
CHAPTER 1

EQUALITY AND OTHER THEORIES
BY BERNHARD BECKERT

1 INTRODUCTION

Theory reasoning is an important technique for increasing the efficiency of au-
tomated deduction systems. The knowledge from a given domain (or theory) is
made use of by applying efficient methods for reasoning in that domain. The gen-
eral purposeforeground reasonercalls a special purposebackground reasonerto
handle problems from a certain theory.

Theory reasoning is indispensable for automated deductionin real world do-
mains. Efficient equality reasoning is essential, but most specifications of real
world problems use other theories as well: algebraic theories in mathematical
problems and specifications of abstract data types in software verification to name
a few.

Following the pioneering work of M. Stickel, theory reasoning methods have
been described for various calculi; e.g., resolution [Stickel, 1985; Policriti and
Schwartz, 1995], path resolution [Murray and Rosenthal, 1987b], the connection
method [Petermann, 1992; Baumgartner and Petermann, 1998], model elimination
[Baumgartner, 1992], connection tableaux [Baumgartneret al., 1992; Furbach,
1994; Baumgartner, 1998], and the matrix method [Murray andRosenthal, 1987a].

In this chapter, we describe how to combine background reasoners with the
ground, the free variable, and the universal formula versions of semantic tableaux.
All results and methods can be adapted to other tableau versions for first-order
logic: calculi with signed formulae, with different�-rules, with methods for re-
stricting the search space such as connectedness or ordering restrictions, with
lemma generation, etc. Difficulties can arise with adaptations to tableau calculi
for other logics, in particular if the consequence relationis affected (e.g., non-
monotonic logics and linear logic); and care has to be taken if theory links or
theory connections have to be considered [Petermann, 1993;Baumgartner, 1998;
Baumgartner and Petermann, 1998].

Background reasoners have been designed for various theories, in particular
for equality reasoning; an overview can be found in [Baumgartner et al., 1992;
Furbach, 1994; Baumgartner, 1998], for set theory in [Cantoneet al., 1989]. Rea-
soning in single models, e.g. natural numbers, is discussedin [Bürckert, 1990].

1

2

One main focus of this chapter is efficient equality reasoning in semantic ta-
bleaux. Equality, however, is the only theory that is discussed in detail. There is
no uniform way for handling theories, which is, after all, the reason for using a
background reasoner but which makes it impossible to present good background
reasoners for all possible theories. The second main focus of this chapter is there-
fore on the interaction between foreground and background reasoners, which plays
a critical rôle for the efficiency of the combined system.

The chapter is organized as follows: in Section 2, the basic concepts of theory
reasoning are introduced, and the main classifications of theory reasoning methods
are discussed. The ground, the free variable, and the universal formula version of
semantic tableaux, which are the versions that have to be distinguished for the-
ory reasoning, are defined in Section 3, and methods are presented to add theory
reasoning to these versions of tableaux. Soundness of thesemethods is proven in
Section 4. In Section 5, completeness criteria for background reasoners are de-
fined. Total and partial background reasoners for the equality theory are presented
in Sections 6 and 7. Incremental theory reasoning, which is amethod for improv-
ing the interaction between foreground and background reasoners, is introduced in
Section 8. Finally, in Section 9, methods for handling equality are described that
are based on modifying the input formulae.

2 THEORY REASONING

2.1 First-Order Logic: Syntax and Semantics

We use the logical connectiveŝ(conjunction),_ (disjunction),� (implication),$ (equivalence),: (negation), and the quantifier symbols8 and9.

NOTATION 1 A first-order signature� = hP�; F�; ��i consists of a setP� of
predicate symbols, a setF� of function symbols, and a function�� assigning
an arity n � 0 to the predicate and function symbols; for each arity, thereare
infinitely many function and predicate symbols. Function symbols of arity 0 are
calledconstants. In addition, there is an infinite setV of object variables.Term� is the set of all terms andTerm0� � Term� is the set of all ground
terms built from� in the usual manner.Form� is the set of all first-order formulae
over�; a formula� 2 Form� must not contain a variable that is both bound and
free in� (see Sect. 1.1 in Chap. 3 for formal definitions ofTerm� andForm�).Lit� � Form� is the set of all literals.

DEFINITION 2 A variablex 2 V is free in a first-order formula�, if there is an
occurrence ofx in � that is not inside the scope of a quantification(8x) or (9x);x is boundin � if it occurs in� inside the scope of a quantification(8x) or (9x).

A sentenceis a formula� 2 Form� not containing any free variables.

3

NOTATION 3 Subst� is the set of all substitutions, andSubst�� � Subst� is the
set of all idempotent substitutions with finite domain.

A substitution� 2 Subst� with a finite domainfx1; : : : ; xng can be denoted
byfx1 7! t1; : : : ; xn 7! tng, i.e.,�(xi) = ti (1 � i � n).

The restriction of� to a setW � V of variables is denoted by�jW .

A substitution� may be applied to a quantified formula�; however, to avoid
undesired results, the bound variables in� must neither occur in the domain nor
the scope of�.

DEFINITION 4 A formula�0 is aninstanceof a formula� if there is a substitution� = fx1 7! t1; : : : ; xn 7! tng 2 Subst�� such that

1. �0 = ��,

2. none of the variablesx1; : : : ; xn is bound in�, and none of the variables
that are bound in� occurs in the termst1; : : : ; tn.

If an instance does not contain any variables, it is aground instance.

DEFINITION 5 A formula� 2 Form� is universally quantifiedif it is of the form(8x1) � � � (8xn) , n � 0, where does not contain any quantifications.
In this case, if a formula 0 is an instance of (Def. 4), it is as well called an

instance of�.

DEFINITION 6 A structureM = hD; Ii for a signature� consists of a non-
empty domainD and an interpretationI which gives meaning to the function and
predicate symbols of�.

A variable assignmentis a mapping� : V ! D from the set of variables to the
domainD.

The combination of an interpretationI and an assignment� associates (by
structural recursion) with each termt 2 Term� an elementtI;� ofD.

Theevaluation functionvalI;� maps the formulae inForm� to the truth values
trueand false(in the usual way, see Sect. 1.2 in Chap. 3). IfvalI;� (�) = true,
which is denoted by(M;�) j= �, holds for all assignments�, thenM satisfies
the formula� (is a modelof �); M satisfies a set� of formulae if it satisfies all
elements of�.

A formula� is a tautologyif it is satisfied by all structures.

DEFINITION 7 A formula 2 Form� is a(weak) consequenceof a set� � Form�
of formulae, denoted by� j= , if all structures that are models of� are models
of as well.

In addition to the normal (weak) consequence relationj=, we use the notion of
strong consequence:

4

DEFINITION 8 A formula 2 Form� is astrong consequenceof a set� � Form�
of formulae, denoted by� j=� , if for all structuresM = hD; Ii and all variable
assignments�:

If (M;�) j= � for all � 2 �, then (M;�) j= :
A difference between the strong consequence relationj=� and the weak conse-

quence relationj= is that the following holds forj=� (but not forj=):

LEMMA 9 Given a set� � Form� of formulae and a formula 2 Form�, if� j=� , then�� j=� � for all substitutions� 2 Subst��.

2.2 Theories

We define any satisfiable set of sentences to be a theory.

DEFINITION 10 A theoryT � Form� is a satisfiable set of sentences.

In the literature, often the additional condition (besidessatisfiability) is imposed
on theories that they are closed under the logical consequence relation. Without
that restriction, we do not have to distinguish between a theory and its defining set
of axioms.

EXAMPLE 11 The most important theory in practice is the equality theoryE .1 It
consists of the following axioms:

(1) (8x)(x � x) (reflexivity),

(2) for all function symbolsf 2 F�:(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : :^ xn � yn) �f(x1; : : : ; xn) � f(y1; : : : ; yn))
wheren = ��(f) (monotonicity for function symbols),

(3) for all predicate symbolsp 2 P�:(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : :^ xn � yn) �(p(x1; : : : ; xn) � p(y1; : : : ; yn)))
wheren = ��(p) (monotonicity for predicate symbols),

Symmetry and transitivity of� are implied by reflexivity (1) and monotonicity for
predicate symbols (3) (observe that� 2 P�).1The equality predicate is denoted by� 2 P� such that no confusion with the meta-level equal-
ity = can arise.

5

EXAMPLE 12 The theoryOP of partial orderings consists of the axioms

(1) (8x):(x < x) (anti-reflexivity),

(2) (8x)(8y)(8z)((x < y) ^ (y < z) � (x < z)) (transitivity).OP is a finite theory; contrary to the equality theory, it does not contain mono-
tonicity axioms.

An important class of theories, calledequational theories, are extensions of the
equality theoryE by additional axioms that are universally quantified equalities.
An overview of important equational theories and their properties can be found in
[Siekmann, 1989].

EXAMPLE 13 The AC-theory for the function symbolf contains (besidesE) the
additional axioms(8x)(8y)(8z)(f(f(x; y); z) � f(x; f(y; z))) and(8x)(8y)(f(x; y) � f(y; x)),
which state associativity resp. commutativity off ; it is an equational theory.

Other typical examples for equational theories are specifications of algebraic
structures:

EXAMPLE 14 Group theory can be defined using, in addition toE , the equalities(8x)(8y)(8z)((x � y) � z � x � (y � z))(8x)(x � e � x)(8x)(x � x�1 � e)
The definitions of structure, satisfiability, tautology, and logical consequence

are adapted to theory reasoning in a straightforward way:

DEFINITION 15 Let T be a theory. AT -structureis a structure that satisfies
all formulae inT . A formula� (a set� of formulae) isT -satisfiableif there is
a T -structure satisfying� (resp.�), else it isT -unsatisfiable. A sentence� is aT -tautologyif it is satisfied by allT -structures.

A formula� is a (weak)T -consequenceof a set	 of formulae, denoted by	 j=T �, if � is satisfied by allT -structures that satisfy	. A formula� is a
strongT -consequenceof a set	 of formulae, denoted by	 j=�T �, if for all T -
structuresM and all variable assignments�:

If (M;�) j= for all 2 	, then(M;�) j= � :
LEMMA 16 Given a theoryT , a set� of sentences, and a sentence , the follow-
ing propositions are equivalent:

1. � j=T .

2. � [T j= .

3. � [T [f: g is unsatisfiable.

4. � [f: g is T -unsatisfiable.

6

2.3 Properties of Theories

The followingdefinitions clarify which properties theories should have to be useful
in practice:

DEFINITION 17 A theoryT is (finitely) axiomatizableif there is a (finite) de-
cidable set	 � Form� of sentences (the axioms) such that:� 2 Form� is aT -
tautology if and only if	 j= �.

A theoryT is completeif, for all sentences� 2 Form�, either� or :� is aT -tautology.

All theories that we are concerned with, including equality, are axiomatizable.
An example for a theory that is not axiomatizable is the setT of all satisfiable
sentences.

If a theoryT is axiomatizable, then the set ofT -tautologies is enumerable; it
may, however, be undecidable (a simple example for this is the empty theory). IfT is both axiomatizable and complete, then the set ofT -tautologies is decidable.

Another important method for characterizing a theoryT —besides axiomatiza-
tion—is the model theoretic approach, whereT is defined as the set of all formulae
that are true in a given structureM . Theories defined this way are always complete,
becauseM j= � orM j= :� for all sentences�.

DEFINITION 18 A theoryT is universalif it is axiomatizable using an axiom set
consisting of universally quantified formulae (Def. 4).

THEOREM 19 A set� of universally quantified formulae isT -unsatisfiable if
and only if there is a finite set of ground instances of formulae from� that isT -unsatisfiable.

In the literature on theory reasoning, all considerations are usually restricted to
universal theories, because the Herbrand-type Theorem 19 holds exactly for uni-
versal theories [Petermann, 1992]. This theorem is essential for theory reasoning
if the background reasoner can only provide formulae without variable quantifica-
tions (e.g., only literals or clauses); this is, for example, the case if theory reasoning
is added to clausal tableaux or resolution.

EXAMPLE 20 The theoryT = f(9x)p(x)g is not universal. Consequently, there
are sets� of universally quantified formulae that areT -unsatisfiable whereas all
finite sets of ground instances of formulae from� areT -satisfiable. An example
is� = f(8x)(:p(x))g; even the setf:p(t) j t 2 Term0�g of all ground instances
of � isT -satisfiable (using aT -structure where not all elements of the domain are
represented by ground terms).

The restriction to universal theories is not a problem in practice, because it is
easy to get around using Skolemization.

7

Key E-Refuterf:(a � a)g hid , ;if:(x � a)g hfx 7! ag, ;if(8x)(:(x � a))g hid , ;ifp(a);:p(b)g hid , f:(a � b)gifp(f(a); f(b)); f(x) � xg hfx 7! ag, fp(a; f(b))gihfx 7! bg , fp(f(a); b)gifp(f(a); f(b)); (8x)(f(x) � x)g hid , fp(a; b)gi
Table 1. Examples forE-refuters.

EXAMPLE 21 An extension ofOP that contains the density axiom(8x)(8y)((x < y) � (9z)((x < z) ^ (z < y)))
is not a universal theory. It can be made universal by replacing the above axiom
with (8x)(8y)((x < y) � ((x < between(x; y)) ^ (between(x; y) < y))) :
2.4 Basic Definitions for Theory Reasoning

The following are the basic definitions for theory reasoning:

DEFINITION 22 Let� � Form� be a finite set of formulae, calledkey. A finite
setR = f�1; : : : ; �kg � Form� of formulae (k � 0) is a T -residueof � if there
is a substitution� 2 Subst�� such that

1. �� j=�T �1 _ : : :_ �k (in caseR is empty:�� j=�T false);

2. R = R�.

Then the pairh�;Ri is called aT -refuter for �. If the residueR is empty, the
substitution� is called aT -refuter for� (it is identified withh�; ;i).
EXAMPLE 23 Table 1 shows some examples forE-refuters.

DEFINITION 24 A set� � Form� of formulae isT -complementaryif, for allT -structureshD; Ii and all variable assignments�, valI;�(�) = false.

EXAMPLE 25 The setf:(x � y)g is E-unsatisfiable; it is, however, notE-com-
plementary because a variable assignment may assign different elements of the
domain tox andy. The setf:(x � x)g is bothE-unsatisfiable andE-complemen-
tary.

8

In general, it is undecidable whether a formula set isT -complementary; and,
consequently, it is undecidable whether a pairh�;Ri is a refuter for a key�.T -complementarity generalizes the usual notion that formulae� and:� are
complementary. The following lemmata are immediate consequences of the defi-
nitions:

LEMMA 26 Given a theoryT , a substitution� 2 Subst�� is a T -refuter for a
set� of formulae if and only if the set�� is T -complementary.

LEMMA 27 Given a theoryT , a substitution� and a setR = f�1; : : : ; �kg,k � 0, of formulae form a refuterh�;Ri for a set� of formulae if and only if

1. �� [f:�1; : : : ;:�kg is T -complementary;

2. R = R�.

There is an alternative characterization ofT -complementary sets that do not
contain bound variables (e.g., sets of literals or clauses):

THEOREM 28 Given a theoryT , a set� of formulae that does not contain any
quantifiers isT -complementary if and only if the existential closure9� of � isT -unsatisfiable.

Provided that the signature� contains enough function symbols not occurring
in a universal theoryT , a quantifier-free formula set isT -complementary if all its
instances areT -complementary:

THEOREM 29 Given a universal theoryT such that there are infinitely many
function symbols of each arityn � 0 in F� that do not occur inT , then a set�
of formulae that does not contain any bound variables isT -complementary if and
only if all ground instances of� areT -unsatisfiable.

EXAMPLE 30 LetT be the theoryfp(t) j t 2 Term0�g that violates the pre-condition
of Theorem 29, as all function symbols occur inT . The formula:p(x) is notT -
complementary because there may be elements in the domain ofaT -structure that
are not represented by any ground term. Nevertheless, all instances of:p(x) areT -unsatisfiable, which shows that the pre-condition of Theorem 29 is indispens-
able.

By definition there is no restriction on what formulae may occur in keys or
refuters. In practice, however, to restrict the search space, background reasoners
do not compute refuters for all kinds of keys, and they do not compute all possible
refuters (typically, keys are restricted to be sets of literals or universally quantified
literals). To model this, we define background reasoners to be partial functions on
the set of all possible keys:

9

DEFINITION 31 Let T be a theory; abackground reasonerfor T is a partial
function R : 2Form� �! Subst�� � 2Form�
such that, for all keys� � Form� for whichR is defined,R(�) is a set ofT -
refuters for�.

A background reasonerR is total if, for all keys� for whichR is defined, the
residues of all refuters inR(�) are empty, i.e.,R(�) � Subst��.

A background reasonerR is monotonicif, for all keys� and 	 such that� � 	: if R(�) is defined, thenR() is defined andR(�) � R().
EXAMPLE 32 A background reasoner for the theoryPO of partial orderings can
be defined as follows: For all keys�, letR(�) be the smallest set such that:

1. for all termst; t0; t00 2 Term�:
if t < t0; t0 < t00 2 �, thenhid ; t < t00i 2 R(�);

2. for all termst 2 Term�: if t < t 2 �, thenid 2 R(�);
3. for all literals� 2 Lit�: if �;:� 2 �, thenid 2 R(�).

The combination ofR and the ground version of tableaux leads to a complete
calculus forPO (see Sect. 3.2).

A background reasoner has to compute refuters that are strong consequences of
(an instance of) the key. In contrary to that, for tableau rules it is sufficient to pre-
serve satisfiability. A tableau rule may deducep(c) from (9x)p(x) wherec is new,
but hid ; fp(c)gi is not a refuter for the keyf(9x)p(x)g. A background reasoner
may, however, do the opposite:hid ; f(9x)p(x)gi is a refuter for the keyfp(c)g
(this deduction usually does not help in finding a proof; see,however, Example 20).

2.5 Total and Partial Theory Reasoning

The central idea behind theory reasoning is the same for all calculi based in some
way on Herbrand’s theorem (tableau-like calculi, resolution, etc.): A key� � 	
is chosen from the set	 of formulae already derived by the foreground reasoner
and is passed to the background reasoner, which computes refutersh�;Ri for �.

There are two main approaches: if the background reasoner istotal, i.e., only
computes refuters with an empty residueR, we speak oftotal theory reasoning
else ofpartial theory reasoning.

In the case of partial reasoning, where the residueR = f�1; : : : ; �kg is not
empty (k � 1), the formula�1 _ : : :_ �k is added to the set	 of derived formulae
and the substitution� is applied. If the foreground reasoner is then able to show
that for some substitution� the set(� [f�1 _ : : :_ �kg)� is T -unsatisfiable,
this proves that	�� is T -unsatisfiable.

10

Although total theory reasoning can be seen as a special caseof partial theory
reasoning, the way the foreground reasoner makes use of the refuter is quite dif-
ferent: no further derivations have to be made by the foreground reasoner;�� and
thus	� have been proven to beT -complementary by the background reasoner. In
the tableau framework, where (usually) the key� is taken from a tableau branchB,
this means thatB is closed if the substitution� is applied.

On the one hand, for total theory reasoning, more complex methods have to
be employed to find refuters; the background reasoner has to make more complex
deductions that, using partial reasoning, could be dividedinto several expansion
steps followed by a simple closure step. On the other hand, the restriction to total
theory reasoning leads to a much smaller search space for theforeground reasoner,
because there are less refuters for each key and the search ismore goal-directed.

2.6 Other Classifications of Theory Reasoning

Besides total and partial theory reasoning, there are several other ways to distin-
guish different types of background reasoners.

One possibility is to classify according to the informationgiven to the back-
ground reasoner: (complex) formulae, literals, or terms [Baumgartneret al., 1992].
Stickel distinguishesnarrow theory reasoning, where all keys consist of literals,
and wide theory reasoning, where keys consist of clauses [Stickel, 1985]. This
type of classification is not used here, since all these typesare subsumed by for-
mula level theory reasoning. We will, however, restrict (nearly) all considerations
to keys consisting of literals.

Another possibility is to classify background reasoners according to the type of
calculus they use for deductions, the main divisions beingbottom upandtop down
reasoning.

Local and non-local theory reasoning can be distinguished according to the
effect that calling the background reasoner has on the tableau [Degtyarev and
Voronkov, 1996a]. In particular, the effect of calling the background reasoner
is local if only local variables are instantiated by applying the theory expansion or
closure rule to a tableau branchB, i.e., no variables occurring on other branches
thanB are instantiated.

3 THEORY REASONING FOR SEMANTIC TABLEAUX

3.1 Unifying Notation

Following Smullyan [Smullyan, 1995], the set of formulae that are not literals is
divided into four classes:� for formulae of conjunctive type,� for formulae of
disjunctive type,
 for quantified formulae of universal type, and� for quantified

11� �1 �2� ^ � :(�_) :� : :(� �) � : ::� � � � �1 �2� _ � :(�^) :� : � � :� �$ � ^ :�^ : :(�$) � ^ : :� ^

1(x)(8x)�(x) �(x):(9x)�(x) :�(x) � �1(x):(8x)�(x) :�(x)(9x)�(x) �(x)
Table 2. Correspondence between formulae and rule types.

formulae of existential type (unifying notation). This classification is motivated by
thetableau expansion ruleswhich are associated with each (non-literal) formula.

DEFINITION 33 The non-literal formulae inForm� are assigned atypeaccord-
ing to Table 2. A formula of type� 2 f�; �;
; �g is called a�-formula.

NOTATION 34 The letters�, �,
, and� are used to denote formulae of (and only
of) the appropriate type. In the case of
- and �-formulae the variablex bound
by the (top-most) quantifier is made explicit by writing
(x) and
1(x) (resp.�(x)
and�1(x)); accordingly
1(t) denotes the result of replacing all occurrences ofx
in
1 by t.
3.2 The Ground Version of Semantic Tableaux

We first present the classicalgroundversion of tableaux for first-order logic. This
version of tableaux is called “ground”, because universally quantified variables are
replaced bygroundterms when the
-rule is applied.

The calculus is defined using a slightly non-standard representation of tableaux:
a tableau is multi-sets of branches, which are multi-sets offirst-order formulae;
as usual, the branches of a tableau are implicitly disjunctively connected and the
formulae on a branch are implicitly conjunctively connected. In graphical repre-
sentations, tableaux are shown in their classical tree form.

DEFINITION 35 A tableauis a (finite) multi-set of tableau branches, where a
tableaubranchis a (finite) multi-set of first-order formulae.

In Table 3 the ground expansion rule schemata for the variousformula types are
given schematically. Premisses and conclusions are separated by a horizontal bar,
while vertical bars in the conclusion denote differentextensions. The formulae in

12 ��1�2 ��1 �2

1(t)
wheret is any
ground term.

��1(t)
wheret is a ground term
new to the tableau.

Table 3. Rule schemata for the ground version of tableaux.

an extension are implicitly conjunctively connected, and different extensions are
implicitly disjunctively connected.

To prove a sentence� to be a tautology, we apply the expansion rules starting
from the initial tableauff:�gg. A tableauT is expanded by choosing a branchB
of T and a formula� 2 B and replacingB by as many updated branches as the
rule corresponding to� has extensions. Closed branches are removed from the
tableau instead of just marking them as being closed; thus, aproof is found when
the empty tableau has been derived.

There is a theory expansion and a theory closure rule. For both rules, a key� � B is chosen from a branchB, and a refuterh�;Ri for � is computed. Since
formulae in ground tableaux do not contain free variables, the formulae in the
residue, too, have to be sentences. The application of substitutions to formulae
without free variables does not have any effect. Thus, ifh�;Ri is a refuter for a
key� taken from a ground tableau, thenhid ; Ri is a refuter for� as well; thus, it
is possible to use only refuters of this form for ground tableaux.

DEFINITION 36 A background reasonerR for a theoryT is a ground back-
ground reasonerfor T if, for all keys� � Form� for whichR is defined, all
formulae inR(�) are sentences, i.e., do not contain free variables.

Whether an expansion or a closure rule is to be applied depends on whether the
residueR = f�1; : : : ; �kg is empty or not. Ifk � 1, then the tableau is expanded.
The old branch is replaced byk new branches, one for each�i (since the�i are
implicitly disjunctively connected). The closure rule is applied if the residue is
empty (k = 0); it can be seen as a special case of the expansion rule: the old
branch is replaced by0 new branches, i.e., it is removed. The rule schemata are
shown in Table 4; in this and all following schematic representations of rules, the
symbol� is used to denote that a branch is closed if the rule is applied.

If the residueR is empty, the key isT -complementary and the branch it has
been taken from isT -closed. This is a straightforward extension of the closure
rule for tableaux without theory reasoning, where a branch is closed if it contains
complementary formulae� and:�, i.e., the;-complementary keyf�;:�g (there-
fore, the rule that a branch containing complementary formulae� and:� is closed
does not have to be considered separately).

13�1
...�p�1 � � � �k

wherehid ; f�1; : : : ; �kgi (k � 1) is a
refuter for the keyf�1; : : : ; �pg, and�1; : : : ; �k do not contain free variables.

�1
...�p�

whereid is a
refuter for the
keyf�1; : : : ; �pg.

Table 4. Theory expansion and closure rules (ground version).

DEFINITION 37 (Ground tableau proof.)Given a theoryT and a ground back-
ground reasonerR for T (Def. 36), aground tableau prooffor a first-order sen-
tence� 2 Form� consists of a sequenceff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)
of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the expansion rules for ground tableauxfrom Table 3,
i.e., there is a branchB 2 Ti�1 and a formula� 2 B (that is not a literal)
such thatTi = (Ti�1 n fBg)[8>><>>:f(B n f�g) [f�1; �2gg if � = �f(B n f�g) [f�1g; (B n f�g) [f�2gg if � = �fB [f
1(s)gg if � =
(x)f(B n f�(x)g) [f�1(t)gg if � = �(x)
wheres 2 Term0� is any ground term, andt 2 Term0� ground term not
occurring inTi�1;

2. by applying the ground theory expansion rule, i.e., thereis a branchB 2Ti�1 and, for a key� � B, there is aT -refuterhid ; f�1; : : : ; �kgi (k � 1)
inR(�) such thatTi = (Ti�1 n fBg) [fB [f�1g; : : : ; B [f�kgg ;

3. or by closing a branchB 2 Ti�1, i.e., Ti = Ti�1 n fBg whereB is T -
closed (i.e.,id 2 R(�) for a key� � B).

It is possible to describe a background reasoner using tableau rule schemata.
The reasoner from Example 32 then takes the form that is shownin Table 5.

14 t < t0t0 < t00t < t00 t < t� �:��
Table 5. Expansion and closure rules for the theoryPO of partial orderings.

Even without theory reasoning, the construction of a closedtableau is a highly
non-deterministic process, because at each step one is freeto choose a branchB
of the tableau and a formula� 2 B for expansion. If� is a
-formula, in addition,
a term has to be chosen that is substituted for the bound variable.

There are two ways for resolving the non-determinism (actual implementations
usually employ a combination of both): (1) fair strategies can be used such that,
for example, each formula will finally be used to expand each branch on which it
occurs. (2) Backtracking can be used; if a branch cannot be closed (observing a
limit on its length), other possibilities are tried; for example, other terms are used
in
-rule applications. If no proof is found, the limit has to be increased (iterative
deepening).

The theory expansion rule makes things even worse, because it is highly non-
deterministic. In which way it has to be applied to be of any use, in particular
when and how often the rule is applied, and which types of keysand refuters are
used depends on the particular theory and is part of the domain knowledge (see
Sect. 5.3).

3.3 Free Variable Semantic Tableaux

Using free variable quantifier rules is crucial for efficientimplementation—even
more so if a theory has to be handled. They reduce the number ofpossibilities
to proceed at each step in the construction of a tableau proofand thus the size of
the search space. When
-rules are applied, a new free variable is substituted for
the quantified variable instead of replacing it by a ground term, which has to be
“guessed”. Free variables can later be instantiated “on demand” when a tableau
branch is closed or the theory expansion rule is applied to expand a branch.

To preserve correctness, the schema for�-rules has to be changed as well: the
Skolem terms introduced now contain the free variables occurring in the�-formula
(the free variable rule schemata are shown in Table 6).

Again, there is both a theory expansion and a theory closure rule. The difference
to the ground version is that now there are free variables both in the tableau and
in the refuter (the formulae that are added). When theory reasoning is used for
expansion or for closing, the substitution� of a refuterh�;Ri has to be applied to
the whole tableau; the theory rule schemata are shown in Table 7.

In case there is a refuter� with an empty residue for a key� taken from a
branch, it isT -closed under the substitution�, i.e., it is closed when� is applied

15��1�2 ��1 �2

1(y)
wherey is a
free variable.

��1(f(x1; : : : ; xn))
wheref is a new Skolem func-
tion symbol, andx1; : : : ; xn
are the free variables in�.

Table 6. Tableau expansion rule schemata for free variable tableau.�1
...�p�1 � � � �k

whereh�; f�1; : : : ; �kgi (k � 1) is a
refuter for the keyf�1; : : : ; �pg, and� is applied to the whole tableau.

�1
...�p�

where� is a refuter for the keyf�1; : : : ; �pg, and� is applied
to the whole tableau.

Table 7. Theory expansion and closure rules (free variable version).

to the whole tableau.
It is often difficult to find a substitution� that instantiates the variables in a

tableauT such thatall branches ofT areT -closed. The problem is simplified (as
is usually done in practice) by closing the branches ofT one after the other: if
a substitution is found that closes a single branchB, it is applied (to the whole
tableau) to closeB before other branches are handled. This is not a restriction
because, if a substitution is known toT -close several branches, it can be applied
to close one of them; after that the other branches are closedunder the empty
substitution.

DEFINITION 38 (Free variable tableau proof.)Let T be a theory and letR be
a background reasoner forT , a free variable tableau prooffor a first-order sen-
tence� consists of a sequenceff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)
of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the free variable expansion rules from Table 6, that is,
there is a branchB 2 Ti�1 and a formula� 2 B (that is not a literal) such
thatTi = (Ti�1 n fBg)

16 [8>><>>:f(B n f�g) [f�1; �2gg if � = �f(B n f�g) [f�1g; (B n f�g) [f�2gg if � = �fB [f
1(y)gg if � =
(x)f(B n f�(x)g) [f�1(f(x1; : : : ; xn))gg if � = �(x)
wherey 2 V is a new variable not occurring inTi�1, f 2 F� is a Skolem
function symbol not occurring inTi�1, andx1; : : : ; xn are the free variables
in �;

2. by applying the free variable theory expansion rule, thatis, there is a branchB 2 Ti�1, a key� � B, and aT -refuterh�; f�1; : : : ; �kgi (k � 1) inR(�)
such thatTi = (Ti�1 n fBg)� [fB� [f�1g; : : : ; B� [f�kgg ;

3. or by closing a branchB 2 Ti�1, that is,Ti = (Ti�1 n fBg)� where the
branchB is T -closed under�, i.e.,� 2 R(�) for a key� � B.

3.4 Semantic Tableaux with Universal Formulae

Free variable semantic tableaux can be further improved by using the concept of
universal formulae [Beckert and Hähnle, 1992]:
-formulae (in particular axioms
that extend the theory) have often to be used multiply in a tableau proof, with
different instantiations for the free variables they contain. An example is the axiom(8x)(8y)((x < y) � (p(x) � p(y))), that extends the theory of partial orderings
by defining the predicate symbolp to be monotonous. The associativity axiom(8x)(8y)(8z)((x � y) � z � x � (y � z)) is another typical example. Usually, it has
to be applied several times with different substitutions for x, y and z to prove
even very simple theorems from, for example, group theory. In semantic tableaux,
the
-rule has to be applied repeatedly to generate several instances of the axiom
each with different free variables substituted forx, y and z. Free variables in
tableaux arenot implicitly universally quantified (as it is, for instance, the case
with variables in clauses when using a resolution calculus)but arerigid, which is
the reason why a substitution must be applied to all occurrences of a free variable
in the whole tableau.

Supposed a tableau branchB contains a formulap(x), and the expansion of
the tableau proceeds with creating new branches. Some of these branches contain
occurrences ofx; for closing the generated branches, the same substitutionfor x
has to be used on all of them. Figure 1 gives an example for the situation: this
tableau for cannot be closed immediately as no single substitution closes both
branches. To find a proof, the
-rule has to be applied again to create another
instance of(8x)p(x).

In particular situations, a logical consequence of the formulae already on the
tableau (in a sense made precise in Def. 39) may be that(8y)p(y) can be added

17(8x)p(x):p(a) _ :p(b)p(y):p(a) :p(b)
Figure 1. The advantage of using universal formulae.

toB. This is trivially true in Figure 1. In such cases, differentsubstitutions fory
can be used without destroying soundness of the calculus. The tableau in Figure 1
then closes immediately. Recognizing such situations and exploiting them allows
to use more general closing substitutions, yields shorter tableau proofs, and in most
cases reduces the search space.

DEFINITION 39 Let T be a theory, and let� be a formula on a branchB of a
tableauT . Let T 0 be the tableau that results from adding(8x)� to B for somex 2 V . The formula� is T -universalonB with respect tox if T j=T T 0, whereT
andT 0 are identified with the formulae that are the disjunctions oftheir branches,
respectively, and a branch is the conjunction of the formulae it contains. LetUVar(�) � V denote the universal variables of�.2

The above definition is an adaptation of the definition given in [Beckert and
Hähnle, 1998] to theory reasoning.

The problem of recognizing universal formulae is of course undecidable in gen-
eral. However, a wide and important class can be recognized quite easily (using
this class can already shorten tableau proofs exponentially): If tableaux are seen
as trees, a formula� on a branchB of a tableauT is (T -)universal w.r.t.x if all
branchesB0 of T are closed which contain an occurrence ofx that is not onB as
well; this holds in particular if the branchB contains all occurrences ofx in T .

Assume there is a sequence of tableau rule applications thatintroduces a vari-
ablex by a
-rule application and does not contain a rule application distributingx over different subbranches; then the above criterion is obviously satisfied and all
formulae that are generated by this sequence are universal w.r.t.x.

THEOREM 40 Given a theoryT , a formula� on a branchB of a tableauT isT -universal w.r.t.x onB if in the construction ofT the formula�was added toB
by either

1. applying a
-rule andx is the free variable that was introduced by that
application;2When the context is clear, a formula� which is universal on a branchB w.r.t. a variablex is just

referred to by “the universal formula�,” and the variablex by “the universal variablex.”

18 �1
...�p�1 � � � �k

whereh�; f�1; : : : ; �kgi (k � 1)
is a refuter for the keyf(8xi1) � � � (8ximi)�i j 1 � i � pg,
the formula�i is T -universal
w.r.t. the variablesxi1; : : : ; ximi ;
and� is applied to the whole
tableau.

�1
...�p�

where� is a refuter for the keyf(8xi1) � � � (8ximi)�i j 1 � i � pg,
the formula�i is T -universal
w.r.t. the variablesxi1; : : : ; ximi ;
and� is applied to the whole
tableau.

Table 8. Theory expansion and closure rules (universal formula version).

2. applying an�-, �- or
-rule to a formula that isT -universal w.r.t.x onB;

3. applying a�-rule to a formula that is T -universal w.r.t.x on B, andx does not occur in any formula except� that has been added to the tableau
by that�-rule application;

4. applying the theory expansion rule to a refuterf�1; : : : ; �kg for a key� � B
(i.e.,� = �i for somei 2 f1; : : : ; kg), and all formulae in� areT -universal
w.r.t.x onB, andx does not occur in any of the�j for j 6= i.

The knowledge that formulae areT -universal w.r.t. variables they contain can
be taken advantage of by universally quantifying the formulae in a key w.r.t. (some
of) their universal variables. Similar to the ground and free variable cases, the
closure rule can be seen as a special case of the expansion rule. The new theory
rule schemata are shown in Table 8.

DEFINITION 41 (Universal formula version.)Let T be a theory, and letR be a
background reasoner forT . A universal formula tableau prooffor a first-order
sentence� consists of a sequenceff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)
of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the free variable expansion rules from Table 6 (see The-
orem 38 for a formal definition);

2. by applying the universal formula theory expansion rule to a branchB 2 Ti�1,
that is, Ti = (Ti�1 n fBg)� [fB� [f�1g; : : : ; B� [f�kgg

19

whereh�; f�1; : : : ; �kgi is aT -refuter inR(�) for a key� = f(8xi1) � � � (8ximi)�i j 1 � i � pg
such that

(a) �1; : : : ; �p 2 B,

(b) fxi1; : : : ; ximig � UVar(�i) for 1 � i � p,
3. or by closing a branchB 2 Ti�1, that is,Ti = (Ti�1 n fBg)�

where the branchB is T -closed under�, i.e.,� 2 R(�) for a key� = f(8xi1) � � � (8ximi)�i j 1 � i � pg
such that

(a) �1; : : : ; �p 2 B,

(b) fxi1; : : : ; ximig � UVar(�i) for 1 � i � p.
Although it is easier to add theory reasoning to the ground version of tableau,

to prove even simple theorems, free variable tableaux have to be used. These
are sufficient for simple theories. If, however, finding a refuter requires complex
deductions where the formulae both in the key and in the theory have to be used
multiply with different instantiations, then universal formula tableau have to be
used (free variable tableaux are a special case of universalformula tableau),

The following example illustrates the advantage of using the universal formula
expansion rule as compared to the free variable rule:

EXAMPLE 42 Consider again the tableauT shown in Figure 1. The substitution� = fy 7! ag is a refute for the keyfp(y);:p(a)g, which is taken from the left
branch ofT . If � is used to close the left branch, then the variabley is instantiated
with a in the whole tableauT . However, if the formulap(y) is recognized to be
universal w.r.t.y, then the keyf(8y)p(y);:p(a)g can be used instead, for which
the empty substitutionid is a refuter; thus using the universal formula closure rule,
the left branch can be closed without instantiatingy. Then the right branch can be
closed, too, without generating a second free variable instancep(y0) of (8x)p(x).

Using the universal formula technique is even more important in situations like
the following:

20

EXAMPLE 43 Supposed the equalityf(x) � x and the literalsp(f(a); f(b)) and:p(a; b) areE-universal w.r.t.x on a tableau branch. In that case, the keyf(8x)(f(x) � x); p(f(a); f(b)); p(a; b)g
can be used, for whichid is a refuter.

In free variable tableaux, the keyf(f(x) � x); p(f(a); f(b)); p(a; b)g has to
be used, which allows to derive the refutershfx 7! ag; ff(b) � bgi andhfx 7! bg; ff(a) � agi
only; a refuter with an empty residue, which closes the branch immediately, cannot
be deduced anymore.

4 SOUNDNESS

In this section, soundness of semantic tableaux with theoryreasoning is proven for
the universal formula version. Soundness of the free variable version follows as a
corollary because free variable tableaux are a special caseof universal formula ta-
bleaux. For the ground version, soundness can be proven completely analogously.

First, satisfiability of tableaux is defined (Def. 44), then it is proven that satisfi-
ability is preserved in a sequence of tableaux forming a tableau proof (Lemma 46).

DEFINITION 44 Given a theoryT , a tableauT is T -satisfiableif there is aT -
structureM such that, for every variable assignment�, there is a branchB 2 T
with (M;�) j= B :
LEMMA 45 If a tableauT is T -satisfiable, thenT� is T -satisfiable for all sub-
stitutions� 2 Subst��.

Proof. By hypothesis there is aT -structureM = hD; Ii such that, for all variable
assignments�, there is a branchB� 2 T with (M;�) j= B� . We claim that, for
the same structureM , we have also for all variable assignments� that there is a
branchB with (M; �) j= B�.

To prove the above claim, we consider a given variable assignment�. Let the
variable assignment� be defined by�(x) = (x�)I;� for all x 2 V :
That implies for all termst 2 Term�, and in particular for all termst occurring
in B� , (t�)I;� = tI;�
and therefore valI;�(B��) = valI;� (B�) = true : �
LEMMA 46 Given a universal formula tableau proof(Tj)0�j�n, if the tableauTi
(0 � i < n) is T -satisfiable, then the tableauTi+1 is T -satisfiable as well.

21

Proof. We use the notation from Definition 41. LetB be the branch inTi to which
one of the classical expansion rules or the theory expansionrule has applied or that
has been removed by applying the theory closure rule to derive the tableauTi+1.
LetM = hD; Ii be aT -structure satisfyingTi.�-rule: Let � be an arbitrary variable assignment. There has to be a branchB0
in Ti such that(M;�) j= B0. If B0 is different fromB thenB0 2 Ti+1 and we are
through.

If, on the other hand,B0 = B, then(M;�) j= B. Let � be the formula inB
to which the�-rule has been applied. By the property of�-formulae,(M;�) j= �
entails(M;�) j= �1 or (M;�) j= �2; and, therefore,(M;�) j= (B n f�g) [f�1g
or (M;�) j= (B n f�g) [f�2g. This concludes the proof for the case of a�-
rule application, because(B n f�g) [f�1g and (B n f�g) [f�2g are branches
in Ti+1.�- and
-rule: Similar to the�-rule.�-rule: Let � be the�-formula to which the�-rule is applied to deriveTi+1
fromTi; �1(f(x1; : : : ; xm)) is the formula added to the branch (f is a new Skolem
function symbol andx1; : : : ; xm are the free variables in�). We define a structureM 0 = hD; I 0i that is identical toM , except that the new function symbolf is
interpreted byI 0 in the following way: For every setd1; : : : ; dm of elements from
the domainD, if there is an elementd such that(M; �) j= �1(x) where�(xj) = dj
(1 � j � m) and�(x) = d, thenfI0 (d1; : : : ; dm) = d. If there are several such el-
ementsd, one of them may be chosen; and if there is no such element, an arbitrary
element from the domain is chosen. It follows from this construction that for all
variable assignments�: if (M;�) j= �, then(M 0; �) j= �1(f(x1; : : : ; xm)). Sincef does not occur inT ,M 0 is aT -structure.

We proceed to show thatM 0 satisfiesTi+1. Let � be an arbitrary variable as-
signment. There has to be a branchB0 in Ti with (M;�) j= B0. If B0 is different
fromB, then we are done because(M 0; �) j= B0 (asf does not occur inB0) andB0 2 Ti+1.

In the interesting case where� 2 B0 = B, we have(M;�) j= � which entails(M 0; �) j= �1(f(x1; : : : ; xm)). Thus,(B n f�g) [f�1(f(x1; : : : ; xm))g, which is
a branch inTi+1, is satisfied byM 0.

Theory Expansion Rule:Let h�; f�1; : : : ; �kgig be the refuter used to expand
the tableau. SinceTi is T -satisfiable, the tableauTi� is T -satisfiable as well
(Lemma 45). LetM be aT -structure satisfyingTi�, and let� be an arbitrary
variable assignment. There has to be a branchB0 2 Ti� with (M;�) j= B0. Again,
the only interesting case is whereB0 = B�, andB� is the only branch inTi�
satisfied by(M;�).

By definition of universal formulae, that impliesB j=�T (8xj1) � � � (8xjmj)�j
(1 � j � p) and, thus,B� j=�T (8xj1) � � � (8xjmj)�j� (Lemma 9), which implies(M;�) j= �� where� = f(8xj1) � � � (8xjmj)�j j 1 � j � pg, as (M;�) j= B�.
Becauseh�; f�1; : : : ; �kgi is a refuter for� and, thus,�� j=�T �1 _ : : :_ �k, we

22

have(M;�) j= �j for somej 2 f1; : : : ; kg. This, finally, implies thatM satisfies
the branchB� [f�jg in Ti+1.

Theory Closure Rule:In the same way as in the case of the theory expansion
rule, we conclude that(M;�) j= ��. But now this leads to a contradiction: be-
cause the residue is empty,valI;�(��) = falseby definition. Thus the assumption
thatB0 = B� has to be wrong, and the branchB� can be removed from the ta-
bleau. �

Based on this lemma, soundness of semantic tableaux with theory reasoning
can easily be proven:

THEOREM 47 If there is a universal formula tableau proofff:�gg = T0; T1; : : : ; Tn�1; Tn = ;
for a sentence� 2 Form� (Def. 41), then� is aT -tautology.

Proof. None of the tableaux in the sequence which the tableau proof consists of
can beT -satisfiable, otherwise the empty tableauTn = ; had to beT -satisfiable
as well (according to Lemma 46); this, however, is impossible because the empty
tableau has no branches.

Thus, the first tableauff:�gg in the sequence isT -unsatisfiable, i.e.,:� isT -unsatisfiable, which is equivalent to� being aT -tautology. �
5 COMPLETENESS

5.1 Complete Background Reasoners

The most important feature of a background reasoner is completeness—besides
soundness which is part of the definition of background reasoners. We define a
background reasoner to be complete if its combination with the foreground rea-
soner leads to a complete calculus.

DEFINITION 48 A (ground) background reasoner for a theoryT is� a complete groundbackground reasoner forT if, for everyT -tautology�,
a ground tableau proof (Def. 37) can be built usingR.� a complete free variablebackground reasoner forT if, for everyT -tautolo-
gy�, a free variable tableau proof (Def. 38) can be built usingR.� a complete universal formulabackground reasoner forT if, for everyT -
tautology�, a universal formula tableau proof (Def. 41) can be built us-
ingR.

23

Because free variable tableaux are a special case of universal formula tableaux,
a complete universal variable background reasoner has to bea complete free vari-
able background reasoner as well.

The existence of complete background reasoners is trivial,because an oracle-
like background reasoner that detects all kinds of inconsistencies (and thus does
all the work) is complete for all versions of tableau:

THEOREM 49 Let T be a theory. If a background reasonerR satisfies the con-
dition: id 2 R(f�g)
for all T -unsatisfiable sentences� 2 Form�, thenR is a complete ground, free
variable, and universal variable background reasoner.

Proof. If � is a T -tautology, then its negation:� is T -unsatisfiable and thusid 2 R(f:�g). By applying the theory closure rule using this refuter, theempty
tableauT1 = ; can be derived from the initial tableauT0 = ff:�gg. �

This completeness result is only of theoretical value. In practice, theory reason-
ers are needed that, on the one hand, lead to short tableau proofs and, on the other
hand, can be computed easily (i.e., fast and at low cost). Of course, there is a trade
off between these two goals.

There is a complete background reasoner for a theoryT such thatR(�) is enu-
merable for all keys� if and only if the theoryT is axioamatizable. Thus, it is not
possible to implement a complete background reasoner for a non-axiomatizable
theory.

5.2 Completeness Criteria

General completeness criteria that work for all theories such as “a background
reasoner that computes all existing refuters is complete” are not useful in prac-
tice. For many theories, and in particular for equality, highly specialized back-
ground reasoners have to be used to build an efficient prover.These exploit domain
knowledge to restrict the number of refuters (and thus the search space); domain
knowledge has to be used to prove such background reasoners to be complete.

Therefore, the completeness criteria presented in the following refer to the se-
mantics of the particular theory, and there is no uniform wayto prove that a back-
ground reasoner satisfies such a criterion. Nevertheless, the criteria give some
insight in what has to be proven to show completeness of a background reasoner.

Fairness of the Foreground Reasoner

First, a characterization of fair tableau construction rules (i.e., fairness of the fore-
ground reasoner) is given for the ground version. This notion is used in the proof

24

that a background reasoner that satisfies a completeness criterion can be combined
with a fair foreground reasoner to form a complete calculus.

For the multi-set representation of tableaux, the notion offair tableau construc-
tion is somewhat more difficult to formalize than for the treerepresentation, but
this has no effect on which construction rules are fair.

The condition for�-, �-, and�-formulae is that the respective tableau rule is
applied sooner or later. The
-rule has to be applied to each
-formula infinitely
often, and—this is specific for the ground version—each ground term has to be
used for one of these applications. The background reasonerhas to be called with
all keys for which it is defined and all refuters have to be usedsooner or later.

DEFINITION 50 Given a ground background reasonerR, a ground tableau con-
struction rulefor R is a rule that, when supplied with a formula�, deterministi-
cally specifies in which way a sequence(Ti)i�0 of ground tableaux starting fromT0 = ff:�gg is to be constructed. The rule isfair if for all �:

1. If there is a branchB that occurs in all tableauxTi, i > n for somen � 0,
thenB is exhausted, i.e., no rule expansion or closure rule can be applied
toB.

2. For all infinite sequences(Bi)i�0 of branches such thatBi 2 Ti and eitherBi+1 = Bi or the tableauTi+1 has been constructed fromTi by applying an
expansion rule toBi andBi+1 is one of the resulting new branches inTi+1
(i � 0):

(a) for all �-, �-, and�-formulae� 2 Bi (i � 0), there is aj � i such that
the tableauTj+1 has been constructed fromTj by applying the�-, �-,
and�-rule to� 2 Bj .

(b) for all
-formulae� 2 Bi (i � 0) and all termst 2 Term0�, there is
a j � 0 such that the tableauTj+1 has been constructed fromTj by
applying the
-rule to� 2 Bj andt is the ground term that has been
substituted for the universally quantified variable in�.

(c) for all keys� � Bi (i � 0) such thatR(�) is defined and all refutershid ; Ri 2 R(�), there is aj � 0 such that the tableauTj+1 has been
constructed fromTj by applying the theory expansion or the theory
closure rule toBj using the key� � Bj and the refuterhid ; Ri (if
the background reasoner is monotonic, a key�0 � � may be used as
well).

A Completeness Criterion for Ground Background Reasoners

The criterion we are going to prove is that a background reasoner is complete if, for
all T -unsatisfiable downward saturated sets�, it can either derive a residue con-
sisting of new formulae that are not yet in�, or it can detect theT -unsatisfiability
of �.

25

DEFINITION 51 A set� � Form� is downward saturated if the following con-
ditions hold for all formulae� 2 � that are not a literal:

1. if � = �, then�1; �2 2 �;

2. if � = �, then�1 2 � or �2 2 �;

3. if � = �(x), then�1(t) 2 � for some termt 2 Term0�;

4. if � =
(x), then
1(t) 2 � for all termst 2 Term0�.

THEOREM 52 A ground background reasonerR for a theoryT is complete if,
for all (finite or infinite)T -unsatisfiabledownward saturated sets� � Form� that
do not contain free variables:

1. there is a key� � � such thatid 2 R(�); or

2. there is a key� � � such that there is a refuterhid ; f�1; : : : ; �kgi in R(�)
with f�1; : : : ; �kg \ � = ; (k � 1).

Proof. LetR be a background reasoner satisfying the criterion of the theorem, and
let� be aT -tautology. We prove that, usingR and an arbitrary fair ground tableau
construction rule (Def. 50), a tableau proof for� is constructed. Let(Ti)i�0 be the
sequence of ground tableaux that is constructed according to the fair rule starting
from T0 = ff:�gg.

Supposed(Ti)i�0 is not a tableau proof. If the sequence is finite, then there has
to be at least one finite exhausted branchB� in the final tableauTn. If the sequence
is infinite, then there is a sequence(Bi)i�0, Bi 2 Ti, of branches as described in
Condition 2 in the definition of fairness (Def. 50). In that case,B� = Si�0Bi is
the union of these branches. We proceed to prove that the setB� is T -satisfiable.
Because of the fairness conditions,B� is downward saturated. If it wereT -unsatis-
fiable, then there had to be a key� � B� such thatid 2 R(�) or such that there is
a refuterhid ; f�1; : : : ; �kgi 2 R(�) (k � 1) wheref�1; : : : ; �kg \B� = ;. Be-
cause keys are finite, there then had to be ani � 0 such thatBi � �; thus, for
somej � 0, the tableauTj+1 had to be constructed fromTj applying the theory
closure rule toBj—which is according to the construction of the sequence(Bi)i�0
not the case—, orTj+1 had to be constructed fromTj applying the theory rule
to Bj such that�m 2 Bj+1 for somem 2 f1; : : : ; kg—which is impossible be-
causef�1; : : : ; �kg \B� = ;.

We have shownB� to beT -satisfiable. Because:� 2 B�, :� is T -satisfi-
able as well. This, however, is a contradiction to� being aT -tautology, and the
assumption that(Ti)i�0 is not a tableau proof has to be wrong. �

The criterion can be simplified if the residues a background reasoner computes
for keys consisting of literals consist of literals as well.This is a reasonable as-
sumption, which is usually satisfied in practice (and is truefor all total background
reasoners).

26

COROLLARY 53 A ground background reasonerR for a theoryT is complete
if, for all keys� � Lit� for whichR is defined,R � Lit� for all h�;Ri 2 R(�)
and for all (finite or infinite)T -unsatisfiable sets� � Form� of literals that do
not contain free variables:

1. there is a key� � � such thatid 2 R(�); or

2. there is a key� � � such that there is a refuterhid ; f�; : : : ; �kgi in R(�)
with f�1; : : : ; �kg \ � = ; (k � 1).

Proof. Let � be a downward saturatedT -unsatisfiable set of formulae and define�0 = � \ Lit� to be the set of literals in�. Then�0 is T -unsatisfiable, because aT -structure satisfying�0 would satisfy� as well.
Thus, there is a key� � �0 � � such thatid 2 R(�)—in which case we are

done—, or there is a key� � �0 and a refuterhid ; f�1; : : : ; �kgi 2 R(�) withf�1; : : : ; �kg \ �0 = ;. In the latter case, the refuter satisfies the conditionf�1; : : : ; �kg \ � = ;,
because by assumptionf�1; : : : ; �kg � Lit�. �

There is a strong relation between the criterion from Theorem 52 and the defini-
tion of Hintikka sets for theory reasoning: similar to classical first-order Hintikka
sets (see Sect. 2.3 in Chap. 1), any set is satisfiable that does not contain “obvious”
inconsistencies (inconsistencies that can be detected by the background reasoner)
and is downward saturated (the background reasoner cannot add new formulae).

EXAMPLE 54 The complete background reasoner for the theoryOP of partial
orderings from Example 32 can be turned into a definition of Hintikka sets forOP:
A set� that is downward saturated and, in addition, satisfies the following condi-
tions isOP-satisfiable:

1. For all termst; t0; t00 2 Term�:
if (t < t0); (t0 < t00) 2 �, then(t < t00) 2 �.

2. There is no literal of the form(t < t) in �.

3. There are no literals�;:� in �.

A Completeness Criterion for Free Variable Background Reasoners

The criterion for free variable background reasoners is based on lifting complete-
ness of a ground background reasoner. If the ground background reasoner com-
putes a refuterhid ; Ri for a ground instance�� of a key�, then, to be complete,
the free variable background reasoner has to compute a refuter for� that is more
general thanh�;Ri.

27

THEOREM 55 LetR be a free variable background reasoner for a theoryT ; R is
complete if there is a complete ground background reasonerRg for T such that,
for all keys� � Form�, all ground substitutions� , and all refutershid ; Rgi 2 Rg(��),
there is a refuterh�;Ri 2 R(�) and a substitution� 0 with

1. � = � 0 � �,

2. R� 0 = Rg .

Proof. Let the sentence� be aT -tautology. SinceRg is a complete ground
background reasoner, usingRg a ground tableau proofff:�gg = T g0 ; : : : ; T gn = ; ;
can be constructed, where the new terms introduced by�-rule applications have
been chosen in an arbitrary way (see below).

By induction we prove that there is a free variable tableau proofff:�gg = T0; : : : ; Tn = ;
such thatTi�i = T gi for substitutions�i 2 Subst�� (0 � i � n).i = 0: Since� is a sentence,T0�0 = T g0 for �0 = id.i! i + 1: Depending on howT gi+1 has been derived fromT gi , there are the
following subcases:

If T gi+1 has been derived fromT gi by applying an expansion rule to a formula�g
on a branchBgi 2 T gi , then there has to be a formula�i on a branchBi 2 Ti such
that�i�i = �gi andBi�i = Bgi . If an �- or �-rule has been applied, then apply
the same rule to�i to deriveTi+1 from Ti and set�i+1 = �i. If a
-rule has been
applied and the termt has been substituted for the quantified variable in the ground
tableau, then deriveTi+1 fromTi by applying a
-rule to�i and substituting a new
free variablex for the quantified variable; set�i+1 = �i [fx 7! tg. If a �-rule has
been applied, then apply the free variable�-rule to �i to deriveTi+1 from Ti
and set�i+1 = �i. In addition, the new ground term introduced in the ground
tableau—that we are free to choose as long as it does not occurin Ti—shall bef(x1; : : : ; xn)�i wheref(x1; : : : ; xn) is the Skolem term that has been substituted
for the existentially quantified variable in the free variable tableau.

If T gi+1 has been derived fromT gi by applying the theory closure or the theory
expansion rule using a key�g taken from a branchBgi 2 T gi and a refuterid orhid ; Rgi in Rg(�g), then there has to be a key�i on a branchBi 2 Ti such that�i�i = �gi andBi�i = Bgi . Thus. there is a refuterh�;Ri 2 R(�) and a substi-
tution � 0 such that�i = � 0 � � andR� 0 = Rg . In that case, deriveTi+1 from Ti
by applying the theory expansion or closure rule using the key �i and the refuterh�;Ri, and set�i+1 = � 0. �

28

EXAMPLE 56 The criterion from Theorem 55 can be used to prove completeness
of the free variable background reasonerR for the theoryOP of partial orderings
that satisfies the following conditions. The proof is based on the completeness of
the ground background reasoner forOP from Example 32. The conditions forR
are:

1. For all termss1; t; t0; s2 2 Term� wheret andt0 are unifiable:
if (s1 < t); (t0 < s2) 2 �, then h�; f(s1 < s2)�gi 2 R(�) where� is a
most general unifier (MGU) oft andt0.

2. For all termst; t0 2 Term� that are unifiable:
if (t < t0) 2 �, then� 2 R(�) where� is an MGU oft andt0.

3. For all atoms�; �0 2 Form� that are unifiable:
If �;:�0 2 �, then� 2 R(�) where� is an MGU of� and�0.

In the ground case, a tableau proof can be constructed deterministically us-
ing a fair tableau construction rule. In the free variable case, however, there are
additional choice points because there may be refuters withincompatible substi-
tutions. Thus lifting the notion of fairness to the free variable case such that no
backtracking at all is needed to construct a tableau proof isvery difficult (though
not impossible).

A Completeness Criterion for Universal Formula BackgroundReasoners

A criterion for the completeness of universal formula background reasoners can be
defined based on completeness of free variable background reasoners (the proof of
the theorem is similar to that of Thereom 55).

DEFINITION 57 Let� � Form� be a key, and let(8x1) � � � (8xk)� be a univer-
sally quantified literal in�. If �0 is constructed from� by replacing the variablesx1; : : : ; xk by free variablesy1; : : : ; yk that do not occur in�, then�0 is a free
variable instanceof (8x1) � � � (8xk)� (w.r.t.�).

THEOREM 58 LetR be a universal formula background reasoner for a theoryT ;R is complete if there is a complete free variable background reasonerRfv for T
such that, for all keys� � Form�, the following holds:

Let the key�fv be constructed from� by replacing all formulae� 2 � of the
form (8x1) � � � (8xn) by a free variable instance of�, and letF be the set
of all the free variables occurring in�fv but not in�. Then, for all refutersh�fv ; Rfvi 2 Rfv (�fv), there is a refuterh�;Ri 2 R(�) where

1. �fv j(V nF) = �,

2. Rfv = R(�fv jF).

29

5.3 Completeness Preserving Refinements

Restrictions on Keys

In this section, additional refinements are discussed that are indispensable for an
efficient implementation of theory reasoning.

An important simplification usually used in implementations is to impose the
restriction on keys that they must consist of literals (universally quantified liter-
als in the case of universal formula tableau). The proof for Theorem 52 shows
that completeness is preserved if this restriction is combined with any complete
background reasoner.

COROLLARY 59 Let R be a complete ground, free variable, or universal for-
mula background reasoner. Then the restrictionR0 ofR to keys� that consist of
(universally quantified) literals is complete (R0 is undefined for other keys).

The set of keys that have to be considered can be further restricted. The back-
ground reasoner has only to be defined for keys that contain a pair of complemen-
tary literals or at least one formula in which a symbol occursthat is defined by the
theory:

DEFINITION 60 A set of function or predicate symbols isdefinedby a theoryT
if for all sets� of formulae that do not contain these symbols:� is satisfiable if
and only if� is T -satisfiable.

For example, the equality theoryE defines the equality predicate�; the theory
of partial orderings defines the predicate symbol<.

Similarly, only keys have to be considered that contain a pair of complementary
literals or consist of formulae thatall have a predicate symbol in common with
the theory (which may or may not be defined by the theory). Thus, for the theoryOP, all formulae in keys have to contain the predicate symbol< as it is the only
predicate symbol inOP. For the equality theoryE , however, this restriction is
useless becauseE contains all predicate symbols.

COROLLARY 61 Let R be a complete ground, free variable, or universal for-
mula background reasoner for a theoryT . Then the restrictionR0 ofR to keys�
that

1. (a) contain at least one occurrence of a function or predicate symbol de-
fined byT , and

(b) consist of formulae that all have at least one predicate symbol in com-
mon withT ,

2. or contain a pair� and: (resp.(8x)�) and(8y):), where� and are
unifiable,

is complete (R0 is undefined for other keys).

30

Most General Refuters

There is another important refinement that can be combined with all complete
background reasoners: completeness is preserved if only most general refuters are
computed (this is a corollary to Theorem 55). The subsumption relation on refuters
may or may not take the theoryT into account:

DEFINITION 62 Let T be a theory; and letW � V be a set of variables. The
subsumption relations�W and�WT on refuters are defined by:� h�;Ri �W h�0; R0i if there is a substitution� 2 Subst�� such that

1. �0(x) = �(x)� for all x 2W , and

2. R0� � R.� h�;Ri �WT h�0; R0i if there is a refuterh�00; R00i such that

1. h�;Ri �W h�00; R00i, and

2. ��00 [fWR00g j=�T ��0 [fWR0g for all formula sets� � Form� (in-
cluding, in particular, the empty set).

In addition, we use the abbreviations� = �V and�T = �VT whereV is the set
of all variables.

The setW contains the “relevant” variables, includingat leastthose occurring
in the two refuters that are compared. If, for example, the theory expansion rule
is used to extend a tableau branch, thenW contains all free variables occurring in
the tableau. It is of advantage to keep the setW as small as possible; but, if the
context is not known, the setW = V of all variables has to be used.

The intuitive meaning ofh�;Ri �WT h�0; R0i is that the effects of using the re-
futerh�0; R0i can be simulated by first applying a substitution� and then using the
resulting refuterh�00; R00i of which the refuterh�0; R0i is a logical consequence.

EXAMPLE 63 The refuterhid ; fp(x)gi subsumeshfx 7! ag; fp(a)gi w.r.t. the
subsumption relation�W (and thus w.r.t.�WT) for all variable setsW ; however, it
subsumes the refuterhid ; fp(a)gi only if x 62W .

The refuterh�; f�gi is more general thanh�; f�; gi w.r.t. all subsumption re-
lations, i.e., only refuters with a minimal residue are mostgeneral.

Let T be the equational theoryE [fa � bg. Then hid ; p(a)i and hid ; p(b)i
resp.fx 7! ag andfx 7! bg subsume each other w.r.t.�T .

COROLLARY 64 LetR be a complete free variable or universal formula back-
ground reasoner for a theoryT . Then a background reasonerR0 is complete as
well if, for all keys� and refutersh�;Ri 2 R(�), there is a refuterh�0; R0i 2 R0(�)
that subsumesh�;Ri w.r.t.� or �T (Def. 62).

31

If the subsumption relations�W and�WT are used, the context in which a back-
ground reasoner is used has to be taken into consideration:

THEOREM 65 Let R be a complete free variable or universal formula back-
ground reasoner for a theoryT . Then, for everyT -tautologies�, a free variable
tableau proof resp. a universal formula tableau proof can bebuilt usingR ob-
serving the restriction that eachT -refuter that is used in a theory expansion or
closure rule application is minimal inR(�) w.r.t.�W or �WT , where� is the key
that has been chosen for that rule application andW is the set of free variables in
the tableau to which the rule is applied.

The number of refuters that have to be considered is closely related to the num-
ber of choice points when the theory expansion or closure rule is applied to a
tableau. Therefore, it is desirable to compute aminimalset of refuters. Neverthe-
less, it is often not useful to ensure minimality since thereis a trade-off between
the gain of computing a minimal set and the extra cost for checking minimality
and removing subsumed refuters. While it is relatively easyto decide whetherh�;Ri �W h�0; R0i, it can (depending on the theoyT) be difficult to decide and is
in general undecidable whetherh�;Ri �WT h�0; R0i.
Other Search Space Restrictions

There are other useful restrictions that, however, cannot be imposed on an arbitrary
background reasoner without destroying completeness. Nevertheless, for every
theory, there are background reasoners that have at least some of the following
features:� To avoid branching when the theory expansion rule is applied, only refutersh�;Ri are computed where the residue is either empty or a singleton.� Only total refuters are computed, i.e., the residues are empty.� The sets of refuters computed for a key are restricted to be

– finite (in which case their computation terminates);

– empty or a singleton (then theory expansion or closure rulesare—at
least for a single key—deterministic);

There is, of course, a trade-off between these desirable features, in particular
between total and partial theory reasoning (see Sect. 2.5).

32 t � s�[t]�[s] s � t�[t]�[s] :(t � t)� �:��
Table 9. Jeffrey’s equality theory expansion and closure rules.

6 PARTIAL EQUALITY REASONING

6.1 Partial Equality Reasoning for Ground Tableaux

Virtually all approaches to handling equality can be regarded as a special case of
the general methods for theory reasoning in semantic tableaux. Exception are, for
example, the method ofequality elimination[Degtyarev and Voronkov, 1996a] and
applying transformations from first-order logic with equality into first-order logic
without equality to the input formulae [Brand, 1975; Bachmair et al., 1997] (see
Sect. 9).

The first methods for adding equality to the ground version ofsemantic tableaux
have been developed in the 1960s [Jeffrey, 1967; Popplestone, 1967], following
work by S. Kanger on how to add equality to sequent calculi [Kanger, 1963].
R. Jeffrey introduced the additional tableau expansion andclosure rules shown in
Table 9 (i.e., a partial reasoning method); a similar set of rules has been described
by Z. Lis in [Lis, 1960]. If a branchB contains a formula�[t] and an equalityt � s
or s � t that can be “applied” to�[t] to derive a formula�[s] (which is constructed
by substituting one occurrence oft in �[t] by s), then�[s] may be added toB.

There are two closure rules. The first one is the usual closurerule for ground
tableaux with and without theory reasoning: a branchB is closed if there are
formulae� and:� in B. The second one is an additional equality theory closure
rule: a branch is closed if it contains a formula of the form:(t � t).
THEOREM 66 (Jeffrey, 1967)A ground background reasonerR for the theoryE
of equality is complete if it satisfies the following conditions:

1. For all termst; s 2 Term0� and sentences� 2 Form�:
if �[t]; (t � s) 2 � or �[t]; (s � t) 2 �, thenhid ; f�[s]gi 2 R(�).

2. For all termst 2 Term0�: if :(t � t) 2 �, thenid 2 R(�).
3. For all sentences� 2 Form�: if �;:� 2 �, thenid 2 R(�).

EXAMPLE 67 Figure 2 shows an example for the application of Jeffrey’s equality
expansion and closure rules: The equality (1) is applied to the formula (2) to derive
formula (4) and to (4) to derive (5). The branch is closed by the complementary
formulae (3) and (5). Note that it is not possible to derivep(b; b) in a single step.

33

(1) a � b
(2) p(a; a)
(3) :p(b; b) ; (1) a � b

(2) p(a; a)
(3) :p(b; b)
(4) p(a; b) ; (1) a � b

(2) p(a; a)
(3) :p(b; b)
(4) p(a; b)
(5) p(b; b)�

Figure 2. The application of Jeffrey’s additional rules to expand and close a tableau
branch (Example 67).

The background reasoner is still complete if the formula� to which an equality
is applied is restricted to be (a) an inequality:(s � t), or (b) a literalp(t1; : : : ; tn)
or :p(t1; : : : ; tn) wherep 6= �; i.e., equalities do not have to be applied to com-
plex formulae or to equalities.

Jeffrey’s rules resemble paramodulation [Robinson and Wos, 1969] (see [Sny-
der, 1991] for an overview on various techniques for improving paramodulation).

Besides being based on the ground version of tableaux, the new expansion rules
have a major disadvantage: they are symmetrical and their application is com-
pletely unrestricted. This leads to much non-determinism and a huge search space;
an enormous number of irrelevant formulae (residues) can bederived. If, for ex-
ample, a branchB contains the formulaef(a) � a andp(a), then all the formulaep(f(a)); p(f(f(a))); : : : can be added toB.

The rules presented by S. Reeves [Reeves, 1987] (see Table 10) generate a
smaller search space. They are the tableau counterpart of RUE-resolution [Di-
gricoli and Harrison, 1986] and are more goal-directed thanJeffrey’s expansion
rules: only literals that are potentially complementary are used for expansion. Like
RUE-resolution, the rules are based upon the following fact: If an E-structureM
satisfies the inequality:(f(a1; : : : ; ak) � f(b1; : : : ; bk)) or it satisfies the formu-
laep(a1; : : : ; ak) and:p(b1; : : : ; bk), then at least one of the inequalities:(a1 � b1); : : : ;:(ak � bk)
is satisfied byM . In addition, a rule is needed that implements the symmetry of
equality, i.e., that allows to deduces � t from t � s. With these equality theory
expansion rules, it is sufficient to use the same closure rules as in Theorem 66:

THEOREM 68 (Reeves, 1987)If a ground background reasonerR for the the-
ory E of equality satisfies the following conditions, it is complete:

1. For all termst = f(t1; : : : ; tk) ands = f(s1; : : : ; sk) (k � 1):
if :(t � s) 2 �, thenhid ; f:(s1 � t1); : : : ;:(sk � tk)gi 2 R(�).

34 p(t1; : : : ; tk):p(s1; : : : ; sk):(t1 � s1) � � � :(tk � sk) :(f(t1; : : : ; tk) � f(s1; : : : ; sk)):(t1 � s1) � � � :(tk � sk)t � ss � t :(t � t)� �:��
Table 10. Reeves’s equality expansion and closure rules.

(1) a � b
(2) p(a; a)
(3) :p(b; b)

(4) :(a � b)� (5) :(a � b)�
Figure 3. Applying Reeves’s equality expansion rule (Example 69).

2. For all literals = p(t1; : : : ; tk) and 0 = :p(s1; : : : ; sk) (k � 1):
if ; 0 2 �, thenhid ; f:(s1 � t1); : : : ;:(sk � tk)gi 2 R(�).

3. For all termss; t 2 Term0�: if (s � t) 2 �, thenhid; ft � sgi 2 R(�).
4. For all termst 2 Term0�: if :(t � t) 2 �, thenid 2 R(�).
5. For all literals� 2 Lit�: if �;:� 2 �, thenid 2 R(�).

EXAMPLE 69 Figure 3 shows the application of Reeves’s rule toexpand and
close the same tableau branch as in Figure 2: It is applied to the atomic formulae
(2) and (3) to generate the inequalities (4) and (5). The branches are closed by the
formulae (1) and (4) and (1) and (5), respectively.

Reeves’s approach, however, can lead to heavy branching, because the new
expansion rules can as well be applied to pairs of equalitiesand inequalities. In
the worst case, the number of branches generated is exponential in the number of
equalities on the branch.

6.2 Partial Equality Reasoning for Free Variable Tableaux

M. Fitting extended Jeffrey’s approach and adapted it to free variable tableaux
[Fitting, 1996]. The main difference is that equality rule applications may require

35t � s�[t0](�[s])� s � t�[t0](�[s])� :(t � t0)� ��0�
where� is an MGU oft andt0 resp.� and�0
and� is applied to the whole tableau.

Table 11. Fitting’s equality reasoning rules for free variable tableaux.

instantiating free variables, i.e., the substitution thatis part of a refuter may not be
the identity. These substitutions can be obtained using unification: If an equalityt � s is to be applied to a formula�[t0], the application of a most general unifier�
of t andt0 is sufficient to derive(�[s])� (see Table 11).

Unification can become necessary as well if a branch is to be closed using equal-
ity; for example, a branch that contains the inequality:(f(x) � f(a)) is closed if
the substitutionfx 7! ag is applied (to the whole tableau):

THEOREM 70 (Fitting, 1990)R is a complete free variable background reasoner
for the equality theoryE if it satisfies the following conditions:

1. For all termst; t0 2 Term� that are unifiable and all� 2 Form�:
if (t � s); �[t0] 2 �, thenh�; f(�[s])�gi 2 R(�) where� is an MGU oft
andt0.

2. For all termst; t0 2 Term� that are unifiable:
if :(t � t0) 2 �, then� 2 R(�) where� is an MGU oft andt0.

3. For all literals�; �0 2 Lit� that are unifiable:
If �;:�0 2 �, then� 2 R(�) where� is an MGU of� and�0.

EXAMPLE 71 Figure 4 shows a free variable tableau that provesthe following
set of formulae to be inconsistent:(1) (8x)(g(x) � f(x) _ :(x � a))(2) (8x)(g(f(x)) � x)(3) b � c(4) p(g(g(a)); b)(5) :p(a; c)
By applying the standard free variable tableau rules, formula (6) is derived from
formula (2), (7) from (1), and (8) and (9) from (7). The framedformulae are added
to the left branch by applying Fitting’s equality expansionrules: Formula (10)
is derived by applying equality (8) to (4) (the substitutionfx2 7! ag has to be
applied), formula (11) is derived by applying (6) to (10) (the substitutionfx1 7! ag
has to be applied), and formula (12) is derived by applying (3) to (11). Formulae

36

(12) and (5) close the left branch. The right branch is closedby the inequality (9)
(the substitutionfx2 7! ag has already been applied).

The example demonstrates a difficulty involved in using freevariable equal-
ity expansion rules: If equality (8) is applied to (4) in the wrong way, i.e., if
the formula (10’)p(f(g(a)); b) is derived instead of (10)p(g(f(a)); b), then the
term g(a) is substituted forx2 and the tableau cannot be closed. Either a new
instance of (7), (8) and (9) has to be generated by applying the
-rule to (1), or
backtracking has to be initiated.

Completeness is preserved if the restriction is made that the formulae� und�0
in Theorem 70 which the equality expansion rule is applied tohave to be literals
(similar to the ground case). However, the restriction thatequalities must not be
applied to equalities (that can be employed in the ground case) would destroy
completeness, as the following example demonstrates.

EXAMPLE 72 Let the tableau branchB contain the formulaea � b; f(h(a); h(b)) � g(h(a); h(b)); :(f(x; x) � g(x; x)) :
A refuter with the residueff(h(a); h(a)) � g(h(a); h(a))g can be derived, pro-
vided it is allowed to apply equalities to equalities. Afterthis formula has been
added to the branch, the closing refuterfx 7! h(a)g can be found.

If the application of equalities to equalities is prohibited, completeness is lost:
then the only possibility is to applya � b to the inequality inB. All refuters that
can be derived that way instantiate the variablex either witha or with b, which
in the sequel makes it impossible to close the branch. Note that the criterion from
Theorem 55, which would guarantee completeness, is not satisfied.

6.3 Partial Equality Reasoning for Tableaux with
Universal Formulae

Fitting’s method can easily be extended to free variable tableauxwith universal
formulae[Beckert, 1997]. When equalities are used to derive new formulae, uni-
versality of both the equalityt � s (resp.s � t) and the formula�[t0] it is applied
to has to be taken into consideration. The difference to the equality expansion rules
from Section 6.2 is that, instead of the MGU� of t andt0, only its restriction�0 to
variables is applied w.r.t. whichnotall formulae in the precondition of the rule areT -universal (apart from that, the rule schemata are the same as the free variable
schemata in Table 11). If an equality is universal with respect to a variablex, the
variablex does not have to be instantiated to apply the equality. When branches
are closed, the universality of formulae has to be taken intoconsideration as well.

37

(1) (8x)(g(x) � f(x) _ :(x � a))
(2) (8x)(g(f(x)) � x)

(3) b � c
(4) p(g(g(a)); b)

(5) :p(a; c)
(6) g(f(x1)) � x1

(7) g(x2) � f(x2) _ :(x2 � a)
(8) g(x2) � f(x2)

(10) p(g(f(a)); b)
(11) p(a; b)
(12) p(a; c) (9) :(x2 � a)

Figure 4. Using Fitting’s expansion rules (Example 71).

EXAMPLE 73 If the method from Theorem 40 for recognizing universal formu-
lae is used, the tableau in Figure 4 (without the framed formulae) can be closed
using the substitutionfx2 7! ag. The variablex1 does not have to be instantiated,
because equality (6) is recognized to be universal w.r.t. tox1.

The background reasoner does not have to cope with the problem of recog-
nizing universal formulae, because in keys the universal formulae are explicitly
universally quantified (Def. 41).

THEOREM 74 A background reasonerR that satisfies the following conditions
is a complete universal formula background reasoner for theequality theoryE :

1. For all s; t; t0 2 Term� such thatt; t0 are unifiable, and all� 2 Form�:
if (8x)(t � s); (8y)�[t0] 2 �, thenh�jF ; f(�[s])�gi 2 R(�) where� is an
MGU of t andt0 andF is the set of variables that are free in(8x)(t � s) or(8y)�[t0].3

2. For all t; t0 2 Term� that are unifiable:
if (8x):(t � t0) 2 �, then�jF 2 R(�) where� is an MGU oft andt0 andF is the set of variables that are free in(8x):(t � t0).

3. For all atoms�; �0 2 Form� that are unifiable:
if (8x)�; (8y):�0 2 �, then�jF 2 R(�) where� is an MGU of� and�0
andF is the set of variables that are free in(8x)� or (8y)�0.3(8x) is an abbreviation for(8x1) � � � (8xm) (m � 0). Without making a real restriction, we

assume the sets of free and bound variables occurring in� to be disjoint.

38

7 TOTAL EQUALITY REASONING

7.1 Total Equality Reasoning andE-unification

The common problem of all the partial reasoning methods described in Section 6.1,
which are based on additional tableau expansion rules, is that there are virtually
no restrictions on the application of equalities. Because of their symmetry, this
leads to a very large search space; even very simple problemscannot be solved in
reasonable time.

It is difficult to transform more elaborate and efficient methods for handling
equality, such as completion-based approaches, into (sufficiently) simple tableau
expansion rules (i.e., partial background reasoners). A set of rules that implement
a completion procedure for the ground version of tableaux has been described in
[Browne, 1988]; however, these equality expansion rules are quite complicated,
and the method cannot be extended to free variable tableaux.

If total equality reasoning is used, i.e., if no equality expansion rules are added,
then the problem of finding refuters that close a tableau branch is equivalent to
solvingE-unification problems.

Depending on the version of semantic tableaux to which equality handling is
added, different types ofE-unification problems have to be solved. These are
introduced in the following section.

7.2 Universal, Rigid and MixedE-unification

The different versions ofE-unification that are important for handling equality in
semantic tableaux are: the classical “universal”E-unification, “rigid” E-unifica-
tion, and “mixed”E-unification, which is a combination of both. The different
versions allow equalities to be used differently in an equational deduction: in the
universal case, the equalities can be applied several timeswith different instantia-
tions for the variables they contain; in the rigid case, theycan be applied more than
once but with only one instantiation for each variable; in the mixed case, there are
both types of variables.

Which type ofE-unification problems has to be solved to compute refuters,
depends on the version of semantic tableaux that equality reasoning is to be added
to. UniversalE-unification can only be used in the ground case. For handling
equality in free variable tableaux, rigidE-unification problems have to be solved.
For tableaux with universal formulae, both versions have tobe combined [Beckert,
1994]; then equalities contain two types of variables, namely universal (bound) and
rigid (free) ones.

DEFINITION 75 AmixedE-unification problemhE; s; ti consists of a finite setE
of universally quantified equalities(8x1) � � � (8xm)(l � r) and termss and t. A

39E s t MGUs Typeff(x) � xg f(x) a fx 7! ag rigidff(a) � ag f(a) a id groundf(8x)(f(x) � x)g g(f(a); f(b)) g(a; b) id universalff(x) � xg g(f(a); f(b)) g(a; b) — rigidf(8x)(f(x; y) � f(y; x))g f(a; b) f(b; a) fy=bg mixed

Table 12. Examples for the different versions ofE-unification.

substitution� 2 Subst�� is asolutionto the problemhE; s; ti ifE� j=�E (s� � t�) :4
The major differences between this definition and that generally given in the

literature on (universal)E-unification are:� The equalities inE areexplicitly quantified (instead of considering all the
variables inE to beimplicitly universally quantified).� The strong consequence relationj=�E is used instead ofj=E .� The substitution� is applied not only to the termss und t but also to the
setE.

A mixedE-unification problemhE; s; ti is universalif there are no free vari-
ables inE, and it isrigid if there are no bound variables inE (if E is ground, the
problem is both rigid and universal).

EXAMPLE 76 Table 12 shows some simple examples for the different versions ofE-unification. The fourth problem has no solution, since the free variablexwould
have to be instantiated with botha andb. Contrary to that, the empty substitutionid is a solution to the third problem where the variablex is universally quantified.

Syntactical unification is a special case ofE-unification, namely the case where
the setE of equalities is empty.

For handling equality in free variable tableaux, the problem of finding a simul-
taneous solution to several mixedE-unification problems plays an important rôle,
as it corresponds to the problem of finding a substitution that allows to simultane-
ously close several tableau branches.

DEFINITION 77 A finite setfhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1) of E-unifi-
cation problems is calledsimultaneousE-unification problem. A substitution�
is a solution to the simultaneous problem if it is a solution to every componenthEk; sk; tki (1 � k � n).4This is equivalent toE� j=E (s� � t�) where the free variables inE� are “held rigid”, i.e.,
treated as constants.

40

7.3 ExtractingE-unification Problems from Keys

The important formulae in a key from whichE-unification problems are extracted
are: equalities, inequalities, and pairs of potentially complementary literals:

DEFINITION 78 Literals(8x1) � � � (8xk)p(s1; : : : ; sn) and (8y1) � � � (8yl):p(t1; : : : ; tn) ;
wherep 6= �, are called a pair ofpotentially complementary literals(n � 0 andk; l � 0, i.e., the literals may or may not be universally quantified).

We now proceed to define the set of equalities and the set ofE-unification
problems of a key. All considerations here are restricted tokeys consisting of
universally quantified literals.

DEFINITION 79 Let � � Form� be a key. ThesetE(�) of equalitiesconsists
of the universally quantified equalities in�, i.e., all formulae in� of the form(8x1) � � � (8xk)(s � t) (k � 0).

EXAMPLE 80 As an example, we use the tableau from Figure 4. Itsleft branch is
denoted byB1 and its right branch byB2. If the method for recognizing universal
formulae from Theorem 40 is used and keys�1 and�2 are built from the literals on
the branchesB1 andB2, respectively (according to Theorem 41), then bothE(�1)
andE(�2) contain the equalitiesb � c and(8x)(g(f(x)) � x); E(�1) contains,
in addition, the equalityg(x2) � f(x2).
DEFINITION 81 Let� � Form� be a key. ThesetP (�) of E-unification prob-
lemsconsists exactly of:

1. for each pair�; 2 � of potentially complementary literals, the problemhE(�); ht1; : : : ; tni; hs1; : : : ; snii
wherep(t1; : : : ; tn) and :p(s1; : : : ; sn) are free variable instances of�
resp. (Def. 57);

2. for each inequality� = (8x1) � � � (8xk)(:(t0 � s0)) in � (k � 0), the prob-
lem hE(�); t; si
where:(t � s) is a free variable instance of� (Def. 57).

The problems inP(B) of the formhE(B); hs1; : : : ; ski; ht1; : : : ; tkii are ac-
tually simultaneousE-unification problems (sharing the same set of equalities),
since the non-simultaneous problemshE(B); si; tii (1 � i � k) have to be solved
simultaneously.

41

LEMMA 82 A substitution is a solution to a simultaneous mixedE-unification
problem of the formfhE; s1; t1i; : : : ; hE; sn; tnig (n � 1) iff� it is a solution to the non-simultaneous mixedE-unificationproblemhE; f(s1; : : : ; sn); f(t1; : : : ; tn)i

(the function symbolf must not occur in the original problem), and� it does not instantiate variables with terms containingf .

All substitutions that areE-refuters, i.e., that close a tableau branchB, can be
computed by extracting the setP (�) of mixedE-unification problems from a key� � B according to the above definition and solving the problems inP (�). If
one of the problems inP (�) has a solution�, all instances of�� areE-unsatisfi-
able; therefore,� is a refuter for�. The pair of potentially complementary literals
corresponding to the solved unification problem has been proven to actually beE-complementary; or the corresponding inequality has been proven to beE-com-
plementary (provided the refuter is applied).

EXAMPLE 83 We continue Example 80. Again,B1 denotes the left andB2 the
right branch of the tableau in Figure 4 (without the framed formulae), and�1
and�2 are keys extracted from these branches. Then bothP (�1) andP (�2)
contain the problemhE(�i); hg(g(a)); bi; ha; cii. P (�2) contains, in addition,
the problemhE(�2); x2; ai.

Apart from the version ofE-unification problems that have to be solved, the
way equality is handled is nearly the same for the different versions of semantic
tableau. Therefore, it is sufficient to only formulate one general soundness and
completeness theorem:

THEOREM 84 A total (universal formula, free variable, or ground) background
reasonerR is complete for the equality theoryE if it satisfies the following condi-
tion for all keys� � Lit�: If a substitution� is a most general solution w.r.t. the
subsumption relation�W (or �WE) of one of the problems inP (�), thenR(�)
contains the restriction of� to the variables occurring in�.

EXAMPLE 85 We continue from Examples 80 and 83:� = fx2 7! ag is a solu-
tion to the two mixedE-unification problemshE(�1); hg(g(a)); bi; ha; cii 2 P (�1) ;hE(�2); x2; ai 2 P (�2) :
When the theory closure rule is used to close one of the branches (and thus� is
applied to the tableau), the other branch can then be closed using the empty sub-
stitution.

42

7.4 Solving GroundE-unification Problems

In [Shostak, 1978], it is proven thatgroundE-unification is decidable; conse-
quently, by considering all variables to be constants, it isdecidable whether the
empty substitutionid is a solution to a givenrigid E-unification problemhE; s; ti,
i.e., whetherE j=� s � t. This can be decided by computing a congruence closure,
namely the equivalence classes of the terms (and subterms) occurring inhE; s; ti
w.r.t. the equalities inE.

DEFINITION 86 Let hE; s; ti be a ground (or rigid)E-unification problem; and
let ThE;s;ti � Term� be the set of all (sub-)terms occurring inhE; s; ti. The
equivalence class[t]hE;s;ti of a termt 2 ThE;s;ti is defined by:[t]hE;s;ti = fs 2 ThE;s;ti j E j=�E s � tg :

Since a groundE-unification problemhE; s; ti is solvable (andid a solution)
if and only if [s]hE;s;ti = [t]hE;s;ti, one can decide whetherhE; s; ti is solvable
by computing these equivalence classes. Shostak proved that for computing the
equivalence classes of all terms inThE;s;ti, no terms that are not inThE;s;ti have to
be considered: Ifs can be derived fromt using the equalities inE, then this can be
done without using an intermediate term that does not occur in the original prob-
lem, i.e., there is a sequence of termss = r0; r1; : : : ; rk = t, k � 0, all occurring
in hE; s; ti such thatri is derivable in one step fromri�1 using the equalities inE.

Since the number of subterms in a given problem is polynomialin its size, and
the congruence closure can be computed in time polynomial inthe number of
subterms and the number of equalities, the solvability of a groundE-unification
problem can be decided in polynomial time.

There are very efficient and sophisticated methods for computing the congru-
ence closure, for example the algorithm described in [Nelson and Oppen, 1980],
which is based on techniques from graph theory.

7.5 Solving UniversalE-unification Problems

To solve a universalE-unification problem, the question has to be answered whether
the equality of two given terms (or of instances of these terms) follows fromE or,
equivalently, whether the terms are equal in the free algebra ofE. Overviews of
methods for universalE-unification can be found in [Siekmann, 1989; Gallier and
Snyder, 1990; Jouannaud and Kirchner, 1991; Snyder, 1991].

7.6 Solving RigidE-unification Problems

RigidE-unification and its significance for automated theorem proving was first
described in [Gallieret al., 1987]. It can be used for equality handling in semantic

43

tableaux and otherrigid variable calculi for first-order logic, including the mat-
ing method [Andrews, 1981], the connection method [Bibel, 1987], and model
elimination [Loveland, 1969]; an overview of rigidE-unification can be found
in [Beckert, 1998].

The solution to a rigidE-unification problemhE; s; ti is a substitution repre-
senting the instantiations of free variables that have beennecessary to show that
the two given terms are equal; it is anE-refuter for the keyE [f:(s � t)g. A
single variable can only be instantiated once by a substitution and, accordingly, to
solve a rigidE-unification problem, the equalities of the problem can onlybe used
with (at most) one instantiation for each variable they contain; a variable is either
instantiated or not, that is, uninstantiated variables have to be treated as constants.

Rigid E-unification does not provide an answer to the question of howmany
different instantiations of an equality are needed to solvea problem. If a single
instance is not sufficient, then the answer is “not unifiable”. If several different
instances of an equality are needed, a sufficient number of copies of that equal-
ity (with different rigid variables) has to be provided for the rigidE-unification
problem to be solvable.

The following theorem clarifies the basic properties of rigid E-unification by
listing different characterizations of the set of solutions of a given problem:

THEOREM 87 Given a rigidE-unification problemhE; s; ti and a substitution� = fx1 7! t1; : : : ; xn 7! tng 2 Subst��, the following are equivalent conditions
for � being a solution tohE; s; ti:

1. E� j=�E s� � t�, i.e.,� is by definition a solution tohE; s; ti;
2. E� j=E s� � t� over a setV 0 of variables and a signature�0 such that

the variables occurring inhE; s; ti are constants, i.e.,V 0 = V nW and�0 = hP�; F� [W;�� [fx 7! 0 j x 2Wgi whereW is the set of vari-
ables occurring inhE; s; ti.

3. (E�)� j=E (s�)� � (t�)� for all substitutions� 2 Subst��;

4. E [fx1 � t1; : : : ; xn � tng j=�E s � t; provided that none of the vari-
ablesxi occurs in any of the termstj (1 � i; j � n);

5. � is the restriction to the variables occurring inhE; s; ti of a substitution
which is a solution to the rigidE-unification problemhE0; yes; noi whereE0 = E [feq(x ; x) � yes ; eq(s; t) � nog, and (a) the constantsyes; no,
the predicateeq , and the variablex do not occur inhE; s; ti, and (b) the
constantsyes ; no do not occur in the termst1; : : : ; tn.

The last characterization of solutions in the above theoremshows that it is al-
ways possible to solve a rigidE-unification problem by transforming it into a
problem in which the terms to be unified are constants.

44

If a rigid E-unification problem is solvable, then it has infinitely manysolu-
tions. But there are, for each problem,finitesets of solutions w.r.t. the subsumption
relation�WE;E that is defined as follows:

DEFINITION 88 LetE � Form� be a set of rigid (i.e., quantifier-free) equali-
ties; and letW � V be a set of variables. Then the subsumption relationsvWE;E
and�WE;E are onSubst�� defined by:� � vWE;E � iff E� j=�E �(x) � � (x) for all x 2W ;� � �WE;E � iff there is a substitution�0 2 Subst�� such that� �W �0 and �0 vWE;E � :

The intuitive meaning of� �WE;E � is that the effects of applying� to the setE
of equalities can be simulated by first applying�, then some other substitution�,
and then equalities form(E�)�.
LEMMA 89 LetE � Form� be a set of rigid equalities, and let�; � be substitu-
tions such that� �WE;E � where the setW contains all variables occurring inE.
Then there is a substitution� such that(E�)� j=�E E� .

It is possible to effectively compute afinite setU of solutions for a rigidE-
unification problemhE; s; ti that is complete w.r.t. the subsumption relation�WE;E,
i.e., for every solution� of hE; s; ti there is a solution� in U such that� �WE;E �.
This immediately implies the decidability of the question whether a given rigidE-unification problemhE; s; ti is solvable or not. On first sight this might be
somewhat surprising since universalE-unification is undecidable; however, the
additional restriction of rigidE-unification, that variables inE may only be in-
stantiated once, is strong enough to turn an undecidable problem into a decidable
one.

The problem of deciding whether a rigidE-unification problem has a solution
is, in fact, NP-complete. This was first proven in [Gallieret al., 1988] and then,
more detailed, in [Gallieret al., 1990; Gallieret al., 1992]. The NP-hardness of
the problem was already shown in [Kozen, 1981]. An alternative proof for the
decidability of rigidE-unification was presented in [de Kogel, 1995], it is easy
to understand but uses an inefficient decision procedure. More efficient methods
using term rewriting techniques are described in [Gallieret al., 1992; Becher and
Petermann, 1994; Plaisted, 1995]. The procedure describedin [Becher and Pe-
termann, 1994] has been implemented and integrated into a prover for first-order
logic with equality [Grieser, 1996].

45

7.7 Rigid Basic Superposition

In [Degtyarev and Voronkov, 1998], a method calledrigid basic superpositionhas
been presented for computing afinite(incomplete) set of solutions for rigidE-uni-
fication problems that is “sufficient” for handling equalityin rigid variable calculi,
i.e., can be used to build a complete free variable background reasoner for the
equality theoryE . The procedure is an adaptation of basic superposition (in the
formulation presented in [Nieuwenhuis and Rubio, 1995]) torigid variables. It
uses the concept of ordering constraints:

DEFINITION 90 An (ordering) constraintis a (finite) set of expressions of the
form s ' t or s � t wheres and t are terms. A substitution� is a solution to
a constraintC iff (a) s� = t� for all s ' t 2 C, i.e., � is a unifier ofs and t,
(b) s� > t� for all s � t 2 C, where> is an arbitrary but fixed term reduction
ordering, and (c)� instantiates all variables occurring inC with ground terms.

There are efficient methods for deciding the satisfiability of an ordering con-
straintC and for computing most general substitutions satisfyingC in case the
reduction ordering> is a lexicographic path ordering (LPO) [Nieuwenhuis and
Rubio, 1995].

The rigid basic superposition calculus consists of the two transformation rules
shown below. They are applied to a rigidE-unification problemhE; s; ti �C that
has an ordering constraintC attached to it. The computation starts initially with the
unification problem that is to be solved and the empty constraint. A transformation
rule may be applied tohE; s; ti �C only if the constraint is satisfiable before and
after the application.

Left rigid basic superposition.If there are an equalityl � r or r � l and an equal-
ity u � v or v � u in E and l0 is a subterm ofu, then replace the latter
equality byu[r] � v (whereu[r] is the result of replacing one occurrence ofl0 in u by r) and addl � r, u � v, andl ' l0 toC.

Right rigid basic superposition.If there is an equalityl � r or r � l in E andl0
is a subterm ofs or of t, then replaces (resp.t) with s[r] (resp.t[r]) and addl � r, s � t (resp.t � s) andl ' l0 toC.

As the constraint expressions that are added by a rule application have to be satis-
fiable, they can be seen as a pre-condition for that application; for example, sincel ' l0 is added toC, the termsl andl0 have to be unifiable.

The two transformation rules are repeatedly applied, forming a non-determinis-
tic procedure for transforming rigidE-unification problems. The process termi-
nates when (a) the termss andt become identical or (b) no further rule application
is possible without makingC inconsistent. Provided that no transformation is al-
lowed that merely replaces an equality by itself, all transformation sequences are
finite.

46

It is possible to only allow transformations where the terml0 is not a variable,
thus improving the efficiency of the procedure and reducing the number of solu-
tions that are computed.

Let hE; s; ti �C be any of the unification problems that are reachable by apply-
ing rigid basic superposition transformations to the original problem. Then, any
solution toC [fs ' tg is a solution to the original problem. LetU be the set of
all such solutions that are most general w.r.t.�W . The setU is finite because the
application of rigid basic superposition rules always terminates.

EXAMPLE 91 Consider the rigidE-unification problem5hE; s; ti = hffa � a; g2x � fag; g3x; xi ;
and let> be the LPO induced by the orderingg > f > a on the function symbols.

The computation starts withhE; s; ti �C = hffa � a; g2x � fag; g3x; xi � ; :
The only possible transformation is to use the right rigid basic superposition rule,
applying the equality(l � r) = (g2x � fa) to reduce the termg3x (all other
transformations would lead to an inconsistent constraint). The result is the unifica-
tion problemhE; gfa; xi � fg2x � fa; g3x � x; g2x ' g2xg; its constraint can
be reduced toC1 = fg2x � fag. A most general substitutionsatisfyingC1 [fgfa ' xg
is �1 = fx 7! gfag.

A second application of the right rigid basic superpositionrule leads to the uni-
fication problemhE; ga; xi � fg2x � fa; fa � a; gfa � x; fa ' fag; its con-
straint can be reduced toC2 = fg2x � fa; gfa � xg. A most general substitu-
tion satisfyingC2 [fga ' xg is �2 = fx 7! gag.

At that point the process terminates because no further ruleapplication is pos-
sible. Thus,�1 and�2 are the only solutions that are computed by rigid basic
superposition for this example.

7.8 Solving MixedE-unification Problems

Since universalE-unification is already undecidable,mixedE-unification is—in
general—undecidable as well. It is, however, possible to enumerate a complete set
of MGUs.

EXAMPLE 92 The following example requires only very little non-equality rea-
soning. A powerful equality handling technique is needed tofind a closed tableau,5 In this example, we useg2x as an abbreviation forg(g(x)), etc.

47

and the universal formula version of tableaux has to be used to restrict the search
space: If� consists of the axioms6(8x)(i(tr; x) � x)(8x)(8y)(8z)(i(i(x; y); i(i(y; z); i(x; z))) � tr)(8x)(8y)(i(i(x; y); y) � i(i(y; x); x))
then � j=E (8x)(8y)(8z)(9w)(i(x;w) � tr ^ w � i(y; i(z; y))) :
To prove this, the tableau shown in Figure 5 has to be closed. Formula (2) is
derived from the negated theorem (1) by three�- and one
-rule application;
(3) and (4) are derived from (2).

To close the left branch, theE-unification problemPl = h�; i(c1; w1); tri
has to be solved, and the problemPr = h�; w1; i(c2; i(c3; c2))i
has to be solved to close the right branch.

The search for solutions performed by the tableau-based theorem prover3TAP
[Beckertet al., 1996], that uses a completion-based method for finding solutions of
mixedE-unification problems, proceeds as follows. The reduction rule(8x)(i(x; x)! tr)
is one of the first rules that are deduced from�. Using this rule, the solution� = fw1 7! c1g to the problemPl is found and applied to the tableau. Then the
ProblemPr� has to be solved to close the right branch; unfortunately, nosolution
exists. Thus, after a futile try to close the right branch, backtracking is initiated.
More reduction rules are computed until finally the rule(8x)(i(x; tr)! tr) is
applied to the problemPl and the solution�0 = fw1 7! trg is found. Now the
problemPr�0 has to be solved to close the right branch. It takes the computation
of 48 critical pairs to deduce the rule(8x)(8y)(i(y; i(x; y)) ! tr) which can be
applied to show that the empty substitution is a solution toPr�0 and that therefore
the right branch is closed.

7.9 SimultaneousE-unification

Instead of closing one branch after the other, one can searchfor a simultaneous re-
futer for all branches of a tableau. However, this is much more difficult than clos-
ing a single branch. Although (non-simultaneous)rigid E-unification is decidable,
it is undecidable whether a simultaneous solution to several E-unification prob-
lems exists [Degtyarev and Voronkov, 1996b]. It is as well undecidable whether6This is an axiomatization of propositional logic,i(x; y) stands for “x impliesy” andtr for “true”.

48 �
(1) :(8x)(8y)(8z)(9w)(i(x;w) � tr ^ w � i(y; i(z; y)))

(2) :(i(c1; w1) � tr ^ w1 � i(c2; i(c3; c2)))
(3) :(i(c1; w1) � tr) (4) :(w1 � i(c2; i(c3; c2)))

Figure 5. The tableau that has to be closed to prove the theorem from Example 92.

there is a substitution closing all branches of a given free variable tableau simulta-
neously after it has been expanded by afixednumber of copies of the universally
quantified formulae it contains [Voda and Komara, 1995; Gurevich and Veanes,
1997].

In the same way as it may be surprising on first sight that simple rigidE-unifi-
cation is decidable, it may be surprising that moving from simple to simultaneous
problems destroys decidability—even more so considering that the simultaneous
versions of other decidable types of unification (includingsyntactical unification
and groundE-unification) are decidable. However, simultaneous rigidE-unifi-
cation turns out to have a much higher expressiveness than simple rigidE-uni-
fication; it is even possible to encode Turing Machines into simultaneous rigidE-unification problems [Veanes, 1997]. For an overview of simultaneous rigidE-unification see [Degtyarev and Voronkov, 1998; Beckert, 1998].

Since simultaneous rigidE-unification is undecidable, sets of unifiers can only
be enumerated; in general they are not finite. Solutions to a simultaneous problem
can be computed combining solutions to its constituentshEi; si; tii; however, it
is not possible to compute a finite complete set of unifiers of the simultaneous
problem by combining solutions from finite sets of unifiers ofthe constituents that
are complete w.r.t. the subsumption relation�WE;E, because they are complete w.r.t.
different relations�WE;Ei. Thus, the subsumption relation�WE has to be used, which
is the same for alli (but does not allow to constructfinitecomplete sets of unifiers).

The undecidability of simultaneous rigidE-unification implies that, if a back-
ground reasoner produces only afinitenumber of solutions to any (non-simultaneous)
rigidE-unification problem, then closing a tableauT may require to extendT by
additional instances of equalities and terms even if there is a substitutionthat closes
all branches ofT simultaneously and there is, thus, a solution to a simultaneous
rigid E-unification problem extracted fromT . That notwithstanding, the back-
ground reasonermaybe complete; and in that case the advantages of finite sets
of solutions prevail. A complete background reasoner of this type can be built
using rigid basic superposition (Sect. 7.7). It is not knownwhether the same can
be achieved using (finite) sets of unifiers that are complete w.r.t. the subsumption
relation�WE;E.

49

8 INCREMENTAL THEORY REASONING

Besides the efficiency of the foreground and the background reasoner, the interac-
tion between them plays a critical rôle for the efficiency ofthe combined system:
It is a difficult problem to decide whether it is useful to callthe background rea-
soner at a certain point or not, and how much time and other resources to spend
for its computations. In general, giving a perfect answer tothese questions is as
difficult as the theory reasoning problem itself. Even with good heuristics at hand,
one cannot avoid calling the background reasoner at the wrong point: either too
early or too late.

This problem can (at least partially) be avoided by using incremental methods
for background reasoning [Beckert and Pape, 1996], i.e., algorithms that—after
a futile try to solve a theory reasoning problem—allow to save the results of the
background reasoner’s computations and to reuse this data for a later call.7 Then,
in case of doubt, the background reasoner can be called earlywithout running the
risk of doing useless computations. In addition, an incremental background rea-
soner can reuse data multiply if different extensions of a problem have to be han-
dled. An important example are completion-based methods for equality reasoning,
which are inherently incremental.

As already mentioned in Section 2.5, one of the main problemsin using the-
orem reasoning techniques in practice is the efficient combination of foreground
and background reasoner and their interaction—in particular if (a) the computa-
tion steps of the background reasoner are comparatively complex, and (b) in case
calling the background reasoner may be useless because no refuter exists or can be
found.

On the one hand, a late call to the background reasoner can lead to bigger ta-
bleaux and redundancy. Although several branches may sharethe same subbranch
and thus contain the same key for which a refuter exists, the background reasoner is
called separately for these branches and the refuter has to be computed repeatedly.
On the other hand, an early call to the background reasoner may not be success-
ful and time consuming; this is of particular disadvantage if the existence of a
refuter is undecidable and, as a result, the background reasoner does not terminate
although no refuter exists.

Both these phenomena may considerably decrease the performance of a prover,
and it is very difficult to decide (resp. to develop good heuristics which decide)

1. when to call the background reasoner;

2. when to stop the background reasoner if it does not find a refuter.7This should not be confused with deriving a refuter and handing it back to the foregroundreasoner.
The information derived by an incremental background reasoner cannot be used by the foreground
reasoner, but only by the background reasoner during later calls.

50 �:(�0 $ �1 $ � � � $ �n)�0 ^ :(�1 $ � � � $ �n)�0:(�1 $ � � � $ �n) :�0 ^ (�1 $ � � � $ �n):�0�1 $ � � � $ �n:�n�1�n�1 $ �n�n�1 ^ :�n�n�1:�n :�n�1 ^ �n:�n�1�n
Figure 6. Short tableau proof for� j=T �0 $ � � � $ �n (Example 93).

EXAMPLE 93 The following example shows that earlier calls tothe background
reasoner can reduce the size of a tableau proof exponentially. Let � � Form� be
a set of formulae and let�n 2 Form�, n � 0, be formulae such that, for some
theoryT , � j=T :�n (n � 0) . Figure 6 shows a proof for� j=T �0 $ �1 $ � � � $ �n ;
where the background reasoner is called when a literal of theform�n appears on
a branch (with the key� = � [f�ng). As a result, all the left-hand branches are
closed immediately and the tableau is of linear size inn.

If the background reasoner were only called when a branch is exhausted, i.e.,
when no further expansion is possible, then the tableau would have2n branches
and the background reasoner would have to be called2n times (instead ofn times).

An incrementalbackground reasoner can be of additional advantage if the com-
putations that are necessary to show that� j=T :�n are similar for alln. In
that case, a single call to the background reasoner in the beginning may provide
information that later can be reused to close all the branches with less effort.

Even the best heuristics cannot avoid calls to the background reasoner at the
wrong time. However, under certain conditions, it is possible to avoid the adverse
consequences of early calls: If the algorithm that the background reasoner uses is
incremental, i.e., if the data produced by the background reasoner during a futile
try to compute refuters can be reused for a later call.

If early calls have no negative effects, the disadvantages of late calls can easily
be avoided by using heuristics that, in case of doubt, call the background reasoner

51

at an early time. The problem of not knowing when to stop the background rea-
soner is solved by calling it more often with less resources (time, etc.) for each
call.

An additional advantage of using incremental background reasoners in the ta-
bleau framework is that computations can be reused repeatedly for different ex-
tensions of a branch—even if the computation of refuters proceeds differently for
these extensions.

8.1 Incremental Keys and Algorithms

Obviously, there has to be some strong relationship betweenthe keys transferred
to the background reasoner, to make it possible to reuse the information computed.
Since, between calls to the background reasoner, (1) the tableau may be extended
by new formulae and (2) substitutions (refuters) may be applied (to the tableau),
these are the two operations we allow for changing the key:

DEFINITION 94 A sequence(�i)i�0 of keys isincrementalif, for i � 0, there is
a set	i � Form� of formulae and a substitution�i such that�i+1 = �i�i [i,
where	i = 	i�i.

In general, not all refuters of�i are refuters of�i+1 (because a substitution
is applied); nor are all refuters of�i+1 refuters of�i (because new formulae are
added).

To be able to formally denote the state the computation of a background rea-
soner has reached and the data generated, we use the following notion of incre-
mental background reasoner:

DEFINITION 95 An incremental background reasonerRA;I;S is a background
reasoner (Def. 31) that can be described using

1. analgorithm(a function)A : D ! D operating on a data structureD,

2. an initialization functionI : 2Form� !D that transforms a given key into
the data structure format, and

3. an output functionS : D ! 2Subst�� that extracts computed refuters from
the data structure,

such that for every key� � Form� for whichRA;I;S is definedRA;I;S(�) = [i�0S(Ai(I(�))) :

52

The above definition does not restrict the type of algorithmsthat may be used;
every background reasoner whose computations proceed in steps can be described
this way. If a background reasoner applies different transformations to the data
at each step of its computation, this can be modeled by addingthe state of the
reasoner to the data structure such that the right operationor sub-algorithm can be
applied each time the background reasoner is invoked.

Of course, the input and output functions have to be reasonably easy to compute;
in particular, the cost of their computation has to be much smaller than that of
applying the algorithmA, which is supposed to do the actual work.

The goal is to be able to stop the background reasoner when it has reached a
certain state in its computations for a key�, and to proceed from that state with a
new key�0 = �� [. For that purpose, an update function is needed that adapts
the data structure representing the state of the computation to the new formulae	
and the substitution�.

DEFINITION 96 Let T be a theory andRA;I;S a complete incremental back-
ground reasoner forT . An update functionU : D � 2Form� � Subst�� �! D
is correct(for RA;I;S) if a complete background reasonerR0A;I;S is defined by:
for every key�

1. choose�0 � Form� and� 2 Subst�� such that� = �0� [arbitrarily;

2. computeDn = U(An(I(�0)); 	; �) for an arbitraryn � 0;

3. setR0A;I;S(�) = Si�0 S(Ai(Dn)).
According to the above definition, a correct update functionbehaves as expected

when used for a single incremental step. Theorem 97 shows that this behavior ex-
tends to sequences of incremental steps. In addition, the algorithm can be applied
arbitrarily often between incremental steps:

THEOREM 97 Let T be a theory,RA;I;S a complete incremental background
reasoner forT , andU a correct update function forRA;I;S .

ThenR�A;I;S is a complete background reasoner forT that is defined by: for
every key�

1. choose an arbitrary incremental sequence(�i)i�0 of keys where�i+1 = �i�i [i (i � 0) ;
and� = �k for somek � 0;

2. let(Di)i�0 � D be defined by

53

(a) D0 = I(�0),
(b) Di+1 = U(Ani(Di); �i+1; 	i+1) for someni � 0;

3. setR�A;I;S(�) = Sj�0 S(Aj(Dk)).
EXAMPLE 98 Let(�i)i�0 be an incremental sequence of keys such that�i+1 = �i�i [i
(i � 0). Then, for every sound and complete incremental background reasonerRA;I;S , the trivial update function defined byU(D;	i; �i) = I(�i�i [i)
is correct.

The above example shows that it is not sufficient to use any correct update
function to achieve a better performance of the calculus, because using the trivial
update function means that no information is reused. A useful update function has
to preserve the information contained in the computed data.

Whether there actually is a useful and reasonably easy to compute update func-
tion depends on the theoryT , the background reasoner, and its data structure.

Such a useful update function exists for a background reasoner for completion-
based equality handling [Beckert and Pape, 1996]. Another important example are
background reasoners based on resolution: if a resolvent can be derived from a
key �, then it is valid for all extensions� [of �; resolvents may be invalid
for an instance�� of the key, but to check this is much easier than to re-compute
all resolvents. In [Baumgartner, 1996], a uniform translation from Horn theories
to partial background reasoners based on unit-resulting positive hyper-resolution
with input restriction is described. This procedure can be used to generate incre-
mental background reasoners for a large class of theories.

8.2 Semantic Tableaux and Incremental Theory Reasoning

The incremental theory reasoning method presented in the previous section is easy
to use for tableau-like calculi, because the definition of incremental sequences of
keys matches the construction of tableau branches. The keysof a sequence are
taken from an expanding branch, and the substitutions are those applied to the
whole tableau.

The keys used in calls to the background reasoner as well as the information
computed so far by the background reasoner have to be attached to the tableau
branches:

DEFINITION 99 A tableau for incremental theory reasoningis a (finite) multi-set
of tableau branches where a tableaubranchis a triple h�; D;�i; � is a (finite)
multi-set of first-order formulae,D 2 D (whereD is the data structure used by the
background reasoner), and� � Form� is a key.

54

Now, the tableau calculus with theory reasoning introducedin Section 3.4 can
be adapted toincrementaltheory reasoning: calling the background reasoner is
added as a further possibility of changing the tableau (besides expanding and clos-
ing branches).

DEFINITION 100 (Incremental reasoning version.)Given a theoryT , an incre-
mental background reasonerRA;I;S for T (Def. 95), and a correct update func-
tion U for RA;I;S (Def. 96), anincremental theory reasoning tableau prooffor a
first-order sentence� consists of a sequenceff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)
of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the expansion rules from Table 6, i.e., there is a branchB = h�; D;�i 2 Ti�1 and a formula� 2 � (that is not a literal) such thatTi = (Ti�1 n fBg)[8>>>><>>>>:fh(� n f�g) [f�1; �2g; D;�ig if � = �fh(� n f�g) [f�1g; D;�i;h(� n f�g) [f�2g; D;�ig if � = �fh� [f
1(y)g; D;�ig if � =
(x)fh(� n f�g) [f�1(f(x1; : : : ; xn))g; D;�ig if � = �(x)
wherey 2 V is a new variable not occurring inTi�1, f 2 F� is a Skolem
function symbol not occurring inTi�1, andx1; : : : ; xn are the free variables
in �;

2. by applying the incremental theory expansion rule, i.e.,there is a branchB = h�; D;�i in Ti�1 and aT -refuter h�; f�1; : : : ; �kgi (k � 1) in the
setS(D), andTi = fh�0�;D0;�0i j h�0; D0;�0i 2 (Ti�1 n fBg)g [fh� [f�jg; D;�i j 1 � j � kg

3. by applying the incremental theory closure rule, i.e., there is a branchB = h�; D;�i
in Ti�1 that isT -closed under�, i.e.,� 2 S(D), andTi = fh�0�;D0;�0i j h�0; D0;�0i 2 (Ti�1 n fBg)g

4. or by calling the background reasoner, i.e., there is a branchB = h�; D;�i
in Ti�1, a numberc > 0 of applications, and a key�0 = �� [� � = f(8xi1) � � � (8ximi)�i j 1 � i � pg
where

55

(a) �1; : : : ; �p 2 �,

(b) fxi1; : : : ; ximig � UVar(�i) for 1 � i � p.
and Ti = (Ti�1 n fBg) [fh�;Ac(U(D;	; �));�0ig :

Soundness and completeness of the resulting calculus are a corollary of Theo-
rems 47, 58, and 97:

THEOREM 101 Let� 2 Form� be a sentence. If there is an incremental tableau
proof for� (Def. 100), then� is aT -tautology.

If RA;I;S is a complete incremental background reasoner for a theoryT and
the formula� is a T -tautology, then an incremental tableau proof for� can be
constructed usingRA;I;S .

The maximal cost reduction that can be achieved by using an incremental rea-
soner is reached if the costs are those of the non-incremental background reasoner
called neither too early nor too late, i.e., if always the right key in the incremental
sequence is chosen and the background reasoner is only called for that key (which
is not possible in practice).

In practice, the costs of an incremental method are between the ideal value
and the costs of calling a non-incremental reasoner for eachof the keys in an
incremental sequence (without reusing).

But even if the costs for one sequence, i.e., for closing one tableau branch, are
higher than those of using a non-incremental method, the overall costs for closing
the whole tableau can be small, because information is reused for more than one
branch.

9 EQUALITY REASONING BY TRANSFORMING THE INPUT

Methods based on transforming the input are inherently not specific for semantic
tableaux (although they might be more suitable for tableauxthan for other calculi).
They do not require the tableau calculus to be adopted to theory reasoning.

The simplest—however useless—method is to just add the theory axioms to
the input formulae. A better way to “incorporate” the equality axioms into the
formulae to be proven is D. Brand’sSTE -modification [Brand, 1975], which is
described below. An improved transformation using term orderings has been pre-
sented in [Bachmairet al., 1997].

Usually, STE -modification is only defined for formulae in clausal form; but
since a transformation to clausal form may be of disadvantage for non-normal
form calculi like semantic tableaux, we present an adaptation of Brand’s method
for formulae in Skolemized negation normal form.

56

DEFINITION 102 Let � be a formula in Skolemized negation normal form. TheE-modificationof � is the result of applying the following transformations itera-
tively as often as possible:

1. If a literal of the formp(: : : ; s; : : :) or :p(: : : ; s; : : :) occurs in the formula
wheres 62 V , then replace it by(8x)(:(s � x) _ p(: : : ; x; : : :)) resp.(8x)(:(s � x) _:p(: : : ; x; : : :))
wherex is a new variable.

2. If an equality of the formf(: : : ; s; : : :) � t or t � f(: : : ; s; : : :) occurs in
the formula wheres 62 V , then replace it by(8x)(:(s � x) _ f(: : : ; x; : : :) � t)
wherex is a new variable.

TheSTE -modificationof � is the result of (non-iteratively) replacing in theE-modification�0 of� all equalitiess � t by(8x)(:(t � x) _ s � x) ^ (8x)(:(s � x) _ t � x)
wherex is a new variable.

EXAMPLE 103 TheSTE -modification of(8x)(p(f(a; g(x)))) is(8x)(8u)(8v)(8w)(:(a � u) _ :(g(x) � v) _ :(f(u; v) � w) _ p(w)) :
TheSTE -modification of(8x)(8y)(f(x; y) � g(a)) is(8x)(8y)(8z)(:(a � z) _ ((8u)(:(f(x; y) � u) _ g(z) � u)^(8u)(:(g(z) � u) _ f(x; y) � u))) :

To prove theE-unsatisfiability of theSTE -modification of a formula, it is suffi-
cient to use the reflexivity axiom; symmetry, transitivity and monotonicity axioms
are not needed any more.

THEOREM 104 (Brand, 1975)Let � be a sentence in Skolemized negation nor-
mal form, and let�0 be theSTE -modification of�. Then� is E-unsatisfiable if
and only if �0 ^ (8x)(x � x)
is unsatisfiable.

57

10 CONCLUSION

We have given an overview of how to design the interface between semantic ta-
bleaux (the foreground reasoner) and a theory background reasoner. The problem
of handling a certain theory has been reduced to finding an efficient background
reasoner for that theory. The search for efficient methods has not come to an end,
however, because there is no universal recipe for designingbackground reasoners.
Nevertheless, some criteria have been presented that a background reasoner should
satisfy and useful features it should have.

Specialized methods have been presented for handling equality; the most ef-
ficient of these are based onE-unification techniques. Similar to the design of
background reasoners in general, the problem of developingE-unification proce-
dures is difficult to solve in a uniform way. The research in the field of designing
such procedures for certain equality theories has produceda huge amount of re-
sults, that is still rapidly growing, in particular for rigid and mixedE-unification.

ACKNOWLEDGEMENTS

I would like to thank Peter Baumgartner, Marcello D’Agostino, Paliath Narendran,
and Christian Pape for fruitful comments on earlier versions of this chapter.

REFERENCES

[Andrews, 1981] Andrews, P. B. Theorem proving through general matings.Journal of the ACM, 28,
193–214.

[Bachmairet al., 1997] Bachmair, L., Ganzinger, H., and Voronkov, A.Elimination of Equality via
Transformation with Ordering Constraints. Technical Report MPI-I-97-2-012. MPI für Informatik,
Saarbrücken.

[Baumgartner, 1992] Baumgartner, P. A model elimination calculus with built-in theories.Pages
30–42 of:Ohlbach, H.-J. (ed.),Proceedings, German Workshop on Artificial Intelligence (GWAI).
LNCS 671. Springer.

[Baumgartner, 1996] Baumgartner, P. Linear and unit-resulting refutations for Horn theories.Journal
of Automated Reasoning, 16(3), 241–319.

[Baumgartner, 1998] Baumgartner, P.Theory Reasoning in Connection Calculi. LNCS. Springer. To
appear.

[Baumgartner and Petermann, 1998] Baumgartner, P., and Petermann, U. Theory reasoning.In: Bibel,
W., and Schmitt, P. H. (eds.),Automated Deduction – A Basis for Applications, vol. I. Kluwer.

[Baumgartneret al., 1992] Baumgartner, P., Furbach, U., and Petermann, U.A Unified Approach to
Theory Reasoning. Forschungsbericht 15/92. University of Koblenz.

[Becher and Petermann, 1994] Becher, G., and Petermann, U. Rigid unification by completion and
rigid paramodulation.Pages 319–330 of:Nebel, B., and Dreschler-Fischer, L. (eds.),Proceedings,
18th German Annual Conference on Artificial Intelligence (KI-94), Saarbrücken, Germany. LNCS
861. Springer.

[Beckert, 1994] Beckert, B. A completion-based method for mixed universal and rigidE-unification.
Pages 678–692 of:Bundy, A. (ed.),Proceedings, 12th International Conference on Automated
Deduction (CADE), Nancy, France. LNCS 814. Springer.

[Beckert, 1997] Beckert, B. Semantic tableaux with equality. Journal of Logic and Computation,
7(1), 39–58.

58

[Beckert, 1998] Beckert, B. RigidE-unification. In: Bibel, W., and Schmitt, P. H. (eds.),Automated
Deduction – A Basis for Applications, vol. I. Kluwer.

[Beckert and Hähnle, 1992] Beckert, B., and Hähnle, R. An improved method for adding equality to
free variable semantic tableaux.Pages 507–521of:Kapur, D. (ed.),Proceedings,11th International
Conference on Automated Deduction (CADE), Saratoga Springs, NY, USA. LNCS 607. Springer.

[Beckert and Hähnle, 1998] Beckert, B., and Hähnle, R. Analytic tableaux.In: Bibel, W., and Schmitt,
P. H. (eds.),Automated Deduction – A Basis for Applications, vol. I. Kluwer.

[Beckert and Pape, 1996] Beckert, B., and Pape, C. Incremental theory reasoning methods for se-
mantic tableaux.Pages 93–109 of:Miglioli, P., Moscato, U., Mundici, D., and Ornaghi, M. (eds.),
Proceedings, 5th Workshop on Theorem Proving with AnalyticTableaux and Related Methods,
Palermo, Italy. LNCS 1071. Springer.

[Beckertet al., 1996] Beckert, B., Hähnle, R., Oel, P., and Sulzmann, M. The tableau-based theo-
rem prover3TAP , version 4.0.Pages 303–307 of: Proceedings, 13th International Conference on
Automated Deduction (CADE), New Brunswick, NJ, USA. LNCS 1104. Springer.

[Bibel, 1987] Bibel, W. Automated Theorem Proving. Second edn. Vieweg, Braunschweig. First
edition published in 1982.

[Brand, 1975] Brand, D. Proving theorems with the modification method.SIAM Journal on Comput-
ing, 4(4), 412–430.

[Browne, 1988] Browne, R. J.Ground Term Rewriting in Semantic Tableaux Systems for First-Order
Logic with Equality. Technical Report UMIACS-TR-88-44. College Park, MD.

[Bürckert, 1990] Bürckert, H. A resolution principle forclauses with constraints.Pages 178–192
of: Proceedings, 10th International Conference on Automated Deduction (CADE). LNCS 449.
Springer.

[Cantoneet al., 1989] Cantone, D., Ferro, A., and Omodeo, E.Computable Set Theory. International
Series of Monographs on Computer Science, vol. 6. Oxford University Press.

[de Kogel, 1995] de Kogel, E. RigidE-unification simplified. Pages 17–30 of: Proceedings, 4th
Workshop on Theorem Proving with Analytic Tableaux and Related Methods, St. Goar. LNCS 918.
Springer.

[Degtyarev and Voronkov, 1996a] Degtyarev, A., and Voronkov, A.a. Equality elimination for the
tableau method.Pages 46–60 of:Calmet, J., and Limongelli, C. (eds.),Proceedings, International
Symposium on Design and Implementation of Symbolic Computation Systems (DISCO), Karlsruhe,
Germany. LNCS 1128.

[Degtyarev and Voronkov, 1996b] Degtyarev, A., and Voronkov, A.b. Simultaneous rigidE-
unification is undecidable.Pages 178–190 of:Kleine Büning, H. (ed.),Proceedings, Annual Con-
ference of the European Association for Computer Science Logic (CSL’95). LNCS 1092. Springer.

[Degtyarev and Voronkov, 1998] Degtyarev, A., and Voronkov, A. What you always wanted to know
about rigidE-unification.Journal of Automated Reasoning, 20(1), 47–80.

[Digricoli and Harrison, 1986] Digricoli, V. J., and Harrison, M. C. Equality-based binary resolution.
Journal of the ACM, 33(2), 253–289.

[Fitting, 1996] Fitting, M. C. First-Order Logic and Automated Theorem Proving. Second edn.
Springer.

[Furbach, 1994] Furbach, U. Theory reasoning in first order calculi. Pages 139–156 of:v. Luck,
K., and Marburger, H. (eds.),Proceedings, Third Workshop on Information Systems and Artificial
Intelligence, Hamburg, Germany. LNCS 777. Springer.

[Gallier and Snyder, 1990] Gallier, J. H., and Snyder, W. Designing unification procedures using
transformations: A survey.Bulletin of the EATCS, 40, 273–326.

[Gallier et al., 1987] Gallier, J. H., Raatz, S., and Snyder, W. Theorem proving using rigidE-
unification, equational matings.In: Proceedings, Symposium on Logic in Computer Science (LICS),
Ithaka, NY, USA. IEEE Press.

[Gallier et al., 1988] Gallier, J. H., Narendran, P., Plaisted, D., and Snyder, W. RigidE-unification is
NP-complete.In: Procceedings, Symposium on Logic in Computer Science (LICS). IEEE Press.

[Gallier et al., 1990] Gallier, J. H., Narendran, P., Plaisted, D., and Snyder, W. RigidE-unification:
NP-completeness and application to equational matings.Information and Computation, 129–195.

[Gallier et al., 1992] Gallier, J. H., Narendran, P., Raatz, S., and Snyder,W. Theorem proving using
equational matings and rigidE-unification.Journal of the ACM, 39(2), 377–429.

59

[Grieser, 1996] Grieser, G.An Implementation of RigidE-Unification Using Completion and Rigid
Paramodulation. Forschungsbericht FITL-96-4. FIT Leipzig e.V.

[Gurevich and Veanes, 1997] Gurevich, Y., and Veanes, M.Some Undecidable Problems Related to
the Herbrand Theorem. UPMAIL Technical Report 138. Uppsala University.

[Jeffrey, 1967] Jeffrey, R. C.Formal Logic. Its Scope and Limits. McGraw-Hill, New York.
[Jouannaud and Kirchner, 1991] Jouannaud, J.-P., and Kirchner, C. Solving equations in abstract

algebras: A rule-based survey of unification.Pages 257–321 of:Lassez, J., and Plotkin, G. (eds.),
Computational Logic – Essays in Honor of Alan Robinson. MIT Press.

[Kanger, 1963] Kanger, S. A simplified proof method for elementary logic.Pages 87–94 of:Braffort,
P., and Hirschberg, D. (eds.),Computer Programmingand Formal Systems. North Holland.Reprint
as pages 364–371 of:Siekmann, J., and Wrightson, G. (eds.),Automation of Reasoning. Classical
Papers on Computational Logic, vol. 1. Springer, 1983.

[Kozen, 1981] Kozen, D. Positive first-order logic is NP-complete. IBM Journal of Research and
Development, 25(4), 327–332.

[Lis, 1960] Lis, Z. Wynikanie semantyczne a wynikanie formalne. Studia Logica, 10, 39–60. In
Polish with English summary.

[Loveland, 1969] Loveland, D. W. A simplified format for the model elimination procedure.Journal
of the ACM, 16(3), 233–248.

[Murray and Rosenthal, 1987a] Murray, N. V., and Rosenthal,E.a. Inference with path resolution and
semantic graphs.Journal of the ACM, 34(2), 225–254.

[Murray and Rosenthal, 1987b] Murray, N. V., and Rosenthal,E.b. Theory links: Applications to
automated theorem proving.Journal of Symbolic Computation, 4, 173–190.

[Nelson and Oppen, 1980] Nelson, G., and Oppen, D. C. Fast decision procedures based on congru-
ence closure.Journal of the ACM, 27(2), 356–364.

[Nieuwenhuis and Rubio, 1995] Nieuwenhuis, R., and Rubio, A. Theorem proving with ordering and
equality constrained clauses.Journal of Symbolic Computation, 19, 321–351.

[Petermann, 1992] Petermann, U. How to build-in an open theory into connection calculi.Journal on
Computer and Artificial Intelligence, 11(2), 105–142.

[Petermann, 1993] Petermann, U. Completeness of the pool calculus with an open built-in theory.
Pages 264–277 of:Gottlob, G., Leitsch, A., and Mundici, D. (eds.),Proceedings, 3rd Kurt Gödel
Colloquium (KGC), Brno, Czech Republic. LNCS 713. Springer.

[Plaisted, 1995] Plaisted, D. A.Special Cases and Substitutes for RigidE-Unification. Technical
Report MPI-I-95-2-010. Max-Planck-Institut für Informatik, Saarbrücken.

[Policriti and Schwartz, 1995] Policriti, A., and Schwartz, J. T. T -theorem proving I. Journal of
Symbolic Computation, 20, 315–342.

[Popplestone, 1967] Popplestone, R. J. Beth-tree methods in automatic theorem proving.Pages 31–46
of: Collins, N., and Michie, D. (eds.),Machine Intelligence, vol. 1. Oliver and Boyd.

[Reeves, 1987] Reeves, S. V. Adding equality to semantic tableau.Journal of Automated Reasoning,
3, 225–246.

[Robinson and Wos, 1969] Robinson, J. A., and Wos, L. Paramodulation and theorem proving in
first order theories with equality.In: Meltzer, B., and Michie, D. (eds.),Machine Intelligence.
Edinburgh University Press.

[Shostak, 1978] Shostak, R. E. An algorithm for reasoning about equality. Communications of the
ACM, 21(7), 583–585.

[Siekmann, 1989] Siekmann, J. H. Universal unification.Journal of Symbolic Computation, 7(3/4),
207–274. Earlier version inProceedings, 7th International Conference on Automated Deduction
(CADE), Napa, FL. USA, LNCS 170, Springer, 1984.

[Smullyan, 1995] Smullyan, R. M.First-Order Logic. Second corrected edn. Dover Publications,
New York. First published in 1968 by Springer.

[Snyder, 1991] Snyder, W.A Proof Theory for General Unification. Boston: Birkhäuser.
[Stickel, 1985] Stickel, M. E. Automated deduction by theory resolution. Journal of Automated

Reasoning, 1, 333–355.
[Veanes, 1997] Veanes, M. On Simultaneous RigidE-Unification. PhD Thesis, Uppsala University,

Sweden.
[Voda and Komara, 1995] Voda, P., and Komara, J.On Herbrand Skeletons. Technical Report mff-ii-

02-1995. Institute of Informatics, Comenius University, Bratislava, Slovakia.

Index3TAP , 49

background reasoner, 9
complete, 23
ground, 13
incremental, 53
monotonic, 9
total, 9

basic superposition
rigid, 46–48

completeness
theory reasoning, 24

consequence
strong, 4

downward saturated, 26E-unification
ground, 43–44
mixed, 48–49
rigid, 44–46
simultaneous, 41, 49–50
universal, 44

equality
reasoning

partial, 33–39
total, 39–49

theory, 4

fairness, 25

Hintikka set, 27

key, 7

incremental, 53

partial
orderings, 5
theory reasoning, 10

refuter, 7
residue, 7

soundness
theory reasoning, 23STE -modification, 58T -
complementary, 7
consequence, 6

strong, 6
refuter, 7
residue, 7
satisfiable, 5

tableau, 21
structure, 5
tautology, 5
universal, 18
unsatisfiable, 5

theory, 4
reasoning

completeness, 24, 26, 28, 29
partial, 10
soundness, 23
tableau rules, 13, 15, 19
total, 10

universal, 6
total

60

61

background reasoner, 9
theory reasoning, 10

