Integer Arithmetic in the Specification and Verification of
Java Programs

Bernhard Beckert and Steffen Schlager

University of Karlsruhe
Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany

beckert@ira.uka.de, schlager@ira.uka.de

Abstract. In this paper we present an approach for handling integer arithmetic in the specification
and verification of JAVA programs. In particular, problems like overflow and underflow arising from
the finiteness of the JAVA types are tackled.

1 Introduction

Background. The work reported here has been carried out as part of the KeY project [1,2] (see i12www.
ira.uka.de/"key). The goal of KeY is to enhance a commercial CASE tool with functionality for formal
specification and deductive verification and, thus, to integrate formal methods into real-world software
development processes. Accordingly, the design principles for the software verification component of the
KeY system are:

— The specification language should be usable by people who do not have years of training in formal
methods (we decided to use UML/OCL).

— The programs that are verified should be written in a “real” object-oriented programming language.
We decided to use Java (actually KeY only supports the subset Java CARD, but the difference is not
relevant for the topic of this paper).

The Unified Modeling Language (UML) [8] has been widely accepted as the standard object-oriented
modeling language and is supported by a great number of CASE tools. The Object Constraint Lan-
guage (OCL) is an integral part of the UML, and was introduced to express subtleties and nuances of
meaning that diagrams cannot convey by themselves.

The Problem. For the verification component in the KeY system, we use a Dynamic Logic (which can be
seen as a variant of Hoare Logic). This instance of Dynamic Logic, called JavaDL, can be used to reason
about Java Card programs [3]. Obviously, the semantics of JavaDL arithmetical operations should on the
one hand correspond to the behaviour of arithmetical operations in UML/OCL, and on the other hand
must reflect the Java semantics. Unfortunately, it is hard to meet both requirements at the same time.

For specifying propositions about integers, UML/OCL provides the basic data type INTEGER. This
data type, by definition, is isomorphic to the mathematical set Z of integers, and thus has an infinite range.
The usual operators for addition, multiplication, and so on are available on INTEGER.

On the other hand, in JAVA there are the four primitive integer data types byte, short, int, and long,
which all have a different but finite range. Moreover, the semantics of the arithmetical operators differs
from the (usual) semantics they have in UML/OCL (the main reason for this is of course the finiteness of
the data types). In Java, if the result of an arithmetical operation exceeds the range of its type, an overflow
occurs, i.e., the result is computed modulo the size of the date type. For example, MAX_int + 1 = MIN_int.

Our Solution. In this paper, we present the approach for handling JAVA integer arithmetic used in the
KeY project and has been implemented in the KeY system (a much more detailed account including proofs
and a sequent calculus can be found in [9]). This approach is based on combining the integer semantics
of UML/OCL and the integer semantics defined in the JAvA language specification [5]. Both semantics
by themselves are not suitable: Using the semantics of UML/OCL may result in incorrect programs
being verified, and using the semantics of JAVA may result in programs being verified that are merely
“incidentally” correct and whose behaviour does not reflect the intentions of the programmer.

2 Two Different Semantics

2.1 From UML/OCL to DL Proof Obligations

To prove the correctness of a program, one has to prove the validity of Dynamic Logic formulas (proof
obligations) which are generated from the specification and implementation. The approach for generating
proof obligations used in the KeY project is described in [7,4].

Dynamic Logic can be seen as a modal predicate logic with a modality (p) for every program p (we
allow p to be any sequence of legal JAVA statements); (p) refers to the successor worlds (called states in
the DL framework) that are reachable by running the program p. In standard DL there can be several
of these states (worlds) because the programs can be non-deterministic; but here, since JAVA programs
are deterministic, there is exactly one such world (if p terminates) or there is no such world (if p does
not terminate). The formula (p)¢ expresses that the program p terminates in a state in which ¢ holds.
A formula ¢ — (p)v¢ is valid if for every state s satisfying the pre-condition ¢, a run of the program p
starting in s terminates, and in the terminating state the post-condition 1 holds.

2.2 UML/OCL Semantics Socr,

The first semantics for JAVA integer arithmetic we present is motivated by the semantics of the OCL and
thus, it is called Spcp, in the following. In Spc1,, each of the primitive JAVA types byte, short, int, and
long is interpreted in the same way as the OCL type INTEGER. Also, the arithmetical JAVA operators
are interpreted in the same way as the arithmetical operators in the OCL (and thus as in mathematics).
This means, in Soc the primitive JAVA types are interpreted as having an infinite range and overflow
is totally disregarded. Thus, it is easy to see that Spcp differs from the semantics implemented by the
virtual machine. Nevertheless, this semantics is used in many publications (e.g. [6,11]) on the semantics
of JAvA.

2.3 Java Semantics Sjapa

The second semantics, which is called Sj,yq, exactly corresponds to the semantics defined in the Java
language specification [5] (and thus to the semantics implemented by the virtual machine). Especially, this
means that the primitive types byte, short, int, and long are interpreted as being finite and overflow
is handled correctly. Semantics Sjqy, is for example used for the JAvA CARD DL presented in [10]. Using
semantics Sjapa, from the validity of the DL proof obligations one can conclude that all specified prop-
erties hold during the execution of the program on the virtual machine since the DL semantics and the
virtual machine semantics are equivalent. This means, using Sjqvq, the notions “validity of proof obliga-
tions” (generated from the specification and the implementation) and “correctness of the implementation”
coincide. Thus, one might think Sy, is the best choice. But there are also some drawbacks which are
discussed in the following.

To specify properties about integer numbers in the OCL, the type INTEGER is used. On the other
hand, in the implementation usually the JAVA type int! is used for integer arithmetic. Thus, the data type
int with finite range is used in the implementation of the program that is supposed to fulfill properties
stated using the type INTEGER with infinite range. If one is not aware of that fact during the specifi-
cation and implementation, this might lead to an program that is merely “incidentally” correct. This
means that a program fulfills its specification although overflow may occur, but the fact that overflow
occurs was not intended neither by the modeler nor the programmer. Thus, the behaviour of the pro-
gram during the execution may differ from the intended behaviour. For example, using Sj,y4, the formula
i >0 — (i=i+1; i=i-1)i > 0 is valid although in case the value of i is MAX_int, an overflow occurs and
the value of i is (surprisingly) negative in the intermediate state after the first assignment. This phe-
nomenon mostly occurs if the specification is incomplete or consists only of some safety constraints (like
i > 0). Of course, it is better if a program is only “incidentally” correct than it is incorrect, but we think
“incidentally” correct programs are also a source of error (see the extended example in Section 4).

! The other primitive integer types byte, short, and long could be used as well but as the name INTEGER suggests,
mostly int is used.

Of course, the above problem does not arise directly from the semantics Sjqy, itself but rather from
the combination of the specification language UML/OCL and the implementation language JAVA. But
since these languages are used in the KeY project, the problems arising from this combination have to be
considered in our semantics for integer arithmetic.

A real disadvantage of Sjqq, itself is the fact that formulas, that are intuitively valid in mathematics
like V23y(y > x) are not valid any more if z,y are of a built-in JAVA type like for example int.

3 A Combination of Both Worlds

3.1 The Basic Idea

Now, that we have explained why, in our opinion, both semantics Spc;, and Sju.. are not suitable for
software verification, we present our approach. Of course, we want to maintain the property of Sj,,, that
a verified program (this means, that the proof obligations are valid DL formulas) fulfills the specified
properties during the execution. But we also want to prevent that programs are only “incidentally” correct
(due to unintended overflow) and we want that intuitively valid formulas in mathematics like Va3y(y > x)
are valid in our JavaDL as well. To achieve that, we extend the syntax of JAVA by the additional primitive
data types arithByte, arithShort, arithInt, and arithLong which are called arithmetical types in
contrast to the built-in types byte, short, int, and long. The first obvious difference between semantics
Skev and Spcr, or Sjave 1S, that the signatures of the underlying programming languages differ since Sk ey
is a semantics for our extended JAVA, whereas Spcr, and Sjuve are semantics for standard JAvVA.

In Skev, the additional arithmetical types basically have an infinite range. The operators acting on
them have the same semantics as in Spcr with the following restriction: If the values of the arguments
of an operator are in valid range (this means, they are representable in the corresponding built-in types)
but the result would not (this means, overflow occurs replacing the arithmetical types with the corre-
sponding built-in types), then the result is calculated by an invocation of the implicitly defined method
overflow(x,y,op)? whose behaviour remains unspecified. This means in case of overflow, the result is
unspecified and the execution of the method overflow does not have to terminate.

Leaving overflow unspecified has two main advantages.

The first one is, that there is no reasonable implementation for the method overflow. In principle,
there are three possible implementations but each of them is not suitable as we shortly explain in the
following (a concrete implementation of overflow leads to a semantics that is an “instance” of Sy):

— The implementation of the method overflow is such that it returns the value of the mathematical result
of the operation and the execution of overflow always terminates. In this case, the same problems as
in semantics Spcr occur and thus, this implementation is not acceptable.

— The implementation of overflow calculates the result of the operation as if the operator had the
same semantics as defined in the JAvA language specification and the execution of overflow always
terminates. The instance of semantics Sk.y, resulting from this implementation, is called Sjspqe. As
the name Sjquq suggests, it is similar to Syupe (the differences are discussed later). The problem of
SJjava, that programs are only “incidentally” correct, also applies to Sjqvar- An advantage of semantics
SJavar compared to Sjaq, is that, using the arithmetical types, formulas like Vz3y(y > z) are valid.

— The implementation of overflow is such that it never terminates. This implementation is not accept-
able, because in this case, a formula like [arithInt i=MAX_int+1;]i =5 is (trivially) valid because
the program in the box operator does not terminate due to overflow and the invocation of method
overflow. But the execution of the program on the JAVA virtual machine terminates and thus, the
same problem as in Spc 1, occurs, namely that programs contained in valid DL formulas in general do
not satisfy the specified properties during the execution on the virtual machine.

As one can see, each of the three possible implementations leads to a semantics that is not suitable for
program verification.

The second advantage of leaving overflow unspecified concerns the connection between the derivability
of a formula in our calculus and the behaviour of a program contained in this formula during the execution
on the JAVA virtual machine.

2 The parameter op is the operator that caused overflow and x,y are its arguments.

If a JavaDL formula ¢ is derivable in our calculus based on Skey (i.e. overflow is unspecified), then
¢ is valid in Skey for all implementations of overflow (this follows from the soundness of the calculus).
In particular, ¢ is a valid formula for the second implementation of overflow mentioned above. Thus, ¢
is valid in semantics Sy, and, what is very important, one knows that no overflow occurs during the
execution of p. Note, that the latter information is a conclusion from the validity of ¢ in semantics Skey . If
one only knows that ¢ is valid in semantics Sjq44', this conclusion is not correct. However, the information,
that no overflow occurs, is very important and is used in Theorem 2.

3.2 Properties of the Combined Semantics Sk ey

The additional types of the extended JAVA have an infinite range, and thus, in a DL based on Sj444', there
are states that do neither exist in DL based on Sj44, nor in the virtual machine. In the following, we call
such states “unreal” states®, whereas states, that exist in both DLs, are called “real” states. But we are
interested in the behaviour of a program during the execution on the virtual machine, and thus, it does not
matter, if a formula holds in an unreal state or not, since unreal states cannot be reached by the virtual
machine.

In real states, Sjqvq and Syqua are equivalent (in both, the result of overflow is the same). In particular,
this means, that in real states the semantics Sjq4, 0f the built-in types corresponds to the semantics Syqyqr
of the arithmetical types. Thus, in real states a program p is equivalent to a program ptransf(p), where
the arithmetical types are replaced with the corresponding built-in types (see Theorem 3).

Corollary 1 summarises the considerations of the previous paragraphs. It states that, if the formula
I' — (p)1 derivable in our calculus and program p is started in a real state s satisfying s |=g,.,, I', no
overflow occurs during the execution of the transformed program ptransf(p) on the JAVA virtual machine
and after the execution, the property v holds.

Note, that Corollary 1 does not apply to arbitrary formulas because a formula like [ptrue is always
derivable, no matter whether overflow occurs during the execution of p or not. However, the generation
of proof obligations from the specification and implementation typically results in formulas of the form
I'— (p)y.

As mentioned above, a disadvantage of semantics Sjqq4 is that formulas, that are intuitively valid over
the integer numbers Z like Vz3y(y > x), are not valid if the variables are of a built-in JAVA type like int,
because of their finiteness. This disadvantage does not apply to the arithmetical types since their range is
infinite, and the above formula is valid if the variables are of an arithmetical type.

In Skey, the semantics of the built-in types and the operators acting on them exactly corresponds to
semantics Sjup, and thus to the definitions in the JAVA language specification. Thus, using the built-in
types, it is still possible to make use of the effects of overflow. On the other hand, using the arithmetical
types, the danger of unintended overflow is eliminated.

Above, we mentioned, that the method overflow is invoked if the result value of an operation of an
arithmetical type is not in valid range. But there is an exception, namely if at least one argument of the
operation is not in valid range. In this case, method overflow is not invoked. The reason for that is, that
a state, in which this situation occurs, is always an unreal state and thus, this does not affect the actual
execution of a program. For example, the formula 3i(i > MAX_T A (j=i+1;)j =i+ 1) is valid in Skey
if 1,j are of an arithmetical type T.* In this case, method overflow is not invoked during the symbolic
execution in JavaDL, since the state, in which the addition is evaluated, is an unreal state. In this case,
propositions about the behaviour of the transformed program during the execution on the virtual machine
make no sense because unreal states cannot be reached by the virtual machine.

In Table 1, the properties of the three semantics Socr,, Sjava, and Skey are summarised and compared.

Of course, arithmetical types are not allowed to occur in a program that is supposed to be compiled
and run on the virtual machine. Thus, the arithmetical types have to be replaced with the corresponding

® The name “unreal” suggests that those states are not reachable by the execution of a program on the virtual ma-
chine. Intuitively, in “unreal” states, the value of at least one variable of an arithmetical type is not representable
in a variable of the corresponding built-in type.

4 Actually, a program variable must not be quantified and a formula, like Vig(i) is a short form for the syntactically
correct formula Vo (i=z;)¢(i).

10

|Pr0perty |SooL |SJava|SKeY

Underlying programming language Java |JAVA |extended JAva

Overflow on built-in integer types no yes |yes

Overflow on arithmetical types — — |in unreal states

Range of built-in integer types infinite (finite |finite

Range of arithmetical types — — |infinite

Existence of unreal states yes no |yes

Behaviour of programs in DL and on the JVM |different|equal [equal under certain conditions

Table 1. Comparison of some properties of Socr, Sjava, and Skey .

built-in types before the program can be compiled and executed. We therefore define a transformation
ptransf that replaces all arithmetical types in a program by the corresponding primitive JAVA types.

A consequence of applying the type transformation ptransfto a program p before compiling and running
it on the virtual machine is, that the actually executed program ptransf(p) and the verified program p
differ. However, the following theorems show that this difference is harmless and does not affect the verified
behaviour of p.

Theorem 1. If a JAVA program p is well-typed, then the program ptransf(p) is well-typed.

Theorem 2. If Fg.y ¢ (and, therefore, |=s.., &), then both =s,., ¢ and =s 0.

Java’l

Definition 1. Let s be a real JavaDL state. The isomorphic state iso(s) to s is the virtual machine state,
in which all state elements (program variables and fields) of arithmetical type in s are of the corresponding
built-in types and are assigned the same values as in s.

If s is a real state, the existence of iso(s) is guaranteed, since by definition, in real states the values of all
variables of the arithmetical types are representable in the corresponding built-in types. In the following
theorem, s[p]s, , s means that program p, started in state s, terminates in state s’ using the DL
semantics Sygpa-

Theorem 3. Let p be a JAVA program that may contain arithmetical types. Then, for all real states s and
all (arbitrary) states s': If s[p]s s', then iso(s) [ptransf(p)]s,... iso(s").

Java’

The following corollary states, that, if I' — (p)4 is derivable in our calculus and program p is started
in a real state s with s s, I', no overflow occurs during the execution of ptransf(p) started in iso(s).
The meaning of s =g, I' is that I" holds in s for all possible implementations of overflow.

Corollary 1. Let I';v) be pure first-order predicate logical formulas, let p be an arbitrary JAVA program
that may contain arithmetical types, and let s be an arbitrary JavaDL state.

If (i) Frey I' = (p)¢, (i1) s Esps I, and (iii) s is a real state, then, when the transformed
program ptransf(p) is started in iso(s) on the virtual machine, (a) no overflow occurs and (b) the execution
terminates in the state iso(s').

Some sample formulas and the necessary type to make the according formula valid in the different
semantics are depicted in Table 2.
Below, we summarise the main features of semantics Sgey .

— Tt is still possible to make use of the effects of overflow by explicitly using the primitive built-in Java
types in the specification as well as in the implementation.

— Unintended overflow is a common source of error which, following our approach, can be avoided by
using the additional arithmetical types.

— Formulas like Vz3y(y >) that are intuitively valid over the integer numbers Z, are still valid if z,y
are of an arithmetical type.

11

|F0rmula |SOCL|SJava|SKeY |

Vidj(j > i) int |— |arithInt
Ji(i > 0 — (i=i+1;)i < 0) — |int |int
Vi(i=i+1;)i =i+ 1 int | — |—
Vi(i=i+1-1;)i =1 int |int |int
Vi(i=i;)i =i int |— |arithInt
Vi(even(i) — (i=i+2;)even(i))|int |int |int

Table 2. This table shows some formulas and in the last three columns is denoted of which type the program
variables i and j have to be that the according formula is valid in semantics Socr, Ssava; OF Skey -

3.3 Variants of Semantics Sgey

In semantics Skey, we defined, that the method overflow does not have a known implementation and
thus is unspecified. By giving axioms, that overflow must satisfy, it is possible to define variants of Sk.y .

For example, one could define, that overflow always terminates or is symmetric. If overflow always
terminates, a formula like I' — (p)true is possibly derivable, even if overflow occurs during the execu-
tion of p and overflow is invoked, since goals of the form I' F (x=overflow(argl,arg2,op);)true can
immediately be closed with the information that the invocation of overflow terminates.

As long as the axioms are such that they are satisfiable by the instances Spcr and Sjgvar of Skey,
Theorem 2 and Theorem 3 still hold.

3.4 Steps in Software Development

Following our approach, the steps in software development are the following.

1. Specification: In the UML/OCL specification, the type OCL type INTEGER is used.

2. Implementation: If an operation is specified using INTEGER, in the implementation, the arithmetical
types arithByte, arithShort, arithInt, or arithLong are used.

3. Verification: Using our calculus, one has to derive the proof obligations generated from the specification
and implementation using the translation described in [7,4]. If all proof obligations are derivable, from
Corollary 1 follows, that the program, if the requirements of the corollary are satisfied, after replacing
the arithmetical types with the corresponding built-in types, satisfies all specified properties during
the execution on the virtual machine and in particular, no overflow occurs.

4 Extended Example

In this example we describe the specification, implementation, and verification of a PIN-check module for
a cash dispensers. Before we give an informal specification of the PIN-check module of the cash dispenser,
we describe the scenario of a customer trying to withdraw money.

First, the customer inserts his credit card and then is prompted for his PIN. If the PIN was correct, the
customer may withdraw money and then gets his credit card back. Otherwise, if the PIN was incorrect,
the customer has another two attempts to enter the correct PIN. If he has entered an incorrect PIN more
than two times, he is still able to enter another PINs but even if one of these PINs is correct, he cannot
withdraw money and the credit card is retained to prevent misuse.

Our PIN-check module should contain a boolean method pinCheck that checks whether the PIN entered
is correct and the number of attempts is less or equal three. The informal specification of this method is,
that the result value is true if and only if the PIN entered is correct and if the number of attempts is less
or equal three.

The formal specification of the method pinCheck consists of the OCL postcondition

context PIN::pinCheck(input:Integer) :Boolean
post: result=true implies input=pin and attempt<=3

12

class PIN { class PIN {

private int attempt=0; arithInt attempt=0;
private int pin=1234; private int pin=1234;
public boolean pinCheck() { public boolean pinCheck() {
int input; int input;
while (true) { while (true){
attempt++; if (attempt<3) attempt++;
else attempt=4;
input=promptForPIN() ; input=promptForPIN() ;
if (input==pin && attempt<=3) if (input==pin && attempt<=3)
return true; return true;
} }
} }
} }

Fig. 1. Implementation of method pinCheck without (left) and with (right) using the additional arithmetical type
arithInt.

stating that the return value of pinCheck is true if and only if input (the PIN entered) is equal to pin
(the correct PIN of the customer) and the number of attempts is less or equal three.

In this simple example, it is easy to see that the formal specification is not adequate (this means does
not correspond to the described scenario), but in more complex specifications it is not trivial to check that
the formal specification really corresponds to the informal specification. Thus, the problems arising from
an incomplete specification which are pointed out in this example, may also occur in practice and not only
in our simple example.

Without our additional arithmetical types, a possible implementation could be the one shown on the
left in Figure 1. In particular, such an implementation may bw written by a programmer who does not take
overflow into account. This implementation of pinCheck basically consists of a non-terminating while-loop
which can only be left with the statement return true;. In the body of the loop, at first the counter
attempt is incremented by one and the method promptForPin is invoked, which returns the PIN entered
by the user which then is assigned to the variable input. In case the entered PIN is equal to the user’s
correct PIN and the number of attempts is less or equal three, the loop and thus the method terminates
with return true;.

The generation of proof obligations from the specification and implementation yields the following
JavaDL formula, where the body of the loop is abbreviated with p:

F (p)result = true — input = pin A attempt <=3

This sequent is derivable in our calculus. Therefore, due to the correctness of the rules, it is valid in Sy
and, thus, in particular in Sj,.,. Consequently, the above implementation is said to be correct, which
means that it satisfies the specification.

But this implementation has a behaviour that is probably not intended by the programmer. Suppose,
the credit card was stolen and the thief wants to withdraw money but does not know the PIN. Thus, he
has to try all possible PINs. Actually, according to the informal specification, after three wrong attempts
any further attempt should not be successful any more. But if he does not give up, sometime the counter
attempt will overflow and then has the negative value MIN_int. Then, the thief has many attempts to
enter the correct PIN and thus, to withdraw money.

Of course, one reason for the unexpected behaviour of this implementation is the incomplete specifi-
cation. But in the following we will demonstrate that this unintended behaviour of the program can be
detected and thus be avoided following our approach.

Following our approach, in the implementation we would use the arithmetical type arithInt for the
variable attempt instead of the built-in type int. This results in a proof obligation similar to the one above.
The only difference is that the variable attempt in the body of the method is now of type arithInt instead
of int. Since nothing is known about overflow, the only way to derive this in our JavaDL calculus is to
prove—as a lemma or sub-goal—that no overflow occurs (and, thus, overflow is not invoked). Therefore,

13

after several proof steps and simplifications, one gets the goal
Z"”lar:ithInt(attempt): Z’I'l arithInt(l) l_ Z'nar:ithInt(attempt + 1)

But the above sequent is neither valid nor derivable, because it is not true in states where attempt
has the value MAX_int. In such states the addition causes overflow and the above formula does not hold
because the premiss is true and the conclusion is false (because attempt + 1 is not in valid range).

Note, that this error has been uncovered by using our additional arithmetical types and our semantics
Skey - If the built-in types are used in the implementation, this error is not detected.

Since the proof obligation is not derivable in our calculus due to overflow, one has to correct the
implementation to be able to prove its correctness. For example, one has to check whether the value of
attempt is less than 3 before it is incremented. This results in the implementation depicted on the right side
in Figure 1. To be absolutely sure that the implementation meets the informal specification, one actually
also has to prove that the class invariant 0 < attempt < 3 holds.

The resulting proof obligation can now be derived in our calculus and thus, from Corollary 1 follows
that no overflow occurs if the type arithInt is replaced with int in order to execute the program on the
JAVA virtual machine. Thus, with this implementation, it cannot happen that a customer has more than
three attempts to enter the valid PIN and withdraw money since no overflow occurs.

To conclude, the main problem in this example is the inadequate specification (because it is incomplete)
which is satisfied by the first implementation. But due to unintended overflow, this implementation has a
behaviour probably not supposed by the programmer. Following our approach, this unintended behaviour
is uncovered and the program cannot be verified until this problem arising from overflow is solved.

As the example in this section shows, our approach can also contribute to detect errors in the specifi-
cation and thus, if a program containing arithmetical types cannot be verified due to overflow, one should
always check whether the specification is adequate.

References

1. W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hihnle, W. Menzel, and P. H. Schmitt. The KeY
approach: Integrating object oriented design and formal verification. In M. Ojeda-Aciego, I. P. de Guzman,
G. Brewka, and L. M. Pereira, editors, Proceedings, Logics in Artificial Intelligence (JELIA), Malaga, Spain,
LNCS 1919. Springer, 2000.

2. W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. Hihnle, W. Menzel, W. Mostowski, and P. H. Schmitt. The
KeY system: Integrating object-oriented design and formal methods. In R.-D. Kutsche and H. Weber, editors,
Fundamental Approaches to Software Engineering. 5th International Conference, FASE 2002 Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April
2002, Proceedings, volume 2306 of LNCS, pages 327-330. Springer, 2002.

3. B. Beckert. A dynamic logic for the formal verification of Java Card programs. In I. Attali and T. Jensen,
editors, Java on Smart Cards: Programming and Security. Revised Papers, Java Card 2000, International
Workshop, Cannes, France, LNCS 2041, pages 6—24. Springer, 2001.

4. B. Beckert, U. Keller, and P. H. Schmitt. Translating the Object Constraint Language into first-order predicate
logic. In Proceedings, VERIFY, Workshop at Federated Logic Conferences (FLoC), Copenhagen, Denmark,
2002. To appear. Available at i12www.ira.uka.de/ key/doc/2002/BeckertKellerSchmitt02.ps.gz.

5. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addison Wesley, 2nd edition,
2000.

6. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and Isabelle. PhD thesis, University
of Nijmegen, The Netherlands, 2001.

7. U. Keller. Ubersetzung von OCL Constraints in Formeln einer Dynamischen Logik fiir Java Card. Master’s
thesis, Universitat Karlsruhe, 2002. Diplomarbeit, in german.

8. Object Management Group, Inc., Framingham/MA, USA, www.omg.org. OMG Unified Modeling Language
Specification, Version 1.3, June 1999.

9. S. Schlager. Behandlung von Integer Arithmetik bei der Verifikation von Java-Programmen. Master’s thesis,
Universitat Karlsruhe, 2002. Available at i12www.ira.uka.de/ key/doc/2002/DA-Schlager.ps.gz.

10. K. Stenzel. Verification of JavaCard Programs. Technical report 2001-5, Institut fiir Informatik, Universitat
Augsburg, Germany, 2001. Available at www.informatik.uni-augsburg.de/swt/fmg/papers/.

11. D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. PhD thesis,
Technische Universitat Miinchen, 2001.

14

