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Abstract

Increasing capabilities of intelligent video surveillance systems impose new threats to privacy 
while,  at  the  same  time,  offering  opportunities  for  reducing  the  privacy  invasiveness  of 
surveillance measures as well as their selectivity. We show that aggregating more data about 
observed people does not necessarily lead to less privacy, but can increase the selectivity of 
surveillance measures. In case of video surveillance in a company environment, if we enable 
the system to authenticate employees and to know their current positions, we can ensure 
that no data about  employees leaves the surveillance system, i.e.,  is  being visualized or 
made accessible to an operator. In contrast, due to their lack of computer vision intelligence, 
conventional video surveillance systems do by design treat each person’s privacy equally, 
independent  of  whether  one  has  to  spend  the  whole  work  day  under  surveillance  (e.g. 
personnel of an airport) or occasionally a limited amount of time (e.g. air passengers). We 
conceive our approach towards improving the selectivity of video surveillance measures as 
an interpretation of the principle of proportionality in law.
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INTRODUCTION

Intelligent video surveillance is an active and lively field of research, predominantly in the 
domains of image exploitation and situation assessment. The availability of privacy-invasive 
system functionality such as real-time object tracking and automatic extraction of biometric 
features is  becoming reality.  Not  surprisingly,  video surveillance generates an increasing 
interest among information security and privacy researchers.

A categorical argument against video surveillance targets the chilling effect of such systems, 
which arguably is in conflict with the fundamental right to free development of the individual. 
When faced with surveillance cameras, we cannot know whether we are currently observed 
or not. However, the mere possibility of being observed tends to change the way we behave, 
which  usually  is  considered  an  undesired  phenomenon  in  free  societies  and  therefore 
addressed by legislation. The principle of proportionality,  as laid down in articles 8(2) and 
52(1)  of  the  Charter  of  Fundamental  Rights  of  the  European  Union,  demands  a  careful 



weighing of the purpose of a surveillance measure, i.e., the legally protected interest to be 
defended, against the legitimate interests of people affected by the surveillance measure. 
However,  we  do  observe  that  video  surveillance  is  spreading  rapidly,  even  though  the 
proportionality of privacy invasion and utility may not always be justified.

In addition, even if we consider video surveillance to be necessary in particular cases, the 
question of how and to which extent privacy of the people concerned can be preserved must 
be evaluated.

Given that modern video surveillance technology works at the level of abstracted objects 
rather  than  raw  video  streams,  we  argue  that  the  computer  vision  capabilities  of  such 
systems can also be exploited  for  improving the selectiveness of  surveillance measures. 
Intelligent video surveillance systems are capable of fusing information extracted from video 
streams into abstracted objects, including attributes such as IDs by face recognition, location, 
or certain activities. Hence, we can analogously incorporate an authentication mechanism as 
an information source, which enables the system to determine (group) identities of people 
that are a priori known to be concerned by the surveillance measure, e.g., employees of an 
airport as an environment, which is typically equipped with extensive surveillance facilities. If 
we furthermore assume that the airport operating company trusts in its employees while air 
passengers  should  be  observed  for  the  sake  of  civil  security,  being  able  to  distinguish 
between  airport  personnel  and  air  passengers,  the  system  can  actively  apply  privacy-
preserving  mechanisms  on  person  objects  recognized  as  employees.  Such  privacy-
preserving mechanisms may be applied to video stream visualization (e.g. blurring faces of 
employees) as well as to abstracted views (e.g. hiding or coarsening positions of employees 
on  an  overview  map).  By  this  means,  we  can  improve  the  selectivity  of  surveillance 
measures, i.e., employees who have to spend their whole work day in an area under video 
surveillance can to some extent be relieved from the pressure of video surveillance, while air 
passenger are being observed as required by the security task.

As stated above, this ability to enforce privacy-preserving mechanisms on particular groups 
comes at the cost of collecting additional data. In this paper, we investigate how to design 
modern video surveillance systems that collect certain kinds of data only for the benefit of 
privacy.  Using  methods  from  the  area  of  formal  software  verification,  we  show that  an 
according implementation does not expose such data for other purposes. Based on this work 
we  again  quote  the  principle  of  proportionality  and  argue  that  the  benefits  for  privacy 
outweigh additional information processing, since we ensure that the additional information is 
never exposed.

RELATED WORK

We concentrate on work on privacy policy enforcement in video surveillance systems, since 
our  work  is  orthogonal  to  privacy-enhancing  computer  vision  techniques,  i.e.,  privacy-
enhancing technologies for surveillance camera’s video streams.

In [1] Senior et al. introduce a privacy-preserving video console for hiding sensitive details in 
video streams depending on authorization levels.  This  suggests that  the privacy level  of 
exposed video data should be adjusted exclusively to the authorization level of the observer, 
as opposed to the authorization level induced by the surveillance purpose or by (groups of) 
observed persons.

Wickrasamuriya et al. enforce privacy policies for video rerendering [2]. Video surveillance is 
assumed to be restricted to critical  regions.  Cameras are deactivated by default,  yet  are 
activated based on motion detectors detecting people entering such regions. Policies specify 
access  rights  to  regions  and  privacy  levels  for  individuals  or  groups.  People  are 
authenticated using RFID tags. When entering a critical region with an RFID tag granting 
access, one may also be granted a high privacy level, i.e., getting erased from visualized 
video data. This approach seems to be useful when utilizing video surveillance for observing 



people in constrained regions. However, even while staying in the observed area, people can 
transfer their (group) identity to someone else by passing on their RFID tag.

AUTHENTICATION WITH AN INTELLIGENT VIDEO SURVEILLANCE SYSTEM

In order to enforce (group) identity-based privacy requirements, e.g., hiding employees in the 
video  surveillance  process,  we  need  to  enable  respective  persons  to  authenticate 
themselves with the system.

We propose to use a two-step authentication scheme using a mobile communication device, 
e.g., a smart phone or tablet [3]. First, a cryptographic authentication is performed over a 
wireless network, authenticating the mobile device as belonging to somebody from the group 
employees (or, as the case may be, a particular person). In the second step the surveillance 
system replies with a short-lived graphical code, which is easy to recognize for surveillance 
cameras. When the code is presented to a camera, the authentication as an employee is 
fused  into  the  associated  guest object  captured  by  the  camera.  The  object  is  hence 
reclassified as an employee object and privacy-enhancing mechanisms matching this group 
identity are triggered.

The association of an object and its (group) identity is maintained by employing the system’s 
tracking  capabilities,  i.e.,  keeping  track  of  the  position  of  a  person  recognized  as  an 
employee is crucial for being able to enforce the privacy requirements being due to the group 
of employees. As stated above, in comparison to a locatable token, this approach has the 
advantage that it is much harder to transfer ones identity to someone else.

TRACKING-PARADOX

In intelligent video surveillance, we denote the following phenomenon as tracking paradox: 
Assume a video surveillance system that visualizes the positions of guests as pictographs on 
an abstract area map. Additionally we aim to prevent the target video surveillance system 
from visualizing, respectively exposing any data about employees in the area under video 
surveillance. In order to allow for such behaviour, the system needs to track the positions of 
all objects (including employees) in order to protect the ones that are known as employees.

To understand how this paradox originates,  it  is  important  to recap how intelligent  video 
surveillance  systems  process  data.  Computer  vision  algorithms  extract  information  from 
surveillance  cameras’  video  streams,  i.e.,  feature  vectors  including  the  position  of  the 
observation,  which  is  then  delivered  to  information  fusion  algorithms.  These  algorithms 
aggregate  observations  from  various  information  sources,  i.e.,  multiple  image  or  signal 
exploitation algorithms monitoring the same area,  into distinct objects.  These objects are 
then maintained in  a data structure,  such as a database.  A simple  example  of  a fusion 
algorithm would aggregate all observations within the close proximity of an existing object to 
this particular object. If no proximal object exists, a new one is created.

Figure 1: Data representation



Fig. 1 visualizes the state of a surveillance system’s database at a given time (t). Currently 
the system has information about two different objects, denoted as Guest A and Guest B. In 
the next step (t’) the system receives additional information that allows for classifying Guest 
B as an employee.  According to the privacy policy,  which forbids tracking of employees, 
assume that the system now deletes all information about this object. As a result, the object 
disappears from the map. Therefore, on the first glance, the system seems to adhere to the 
claimed privacy policy of not tracking employees. However, in step (t’’) the tracking-paradox 
comes  into  effect.  The  surveillance  system  again  receives  information  about  an  object, 
which,  according to its position,  is unknown so far.  As there is no object  into which the 
received information can be fused, the system creates a new object called Guest C. Hence, 
the system is now tracking an employee, even though this employee has just successfully 
authenticated himself with the system and should be protected. 

If we generalize the tracking paradox, we can phrase it as follows: If the classification into 
a protected group depends on a subject’s private information, then it is impossible to 
distinguish between private information from protected and non-protected individuals.

Coping with  the  tracking-paradox  while  still  fulfilling  (group)  identity-based  privacy 
requirements,  the  system’s  implementation  needs  to  adhere  to  the  following  principle: 
Collecting a subject’s private data for classification purposes is allowed, if and only if 
it can be shown that it never exposes data of a member of a protected group. As long 
as this principle holds, privacy protection for certain groups can be achieved, while others 
can still be monitored for security reasons.

IMPLEMENTATION

A simplified version of a data store and a fusion algorithm encapsulated in one Java class 
was implemented. The program maintains a list of employees as well as a list of guests and 
is  capable  of  tracking  the  positions  of  these  persons.  Additionally,  persons  are  able  to 
authenticate themselves as employees, turning them invisible for the operator. In order to be 
able to visualize guests in the user interface, observations of such objects can be requested 
from the system. The signatures of the methods and the fields declared by this class are 
shown in Fig. 2.

Two arrays are used to store the features of all objects known to the system. Without loss of  
generality we simplified the implementation by choosing two 2-dimensional Integer arrays 
instead of arrays of Object. The array guestVectors stores the features of all guests, while 
coworkerVectors hold the information about the employees. Three methods can be used to 
update the stored  objects. The method  updateObservation() takes as argument a feature 
vector, which contains the features of an observation as extracted from a camera stream. If 
the features can be fused with a known guest, the information about this person is updated 
using  the values  of  the  given  argument.  If  no  guest  fits  to  the  observation,  the  system 
checks, if there is an employee suitable for fusion. If neither exists, a new guest is created in 
the system.

The method getGuest() returns the features of a guest at the given index, or null, if the given 
index is out of bounds. The method registerCoworker() checks, if a guest exists in the system 

Figure 2: Signatures of used fields and methods



that fits to the given feature vector. If so, the information about this guest is removed from 
guestVectors and added to coworkerVectors.

While  this implementation is  rather simple,  it  provides all  necessary functionality,  i.e.,  its 
behaviour reflects the behaviour of real surveillance systems on a higher level of abstraction, 
thus allowing us to analyse it using formal methods. We aim to show that it is possible to 
implement  a data store with a fusion algorithm, which ensures that no information about 
employees is exposed by the system. By storing more information we want to ensure that 
less information is exposed to the environment.

VERIFICATION

We analyzed the implementation as described above using self-composition ([7], [8]) in order 
to proof non-interference properties. In this approach the data in the system is separated into 
a low and a high part. An environment may learn anything about the system's low values by 
running a program, but must not learn anything about other values. Formally, two runs of the 
program are compared, both of which are started in states that agree on the low values, but 
may differ on the high values. A program satisfies the non-interference property if the low 
values also agree in the post state. If the environment is now considered to only be able to 
observe the low values,  he cannot  learn anything about  the high state of  the system by 
analysing the information given to him by running the program.

Allowed  information  flow conditions  and functionality  for  each public  method is  specified 
using JML [9]. A short example of the used JML annotation is shown in Fig. 3. We skip the 
presentation of the functional part here, since it is out of scope of this paper. Specified low 
information,  which may be known to the environment,  includes the features of  all  stored 
guests, since they may be shown to the operator. Moreover, features that are extracted from 
a  camera  stream  may  be  disclosed  under  the  condition  that  either  the  user  interface 
visualizes a guest or the shown person has not registered or been identified as an employee 
yet, so this person is treated as a new guest.

Fig. 4 shows a slightly simplified specification of the allowed information flow of the method 
updateObservation(). 

Figure 3: Example of information flow conditions in JMLFigure 3: Example of information flow conditions in JML



Figure 4: Simplified information flow conditions

The requires clause in line 2 holds some preconditions that have to be satisfied before the 
method is called. We skip the details for the sake of brevity. In the respects clause, a list of 
expressions is given, the evaluation of which may be known to the environment before and 
after  the execution of  the method call.  Line 3 specifies that the amount of  guests in the 
system may be known to the environment.

Line 4 specifies that each feature stored about guests, for example their position, may be 
known to the environment.  The predicate  containsCoworker (line 6) expresses that  there 
exists an employee object in the system into which the observation (given as a parameter) 
can be fused.  Note that  only the existence of  an employee may be exposed,  no further 
details about the employee or the amount of employees registered in the system must be 
exposed.  Line 7 specifies that the information whether or not a guest exists into which the 
observation can be fused may be released. Again only the information about the existence is 
released, but not the values of the features of the observation or the values of features of the 
guest object.

Finally, lines 8 and following specify that the values of features passed in observations may 
only be known to the environment, either if there already exists a guest in the system, which 
is recognized, or if no employee was recognized. The first case is clear since the features of 
guests may be known to the environment. The second case specifies that if an observation is 
made and nothing changes for the operator, obviously an employee was recognized. 

We used the KeY Tool for  verification of  the implementation.  It  takes Java source code 
annotated with JML as input and uses symbolic execution in order translate it into Java DL 
(see details in [5], [6]). The containing sequent calculus is used to prove that the specification 
is satisfied by the implementation. Details about the implementation of self-composition can 
be found in [4]. We verified the information flow for the biggest part of our implementation.

CONCLUSION

In this work it is shown that data minimisation is not always the way to maximum privacy 
protection. In certain cases it is beneficial for privacy to collect more data and use the gained 
information in an anonymization process. When certain requirements are fulfilled, i.e., the 
extra data is only used for anonymization purposes and not useable in any other context, it is 
feasible to achieve better privacy by collecting more data. In particular, we can improve the 
selectivity of surveillance measures. Referring to our example scenario, we adhere to the 
privacy requirement of hiding employees by tracking their positions, while at the same time 
ensuring that positions of employees are never exposed to the environment. Our hitherto 
results give strong indication that it is feasible to implement and verify a data store with an 
information fusion algorithm, which ensures that no private data from objects of the protected 
class, e.g., employees, is ever disposed by the system. 
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