
cidable set¥ ¢ Formsy, of sentences (the axioms) such thate Formy isa7-
tautology if and only ift |= ¢.

A theoryT is completeif, for all sentences) € Formsy, either¢ or —¢ is a
T-tautology.

All theories that we are concerned with, including equabte axiomatizable.
An example for a theory that is not axiomatizable is the’Beatf all satisfiable
sentences.

If a theory7 is axiomatizable, then the set @ttautologies is enumerable; it
may, however, be undecidable (a simple example for thisaethpty theory). If
T is both axiomatizable and complete, then the sét@hutologies is decidable.

Another important method for characterizing a the@r-besides axiomatiza-
tion—isthe model theoretic approach, whérés defined as the set of all formulae
that are true in a given structuié. Theories defined this way are always complete,
becauseVf |= ¢ or M = —¢ for all sentences.

DEFINITION 18 A theory7 is universalif it is axiomatizable using an axiom set
consisting of universally quantified formulae (Def. 4).

THEOREM 19 A set® of universally quantified formulae ig-unsatisfiable if
and only if there is a finite set of ground instances of forraui@m & that is
T-unsatisfiable.

In the literature on theory reasoning, all consideratioesugually restricted to
universal theories, because the Herbrand-type Theorenoltid bxactly for uni-
versal theories [Petermann, 1992]. This theorem is esddatitheory reasoning
if the background reasoner can only provide formulae witlatiable quantifica-
tions (e.g., only literals or clauses); this s, for examte case if theory reasoning
is added to clausal tableaux or resolution.

EXAMPLE 20 The theoryl = {(3x)p(x)} is not universal. Consequently, there
are setsb of universally quantified formulae that afe-unsatisfiable whereas all
finite sets of ground instances of formulae fr@nare 7 -satisfiable. An example
is® = {(Vx)(—p(x))}; even the sef—p(t) | t € Term%} of all ground instances
of ® is 7 -satisfiable (using & -structure where not all elements of the domain are
represented by ground terms).

The restriction to universal theories is not a problem ircice, because it is
easy to get around using Skolemization.

| Key | £-Refuter

[~ a) Gd___.0)

(~~a)l ({z], D)

(V) (—(z ~)]} G .0)

{p(a), ~p()} G {-a~0]

{p(F (@), 7)), T(0) ~ 2] (o — al, {pla, FO))
({z = b}, {p(f(a),b)})

{r(f(a), F(b)), (Vo) (f () m 2)} | (id {p(a, b)})

Table 1. Examples fof -refuters.

EXAMPLE 21 An extension of)P that contains the density axiom

(V) (Vy)((z < y) D (32) (= < 2) A (2 <))

is not a universal theory. It can be made universal by repiptiie above axiom
with

(V) (Yy) (2 < y) D ((# < between(x,y)) A (between(z,y) < y))) -

2.4 Basic Definitions for Theory Reasoning

The following are the basic definitions for theory reasoning

DEFINITION 22 Let® C Formsy be a finite set of formulae, callday. A finite
setR={p1,...,pr} C Formys of formulae ¢ > 0) is a T-residueof ® if there
is a substitutionr € Subst$, such that

1. do 5 p1 V...V pg (in caseR is empty:do = falsg;
2. R = Ro.

Then the pair(s, R) is called a7 -refuterfor ®. If the residuer is empty, the
substitutions is called a7 -refuter for® (it is identified with{s, 0)).

EXAMPLE 23 Table 1 shows some examples forefuters.

DEFINITION 24 A set® C Formy of formulae is7T-complementaryf, for all
T-structures(D,) and all variable assignments val; , (®) = false

EXAMPLE 25 The sef{—(z ~ y)} is £-unsatisfiable; it is, however, nétcom-
plementary because a variable assignment may assignediffelements of the
domain tor andy. The setf{—~(z a2)} is both&-unsatisfiable and-complemen-
tary.

In general, it is undecidable whether a formula sef isomplementary; and,
consequently, it is undecidable whether a gairR) is a refuter for a keyb.

T-complementarity generalizes the usual notion that foamul and —¢ are
complementary. The following lemmata are immediate comeedes of the defi-
nitions:

LEMMA 26 Given a theory7, a substitutiony € Substy, is a T -refuter for a
set® of formulae if and only if the s@o is 7-complementary.

LEMMA 27 Given a theory7, a substitutions and a setR = {p1,...,px},
k > 0, of formulae form a refutefs, R) for a setd of formulae if and only if

1. doU{—p1,...,—px} is T-complementary;

2. R = Ro.

There is an alternative characterizationfcomplementary sets that do not
contain bound variables (e.g., sets of literals or clauses)

THEOREM 28 Given a theoryT, a set® of formulae that does not contain any
guantifiers is7-complementary if and only if the existential closai® of ® is
T-unsatisfiable.

Provided that the signatud& contains enough function symbols not occurring
in a universal theory™, a quantifier-free formula set i6-complementary if all its
instances arg -complementary:

THEOREM 29 Given a universal theoryf” such that there are infinitely many
function symbols of each arity > 0 in Fx that do not occur irn7, then a setb
of formulae that does not contain any bound variablegisomplementary if and
only if all ground instances b are T-unsatisfiable.

EXAMPLE 30 Let7 be the theonfp(t) | t € Term} that violates the pre-condition
of Theorem 29, as all function symbols occurjin The formula—p(2) is not 7-
complementary because there may be elements in the domaih-sfructure that

are not represented by any ground term. Nevertheless,stdirines of-p(z) are
T-unsatisfiable, which shows that the pre-condition of Teeo29 is indispens-
able.

By definition there is no restriction on what formulae may wcin keys or
refuters. In practice, however, to restrict the search esplaackground reasoners
do not compute refuters for all kinds of keys, and they do natgute all possible
refuters (typically, keys are restricted to be sets ofditeor universally quantified
literals). To model this, we define background reasonerg foatial functions on
the set of all possible keys:

DEFINITION 31 Let 7 be a theory; abackground reasondor 7 is a partial
function
R 27y Substy, x 2F0rme

such that, for all keysb C Formsy, for which R is defined;R(®) is a set of7 -
refuters ford.

A background reasoner. is totalif, for all keys® for whichR is defined, the
residues of all refuters iR (®) are empty, i.e.R(®) C Substs;.

A background reasoneR. is monotonicif, for all keys ® and ¥ such that
® C U if R(P) is defined, theR (¥) is defined and (®) C R(¥).

EXAMPLE 32 A background reasoner for the the@tg of partial orderings can
be defined as follows: For all keyss, let R (®) be the smallest set such that:

1. for alltermst,#’,t” € Termy:
if t <t ¢ <t e, then(id,t <t") € R(P);

2. foralltermst € Terms: if t <t € &, thenid € R(P);
3. for allliterals¢ € Lity: if ¢, —¢ € ®, thenid € R(P).

The combination ofR and the ground version of tableaux leads to a complete
calculus forP O (see Sect. 3.2).

A background reasoner has to compute refuters that aregstmrsequences of
(an instance of) the key. In contrary to that, for tableaesut is sufficient to pre-
serve satisfiability. A tableau rule may dedyge) from (3x)p(x) wherec is new,
but (id, {p(c)}) is not a refuter for the key(3=)p(x)}. A background reasoner
may, however, do the oppositéid, {(3x)p(x)}) is a refuter for the keyp(c)}
(this deduction usually does not help in finding a proof; begyever, Example 20).

2.5 Total and Partial Theory Reasoning

The central idea behind theory reasoning is the same foakllii based in some
way on Herbrand'’s theorem (tableau-like calculi, resolutietc.): A key® C ¥

is chosen from the sek of formulae already derived by the foreground reasoner
and is passed to the background reasoner, which computeersét, R) for &.

There are two main approaches: if the background reasonetaisi.e., only
computes refuters with an empty residide we speak ototal theory reasoning
else ofpartial theory reasoning.

In the case of partial reasoning, where the residue {p:,...,pr} IS not
empty ¢ > 1), the formulagp, Vv ...V px is added to the sak of derived formulae
and the substitution is applied. If the foreground reasoner is then able to show
that for some substitution the set(Ve U {p; V...V pg })7 iS T-unsatisfiable,
this proves thatl o r is 7T-unsatisfiable.

10

Although total theory reasoning can be seen as a speciabfé@satial theory
reasoning, the way the foreground reasoner makes use dffiiterris quite dif-
ferent: no further derivations have to be made by the forggoeasoneps and
thusW o have been proven to l¥e-complementary by the background reasoner. In
the tableau framework, where (usually) the Keis taken from a tableau branéh
this means thab is closed if the substitution is applied.

On the one hand, for total theory reasoning, more complexoast have to
be employed to find refuters; the background reasoner haslte more complex
deductions that, using partial reasoning, could be divideaseveral expansion
steps followed by a simple closure step. On the other haedgstriction to total
theory reasoning leads to a much smaller search space flmrdground reasoner,
because there are less refuters for each key and the seanohegoal-directed.

2.6 Other Classifications of Theory Reasoning

Besides total and partial theory reasoning, there are alevtirer ways to distin-
guish different types of background reasoners.

One possibility is to classify according to the informatigimen to the back-
ground reasoner: (complex) formulae, literals, or ternmiBgartneet al,, 1992].
Stickel distinguishegsarrow theory reasoning, where all keys consist of literals,
andwide theory reasoning, where keys consist of clauses [Sticl@gd5]L This
type of classification is not used here, since all these tgpesubsumed by for-
mula level theory reasoning. We will, however, restrictgihyg) all considerations
to keys consisting of literals.

Another possibility is to classify background reasonecating to the type of
calculus they use for deductions, the main divisions bbitgpm upandtop down
reasoning.

Local and non-localtheory reasoning can be distinguished according to the
effect that calling the background reasoner has on theaalBegtyarev and
Voronkov, 1996a]. In particular, the effect of calling thadaground reasoner
is local if only local variables are instantiated by apptythe theory expansion or
closure rule to a tableau branéh i.e., no variables occurring on other branches
than B are instantiated.

3 THEORY REASONING FOR SEMANTIC TABLEAUX

3.1 Unifying Notation

Following Smullyan [Smullyan, 1995], the set of formulaatlare not literals is
divided into four classesa for formulae of conjunctive types for formulae of
disjunctive type; for quantified formulae of universal type, andor quantified

11

L o Joi] o] L s [8] B |
dAY o ¥ PV Y o (4
—(p V) || ¢ | ¥ (¢ A %) —¢ -
=(0DV) | |0 D - [
——¢ | ¢ ¢ =Y PAY | 2 AN
() || oAU | —pAY
L v [n@] L 6 []
(V=)o () o(x) ~(Ve)o(x) || ~o(x)
—(3z)o(x) || ~o(x) (Fx)o (=) o(x)

Table 2. Correspondence between formulae and rule types.

formulae of existential type (unifying notation). This s&éfication is motivated by
thetableau expansion ruleshich are associated with each (non-literal) formula.

DEFINITION 33 The non-literal formulae iformy, are assigned #&ypeaccord-
ing to Table 2. A formula of type e {«, 3,v,4d} is called as-formula

NOTATION 34 The lettersy, 3, v, ands are used to denote formulae of (and only
of) the appropriate type. In the case of and é-formulae the variable: bound
by the (top-most) quantifier is made explicit by writing:) and~, («) (resp.é ()
andd; (#)); accordingly~, (#) denotes the result of replacing all occurrences:of
in v, byt.

3.2 The Ground Version of Semantic Tableaux

We first present the classicgoundversion of tableaux for first-order logic. This
version of tableaux is called “ground”, because univeysgllantified variables are
replaced bygroundterms when the-rule is applied.

The calculus is defined using a slightly non-standard reptesion of tableaux:
a tableau is multi-sets of branches, which are multi-sef&rstforder formulae;
as usual, the branches of a tableau are implicitly disjualticonnected and the
formulae on a branch are implicitly conjunctively connekctén graphical repre-
sentations, tableaux are shown in their classical tree.form

DEFINITION 35 A tableauis a (finite) multi-set of tableau branches, where a
tableaubranchis a (finite) multi-set of first-order formulae.

In Table 3 the ground expansion rule schemata for the vafoyosula types are
given schematically. Premisses and conclusions are seddw a horizontal bar,
while vertical bars in the conclusion denote differertensionsThe formulae in

12

o 1o} ~)
o B | B 7 (1) 41 (1)
(5]

wheret isany wheret is a ground term
ground term. new to the tableau.

Table 3. Rule schemata for the ground version of tableaux.

an extension are implicitly conjunctively connected, aiftetent extensions are
implicitly disjunctively connected.

To prove a sentencg to be a tautology, we apply the expansion rules starting
from the initial tablea {—¢1}}. A tableauT is expanded by choosing a brangh
of T"and a formulap € B and replacings by as many updated branches as the
rule corresponding tg has extensions. Closed branches are removed from the
tableau instead of just marking them as being closed; thpmaf is found when
the empty tableau has been derived.

There is a theory expansion and a theory closure rule. Fdr tubes, a key
& C B is chosen from a branch, and a refutefs, R) for ® is computed. Since
formulae in ground tableaux do not contain free variables, formulae in the
residue, too, have to be sentences. The application ofituthsts to formulae
without free variables does not have any effect. ThuégifR) is a refuter for a
key & taken from a ground tableau, théi, R) is a refuter ford as well; thus, it
is possible to use only refuters of this form for ground tahbe

DEFINITION 36 A background reasoneR for a theory7 is a ground back-
ground reasoneifor 7 if, for all keys® C Formy for which R is defined, all
formulae inR (®) are sentences, i.e., do not contain free variables.

Whether an expansion or a closure rule is to be applied dspamd/hether the
residueR = {p1, ..., pr } isempty or not. Ift > 1, then the tableau is expanded.
The old branch is replaced bynew branches, one for eagh (since thep, are
implicitly disjunctively connected). The closure rule igpdied if the residue is
empty ¢ = 0); it can be seen as a special case of the expansion rule: dhe ol
branch is replaced by new branches, i.e., it is removed. The rule schemata are
shown in Table 4; in this and all following schematic reprgagons of rules, the
symbolx is used to denote that a branch is closed if the rule is applied

If the residueR is empty, the key isf-complementary and the branch it has
been taken from i§ -closed. This is a straightforward extension of the closure
rule for tableaux without theory reasoning, where a brasdaidsed if it contains
complementary formulag and—¢, i.e., thefi-complementary key¢, —¢} (there-
fore, the rule that a branch containing complementary féaew and—¢ is closed
does not have to be considered separately).

13

?1 ol
¢p ¢_p
Pl | Pk *
where(id, {p1,...,px}) (k> 1)isa whereid is a
refuter for the key{ ¢+, ..., ¢,}, and refuter for the
p1, - - -, pr do not contain free variables. key{¢1,...,ép}.

Table 4. Theory expansion and closure rules (ground vexsion

DEFINITION 37 (Ground tableau proofiven a theory7 and a ground back-
ground reasoneR for 7 (Def. 36), aground tableau prodbr a first-order sen-
tenceg € Formy, consists of a sequence

{{_‘¢}}:T07T17'--7Tn71771n:w (7720)
of tableaux such that, for < 7 < »n, the tablea; is constructed front;_,

1. by applying one of the expansion rules for ground tablezam Table 3,
i.e., there is a branctB € 7;_, and a formulag € B (that is not a literal)

such that
T = (7}71\{3})
{(B\ {a}) U{on,as}} if o=
o JABNBH UG} (BA{BY) U{B}) ifo=5
{BU{mi(s)}} if ¢ = ~(x)
1(BN{o(=)}) U{a(t)}} if ¢ =d(x)

wheres € Term, is any ground term, and € Termy, ground term not
occurring in7;_q;

2. by applying the ground theory expansion rule, i.e., thsra branchB ¢
T;_1 and, for a keyd C B, there is a7 -refuter(:d, {p1,...,px}) (k > 1)
in R(®) such that

Ty = (LA \NABHU{BU{p:},..., BU{ps}};

3. or by closing a branctB € 7;_4, i.e., T; = T;_, \ { B} whereB is 7-
closed (i.e.jd € R(®) for a key® C B).

It is possible to describe a background reasoner usingaablide schemata.
The reasoner from Example 32 then takes the form that is showatble 5.

14

<t t<t)
t/<t// * _|¢
t <t *

Table 5. Expansion and closure rules for the the@¢y of partial orderings.

Even without theory reasoning, the construction of a cldabteau is a highly
non-deterministic process, because at each step one iwfob®ose a branchk
of the tableau and a formudac B for expansion. I is a~y-formula, in addition,
a term has to be chosen that is substituted for the boundiaria

There are two ways for resolving the non-determinism (détoplementations
usually employ a combination of both): (1) fair strategias de used such that,
for example, each formula will finally be used to expand eaem&h on which it
occurs. (2) Backtracking can be used; if a branch cannotdmedl (observing a
limit on its length), other possibilities are tried; for exple, other terms are used
in v-rule applications. If no proof is found, the limit has to Inelieased (iterative
deepening).

The theory expansion rule makes things even worse, bectigskighly non-
deterministic. In which way it has to be applied to be of ang,ls particular
when and how often the rule is applied, and which types of leykrefuters are
used depends on the particular theory and is part of the adokmaiwledge (see
Sect. 5.3).

3.3 Free Variable Semantic Tableaux

Using free variable quantifier rules is crucial for efficiémplementation—even
more so if a theory has to be handled. They reduce the nhumhsossibilities

to proceed at each step in the construction of a tableau prabthus the size of
the search space. Wherrules are applied, a new free variable is substituted for
the quantified variable instead of replacing it by a groumthtevhich has to be
“guessed”. Free variables can later be instantiated “onagefnwhen a tableau
branch is closed or the theory expansion rule is applied pards a branch.

To preserve correctness, the schemasfaules has to be changed as well: the
Skolem terms introduced now contain the free variablesroicaiin thes-formula
(the free variable rule schemata are shown in Table 6).

Again, there is both a theory expansion and a theory closige The difference
to the ground version is that now there are free variablels iothe tableau and
in the refuter (the formulae that are added). When theorgomag is used for
expansion or for closing, the substitutierof a refuter{s, R) has to be applied to
the whole tableau; the theory rule schemata are shown ieTabl

In case there is a refuter with an empty residue for a ke§ taken from a
branch, it isT-closed under the substitutieni.e., it is closed whew is applied

15

o 1o} ~)
x B | B Y1 (y) Si(flzr,... w0))
(&%}

wherey is a whereyf is a new Skolem func-
free variable. tion symbol, andr,, ..., =,
are the free variables in

Table 6. Tableau expansion rule schemata for free variabledu.

b1 ?1
¢p ¢P
Pl | Pk *
where(o, {p1,...,pr}) (k> 1)isa whereo is a refuter for the key
refuter for the key{ ¢+, ..., ¢,},and {¢1,...,¢,}, ande is applied
o is applied to the whole tableau. to the whole tableau.

Table 7. Theory expansion and closure rules (free variadagion).

to the whole tableau.

It is often difficult to find a substitutios that instantiates the variables in a
tableauT such thaall branches of" are7-closed. The problem is simplified (as
is usually done in practice) by closing the branche§'adne after the other: if
a substitution is found that closes a single bramght is applied (to the whole
tableau) to close3 before other branches are handled. This is not a restriction
because, if a substitution is knownToclose several branches, it can be applied
to close one of them; after that the other branches are closddr the empty
substitution.

DEFINITION 38 (Free variable tableau prooflet 7 be a theory and leR be
a background reasoner fof, a free variable tableau prodér a first-order sen-
tenceg consists of a sequence

{{_‘¢}}:T07T17'--7Tn71771n:w (7720)
of tableaux such that, for < 7 < n, the tablea; is constructed front;_,
1. by applying one of the free variable expansion rules frald 6, that is,

there is a branchs € 7;_; and a formulap € B (thatis not a literal) such
that

T, = (Ti-1\{B})

16

{(B\{o}) U{or,as}} ifo=a
O JABNABHU{BE (BB U{B}) ifo=0
{BU{vi(y)}} if ¢ = ()

{(BAL@)) U6 ([, wn))} 16 =4d(x)

wherey € V is a hew variable not occurring iff; 1, f € Fyx is a Skolem

function symbol not occurring i, _+, and=., .. ., =, are the free variables
ing¢;

2. by applying the free variable theory expansion rule, thathere is a branch
Be T, 1,akeyd Cc B,anda7-refuter(c,{p1,...,px}) (k > 1)inR(P)
such that

Ty = (T \{BHoU{BoU{pi},..., BoU{pr}};

3. or by closing a branct3 € 7; 4, thatis,7; = (7;_1 \ {B})o where the
branch B is T-closed undes, i.e.,c € R(®) for a keyd C 3.

3.4 Semantic Tableaux with Universal Formulae

Free variable semantic tableaux can be further improvedsinguthe concept of
universal formulae [Beckert and Hahnle, 1992Jformulae (in particular axioms
that extend the theory) have often to be used multiply in #etabproof, with
different instantiations for the free variables they camté&n example is the axiom
(Vz)(Vy)((z < y) D (p(x) D p(y))), that extends the theory of partial orderings
by defining the predicate symbplto be monotonous. The associativity axiom
(Ve)(Vy)(V2)((x - y) - z & x - (y - z)) is another typical example. Usually, it has
to be applied several times with different substitutions#py and > to prove
even very simple theorems from, for example, group theargemantic tableaux,
the~-rule has to be applied repeatedly to generate severahicesaf the axiom
each with different free variables substituted fgry and . Free variables in
tableaux arenot implicitly universally quantified (as it is, for instancéhet case
with variables in clauses when using a resolution calclusrerigid, which is
the reason why a substitution must be applied to all occoe®nf a free variable
in the whole tableau.

Supposed a tableau branéhcontains a formula(z), and the expansion of
the tableau proceeds with creating new branches. Somes# tranches contain
occurrences of; for closing the generated branches, the same substitiation
has to be used on all of them. Figure 1 gives an example forithation: this
tableau for cannot be closed immediately as no single gubisti closes both
branches. To find a proof, therule has to be applied again to create another
instance ofVa)p(x).

In particular situations, a logical consequence of the fdam already on the
tableau (in a sense made precise in Def. 39) may be(¥hap(y) can be added

17

—p(a) —p(b)

Figure 1. The advantage of using universal formulae.

to B. This is trivially true in Figure 1. In such cases, differsnbstitutions fory
can be used without destroying soundness of the calculiestaliheau in Figure 1
then closes immediately. Recognizing such situations &pbbiéing them allows
to use more general closing substitutions, yields shaatdeau proofs, and in most
cases reduces the search space.

DEFINITION 39 Let7 be a theory, and lep be a formula on a branctB of a
tableau7. Let7” be the tableau that results from addifig:)¢ to B for some
x € V. The formulap is T-universalon B with respect ta if T =, 7', whereT

and7” are identified with the formulae that are the disjunctionth&fir branches,
respectively, and a branch is the conjunction of the forrautacontains. Let
UVar(¢) C V denote the universal variables of’

The above definition is an adaptation of the definition giveriBeckert and
Hahnle, 1998] to theory reasoning.

The problem of recognizing universal formulae is of counséacidable in gen-
eral. However, a wide and important class can be recogniagd gasily (using
this class can already shorten tableau proofs exponspti#fitableaux are seen
as trees, a formula on a branchB of a tableaur” is (7-)universal w.r.t.z if all
branchesp’ of T" are closed which contain an occurrencerdhat is not onB as
well; this holds in particular if the branch contains all occurrences ofin 7.

Assume there is a sequence of tableau rule applicationgnthatiuces a vari-
ablex by a~-rule application and does not contain a rule applicatiatritiuting
x over different subbranches; then the above criterion isontsly satisfied and all
formulae that are generated by this sequence are univergakw

THEOREM 40 Given a theoryT, a formulag on a branchB of a tableauT is
T-universal w.rtz on B if in the construction of" the formulas was added ta3
by either

1. applying av-rule and =z is the free variable that was introduced by that
application;

2When the context is clear, a formutawhich is universal on a brandl w.r.t. a variabler is just
referred to by “the universal formulg,” and the variable: by “the universal variable.”

18

b1 ?1
p o
P] ek *

where{o, {p1,...,pr}) (k > 1) whereo is a refuter for the key
is a refuter for the key {(Vai) - (Val,) | 1 <i < p},
{(Vai) - (Vai,)o; | 1 <i<p}, theformulag; is T-universal
the formulag; is 7 -universal w.rt. the variables’ ... =/, ;
w.r.t. the variables?, ..., x%, ; and is applied to the whole
ando is applied to the whole tableau.
tableau.

Table 8. Theory expansion and closure rules (universaldtaversion).

2. applying am-, §- or v-rule to a formulay thatis7-universal w.r.tx on B;

3. applying ag-rule to a formulay that is 7-universal w.rt.z on B, and
x does not occur in any formula excefpthat has been added to the tableau
by thats3-rule application;

4. applyingthe theory expansionrule to arefufer, ..., px } forakeyd c B
(i.e.,¢ = p; forsome € {1,..., k}), and all formulae ind are 7 -universal
w.r.t. 2z on B, and« does not occur in any of theg for j # i.

The knowledge that formulae afe-universal w.r.t. variables they contain can
be taken advantage of by universally quantifying the foamuh a key w.r.t. (some
of) their universal variables. Similar to the ground ancefiariable cases, the
closure rule can be seen as a special case of the expanstonThd new theory
rule schemata are shown in Table 8.

DEFINITION 41 (Universal formula version.b.et 7 be a theory, and leR be a
background reasoner faf. A universal formula tableau proddr a first-order
sentence consists of a sequence

{{_‘¢}}:T07T17'--7Tn71771n:w (7720)
of tableaux such that, for < 7 < »n, the tablea; is constructed front;_,

1. by applying one of the free variable expansion rules fraimd6 (see The-
orem 38 for a formal definition);

2. by applying the universal formulatheory expansion rale branchB € 7;_ 4,
that s,

Ty = (T \ {B))e U{BoU{p},..., BoU {n}}

19

where(a, {p1, ..., px})isaT-refuter inR(P) for a key

& = {(Vay) - (Yay,)0 | 1 <i < p}

such that
(a) ¢17"'7¢p E B!
(b) {a%,..., 2%, } C UVar(¢;) for1 <i < p,

3. or by closing a branctB € T;_ 1, that is,
T, = (Ti-a \{B}e
where the branclB is T-closed under, i.e.,c € R(®) for a key

& = {(Vay) - (Yay,)0 | 1 <i < p}

such that
(a) ¢17"'7¢p E B!
(b) {a%,... 2%, } C UVar(¢;) for1 <i < p.

Although it is easier to add theory reasoning to the groumsgioe of tableau,
to prove even simple theorems, free variable tableaux haveetused. These
are sufficient for simple theories. If, however, finding autef requires complex
deductions where the formulae both in the key and in the thieave to be used
multiply with different instantiations, then universalrfioula tableau have to be
used (free variable tableaux are a special case of univiersalila tableau),

The following example illustrates the advantage of usirguhiversal formula
expansion rule as compared to the free variable rule:

EXAMPLE 42 Consider again the tabled@ushown in Figure 1. The substitution
o = {y — a} is a refute for the keyp(y), —p(a)}, which is taken from the left
branch of/". If & is used to close the left branch, then the variabkeinstantiated
with a in the whole tablead". However, if the formula(y) is recognized to be
universal w.r.ty, then the key{ (Yy)p(y), ~p(a)} can be used instead, for which
the empty substitutiofi is a refuter; thus using the universal formula closure rule,
the left branch can be closed without instantiatinghen the right branch can be
closed, too, without generating a second free variableitsp(y’) of (Vx)p(x).

Using the universal formula technique is even more impoitesituations like
the following:

20

EXAMPLE 43 Supposed the equalifyx) ~ « and the literalg(f(a), f(b)) and
—p(a, b) are£-universal w.r.tz on a tableau branch. In that case, the k@) (f (=) ~ z), p(f(a), f(b)
can be used, for which/ is a refuter.
In free variable tableaux, the key f (=) ~ =), p(f(a), f(b)), p(a,b)} has to
be used, which allows to derive therefutéfs — a}, {f(b) ~ b}) and{{z — b}, {f(a) ~ a})
only; a refuter with an empty residue, which closes the drémenediately, cannot
be deduced anymore.

3
/

4 SOUNDNESS

In this section, soundness of semantic tableaux with thesagoning is proven for
the universal formula version. Soundness of the free viriadrsion follows as a
corollary because free variable tableaux are a specialafasgversal formula ta-
bleaux. For the ground version, soundness can be provenlettymanalogously.

First, satisfiability of tableaux is defined (Def. 44), thersiproven that satisfi-
ability is preserved in a sequence of tableaux forming atabproof (Lemma 46).

DEFINITION 44 Given a theoryT, a tableauT is 7 -satisfiablef there is a7 -
structure M such that, for every variable assignmentthere is a branchB € T
with

(M,v) E B.

LEMMA 45 If a tableauT is 7 -satisfiable, theffs is T -satisfiable for all sub-
stitutionss € Substs,.

Proof. By hypothesis there isa-structureM = (D, T) such that, for all variable
assignments, there is a branct, € 7" with (M,v) = B,. We claim that, for
the same structurg/, we have also for all variable assignmegtthat there is a
branchB with (M, &) = Be.

To prove the above claim, we consider a given variable assghs. Let the
variable assignment be defined by

v(z)= (.170')”5 forallz € V.

That implies for all termg € Terms, and in particular for all terms occurring
in B,
(fﬂ')”E :tf,y
and therefore
valy ¢(Byo) = valr , (By) = true.

LEMMA 46 Given a universal formula tableau proof;)< ;<», if the tableaur;
(0 <7 < n) is T-satisfiable, then the tabled&t) ., is 7-satisfiable as well.

21

Proof. We use the notation from Definition 41. LBtbe the branch iff; to which
one of the classical expansion rules or the theory expamgiemas applied or that
has been removed by applying the theory closure rule to el¢hiv tablead’; ;.
Let M = (1, I) be aT -structure satisfying;.

G-rule: Let v be an arbitrary variable assignment. There has to be a briahch
in7; such tha{ M, v) = B’. If B’ is different fromB thenB’ € T;,, and we are
through.

If, on the other handB’ = B, then(M,v) = B. Let /3 be the formula inB
to which thes-rule has been applied. By the property®sformulae, (M, v) = 8
entails(M, v) |= 5y or (M, v) | 4; and, thereforg,M, v) = (B\ {5} U {61}
or (M,v) = (B\{A})U{B=}. This concludes the proof for the case offa
rule application, becausgB \ {5}) U {3} and (B \ {3}) U {3-} are branches
inTiyq.

a- and~-rule: Similar to thes-rule.

d-rule: Let § be thej-formula to which thes-rule is applied to derivd’ +
fromT;; & (f(21, ..., 2m)) is the formula added to the branchié a new Skolem
function symbol and:,, . . ., z,,, are the free variables if). We define a structure
M’ = (D, I') that is identical toM, except that the new function symbplis
interpreted by’ in the following way: For every sety, .. ., d,,, of elements from
the domain?, if there is an element such that M, &) = 4§, (#) wheref(z;) = d;

(1 <j<m)andé(z) =d, thenf"(d1 .- -, dm) = d. Ifthere are several such el-
ements/, one of them may be chosen; and if there is no such elementhraay
element from the domain is chosen. It follows from this camgion that for all
variable assignments if (M,v) E &, then(M’,v) = 6 (f(#1,...,2m)). Since
f does not occur i, M’ is aT-structure.

We proceed to show that/’ satisfies?; 1. Let v be an arbitrary variable as-
signment. There has to be a brarghin 7; with (M, v) | B’. If B’ is different
from B, then we are done becaus¥’, v) = B’ (asf does not occur irB’) and
B € Tiy.

In the interesting case whedec B’ = B, we have(M, v) E § which entails
(M vy E & (f(z1,...,2m)). Thus,(B\ {0 U {6 (f(®1,...,2m))}, whichis
a branch inT; 1, is satisfied by\/’.

Theory Expansion Ruletet (o, {p1, ..., px})} be the refuter used to expand
the tableau. Sinc&; is T-satisfiable, the tableal;« is 7-satisfiable as well
(Lemma 45). LetM be a7 -structure satisfying’;+, and letr be an arbitrary
variable assignment. There has to be a bras'’ck 7, with (M, v) = B’. Again,
the only interesting case is whefé — Bs, and Beo is the only branch i«
satisfied by(M, v). '

By definition of universal formulae, that implieB . (V1) - "(Vl"l;q,i) é;

(1 < j < p) and, thus,Bo = (V) - (Va],) ¢j0 (Lemma 9), which implies
(M, v) |z ®o whered = {(Vir]) - (Yaf,) 6; | 1 <j < p}, as(M,v) = Ro.

7

Becaus€o, {p1, ..., pr }) is a refuter ford and, thus®os =2 p1 V...V pi, We

22

have(M,v) = p; forsomej € {1,..., k}. This, finally, implies thatl/ satisfies
the branchBe U {p; } in T;44.

Theory Closure Ruleln the same way as in the case of the theory expansion
rule, we conclude thatVf, v) = ®o. But now this leads to a contradiction: be-
cause the residue is emptyy/; ., (®o) = falseby definition. Thus the assumption
that B = Bo has to be wrong, and the brané&hr can be removed from the ta-
bleau. []

Based on this lemma, soundness of semantic tableaux withytmeasoning
can easily be proven:

THEOREM 47 If there is a universal formula tableau proof
Ho =T0, T, . Th, Th =10
for a sentence ¢ Formy, (Def. 41), thens is a7 -tautology.

Proof. None of the tableaux in the sequence which the tableau pmuists of
can beT -satisfiable, otherwise the empty tabléBu= (i had to be7 -satisfiable
as well (according to Lemma 46); this, however, is impossii@cause the empty
tableau has no branches.

Thus, the first tableafi{—¢}} in the sequence i% -unsatisfiable, i.e.;¢ is
T-unsatisfiable, which is equivalent gobeing a7 -tautology. |

5 COMPLETENESS

5.1 Complete Background Reasoners

The most important feature of a background reasoner is @tepEss—besides
soundness which is part of the definition of background We define a
background reasoner to be complete if its combination wighforeground rea-
soner leads to a complete calculus.

DEFINITION 48 A (ground) background reasoner for a thedfyis

e acomplete groundackground reasoner for if, for every7 -tautologye,
a ground tableau proof (Def. 37) can be built usiRg

o acomplete free variableackground reasoner fof if, for every 7 -tautolo-
gy ¢, a free variable tableau proof (Def. 38) can be built usidg

e a complete universal formulbackground reasoner for if, for every7-
tautology¢, a universal formula tableau proof (Def. 41) can be built us-
ingR.

23

Because free variable tableaux are a special case of ualiferswula tableaux,
a complete universal variable background reasoner hasdaabmplete free vari-
able background reasoner as well.

The existence of complete background reasoners is trivégiause an oracle-
like background reasoner that detects all kinds of incoesdies (and thus does
all the work) is complete for all versions of tableau:

THEOREM 49 Let 7 be a theory. If a background reasonRr satisfies the con-
dition:
id € R({6})

for all 7-unsatisfiable sentencesc Forms, thenR is a complete ground, free
variable, and universal variable background reasoner.

Proof. If ¢ is a7 -tautology, then its negation¢ is 7-unsatisfiable and thus
id € R({—¢}). By applying the theory closure rule using this refuter, ¢hgty
tableau’; = (can be derived from the initial tabledy = {{-¢}}. |

This completeness result is only of theoretical value. btpce, theory reason-
ers are needed that, on the one hand, lead to short tableafs pral, on the other
hand, can be computed easily (i.e., fast and at low cost)o@fse, there is a trade
off between these two goals.

There is a complete background reasoner for a thgosych thatR (®) is enu-
merable for all key® if and only if the theory7 is axioamatizable. Thus, it is not
possible to implement a complete background reasoner fanaariomatizable
theory.

5.2 Completeness Criteria

General completeness criteria that work for all theorieshsas “a background
reasoner that computes all existing refuters is completenat useful in prac-
tice. For many theories, and in particular for equality,hiygspecialized back-
ground reasoners have to be used to build an efficient profiese exploit domain
knowledge to restrict the number of refuters (and thus tlaeckespace); domain
knowledge has to be used to prove such background reasorteesomplete.
Therefore, the completeness criteria presented in thevigily refer to the se-
mantics of the particular theory, and there is no uniform ¥eagrove that a back-
ground reasoner satisfies such a criterion. Neverthelbssgriteria give some
insight in what has to be proven to show completeness of agoackd reasoner.

Fairness of the Foreground Reasoner

First, a characterization of fair tableau constructioresui.e., fairness of the fore-
ground reasoner) is given for the ground version. This masaised in the proof

24

that a background reasoner that satisfies a completenes$otrican be combined
with a fair foreground reasoner to form a complete calculus.

For the multi-set representation of tableaux, the notidiaiotableau construc-
tion is somewhat more difficult to formalize than for the trepresentation, but
this has no effect on which construction rules are fair.

The condition fora-, 8-, andd-formulae is that the respective tableau rule is
applied sooner or later. Therule has to be applied to eaghformula infinitely
often, and—this is specific for the ground version—each gdoterm has to be
used for one of these applications. The background reas@setio be called with
all keys for which it is defined and all refuters have to be usmzher or later.

DEFINITION 50 Given a ground background reasorgr, aground tableau con-
struction rulefor R. is a rule that, when supplied with a formudg deterministi-
cally specifies in which way a sequer(@g), -, of ground tableaux starting from
Ty = {{—¢}} is to be constructed. The rulefair if for all &:

1. If there is a branchB that occurs in all tableaus;, 7 > n for somen > 0,
then B is exhausted, i.e., no rule expansion or closure rule canpd@ied
to B.

2. For allinfinite sequencelB;);>, of branches such thag; e 7; and either
B;y1 — B, or the tableadr; ., has been constructed from by applying an
expansion rule td?; and B, is one of the resulting new branchesTp,
(> 0):

(a) forall -, 5-, andd-formulaeg € B; (i > 0), thereisaj > i such that
the tableaur;, has been constructed from by applying thex-, 3-,
andé-ruleto¢ € B;.

(b) for all v-formulae¢ € B; (i > 0) and all termst € TermY,, there is
a j > 0 such that the tableai;,, has been constructed froff} by
applying they-rule to ¢ € B; andt is the ground term that has been
substituted for the universally quantified variablegin

(c) for all keys® C B; (i > 0) such thatR (®) is defined and all refuters
(id, Ry € R(®), there is aj > 0 such that the tablea®i; ,, has been
constructed fron¥; by applying the theory expansion or the theory
closure rule toR; using the keyp C B; and the refuterid, R) (if
the background reasoner is monotonic, a kéy> & may be used as
well).

A Completeness Criterion for Ground Background Reasoners

The criterion we are going to prove is that a background measis complete if, for
all 7-unsatisfiable downward saturated s€tst can either derive a residue con-
sisting of new formulae that are not yetdn or it can detect thg -unsatisfiability
of =.

25

DEFINITION 51 A set® ¢ Formy is downward saturated if the following con-
ditions hold for all formulae) € ® that are not a literal:

1. if¢ = a, thenaq, ay € d;

2. if¢p =03, thens, e dorps € @,

3. if¢ = §(x), thend; (t) € ® for some termt € Term$;
4. if ¢ = y(z), theny, (1) € ® for all termst € Term?,.

THEOREM 52 A ground background reasond for a theory7 is complete if,
for all (finite or infinite) 7-unsatisfiable downward saturated setg Formsy, that
do not contain free variables:

1. thereisa keyp C = such thatd € R(®); or

2. there is a keyp C = such that there is a refut€id, {p1, ..., pr}) IN R(P)

Proof. Let'R be a background reasoner satisfying the criterion of theréme, and
let ¢ be a7 -tautology. We prove that, usirig and an arbitrary fair ground tableau
construction rule (Def. 50), a tableau proof fbis constructed. Let7;);> be the
sequence of ground tableaux that is constructed accorditigetfair rule starting
from T, = {{—¢}}.

SupposedT;), is not a tableau proof. If the sequence is finite, then these ha
to be at least one finite exhausted brafchin the final tablead, . If the sequence
is infinite, then there is a sequen®;),>q, B; € T;, of branches as described in
Condition 2 in the definition of fairness (Def. 50). In thaseaB™ = | J,», B; is
the union of these branches. We proceed to prove that the*sist7 -satisfiable.
Because of the fairness conditiofis, is downward saturated. If it wefE-unsatis-
fiable, then there had to be a k&yc B* such thatd € R(®) or such thatthere is
arefuter(sd, {p1,...,pr}) € R(®) (k> 1) where{p:,...,px} N B* = (. Be-
cause keys are finite, there then had to be an0 such thatB; > ®; thus, for
somej > (), the tableaur; ., had to be constructed froffi applying the theory
closure rule ta3;—which is according to the construction of the sequeitg; >
not the case—, of’; ., had to be constructed froffi; applying the theory rule
to B; such thatp,, € B;;¢ for somem € {1,..., k}—which is impossible be-
cause{pi,...,pr} N B* = 0.

We have showrnB* to be 7 -satisfiable. Because¢ € B*, —¢ is T -satisfi-
able as well. This, however, is a contradictiontdeing a7 -tautology, and the
assumption that;);> is not a tableau proof has to be wrong. |

The criterion can be simplified if the residues a backgrowagoner computes
for keys consisting of literals consist of literals as wélhis is a reasonable as-
sumption, which is usually satisfied in practice (and is farell total background
reasoners).

26

COROLLARY 53 A ground background reasond& for a theory7 is complete
if, for all keys® C Lity, for whichR is defined,R C Lity, for all (¢, R) € R(®)
and for all (finite or infinite)7-unsatisfiable sets C Formsy of literalsthat do
not contain free variables:

1. thereisa keyp C = such thatd € R(®); or

2. there is a keyp C = such that there is a refutelid, {p, ..., pr }) IN R(P)

Proof. Let = be a downward saturateti-unsatisfiable set of formulae and define
=’ = =n Lity; to be the set of literals iB. Then=’ is 7 -unsatisfiable, because a
T-structure satisfying’ would satisfy= as well.

Thus, there is a ke C =’ C = such thatid € R(®)—in which case we are

done—, or there is a ke C =’ and a refutefid, {p1, ..., ps}) € R(P) with
{p1,---, pt NE = (. Inthe latter case, the refuter satisfies the condifjan. . ., pr.} NE = {,
because by assumptidp,, ..., pr} C Lits. [|

There is a strong relation between the criterion from Theds& and the defini-
tion of Hintikka sets for theory reasoning: similar to clasasfirst-order Hintikka
sets (see Sect. 2.3 in Chap. 1), any set is satisfiable thetwdeontain “obvious”
inconsistencies (inconsistencies that can be detectelebyatckground reasoner)
and is downward saturated (the background reasoner catitiotesv formulae).

EXAMPLE 54 The complete background reasoner for the thedpy of partial
orderings from Example 32 can be turned into a definition oftikka sets folOP:
A set= that is downward saturated and, in addition, satisfies theWong condi-
tions isOP-satisfiable:

1. Foralltermg, ', € Termy:
if (¢ <t), (¥ <t”)eE then(t <) €=.

2. There is no literal of the forrft < ¢) in =.

3. There are no literals, —¢ in =.

A Completeness Criterion for Free Variable Background Reass

The criterion for free variable background reasoners istham lifting complete-

ness of a ground background reasoner. If the ground backdnmasoner com-
putes a refutefid, R) for a ground instancér of a key®, then, to be complete,
the free variable background reasoner has to compute &réfutd that is more

general thafr, R).

27

THEOREM 55 LetR be a free variable background reasoner for a the®dryR is
complete if there is a complete ground background reas@tfefor 7 such that,
forallkeys® C Forms;, all ground substitutions, and all refutersid, R?) € RI(dr),
there is a refutefs, R) € R(®) and a substitutior’ with

1. 7r=1"o0,

2. R7 = RY.

Proof. Let the sentence be a7 -tautology. SinceR¢ is a complete ground
background reasoner, usiy a ground tableau proof

{{_'QS}}:T(?v“'vTr'?Zwv

can be constructed, where the new terms introduced e applications have
been chosen in an arbitrary way (see below).
By induction we prove that there is a free variable tableaofpr

oot =To,... . T =10

such thatl;-; = T¢ for substitutions; € Substs, (0 < i < n).

i = 0: Sinceg¢ is a sentencelyr, = T for ry = id.

i — i+ 1: Depending on how, , has been derived from?, there are the
following subcases:

If 77, has been derived froffi’ by applying an expansion rule to a formgla
on a branchB? € T, then there has to be a formuaon a branchB; € T; such
that¢,m; = ¢Y and B, = BY. If an a- or g-rule has been applied, then apply
the same rule t@; to deriveT;,, from 7; and set,; ., — 7. If a y-rule has been
applied and the termhas been substituted for the quantified variable in the gtoun
tableau, then derivé, ., from7; by applying ay-rule to¢, and substituting a new
free variabler for the quantified variable; sef,, = r, U {z — ¢}. If ad-rule has
been applied, then apply the free variableule to ¢; to derive7;,, from 7;
and setr; .1 — 7;. In addition, the new ground term introduced in the ground
tableau—that we are free to choose as long as it does not atdyr—shall be
fler, ... 2,7 wheref(xy, ..., z,) is the Skolem term that has been substituted
for the existentially quantified variable in the free vateatableau.
If 77, has been derived from? by applying the theory closure or the theory
expansion rule using a key taken from a branctB? € 77 and a refutetid or
(id, R%) in R9(®7), then there has to be a kéy on a branchB; € 7; such that
®;7;, = &/ and B;7; = BY. Thus. there is a refutdr, R) € R(®) and a substi-
tution 7’ such that; = 7’ o + and R~ = R9. In that case, derivé; ., from T;
by applying the theory expansion or closure rule using thyedkeand the refuter
(o, R), and setr; 14 = 7', []

28

EXAMPLE 56 The criterion from Theorem 55 can be used to proraeteness
of the free variable background reasofefor the theory?P of partial orderings
that satisfies the following conditions. The proof is basedh® completeness of
the ground background reasoner &P from Example 32. The conditions fét
are:

1. Foralltermss, ¢, 1, s, € Terms; wheret and#’ are unifiable:
if (51 <), <s9)€®, then(y, {(s1 < s2)p}) € R(®) wherey is a
most general unifier (MGU) afand?’.

2. Foralltermg,#’ € Termy that are unifiable:
if (t <) e ®, theny € R(P) wherew is an MGU oft and?’.

3. For all atomsp, ¢’ € Formy, that are unifiable:
If ¢,—¢" € ®, theny € R(P) wherey is an MGU of¢ andg’.

In the ground case, a tableau proof can be constructed detstically us-
ing a fair tableau construction rule. In the free variablgegehowever, there are
additional choice points because there may be refutersimtttmpatible substi-
tutions. Thus lifting the notion of fairness to the free aale case such that no
backtracking at all is needed to construct a tableau proedrig difficult (though
not impossible).

A Completeness Criterion for Universal Formula BackgrolRehsoners

A criterion for the completeness of universal formula backend reasoners can be
defined based on completeness of free variable backgroasdners (the proof of
the theorem is similar to that of Thereom 55).

DEFINITION 57 Let® C Formsy, be akey, and lefvzy) - - - (V2)¢ be a univer-
sally quantified literal in®. If ¢’ is constructed frong by replacing the variables
xy,..., 7 by free variablegy , . . ., y, that do not occur ind, then¢’ is a free
variable instancef (Va1) - - - (Va) ¢ (W.rt. ®).

THEOREM 58 LetR be a universal formula background reasoner for a thepry
R is complete if there is a complete free variable backgrowssonerR " for 7
such that, for all key® C Forms;, the following holds:

Let the keyd™ be constructed frond by replacing all formulaes € & of the
form (Vx,)--- (Va,)y by a free variable instance of, and let 7' be the set
of all the free variables occurring i®/* but not in®. Then, for all refuters
(ol RVY € RIV(®IV), there is a refutef s, R) € R(®) where

Lo jv\m =0,

2. R = R(e"|p).

29

5.3 Completeness Preserving Refinements
Restrictions on Keys

In this section, additional refinements are discussed tieaihadispensable for an
efficient implementation of theory reasoning.

An important simplification usually used in implementasda to impose the
restriction on keys that they must consist of literals (endally quantified liter-
als in the case of universal formula tableau). The proof foedrem 52 shows
that completeness is preserved if this restriction is comdbiwith any complete
background reasoner.

COROLLARY 59 Let R be a complete ground, free variable, or universal for-
mula background reasoner. Then the restrict®hof R to keys® that consist of
(universally quantified) literals is complet®{ is undefined for other keys).

The set of keys that have to be considered can be furtheictestr The back-
ground reasoner has only to be defined for keys that contaair @fppcomplemen-
tary literals or at least one formula in which a symbol ocdbet is defined by the
theory:

DEFINITION 60 A set of function or predicate symbolsdsfinedby a theory7
if for all sets® of formulae that do not contain these symbalsis satisfiable if
and only if® is 7 -satisfiable.

For example, the equality theofydefines the equality predicate the theory
of partial orderings defines the predicate symhol

Similarly, only keys have to be considered that contain agfaiomplementary
literals or consist of formulae thatll have a predicate symbol in common with
the theory (which may or may not be defined by the theory). Tfarghe theory
OP, all formulae in keys have to contain the predicate symbak it is the only
predicate symbol ifOP. For the equality theory, however, this restriction is
useless becaugkcontains all predicate symbols.

COROLLARY 61 Let R be a complete ground, free variable, or universal for-
mula background reasoner for a thedfy. Then the restrictiorR’ of R to keysd
that

1. (a) contain at least one occurrence of a function or pratécsymbol de-
fined by7, and
(b) consist of formulae that all have at least one predicgtalsol in com-
mon with7,

2. or contain a pairg and— (resp. (¥z)¢) and (Vy)—), where¢ andy are
unifiable,

is completeR’ is undefined for other keys).

30

Most General Refuters

There is another important refinement that can be combinéd ali complete
background reasoners: completeness is preserved if ordyygaoeral refuters are
computed (thisis a corollary to Theorem 55). The subsumpétation on refuters
may or may not take the theofy into account:

DEFINITION 62 Let7T be a theory; and letV ¢ V be a set of variables. The
subsumption relations™ and<*" on refuters are defined by:

o (o, Ry <™ (o', R’) if there is a substitutiom € Subst3, such that

1. ¢/(2) = o(a)r forall 2 € W, and
2. R't D R.

e (o, R) <¥ (¢’ R') if there is a refuters", R”) such that

1. (o, RY <" (¢", R"), and

2. o¢”" U{\ R"} E. ®o’ U {\/ R’} forallformulasetsb C Forms, (in-
cluding, in particular, the empty set).

In addition, we use the abbreviatiors= <" and <, = <Y whereV is the set
of all variables.

The seti contains the “relevant” variables, includiagleastthose occurring
in the two refuters that are compared. If, for example, tle®ih expansion rule
is used to extend a tableau branch, thércontains all free variables occurring in
the tableau. It is of advantage to keep thel$ets small as possible; but, if the
context is not known, the sét’ — V/ of all variables has to be used.

The intuitive meaning ofr, R) <Y (¢’, R’} is that the effects of using the re-
futer (o', R") can be simulated by first applying a substitutioand then using the
resulting refuteks", R") of which the refute{s’, R’) is a logical consequence.

EXAMPLE 63 The refuter(id, {p(x)}) subsumeg{x — a}, {p(a)}) w.r.t. the
subsumption relatiorr™ (and thus w.r.t<*) for all variable set31’; however, it
subsumes the refutésd, {p(a)}) onlyif » ¢ W.

The refuter«, {¢}) is more general thafr, {¢, ¢}) w.r.t. all subsumption re-
lations, i.e., only refuters with a minimal residue are nyesteral.

Let 7 be the equational theor§ U {a ~ b}. Then(id, p(a)) and (id, p(b))
resp.{z — a} and{x — b} subsume each other w.r..

COROLLARY 64 LetR be a complete free variable or universal formula back-
ground reasoner for a theory. Then a background reason@&’ is complete as
well if, for all keys® and refuterg s, R) € R(®), thereis arefutets’, R') € R'(P)
that subsumeér, R) w.r.t. < or <, (Def. 62).

31

If the subsumption relations* and<* are used, the context in which a back-
ground reasoner is used has to be taken into consideration:

THEOREM 65 Let R be a complete free variable or universal formula back-
ground reasoner for a theory. Then, for everyl -tautologiesy, a free variable
tableau proof resp. a universal formula tableau proof canbloélt using’R ob-
serving the restriction that eacf-refuter that is used in a theory expansion or
closure rule application is minimal iR () w.r.t. <* or <Y, where® is the key
that has been chosen for that rule application dfdis the set of free variables in
the tableau to which the rule is applied.

The number of refuters that have to be considered is closyed to the num-
ber of choice points when the theory expansion or closure iilapplied to a
tableau. Therefore, it is desirable to computaiaimalset of refuters. Neverthe-
less, it is often not useful to ensure minimality since thera trade-off between
the gain of computing a minimal set and the extra cost for kihgcminimality
and removing subsumed refuters. While it is relatively e@msgecide whether
(o, R) <™ (o', R"), it can (depending on the thegy) be difficult to decide and is
in general undecidable whethgr, R) <¥ (o', R').

Other Search Space Restrictions

There are other useful restrictions that, however, canmatposed on an arbitrary
background reasoner without destroying completeness.emfmless, for every
theory, there are background reasoners that have at least gbthe following
features:

« To avoid branching when the theory expansion rule is apptiety refuters
(o, R) are computed where the residue is either empty or a singleton

o Only total refuters are computed, i.e., the residues aréyemp
e The sets of refuters computed for a key are restricted to be

— finite (in which case their computation terminates);
— empty or a singleton (then theory expansion or closure rales-at
least for a single key—deterministic);

There is, of course, a trade-off between these desirableréesa in particular
between total and partial theory reasoning (see Sect. 2.5).

32

tr s sas —(t ~ 1) @
o[1] o[1] * —¢
(b[g] QS[*] *

Table 9. Jeffrey’s equality theory expansion and closulestu

6 PARTIAL EQUALITY REASONING

6.1 Partial Equality Reasoning for Ground Tableaux

Virtually all approaches to handling equality can be regdrds a special case of
the general methods for theory reasoning in semantic takldaxception are, for
example, the method efjuality eliminatioriDegtyarev and Voronkov, 1996a] and
applying transformations from first-order logic with eqtiainto first-order logic
without equality to the input formulae [Brand, 1975; Baclme al, 1997] (see
Sect. 9).

The first methods for adding equality to the ground versicsenfiantic tableaux
have been developed in the 1960s [Jeffrey, 1967; Popplesi®67], following
work by S. Kanger on how to add equality to sequent calculingfa, 1963].
R. Jeffrey introduced the additional tableau expansionchoslre rules shown in
Table 9 (i.e., a partial reasoning method); a similar setigfs has been described
by Z. Lisin [Lis, 1960]. If a branciB contains a formula[t] and an equality ~ s
or s ~ t that can be “applied” tg[#] to derive a formula]s] (which is constructed
by substituting one occurrenceoin ¢[t] by s), theng[s] may be added t@.

There are two closure rules. The first one is the usual clasueefor ground
tableaux with and without theory reasoning: a brartlis closed if there are
formulaeg and—¢ in B. The second one is an additional equality theory closure
rule: a branch is closed if it contains a formula of the fofin ~ #).

THEOREM 66 (Jeffrey, 1967A ground background reasonét for the theoryg
of equality is complete if it satisfies the following coraiis:

1. For alltermst, s € TermY, and sentences € Formy;:
if §[1], (t ~ 5) € D or §[1], (s ~ 1) € @, then(id, {g[s]}) € R(P).

2. Foralltermst € Term: if =(t & t) € &, thenid € R(P).

3. Forall sentences € Formsy: if ¢,—¢ € &, thenid € R(P).

EXAMPLE 67 Figure 2 shows an example for the application &ifdg's equality
expansion and closure rules: The equality (1) is appliebdeddrmula (2) to derive
formula (4) and to (4) to derive (5). The branch is closed lydbmplementary
formulae (3) and (5). Note that it is not possible to defiyk ») in a single step.

33

(l)a,lwb (l)alwb (l)a,lwb

(2) pla,a) (2) pla,a) (2) pla,a)
| N> | |

(3) _'p(bvb) (3) _'p('b7b) N> (3) _'p(lb7b)

(@) p(a,b) 4) p(ﬂrb)

(5) p(b,b)

*

Figure 2. The application of Jeffrey’s additional rulesxp@nd and close atableau
branch (Example 67).

The background reasoner is still complete if the formuta which an equality
is applied is restricted to be (a) an inequatis ~ ¢), or (b) a literalp(t+, . . ., 1,,)
or —p(t,...,1,) wherep # ~; i.e., equalities do not have to be applied to com-
plex formulae or to equalities.

Jeffrey’s rules resemble paramodulation [Robinson and, \W@89] (see [Shy-
der, 1991] for an overview on various techniques for impngyparamodulation).

Besides being based on the ground version of tableaux, thexmansion rules
have a major disadvantage: they are symmetrical and thplicagion is com-
pletely unrestricted. This leads to much non-determinisdiahuge search space;
an enormous number of irrelevant formulae (residues) catelieed. If, for ex-
ample, a brancl® contains the formulag(a) ~ « andp(«), then all the formulae
p(f(a)),p(f(f(a))),. .. can be added t&.

The rules presented by S. Reeves [Reeves, 1987] (see Taplpedlrate a
smaller search space. They are the tableau counterpart BfrB&blution [Di-
gricoli and Harrison, 1986] and are more goal-directed theffrey’s expansion
rules: only literals that are potentially complementary ased for expansion. Like
RUE-resolution, the rules are based upon the following fii@n £-structureM

satisfies the inequality(f (a1, ..., ax) & f(b1,...,bg)) Or it satisfies the formu-
laep(aq,...,ax) and—p(by, ..., by), then at least one of the inequalities
—|((]1 I })1)7 7_‘((]k I bk)

is satisfied byM . In addition, a rule is needed that implements the symmeétry o
equality, i.e., that allows to deduee~ ¢ from¢ ~ s. With these equality theory
expansion rules, itis sufficient to use the same closure ageén Theorem 66:

THEOREM 68 (Reeves, 1987f a ground background reasonét for the the-
ory £ of equality satisfies the following conditions, it is contele

1. Foralltermst = f(ty,...,4x) ands = f(s1,...,s,) (k > 1):
if =(t 2 5) € ®,then(id, {—(s1 2 11),...,~(sx & 1) }) € R(D).

34

Pt 1) (S, k) A f(s1, - 8k))
—p(sq, LSk) -t ~ s1) | | —(tg A sk)
St & 8) | | —(tg ~ i)
trvs ~(t~ 1) 6
st T —¢

*

Table 10. Reeves’s equality expansion and closure rules.

1) a 'N b
@ p(ﬂrl, a)
(3) _'p(b7 b)
— ~
@ -~ ® Sanh)
* *

Figure 3. Applying Reeves's equality expansion rule (ExEng9).

2. Forallliterals¢ = p(t1,...,tx) andy’ = —p(s1,...,s5) (k> 1):
if ¢, € &, then(id, {—(s1 & t1),..., (s B 1g)}) € R(D).

3. Foralltermss,t € Termy: if (s ~ t) € ®, then(id, {t ~ s}) € R(P).
4. For alltermst € Term: if ~(t ~ t) € ®, thenid € R(®).

5. Forallliterals ¢ € Litx: if ¢, —¢ € ®, thenid € R(P).

EXAMPLE 69 Figure 3 shows the application of Reeves’s ruletpand and
close the same tableau branch as in Figure 2: It is applideetatomic formulae
(2) and (3) to generate the inequalities (4) and (5). Thediremare closed by the
formulae (1) and (4) and (1) and (5), respectively.

Reeves’s approach, however, can lead to heavy branchicguse the new
expansion rules can as well be applied to pairs of equabtnesinequalities. In
the worst case, the number of branches generated is exjarierthe number of
equalities on the branch.

6.2 Partial Equality Reasoning for Free Variable Tableaux

M. Fitting extended Jeffrey’s approach and adapted it te frariable tableaux
[Fitting, 1996]. The main difference is that equality rufgoéications may require

35

tars st =t~ 1) o
o[t'] o[t'] * ¢’
(elsp (elsp *

wherey is an MGU oft and+’ resp.¢ and¢’
andy is applied to the whole tableau.

Table 11. Fitting’s equality reasoning rules for free valétableaux.

instantiating free variables, i.e., the substitution thgtart of a refuter may not be
the identity. These substitutions can be obtained usinfication: If an equality
t ~ s isto be applied to a formul@[t’], the application of a most general unifier
of £ and¢’ is sufficient to derivé ¢[s]) . (see Table 11).

Unification can become necessary as well if a branch is todsedlusing equal-
ity; for example, a branch that contains the inequality (=) ~ f(a)) is closed if
the substitutiod» — a} is applied (to the whole tableau):

THEOREM 70 (Fitting, 1990)R is a complete free variable background reasoner
for the equality theory if it satisfies the following conditions:

1. For alltermst, ' € Termy, that are unifiable and alp € Formy.:
if (t~s),6[t'] € ®, then{u, {(¢[s])n}) € R(P) wherep is an MGU oft
andt’.

2. Foralltermst,t’ € Termy, that are unifiable:
if =(t & ') € ®, theny € R(P) wherey is an MGU oft andt’.

3. Forallliterals ¢, ¢’ € Lits; that are unifiable:
If ¢, —¢’ € &, theny € R(®) wherey is an MGU ofg and ¢’.

EXAMPLE 71 Figure 4 shows a free variable tableau that prakiesfollowing
set of formulae to be inconsistent:

(1) (¥)(g(r) ~ F() V=(r ~ a)
(2) (V=) (g(f(2)) ~)

(3) brsc

(4) p(g(g(a)),b)

(5) —p(a,)

By applying the standard free variable tableau rules, féten() is derived from
formula (2), (7) from (1), and (8) and (9) from (7). The franfednulae are added
to the left branch by applying Fitting’s equality expansiamtes: Formula (10)
is derived by applying equality (8) to (4) (the substitutipr, — a} has to be
applied), formula (11) is derived by applying (6) to (10)gBubstitutioqfz; — a}

has to be applied), and formula (12) is derived by applyingd311). Formulae

36

(12) and (5) close the left branch. The right branch is cldsethe inequality (9)
(the substitutiod =, — a} has already been applied).

The example demonstrates a difficulty involved in using fvegable equal-
ity expansion rules: If equality (8) is applied to (4) in theong way, i.e., if
the formula (10")p(f(g(a)), b) is derived instead of (1Q)(¢(f(a)), b), then the
term ¢(a) is substituted for:, and the tableau cannot be closed. Either a new
instance of (7), (8) and (9) has to be generated by applyieg-tule to (1), or
backtracking has to be initiated.

Completeness is preserved if the restriction is made tledfottmulaes und ¢’
in Theorem 70 which the equality expansion rule is appliedaee to be literals
(similar to the ground case). However, the restriction #tatalities must not be
applied to equalities (that can be employed in the ground)camuld destroy
completeness, as the following example demonstrates.

EXAMPLE 72 Let the tableau branch contain the formulae

a b, f(h(a), h(B)) ~ glh(a), h(B)), ~(f(x,x) ~ g(z.2) .

A refuter with the residud f(h(a), h(a)) ~ g(h(a), h(a))} can be derived, pro-
vided it is allowed to apply equalities to equalities. Afthis formula has been
added to the branch, the closing refufer— h(a)} can be found.

If the application of equalities to equalities is prohibiteompleteness is lost:
then the only possibility is to apply ~ & to the inequality inB. All refuters that
can be derived that way instantiate the variableither witha or with 4, which
in the sequel makes it impossible to close the branch. Netelie criterion from
Theorem 55, which would guarantee completeness, is nafigdti

6.3 Partial Equality Reasoning for Tableaux with
Universal Formulae

Fitting’s method can easily be extended to free variabléstalxwith universal
formulae[Beckert, 1997]. When equalities are used to derive new fibas) uni-
versality of both the equality~ s (resp.s ~ ¢) and the formulas[t'] it is applied
to has to be taken into consideration. The difference todqbelkty expansion rules
from Section 6.2 is that, instead of the MGAbf ¢ and?’, only its restrictior.’ to
variables is applied w.r.t. whialot all formulae in the precondition of the rule are
T-universal (apart from that, the rule schemata are the santieeafree variable
schemata in Table 11). If an equality is universal with respe a variabler, the
variablex does not have to be instantiated to apply the equality. Whandbes
are closed, the universality of formulae has to be takendatsideration as well.

37

@ (Vx)(g(x) ~ f(lr)\/ (x &~ a))
@) (Y)(f/(fl(f‘)) 7)
@) bre
@) p(q(q(:ﬂ))ﬁ)
®) ﬁp(fm)
©) g(f (7‘1|))
(7) g(x2) 0 f(x2) Vﬁ(ﬁ a)
®) g(z2) N f(x2)) ~(z2 ~ a)
(10)
v
12)

Figure 4. Using Fitting’s expansion rules (Example 71).

EXAMPLE 73 If the method from Theorem 40 for recognizing warsal formu-
lae is used, the tableau in Figure 4 (without the framed fdawjucan be closed
using the substitutiofw:, — a}. The variable:; does not have to be instantiated,
because equality (6) is recognized to be universal w.ri; to

The background reasoner does not have to cope with the prnodfleecog-
nizing universal formulae, because in keys the universahfibae are explicitly
universally quantified (Def. 41).

THEOREM 74 A background reasoneR. that satisfies the following conditions
is a complete universal formula background reasoner forettpeality theone:

1. Forall s, ¢, € Termy, such that, ¢’ are unifiable, and all) € Formsy;:
if (VZ)(t ~ s), (Vy)é[t'] € D, then(mp, {(¢[s])u}) € R(®) wherey is an
MGU oft and¢’ and F is the set of variables that are free (Wz)(t ~ s) or
(V7)olt].?

2. Forallt,# € Termy that are unifiable:
if (VZ)-(t ~t') € ®, thenup € R(P) wherey is an MGU oft and?’ and
F' is the set of variables that are free {iz)— (1 ~ #').

3. Forallatomsg, ¢’ € Forms, that are unifiable:
if (VZ)o, (Yy)—¢' € ®, thenyp € R(P) whereu is an MGU of¢ and ¢’
and F is the set of variables that are free (M%) ¢ or (Vy)¢'.

3(v7) is an abbreviation fo{Vz) - - - (¥2,,) (m > 0). Without making a real restriction, we
assume the sets of free and bound variables occurrifiginbe disjoint.

38

7 TOTAL EQUALITY REASONING

7.1 Total Equality Reasoning arfd-unification

The common problem of all the partial reasoning methodsriestin Section 6.1,
which are based on additional tableau expansion rulesatsltiere are virtually
no restrictions on the application of equalities. Becausth@r symmetry, this
leads to a very large search space; even very simple prolu@nmot be solved in
reasonable time.

It is difficult to transform more elaborate and efficient mezth for handling
equality, such as completion-based approaches, intodiguffiy) simple tableau
expansion rules (i.e., partial background reasoners) t Afseles that implement
a completion procedure for the ground version of tableawsxideen described in
[Browne, 1988]; however, these equality expansion rulescaiite complicated,
and the method cannot be extended to free variable tableaux.

If total equality reasoning is used, i.e., if no equality axpion rules are added,
then the problem of finding refuters that close a tableaudbras equivalent to
solving F-unification problems.

Depending on the version of semantic tableaux to which éguandling is
added, different types of-unification problems have to be solved. These are
introduced in the following section.

7.2 Universal, Rigid and Mixed'-unification

The different versions of;-unification that are important for handling equality in
semantic tableaux are: the classical “univergatunification, “rigid” F-unifica-
tion, and “mixed” F-unification, which is a combination of both. The different
versions allow equalities to be used differently in an eiqual deduction: in the
universal case, the equalities can be applied several tirtleglifferent instantia-
tions for the variables they contain; in the rigid case, tteay be applied more than
once but with only one instantiation for each variable; ia thixed case, there are
both types of variables.

Which type of F-unification problems has to be solved to compute refuters,
depends on the version of semantic tableaux that equadispreng is to be added
to. Universal E-unification can only be used in the ground case. For handling
equality in free variable tableaux, rigifd-unification problems have to be solved.
For tableaux with universal formulae, both versions haveetoombined [Beckert,
1994]; then equalities contain two types of variables, ngmmeiversal (bound) and
rigid (free) ones.

DEFINITION 75 Amixed F-unification problen{ Z, s,) consists of a finite sét
of universally quantified equaliti€®’»1) - - - (V2.,) (! & r) and termss and#. A

39

[E E [MGUs |Type |
{/(x) ~ 1} /() a {r — a}|rigid
{f(a) = a} f(a) a id ground
{0 (1) ~)} g(F(a), FB)[a(a.b) [[id universa
{7(r) = =} g(F(a), F(B)[a(a.b) | — rigid
(V) ({7, y) = F (7)) | f(a,b) (b, a)[[{y/b} _|mixed

Table 12. Examples for the different versionsiéunification.

substitutionr € Subst3, is asolutionto the problem ¥, s,) if
Fo | (so~to) 4

The major differences between this definition and that gelyegiven in the
literature on (universalf-unification are:

e The equalities in?’ areexplicitly quantified (instead of considering all the
variables in~ to beimplicitly universally quantified).

e The strong consequence relatief is used instead df-..

e The substitutiorr is applied not only to the termsund+ but also to the
setF.

A mixed F-unification problem(F, s,) is universalif there are no free vari-
ables inF, and itisrigid if there are no bound variables i (if ¥ is ground, the
problem is both rigid and universal).

EXAMPLE 76 Table 12 shows some simple examples for the diffeversions of
E-unification. The fourth problem has no solution, since tiee fvariable: would
have to be instantiated with bothands. Contrary to that, the empty substitution
id is a solution to the third problem where the variablis universally quantified.

Syntactical unification is a special casefunification, namely the case where
the setF of equalities is empty.

For handling equality in free variable tableaux, the probtd finding a simul-
taneous solution to several mixédunification problems plays an important rdle,
as it corresponds to the problem of finding a substitutiohalaws to simultane-
ously close several tableau branches.

DEFINITION 77 A finite set{(E1,s1,t1),...,{Fn, Sn,tn)} (n > 1) of E-unifi-
cation problems is calledimultaneous”-unification problem. A substitution
is a solution to the simultaneous problem if it is a solutioretzery component
<F]k78k7fk> (1 S k S 77)

4This is equivalent tos =2 (so = to) where the free variables iR+ are “held rigid”, i.e.,
treated as constants.

40

7.3 Extracting/-unification Problems from Keys

The important formulae in a key from whidfunification problems are extracted
are: equalities, inequalities, and pairs of potentiallmptementary literals:

DEFINITION 78 Literals

(Vi) - (Yzg)p(si, ... sn) @and (Yyi) - (Yy)=p(te, .o tn)

wherep + ~, are called a pair ofpotentially complementary litera{s > 0 and
k,1 >0, i.e., the literals may or may not be universally quantified)

We now proceed to define the set of equalities and the sét-ohification
problems of a key. All considerations here are restrictellelgs consisting of
universally quantified literals.

DEFINITION 79 Let ® C Formsy, be a key. Theset F(®) of equalitiesconsists
of the universally quantified equalities i, i.e., all formulae in® of the form
(Vo) - (Yop)(s & 1) (k> 0).

EXAMPLE 80 As an example, we use the tableau from Figure 4eft®ranch is
denoted byB; and its right branch bys. If the method for recognizing universal
formulae from Theorem 40 is used and kéysand®, are built from the literals on
the branche®; and B, respectively (according to Theorem 41), then b6{kp,)
and 7Z(®-) contain the equalitiess ¢ and (V) (g(f(#)) =~ x); F(®P) contains,
in addition, the equality (#2) &~ f(x2).

DEFINITION 81 Let® C Formsy, be a key. Theet P(®) of F-unification prob-
lemsconsists exactly of:

1. for each pairg, ¢ € ® of potentially complementary literals, the problem

<F](¢),<f,1,...,7‘,7,,>,<S17...,Sn>>

wherep(ty,...,1,) and —p(s1, ..., s,) are free variable instances af
resp.y (Def. 57);

2. foreach inequality = (V1) - - - (Vai) (—(t' = §')) in ® (k > 0), the prob-
lem
(F(®),1,5)

where—(1 = s) is a free variable instance af (Def. 57).

The problems inP(B) of the form(E(B), (s1,...,sk), {t1,...,1x)) are ac-
tually simultaneous”-unification problems (sharing the same set of equalities),
since the non-simultaneous proble(#d B), s;, ;) (1 < i < k) have to be solved
simultaneously.

41

LEMMA 82 A substitution is a solution to a simultaneous mixedunification
problem of the forr{(F, s1,11), ..., (F, s, 1n)} (n > 1) iff

o itisasolution to the non-simultaneous mix@elnification problen 7, f(s1, ..., sn), f(t1,...,1

(the function symbaf must not occur in the original problem), and

« itdoes not instantiate variables with terms containjhg

All substitutions that ar&-refuters, i.e., that close a tableau brari&hcan be
computed by extracting the sB{®) of mixed £ -unification problems from a key
® C B according to the above definition and solving the problem® {#®). If
one of the problems i (®) has a solutiom, all instances oo aref-unsatisfi-
able; therefores is a refuter ford. The pair of potentially complementary literals
corresponding to the solved unification problem has beewepréo actually be
£-complementary; or the corresponding inequality has beevep to bef-com-
plementary (provided the refuter is applied).

EXAMPLE 83 We continue Example 80. AgaiR; denotes the left an&, the
right branch of the tableau in Figure 4 (without the framedrfolae), and®,
and &, are keys extracted from these branches. Then Bgth,) and P(®-)
contain the problemd 7 (®;), (g(g(a)), b}, {a,c)). P(P2) contains, in addition,
the problem 7 (®,), 25, a).

Apart from the version of?-unification problems that have to be solved, the
way equality is handled is nearly the same for the differemsions of semantic
tableau. Therefore, it is sufficient to only formulate one@@al soundness and
completeness theorem:

THEOREM 84 A total (universal formula, free variable, or ground) baagnd
reasonerR is complete for the equality theofyif it satisfies the following condi-
tion for all keys® C Litx: If a substitutions is a most general solution w.r.t. the
subsumption relatiorc™ (or <Y’) of one of the problems i®(®), thenR(P)
contains the restriction of to the variables occurring id.

EXAMPLE 85 We continue from Examples 80 and 83= {x- — a} is a solu-
tion to the two mixed~-unification problems

(B(®1), (9(g(a)),b), (a,c)) € P(®)
<F](q)2)7 xra, (I> € P(q)Q) .

When the theory closure rule is used to close one of the besn@nd thug is
applied to the tableau), the other branch can then be clasad the empty sub-
stitution.

42

7.4 Solving Ground¢-unification Problems

In [Shostak, 1978], it is proven tharound F-unification is decidable; conse-
guently, by considering all variables to be constants, desidable whether the
empty substitutiond is a solution to a giverigid £-unification problem{ %, s, 1),

i.e., whethelr |=° s a2 ¢. This can be decided by computing a congruence closure,
namely the equivalence classes of the terms (and subteomsrimg in(F, s,)

w.r.t. the equalities ir.

DEFINITION 86 Let(F,s,t) be a ground (or rigid)~-unification problem; and
let Tir 1y C Terms be the set of all (sub-)terms occurring {i#7, s, 7). The
equivalence clasg]r .) of atermt € T , ;) is defined by:

FE sat) .

Since a ground-unification problem ¥, s,t) is solvable (andd a solution)
if and only if [s](z s +y = [t](r,s,+), ONE can decide whethgr:, s, 1) is solvable
by computing these equivalence classes. Shostak provefbth@omputing the
equivalence classes of all termsiip , ;), no terms that are not ify , ;, have to
be considered: I can be derived fromusing the equalities i®’, then this can be
done without using an intermediate term that does not occthd original prob-
lem, i.e., there is a sequence of terms rq,r1, ..., 7 = #, k > 0, all occurring
in (E, s,1) such that; is derivable in one step from_ using the equalities ift’.

Since the number of subterms in a given problem is polynoimiigs size, and
the congruence closure can be computed in time polynomidiénnumber of
subterms and the number of equalities, the solvability ofcaugd £-unification
problem can be decided in polynomial time.

There are very efficient and sophisticated methods for coimgthe congru-
ence closure, for example the algorithm described in [Netstd Oppen, 1980],
which is based on techniques from graph theory.

ey =15 € T

7.5 Solving Universak’-unification Problems

To solve a universat'-unification problem, the question has to be answered whethe
the equality of two given terms (or of instances of these $g1fisllows from F or,
equivalently, whether the terms are equal in the free algebF.. Overviews of
methods for universat-unification can be found in [Siekmann, 1989; Gallier and
Snyder, 1990; Jouannaud and Kirchner, 1991; Snyder, 1991].

7.6 Solving Rigid¥-unification Problems

Rigid £-unification and its significance for automated theorem imgpwas first
described in [Gallieet al, 1987]. It can be used for equality handling in semantic

43

tableaux and othenigid variable calculi for first-order logic, including the mat-
ing method [Andrews, 1981], the connection method [Bib&B87], and model
elimination [Loveland, 1969]; an overview of rigi#-unification can be found
in [Beckert, 1998].

The solution to a rigidZ-unification problem(7, s,) is a substitution repre-
senting the instantiations of free variables that have Inegessary to show that
the two given terms are equal; it is @arefuter for the key?Z U {—(s ~ #)}. A
single variable can only be instantiated once by a subititaind, accordingly, to
solve a rigidF-unification problem, the equalities of the problem can drdysed
with (at most) one instantiation for each variable they aomta variable is either
instantiated or not, that is, uninstantiated variablegha\be treated as constants.

Rigid E-unification does not provide an answer to the question of hamy
different instantiations of an equality are needed to salygoblem. If a single
instance is not sufficient, then the answer is “not unifiablé’several different
instances of an equality are needed, a sufficient numberpésof that equal-
ity (with different rigid variables) has to be provided fdretrigid F-unification
problem to be solvable.

The following theorem clarifies the basic properties ofdigi-unification by
listing different characterizations of the set of solusafi a given problem:

THEOREM 87 Given a rigid F-unification problem{ F, s, #) and a substitution
o=A{xy—t,...,z, —t,} € Subst}, the following are equivalent conditions
for o being a solution tq F, s, 1):

1. Fo £ so ~ 1o, i.e., 0 is by definition a solution toF, s, 1);

2. Fo | so ~ to over a setV/? of variables and a signaturg” such that
the variables occurring i, s,) are constants, i.e.y” =V \ W and
Y0 = (Pg, FsUW,asU{z — 0|2z € W}) whereW is the set of vari-
ables occurring in(7, s,).

3. (Fo)r =« (so)r ~ (te) 7 for all substitutions € Substy;

4. EU{xy = ty,...,2, & 1,} B2 s & 1; provided that none of the vari-
ablesx, occurs in any of the terms (1 < 4, j < n);

5. o is the restriction to the variables occurring ifF, s, ¢) of a substitution
which is a solution to the rigidZ-unification problem(E’, yes, no) where
E'= FU{eq(x,r) ~ yes, eq(s, 1) ~ no}, and (a) the constantges, no,
the predicateeq, and the variabler do not occur in{F, s,), and (b) the
constantgjes, no do not occur in the terms , . . ., #,,.

The last characterization of solutions in the above thewkaows that it is al-
ways possible to solve a rigi#l-unification problem by transforming it into a
problem in which the terms to be unified are constants.

44

If a rigid F-unification problem is solvable, then it has infinitely masglu-
tions. But there are, for each problefnjtesets of solutions w.r.t. the subsumption
relation<, that is defined as follows:

DEFINITION 88 Let ¥ ¢ Forms be a set of rigid (i.e., quantifier-free) equali-
ties; and letiV C V' be a set of variables. Then the subsumption relatiofis,
and<Y,_ are onSubsts, defined by:

o o LY, 7iff Fo B2 o(2) = r(2) forall 2 € W,

—=.r

e o <Y _ riffthereis a substitution’ € Subst, such that

>R

o<%¢ and ¢ CY, 7.

The intuitive meaning of <!, 7 is that the effects of applyingto the setF

of equalities can be simulatedby first applyimgthen some other substitutipn
and then equalities forif¥o) p.

LEMMA 89 Let I/ ¢ Formyx, be a set of rigid equalities, and let r be substitu-
tions such that <Y, = where the setl” contains all variables occurring ir.

>R

Then there is a substitutignsuch that Fo)p =2 Fr.

It is possible to effectively compute fanite seti/ of solutions for a rigidF-
unification problem(¥, s, t) that is complete w.r.t. the subsumption relatiofi
i.e., for every solutiom of (7, s,) there is a solutiom in &/ such that <} o.
This immediately implies the decidability of the questiohether a given rigid
E-unification problem(F, s,t) is solvable or not. On first sight this might be
somewhat surprising since univerdatunification is undecidable; however, the
additional restriction of rigidZ-unification, that variables i may only be in-
stantiated once, is strong enough to turn an undecidabl#dgimointo a decidable
one.

The problem of deciding whether a rigidtunification problem has a solution
is, in fact, NP-complete. This was first proven in [Galletral, 1988] and then,
more detailed, in [Gallieet al, 1990; Gallieret al,, 1992]. The NP-hardness of
the problem was already shown in [Kozen, 1981]. An altemeagtiroof for the
decidability of rigid F-unification was presented in [de Kogel, 1995], it is easy
to understand but uses an inefficient decision procedureae Mifficient methods
using term rewriting techniques are described in [GaBiesl, 1992; Becher and
Petermann, 1994; Plaisted, 1995]. The procedure descibgecher and Pe-
termann, 1994] has been implemented and integrated intovepfor first-order
logic with equality [Grieser, 1996].

45

7.7 Rigid Basic Superposition

In [Degtyarev and Voronkov, 1998], a method caltégld basic superpositiohas
been presented for computindiaite (incomplete) set of solutions for rigid-uni-
fication problems that is “sufficient” for handling equalityrigid variable calculi,
i.e., can be used to build a complete free variable backgraaasoner for the
equality theory£. The procedure is an adaptation of basic superpositiorhén t
formulation presented in [Nieuwenhuis and Rubio, 1995])igid variables. It
uses the concept of ordering constraints:

DEFINITION 90 An (ordering) constrainis a (finite) set of expressions of the
forms ~ 1 or s = t wheres andt¢ are terms. A substitutios is a solution to

a constraintC' iff (a) so = to for all s ~t € (, i.e., o is a unifier ofs and+,
(b) s > to for all s = ¢ € ', where> is an arbitrary but fixed term reduction
ordering, and (c} instantiates all variables occurring i with ground terms.

There are efficient methods for deciding the satisfiabilitwo ordering con-
straint(C' and for computing most general substitutions satisfyih@qh case the
reduction ordering- is a lexicographic path ordering (LPO) [Nieuwenhuis and
Rubio, 1995].

The rigid basic superposition calculus consists of the tandformation rules
shown below. They are applied to a rigidunification problem F s,) - C' that
has an ordering constraifitattached to it. The computation starts initially with the
unification problem that is to be solved and the empty coimtrA transformation
rule may be applied t¢~, s,) - C only if the constraint is satisfiable before and
after the application.

Left rigid basic superpositionlf there are an equality~ r orr ~ [and an equal-
ity wa v orva uin F and!’ is a subterm ofs, then replace the latter
equality byu[r] &= v (whereu[r] is the result of replacing one occurrence of
U'inubyr)andadd > r,u > v,andl ~ ' to C.

Right rigid basic superpositionlf there is an equality ~ r or r 1 in F and/’
is a subterm of or of ¢, then replace (resp.) with s[r] (resp[r]) and add
I >r,s»>1(respt > s)andl ~1'toC.

As the constraint expressions that are added by a rule afiplichave to be satis-
fiable, they can be seen as a pre-condition for that apmicatdr example, since
I ~ 1" is added ta”, the termg and!’ have to be unifiable.

The two transformation rules are repeatedly applied, fogai non-determinis-
tic procedure for transforming rigié'-unification problems. The process termi-
nates when (a) the termsaind¢ become identical or (b) no further rule application
is possible without making' inconsistent. Provided that no transformation is al-
lowed that merely replaces an equality by itself, all transfation sequences are
finite.

46

It is possible to only allow transformations where the tétns not a variable,
thus improving the efficiency of the procedure and reduciregrtumber of solu-
tions that are computed.

Let (F, s, 1) - C be any of the unification problems that are reachable by apply
ing rigid basic superposition transformations to the avédjproblem. Then, any
solution toC' U {s ~ ¢} is a solution to the original problem. L&t be the set of
all such solutions that are most general w.t.. The set/ is finite because the
application of rigid basic superposition rules always feates.

EXAMPLE 91 Consider the rigid:z-unification problem

<F]7 eg77l;> = <{.f(]' N (]'7 .q2m N .fa}7 .q3m7 '/Ij>)

and let> be the LPO induced by the ordering> f > « on the function symbols.
The computation starts with

<F]7S7t>'(j: <{f{1%(17g2l‘%.f{1}7 (]%T7 T>® -

The only possible transformation is to use the right rigidibauperposition rule,
applying the equality/ ~ r) = (¢”x ~ fa) to reduce the terng*z (all other
transformations would lead to an inconsistent constrairitg result is the unifica-
tion problem({E, gfa,z) - {g’x > fa, ¢°z = z, g°x ~ gz}, its constraint can
bereducedta’ = {¢?x > fa}. Amostgeneral substitution satisfyinlg U {gfa ~ =}
iscy = {x— gfa}.

A second application of the right rigid basic superpositige leads to the uni-
fication problem(F~, ga,z) - {¢’x > fa, fa > a, gfa > =, fa ~ fa}; its con-
straint can be reduced t6, = {¢%z > fa, gfa > =}. A most general substitu-
tion satisfyingCs U {ga ~ z}isos = {z — ga}.

At that point the process terminates because no furtheappécation is pos-
sible. Thus,r; andeos are the only solutions that are computed by rigid basic
superposition for this example.

7.8 Solving Mixed<-unification Problems

Since universaF -unification is already undecidableixed /-unification is—in
general—undecidable as well. It is, however, possible tor@rate a complete set
of MGUs.

EXAMPLE 92 The following example requires only very littlem-equality rea-
soning. A powerful equality handling technique is needefihia closed tableau,

51n this example, we us¢’ = as an abbreviation foy(g()), etc.

47

and the universal formula version of tableaux has to be usegkstrict the search
space: Ifl" consists of the axionis

(V) (i(1
(V) (Vy
(V) (Vy

T, 1) A)
)(V2) 7(7(7‘71/)77(
)i,), y) A

S
=
S

then
T E- (V2)(Vy) (Vz2)(Fw)(i(z, w) a2 dr A w a2 i(y,i(z,y))) -

To prove this, the tableau shown in Figure 5 has to be closedmia (2) is
derived from the negated theorem (1) by thieeand onev-rule application;
(3) and (4) are derived from (2).

To close the left branch, the-unification problem

Pr= (T, i(er,wy), tr)
has to be solved, and the problem
P, = (T, wq, i(ea,i(ca, c2)))

has to be solved to close the right branch.

The search for solutions performed by the tableau-basentatreprover74P
[Beckertet al, 1996], that uses a completion-based method for findingisoisiof
mixed 7 -unification problems, proceeds as follows. The reductide(iv) (i(x,) — tr)
is one of the first rules that are deduced frém Using this rule, the solution
o = {wy — ¢ } to the problemP; is found and applied to the tableau. Then the
ProblemP,. o has to be solved to close the right branch; unfortunatelgahation
exists. Thus, after a futile try to close the right branchgibaacking is initiated.
More reduction rules are computed until finally the ri¥e:)(i(=,r) — tr) is
applied to the problen®; and the solutiow’ = {w — #r} is found. Now the
problemP,.s’ has to be solved to close the right branch. It takes the caatipat
of 48 critical pairs to deduce the rufgx)(Vy)(i(y, (=, y)) — tr) which can be
applied to show that the empty substitution is a solutioRt6’ and that therefore
the right branch is closed.

7.9 Simultaneoug-unification

Instead of closing one branch after the other, one can séaralsimultaneous re-
futer for all branches of a tableau. However, this is muchentbfficult than clos-
ing a single branch. Although (non-simultaneatgid F-unification is decidable,
it is undecidable whether a simultaneous solution to sévéranification prob-
lems exists [Degtyarev and Voronkov, 1996b]. It is as welleridable whether

6 This is an axiomatization of propositional logi¢y, v) stands for % impliesy” and +r for “true”.

48

T
|
1) ~(Va)(Yy)(V2)(Fw) (i (=, wl) ~tr A w2 i(y,i(z,y)))

(2) =(i(er,wn) = ir A wy & i(ea,i(es, c2)))
) —~(i(er,un) = ir) 4) —(wy &2 i(ea,i(es, c2)))

Figure 5. The tableau that has to be closed to prove the timefooen Example 92.

there is a substitution closing all branches of a given faa@ble tableau simulta-
neously after it has been expanded Hijxad number of copies of the universally
guantified formulae it contains [Voda and Komara, 1995; @igteand Veanes,
1997].

In the same way as it may be surprising on first sight that smigld ~-unifi-
cation is decidable, it may be surprising that moving fromge to simultaneous
problems destroys decidability—even more so considefiagthe simultaneous
versions of other decidable types of unification (includsygtactical unification
and groundF-unification) are decidable. However, simultaneous rigidinifi-
cation turns out to have a much higher expressiveness thgresrigid #-uni-
fication; it is even possible to encode Turing Machines inboutaneous rigid
E-unification problems [Veanes, 1997]. For an overview ofldtaneous rigid
E-unification see [Degtyarev and Voronkov, 1998; Beckerf8]9

Since simultaneous rigii-unification is undecidable, sets of unifiers can only
be enumerated; in general they are not finite. Solutions tmaltaneous problem
can be computed combining solutions to its constituéntss;, ¢;); however, it
is not possible to compute a finite complete set of unifiershefdimultaneous
problem by combining solutions from finite sets of unifiershef constituents that
are complete w.r.t. the subsumption relatioyi ., because they are complete w.r.t.
differentrelations<”,, . Thus, the subsumption relatiet}” has to be used, which
is the same for all (buf does not allow to construfthite complete sets of unifiers).

The undecidability of simultaneous rigid-unification implies that, if a back-
ground reasoner produces onlfjrdate number of solutions to any (non-simultaneous)
rigid F-unification problem, then closing a tabledumay require to extend' by
additional instances of equalities and terms even if theeaesubstitutionthat closes
all branches of" simultaneously and there is, thus, a solution to a simuttage
rigid £-unification problem extracted fromfi. That notwithstanding, the back-
ground reasonamay be complete; and in that case the advantages of finite sets
of solutions prevail. A complete background reasoner of thpe can be built
using rigid basic superposition (Sect. 7.7). It is not knomrether the same can
be achieved using (finite) sets of unifiers that are completé #he subsumption
relation<p .

49

8 INCREMENTAL THEORY REASONING

Besides the efficiency of the foreground and the backgroeasianer, the interac-
tion between them plays a critical role for the efficiencytled combined system:
It is a difficult problem to decide whether it is useful to cdile background rea-
soner at a certain point or not, and how much time and otheuress to spend
for its computations. In general, giving a perfect answeahtse questions is as
difficult as the theory reasoning problem itself. Even witlod heuristics at hand,
one cannot avoid calling the background reasoner at thegyoimt: either too
early or too late.

This problem can (at least partially) be avoided by usingenmental methods
for background reasoning [Beckert and Pape, 1996], i.gqorihms that—after
a futile try to solve a theory reasoning problem—allow toestive results of the
background reasoner’s computations and to reuse thisaateldter call’ Then,
in case of doubt, the background reasoner can be calledwihlyut running the
risk of doing useless computations. In addition, an incrgadebackground rea-
soner can reuse data multiply if different extensions ofabfm have to be han-
dled. Animportant example are completion-based methadfeality reasoning,
which are inherently incremental.

As already mentioned in Section 2.5, one of the main problienusing the-
orem reasoning techniques in practice is the efficient coatlin of foreground
and background reasoner and their interaction—in pagidfifa) the computa-
tion steps of the background reasoner are comparativelplessnand (b) in case
calling the background reasoner may be useless becauskitey exists or can be
found.

On the one hand, a late call to the background reasoner cdriddsgger ta-
bleaux and redundancy. Although several branches may gt@asame subbranch
and thus contain the same key for which a refuter exists,dbkdround reasoner is
called separately for these branches and the refuter hasdorbputed repeatedly.
On the other hand, an early call to the background reasongmetabe success-
ful and time consuming; this is of particular disadvantagthé existence of a
refuter is undecidable and, as a result, the backgroundmeasgloes not terminate
although no refuter exists.

Both these phenomena may considerably decrease the parfoerof a prover,
and it is very difficult to decide (resp. to develop good hstics which decide)

1. when to call the background reasoner;

2. when to stop the background reasoner if it does not finduaeef

7 This should not be confused with deriving a refuter and hagdiback to the foreground reasoner.
The information derived by an incremental background reascannot be used by the foreground
reasoner, but only by the background reasoner during latks. ¢

50

|
(b0 1 - Bn) o
vy _— ~ Y
¢0/\—'(¢1T>"'H¢n) _'¢0/\(¢1T>"'H¢n)
r < e <
\\ \\,qf)lo \\ \\’—'</>0
(1 ¢ -) \qqu-;-Hfbn
ﬁ¢f,,1
/¢n,71 — ¢n\
v - ~)
¢n71 /_'¢n _'¢n71 /\¢n
((\\) l ,\‘\ |
\\ ¢n|71 \\ _'¢7|1,71
_'¢n \¢n

Figure 6. Short tableau proof fér = ¢q < - - - + ¢, (Example 93).

EXAMPLE 93 The following example shows that earlier callghie background
reasoner can reduce the size of a tableau proof expongntielil’ ¢ Forms be

a set of formulae and let,, € Formy, n > 0, be formulae such that, for some
theory7, T =+ =6, (n > 0) . Figure 6 shows a proof for

TEr oo 16 ¢y,

where the background reasoner is called when a literal diottme ¢,, appears on
a branch (with the keyp = T'U {¢,, }). As a result, all the left-hand branches are
closed immediately and the tableau is of linear size.in

If the background reasoner were only called when a branckhausted, i.e.,
when no further expansion is possible, then the tableauduoave2” branches
and the background reasoner would have to be callaones (instead of times).

An incrementabackground reasoner can be of additional advantage if time co
putations that are necessary to show thal= —¢,, are similar for alln. In
that case, a single call to the background reasoner in theriag may provide
information that later can be reused to close all the braselith less effort.

Even the best heuristics cannot avoid calls to the backgroeasoner at the
wrong time. However, under certain conditions, it is polesib avoid the adverse
consequences of early calls: If the algorithm that the biamkgd reasoner uses is
incremental i.e., if the data produced by the background reasoner gariiutile
try to compute refuters can be reused for a later call.

If early calls have no negative effects, the disadvantafjlegecalls can easily
be avoided by using heuristics that, in case of doubt, calbdckground reasoner

51

at an early time. The problem of not knowing when to stop thekbeound rea-
soner is solved by calling it more often with less resourtiese|, etc.) for each
call.

An additional advantage of using incremental backgrouadagers in the ta-
bleau framework is that computations can be reused repgedtedifferent ex-
tensions of a branch—even if the computation of refutersgeds differently for
these extensions.

8.1 Incremental Keys and Algorithms

Obviously, there has to be some strong relationship betweekeys transferred
to the background reasoner, to make it possible to reusefitw@nation computed.
Since, between calls to the background reasoner, (1) theatalmay be extended
by new formulae and (2) substitutions (refuters) may beiadmlto the tableau),
these are the two operations we allow for changing the key:

DEFINITION 94 A sequencegd;); >, of keys idncrementailf, for i > 0, there is
a set¥; C Formsy, of formulae and a substitution such thatb; = ®,0; U ¥;,
where¥; = ¥;q,.

In general, not all refuters ob; are refuters ofb,,, (because a substitution
is applied); nor are all refuters @f; | refuters of®, (because new formulae are
added).

To be able to formally denote the state the computation ofckdraund rea-
soner has reached and the data generated, we use the fglloation of incre-
mental background reasoner:

DEFINITION 95 An incremental background reasory r s is a background
reasoner (Def. 31) that can be described using

1. analgorithm(a function)A : D — D operating on a data structur®,

2. an initialization functior? : 27> — D that transforms a given key into
the data structure format, and

3. an output functiors : D — 25"7%: that extracts computed refuters from
the data structure,

such that for every ke§ C Forms, for whichR 4 7 s is defined

Razs(®) =) SA(Z(®))) .

i>0

52

The above definition does not restrict the type of algorittimas may be used;
every background reasoner whose computations proceeelisi Gin be described
this way. If a background reasoner applies different tramsétions to the data
at each step of its computation, this can be modeled by adtimgtate of the
reasoner to the data structure such that the right operatisab-algorithm can be
applied each time the background reasoner is invoked.

Of course, the input and output functions have to be reaspeaby to compute;
in particular, the cost of their computation has to be muchlEmnthan that of
applying the algorithrod, which is supposed to do the actual work.

The goal is to be able to stop the background reasoner whes itdached a
certain state in its computations for a kbyand to proceed from that state with a
new key®’ — &+ U W. For that purpose, an update function is needed that adapts
the data structure representing the state of the compuotatihhe new formulad
and the substitutios.

DEFINITION 96 Let 7 be a theory andR 4 7 s a complete incremental back-
ground reasoner fof . An update function

U D x 27 5 Substy — D

is correct(for R 4,7 s) if a complete background reason®, ; s is defined by:
for every keyd

1. choosed’ C Formy ande € Substy, such thatd = &’¢ U W arbitrarily;
2. computeD,, = U (A" (Z(¥")), ¥,) for an arbitraryn > 0;
3. setR/y 7 5(P) = UiZO S(A(Dy)).

According to the above definition, a correct update fundbieimaves as expected
when used for a single incremental step. Theorem 97 showthikdoehavior ex-
tends to sequences of incremental steps. In addition, ¢leeitim can be applied
arbitrarily often between incremental steps:

THEOREM 97 Let 7 be a theory,R 4 7 s a complete incremental background
reasoner for7, andl/ a correct update function foR 4 7 s.

ThenR ; 5 is a complete background reasoner fprthat is defined by: for
every keyp

1. choose an arbitrary incremental sequeride); >, of keys where
d>7:+1 = 4)70'7 U \TJ7 (7 2 0) s
and® = &, for somek > 0;

2. let(D;);>0 C D be defined by

53

(@) Do =Z(®),
(b) Dipr =U(A™(D;), o541, W,;44) fOr somen; > 0;

3. SetR7y 7 5(®) = Ujs g S(AF(D2)).

EXAMPLE 98 Let(®;);>, be anincremental sequence of keys such®hat = ®;o; U ¥,
(: > 0). Then, for every sound and complete incremental backgteeasoner
R 4 1 s, the trivial update function defined by

L{(D, \Tfh O'i) = 1(4)70'7 U \Tf7)
is correct.

The above example shows that it is not sufficient to use angecbupdate
function to achieve a better performance of the calculusabge using the trivial
update function means that no information is reused. A Usgidate function has
to preserve the information contained in the computed data.

Whether there actually is a useful and reasonably easy tpetenupdate func-
tion depends on the theofy, the background reasoner, and its data structure.

Such a useful update function exists for a background resgoncompletion-
based equality handling [Beckert and Pape, 1996]. Anothpoitant example are
background reasoners based on resolution: if a resolvenbealerived from a
key ®, then it is valid for all extension® U ¥ of ®; resolvents may be invalid
for an instanc&bo of the key, but to check this is much easier than to re-compute
all resolvents. In [Baumgartner, 1996], a uniform trarislafrom Horn theories
to partial background reasoners based on unit-resultisgip® hyper-resolution
with input restriction is described. This procedure can seduto generate incre-
mental background reasoners for a large class of theories.

8.2 Semantic Tableaux and Incremental Theory Reasoning

The incremental theory reasoning method presented in 8wqus section is easy
to use for tableau-like calculi, because the definition ofémental sequences of
keys matches the construction of tableau branches. Thedfeysequence are
taken from an expanding branch, and the substitutions asethpplied to the
whole tableau.

The keys used in calls to the background reasoner as welleasfitrmation
computed so far by the background reasoner have to be attachbe tableau
branches:

DEFINITION 99 Atableau for incremental theory reasonia@ (finite) multi-set
of tableau branches where a tablebranchis a triple (0, D, ®); © is a (finite)
multi-set of first-order formulad) € D (whereD is the data structure used by the
background reasoner), anbl ¢ Formsy is a key.

54

Now, the tableau calculus with theory reasoning introdunéesection 3.4 can
be adapted tincrementaltheory reasoning: calling the background reasoner is
added as a further possibility of changing the tableau desstxpanding and clos-
ing branches).

DEFINITION 100 (Incremental reasoning versiorGjven a theory7, an incre-
mental background reason@ 4 7 s for 7 (Def. 95), and a correct update func-
tionZ{ for R 4 7 s (Def. 96), anincremental theory reasoning tableau primwfa
first-order sentence consists of a sequence

{{_‘¢}}:T07T17'--7Tn71771n:w (7720)
of tableaux such that, for < 7 < n, the tablea; is constructed front;_,

1. by applying one of the expansion rules from Table 6, heretis a branch
B =(0,D,®) e T;_, and aformulap € © (that is not a literal) such that

T. = (i \{B})
{(@\ {a})Ufar,as}, D, @)} if ¢ =0
HON{eHU{s}, D, ®),
U (O\{B}) U{ip}, D,)} if¢ =7
16U ()}, D, @) 10— o (a)

{{O\N{eH) UL (f(ar, ..., zn))}, D, @)} if ¢ =d()

wherey € V is a new variable not occurring iff; 1, f € Fx is a Skolem

function symbol not occurring i, _+, and=., ..., =, are the free variables
ing¢;

2. by applying the incremental theory expansion rule, tleere is a branch
B=1(0,D,®)in T,_, and aT-refuter (o, {p1,...,px}) (k > 1) in the

setS(D), and
Ti = {<®/(77 DI7<T)/> |<®/7D/7¢/>E(Ti*1 \{B})}U
©OU{p}, D, @) |1 <j<k}

3. by applying the incremental theory closure rule, i.eeréhis a branch3 = (6, D, ®)
in7;_, thatis7 -closed undet, i.e.,c € S(D), and

Ty ={(®a, D', &) | (&,D &) e (T, 1\ {B}}

4. or by calling the background reasoner, i.e., there is anlotaB = (O, D, ®)
in 7;_y, anumber > () of applications, and a key

P =drUV CO={(Va}) - (Yo,)oi | 1 <i < p}

where

55

(a) ¢17"'7¢p€(;)!
(b) {a%,..., 2%, } C UVar(¢;) for1 <i < p.
and

Ty = (T \{BH U{(O, A°U(D, ¥, 7)), ")} .

Soundness and completeness of the resulting calculus amléacy of Theo-
rems 47,58, and 97:

THEOREM 101 Lety € Formy be a sentence. If there is an incremental tableau
proof for ¢ (Def. 100), thers is a7 -tautology.

If R4 7 s is a complete incremental background reasoner for a thgoignd
the formulag is a 7-tautology, then an incremental tableau proof fbican be
constructed usin® 4 7 s.

The maximal cost reduction that can be achieved by usingaerimental rea-
soner is reached if the costs are those of the non-increhtedigground reasoner
called neither too early nor too late, i.e., if always théitikey in the incremental
sequence is chosen and the background reasoner is only fihat key (which
is not possible in practice).

In practice, the costs of an incremental method are betweerideal value
and the costs of calling a non-incremental reasoner for eidhe keys in an
incremental sequence (without reusing).

But even if the costs for one sequence, i.e., for closing abkeau branch, are
higher than those of using a non-incremental method, theathw®sts for closing
the whole tableau can be small, because information is defasenore than one
branch.

9 EQUALITY REASONING BY TRANSFORMING THE INPUT

Methods based on transforming the input are inherently petific for semantic
tableaux (although they might be more suitable for tablehar for other calculi).
They do not require the tableau calculus to be adopted tayheasoning.

The simplest—however useless—method is to just add thetteedoms to
the input formulae. A better way to “incorporate” the eqtyabixioms into the
formulae to be proven is D. Brand®7F-modification [Brand, 1975], which is
described below. An improved transformation using termedrdys has been pre-
sented in [Bachmaiet al, 1997].

Usually, STFE-maodification is only defined for formulae in clausal form;tbu
since a transformation to clausal form may be of disadvanfag non-normal
form calculi like semantic tableaux, we present an adapiaif Brand's method
for formulae in Skolemized negation normal form.

56

DEFINITION 102 Let ¢ be a formula in Skolemized negation normal form. The
F-modificationof ¢ is the result of applying the following transformationgite
tively as often as possible:

1. Ifaliteral of the formp(...,s,...) or =p(...,s,...) occurs in the formula
wheres ¢ V, then replace it by

(Ve)(~(s~z)Vp(...,2,..)) resp.
(Y} (s 2 2) V(o)

wherez is a new variable.

2. If an equality of the fornmyf(...,s,...)~t ort~ f(...,s,...) OCCUrS in
the formula where ¢ V, then replace it by

(Ve)(~(sma)V (... 2, ..) &)
wherez is a new variable.

The STFE-modificationof ¢ is the result of (non-iteratively) replacing in the
F-modificationg’ of ¢ all equalitiess a2 ¢ by

(Va)(=~(t ~) Vs & x) A (Vo) (=(s &) Vi~ x)
wherez is a new variable.
EXAMPLE 103 TheS7E-modification of(Vz) (p(f(a, g(x)))) is
(Vo) (Vu) (Vo) (Vw) (=(a & u) V =(g(w) & v) V =(f (u,0) & w) V p(w)) -
The S7TE-modification of (V) (Vy) (f(x, y) ~ g(a)) is

(Vo) (Yy)(V2) (—(a & 2) V (V) (= (f(2,y) mu) Vg(z) &2 u) A
(Vu)(—(g(z) = u) V f(2,y) = u))) .

To prove the£-unsatisfiability of thes TF-modification of a formula, it is suffi-
cient to use the reflexivity axiom; symmetry, transitivitpdamonotonicity axioms
are not needed any more.

THEOREM 104 (Brand, 1975). et ¢ be a sentence in Skolemized negation nor-
mal form, and lety’ be theSTF-modification ofs. Thené is £-unsatisfiable if
and only if

&' A (Vr)(x ~ x)

is unsatisfiable.

57

10 CONCLUSION

We have given an overview of how to design the interface betmsemantic ta-
bleaux (the foreground reasoner) and a theory backgrowstner. The problem
of handling a certain theory has been reduced to finding aciesffi background
reasoner for that theory. The search for efficient methodsibacome to an end,
however, because there is no universal recipe for desidrsokground reasoners.
Nevertheless, some criteria have been presented that grbackl reasoner should
satisfy and useful features it should have.

Specialized methods have been presented for handlingiggubk most ef-
ficient of these are based drrunification techniques. Similar to the design of
background reasoners in general, the problem of develapingification proce-
dures is difficult to solve in a uniform way. The research ie fiield of designing
such procedures for certain equality theories has prodadasye amount of re-
sults, that is still rapidly growing, in particular for ridggand mixedF-unification.

ACKNOWLEDGEMENTS

I would like to thank Peter Baumgartner, Marcello D’Agostjfaliath Narendran,
and Christian Pape for fruitful comments on earlier versiofthis chapter.

REFERENCES

[Andrews, 1981] Andrews, P. B. Theorem proving through galmatings.Journal of the ACM28,
193-214.

[Bachmairet al, 1997] Bachmair, L., Ganzinger, H., and Voronkov, Blimination of Equality via
Transformation with Ordering Constraint3echnical Report MPI-1-97-2-012. MPI fiir Informatik,
Saarbriicken.

[Baumgartner, 1992] Baumgartner, P. A model eliminatioltas with built-in theories. Pages
30-42 of:Ohlbach, H.-J. (ed.Rroceedings, German Workshop on Artificial Intelligenc&\a).
LNCS 671. Springer.

[Baumgartner, 1996] Baumgartner, P. Linear and unit-tesptefutations for Horn theoriedournal
of Automated Reasoning6(3), 241-319.

[Baumgartner, 1998] Baumgartner,heory Reasoning in Connection CalcuNCS. Springer. To
appear.

[Baumgartner and Petermann, 1998] Baumgartner, P., arch®atn, U. Theory reasoninig. Bibel,
W., and Schmitt, P. H. (edsAutomated Deduction — A Basis for Applicatiougl. I. Kluwer.

[Baumgartneet al, 1992] Baumgartner, P., Furbach, U., and Petermanr Unified Approach to
Theory Reasoning~orschungsbericht 15/92. University of Koblenz.

[Becher and Petermann, 1994] Becher, G., and Petermannjdid @hification by completion and
rigid paramodulationPages 319-330 of\ebel, B., and Dreschler-Fischer, L. (ed®)oceedings,
18th German Annual Conference on Artificial Intelligencé @), Saarbriicken, GermanNCS
861. Springer.

[Beckert, 1994] Beckert, B. A completion-based method forad universal and rigidz-unification.
Pages 678—-692 ofBundy, A. (ed.),Proceedings, 12th International Conference on Automated
Deduction (CADE), Nancy, Franc&NCS 814. Springer.

[Beckert, 1997] Beckert, B. Semantic tableaux with equalifournal of Logic and Computation
7(1), 39-58.

58

[Beckert, 1998] Beckert, B. Rigi&-unification. In: Bibel, W., and Schmitt, P. H. (edsAutomated
Deduction — A Basis for Applicationeol. |. Kluwer.

[Beckert and Hahnle, 1992] Beckert, B., and Hahnle, R. dproved method for adding equality to
free variable semantic tableaBages 507-521 oKapur, D. (ed.)Proceedings, 11th International
Conference on Automated Deduction (CADE), Saratoga Spridy, USALNCS 607. Springer.

[Beckertand Hahnle, 1998] Beckert, B., and Hahnle, R.Ii@atableauxIn: Bibel, W., and Schmitt,
P. H. (eds.)Automated Deduction — A Basis for Applicatiousl. I. Kluwer.

[Beckert and Pape, 1996] Beckert, B., and Pape, C. Incrahtm@ory reasoning methods for se-
mantic tableauxPages 93-109 ofMiglioli, P., Moscato, U., Mundici, D., and Ornaghi, M. (e}is
Proceedings, 5th Workshop on Theorem Proving with Analfaicleaux and Related Methods,
Palermo, Italy LNCS 1071. Springer.

[Beckertet al, 1996] Beckert, B., Hahnle, R., Oel, P., and Sulzmann, Me #bleau-based theo-
rem proverTAP, version 4.0.Pages 303—-307 of: Proceedings, 13th International Comfegeon
Automated Deduction (CADE), New Brunswick, NJ, UBRCS 1104. Springer.

[Bibel, 1987] Bibel, W. Automated Theorem Provin§econd edn. Vieweg, Braunschweig. First
edition published in 1982.

[Brand, 1975] Brand, D. Proving theorems with the modifizatnethod SIAM Journal on Comput-
ing, 4(4), 412-430.

[Browne, 1988] Browne, R. JGround Term Rewriting in Semantic Tableaux Systems fot-Birder
Logic with Equality Technical Report UMIACS-TR-88-44. College Park, MD.

[Burckert, 1990] Burckert, H. A resolution principle fatauses with constraintsPages 178-192
of: Proceedings, 10th International Conference on Aut@ddbeduction (CADE) LNCS 449.
Springer.

[Cantoneet al,, 1989] Cantone, D., Ferro, A., and Omodeo @ mputable Set Thearynternational
Series of Monographs on Computer Science, vol. 6. Oxford&rsity Press.

[de Kogel, 1995] de Kogel, E. Rigi&-unification simplified. Pages 17-30 of: Proceedings, 4th
Workshop on Theorem Proving with Analytic Tableaux and tedIðods, St. GoatNCS 918.
Springer.

[Degtyarev and Voronkov, 1996a] Degtyarev, A., and Voronkka. Equality elimination for the
tableau methodPages 46—60 ofCalmet, J., and Limongelli, C. (edsBroceedings, International
Symposium on Design and Implementation of Symbolic Cotiputystems (DISCO), Karlsruhe,
Germany LNCS 1128.

[Degtyarev and Voronkov, 1996b] Degtyarev, A., and VoronkA.b. Simultaneous rigid~-
unification is undecidablePages 178-190 oKleine Buning, H. (ed.)Proceedings, Annual Con-
ference of the European Association for Computer Sciengel(@SL'95) LNCS 1092. Springer.

[Degtyarev and Voronkov, 1998] Degtyarev, A., and VoronkavWhat you always wanted to know
about rigid -unification. Journal of Automated Reasonirf)(1), 47—80.

[Digricoli and Harrison, 1986] Digricoli, V. J., and Hards, M. C. Equality-based binary resolution.
Journal of the ACM33(2), 253-289.

[Fitting, 1996] Fitting, M. C. First-Order Logic and Automated Theorem Provirgecond edn.
Springer.

[Furbach, 1994] Furbach, U. Theory reasoning in first orgdeudi. Pages 139-156 ofv. Luck,
K., and Marburger, H. (eds.Proceedings, Third Workshop on Information Systems antichat
Intelligence, Hamburg, GermaniNCS 777. Springer.

[Gallier and Snyder, 1990] Gallier, J. H., and Snyder, W. iBeisg unification procedures using
transformations: A surveBulletin of the EATC340, 273-326.

[Gallier et al, 1987] Gallier, J. H., Raatz, S., and Snyder, W. Theoremipgpusing rigid F-
unification, equational matingk: Proceedings, Symposium on Logic in Computer Scien€zS],|
Ithaka, NY, USAIEEE Press.

[Gallier et al, 1988] Gallier, J. H., Narendran, P., Plaisted, D., and 8ny&. Rigid F/-unification is
NP-completeln: Procceedings, Symposium on Logic in Computer Sciel&S(L IEEE Press.

[Gallier et al, 1990] Gallier, J. H., Narendran, P., Plaisted, D., and 8ny. Rigid F/-unification:
NP-completeness and application to equational matiimjsrmation and Computatiqri29-195.

[Gallier et al, 1992] Gallier, J. H., Narendran, P., Raatz, S., and SnydeiTheorem proving using
equational matings and rigifi-unification. Journal of the ACM39(2), 377—-429.

59

[Grieser, 1996] Grieser, GAn Implementation of Rigi&-Unification Using Completion and Rigid
Paramodulation Forschungsbericht FITL-96-4. FIT Leipzig e.V.

[Gurevich and Veanes, 1997] Gurevich, Y., and Veanes3dme Undecidable Problems Related to
the Herbrand TheoremUPMAIL Technical Report 138. Uppsala University.

[Jeffrey, 1967] Jeffrey, R. CFormal Logic. Its Scope and LimitdMcGraw-Hill, New York.

[Jouannaud and Kirchner, 1991] Jouannaud, J.-P., and férciC. Solving equations in abstract
algebras: A rule-based survey of unificatidtages 257-321 ot.assez, J., and Plotkin, G. (eds.),
Computational Logic — Essays in Honor of Alan RobinsiMT Press.

[Kanger, 1963] Kanger, S. A simplified proof method for elertzey logic. Pages 87—-94 ofBraffort,

P., and Hirschberg, D. (edsQpmputer Programming and Formal SystefNsrth Holland.Reprint
as pages 364-371 o8iekmann, J., and Wrightson, G. (ed&)tomation of Reasoning. Classical
Papers on Computational Logigol. 1. Springer, 1983.

[Kozen, 1981] Kozen, D. Positive first-order logic is NP-qaete. IBM Journal of Research and
Developmen25(4), 327-332.

[Lis, 1960] Lis, Z. Wynikanie semantyczne a wynikanie fotn@a Studia Logical0, 39-60. In
Polish with English summary.

[Loveland, 1969] Loveland, D. W. A simplified format for theoafel elimination procedurelournal
of the ACM 16(3), 233—248.

[Murray and Rosenthal, 1987a] Murray, N. V., and Rosentaal, Inference with path resolution and
semantic graphslournal of the ACM34(2), 225-254.

[Murray and Rosenthal, 1987b] Murray, N. V., and Rosentkab, Theory links: Applications to
automated theorem provingournal of Symbolic Computatio#, 173-190.

[Nelson and Oppen, 1980] Nelson, G., and Oppen, D. C. Fag&idegrocedures based on congru-
ence closureJournal of the ACM27(2), 356—364.

[Nieuwenhuis and Rubio, 1995] Nieuwenhuis, R., and RubicTAeorem proving with ordering and
equality constrained clause®urnal of Symbolic Computatiph9, 321-351.

[Petermann, 1992] Petermann, U. How to build-in an openrthiato connection calculiJournal on
Computer and Artificial Intelligencd 1(2), 105-142.

[Petermann, 1993] Petermann, U. Completeness of the ptmllga with an open built-in theory.
Pages 264-277 ofGottlob, G., Leitsch, A., and Mundici, D. (edsBroceedings, 3rd Kurt Godel
Colloquium (KGC), Brno, Czech RepublicNCS 713. Springer.

[Plaisted, 1995] Plaisted, D. ASpecial Cases and Substitutes for RigidUnification Technical
Report MPI-1-95-2-010. Max-Planck-Institut firr Infortilg, Saarbriicken.

[Policriti and Schwartz, 1995] Policriti, A., and Schwartz T. T-theorem proving |. Journal of
Symbolic Computatigr20, 315-342.

[Popplestone, 1967] Popplestone, R. J. Beth-tree methadgomatic theorem proving§ages 31-46
of: Collins, N., and Michie, D. (eds.Machine Intelligencgevol. 1. Oliver and Boyd.

[Reeves, 1987] Reeves, S. V. Adding equality to semantieséabJournal of Automated Reasoning
3, 225-246.

[Robinson and Wos, 1969] Robinson, J. A., and Wos, L. Paramatidn and theorem proving in
first order theories with equalityln: Meltzer, B., and Michie, D. (eds.Machine Intelligence
Edinburgh University Press.

[Shostak, 1978] Shostak, R. E. An algorithm for reasoningualequality. Communications of the
ACM, 21(7), 583-585.

[Siekmann, 1989] Siekmann, J. H. Universal unificatidournal of Symbolic Computatioi(3/4),
207-274. Earlier version iRroceedings, 7th International Conference on Automatedudgon
(CADE), Napa, FL. USALNCS 170, Springer, 1984.

[Smullyan, 1995] Smullyan, R. M First-Order Logic Second corrected edn. Dover Publications,
New York. First published in 1968 by Springer.

[Snyder, 1991] Snyder, WA Proof Theory for General UnificatiorBoston: Birkhauser.

[Stickel, 1985] Stickel, M. E. Automated deduction by theoesolution. Journal of Automated
Reasoningl, 333—-355.

[Veanes, 1997] Veanes, M. On Simultaneous Riidnification. PhD Thesis, Uppsala University,
Sweden.

[Voda and Komara, 1995] Voda, P., and KomaraDd. Herbrand Skeletongechnical Report mff-ii-
02-1995. Institute of Informatics, Comenius Universityaislava, Slovakia.

Index

4TAP, 49

background reasoner, 9
complete, 23
ground, 13
incremental, 53
monotonic, 9
total, 9

basic superposition
rigid, 46-48

completeness

theory reasoning, 24
consequence

strong, 4

downward saturated, 26

F-unification
ground, 43-44
mixed, 48-49
rigid, 44-46
simultaneous, 41, 49-50
universal, 44

equality
reasoning

partial, 33—39
total, 39-49
theory, 4

fairness, 25
Hintikka set, 27

key, 7

60

incremental, 53

partial

orderings, 5
theory reasoning, 10

refuter, 7
residue, 7

soundness
theory reasoning, 23
STFE-modification, 58

T-

complementary, 7
consequence, 6

strong, 6

refuter, 7
residue, 7
satisfiable, 5

tableau, 21

structure, 5

tautology, 5

universal, 18

unsatisfiable, 5
theory, 4

reasoning

completeness, 24, 26, 28, 29
partial, 10

soundness, 23

tableau rules, 13, 15, 19
total, 10

universal, 6

total

background reasoner, 9
theory reasoning, 10

61

