
Integer Arithmeti
 in the Spe
i�
ation and Veri�
ation ofJava ProgramsBernhard Be
kert and Ste�en S
hlagerUniversity of KarlsruheInstitute for Logi
, Complexity and Dedu
tion SystemsD-76128 Karlsruhe, Germanybe
kert�ira.uka.de, s
hlager�ira.uka.deAbstra
t. In this paper we present an approa
h for handling integer arithmeti
 in the spe
i�
ationand veri�
ation of Java programs. In parti
ular, problems like over
ow and under
ow arising fromthe �niteness of the Java types are ta
kled.1 Introdu
tionBa
kground. The work reported here has been
arried out as part of the KeY proje
t [1, 2℄ (see i12www.ira.uka.de/~key). The goal of KeY is to enhan
e a
ommer
ial CASE tool with fun
tionality for formalspe
i�
ation and dedu
tive veri�
ation and, thus, to integrate formal methods into real-world softwaredevelopment pro
esses. A

ordingly, the design prin
iples for the software veri�
ation
omponent of theKeY system are:{ The spe
i�
ation language should be usable by people who do not have years of training in formalmethods (we de
ided to use UML/OCL).{ The programs that are veri�ed should be written in a \real" obje
t-oriented programming language.We de
ided to use Java (a
tually KeY only supports the subset JavaCard, but the di�eren
e is notrelevant for the topi
 of this paper).The Uni�ed Modeling Language (UML) [8℄ has been widely a

epted as the standard obje
t-orientedmodeling language and is supported by a great number of CASE tools. The Obje
t Constraint Lan-guage (OCL) is an integral part of the UML, and was introdu
ed to express subtleties and nuan
es ofmeaning that diagrams
annot
onvey by themselves.The Problem. For the veri�
ation
omponent in the KeY system, we use a Dynami
 Logi
 (whi
h
an beseen as a variant of Hoare Logi
). This instan
e of Dynami
 Logi
,
alled JavaDL,
an be used to reasonabout Java Card programs [3℄. Obviously, the semanti
s of JavaDL arithmeti
al operations should on theone hand
orrespond to the behaviour of arithmeti
al operations in UML/OCL, and on the other handmust re
e
t the Java semanti
s. Unfortunately, it is hard to meet both requirements at the same time.For spe
ifying propositions about integers, UML/OCL provides the basi
 data type Integer. Thisdata type, by de�nition, is isomorphi
 to the mathemati
al set Z of integers, and thus has an in�nite range.The usual operators for addition, multipli
ation, and so on are available on Integer.On the other hand, in Java there are the four primitive integer data types byte, short, int, and long,whi
h all have a di�erent but �nite range. Moreover, the semanti
s of the arithmeti
al operators di�ersfrom the (usual) semanti
s they have in UML/OCL (the main reason for this is of
ourse the �niteness ofthe data types). In Java, if the result of an arithmeti
al operation ex
eeds the range of its type, an over
owo

urs, i.e., the result is
omputed modulo the size of the date type. For example, MAX int+ 1 = MIN int.Our Solution. In this paper, we present the approa
h for handling Java integer arithmeti
 used in theKeY proje
t and has been implemented in the KeY system (a mu
h more detailed a

ount in
luding proofsand a sequent
al
ulus
an be found in [9℄). This approa
h is based on
ombining the integer semanti
sof UML/OCL and the integer semanti
s de�ned in the Java language spe
i�
ation [5℄. Both semanti
sby themselves are not suitable: Using the semanti
s of UML/OCL may result in in
orre
t programsbeing veri�ed, and using the semanti
s of Java may result in programs being veri�ed that are merely\in
identally"
orre
t and whose behaviour does not re
e
t the intentions of the programmer.7

2 Two Di�erent Semanti
s2.1 From UML/OCL to DL Proof ObligationsTo prove the
orre
tness of a program, one has to prove the validity of Dynami
 Logi
 formulas (proofobligations) whi
h are generated from the spe
i�
ation and implementation. The approa
h for generatingproof obligations used in the KeY proje
t is des
ribed in [7, 4℄.Dynami
 Logi

an be seen as a modal predi
ate logi
 with a modality hp i for every program p (weallow p to be any sequen
e of legal Java statements); hp i refers to the su

essor worlds (
alled states inthe DL framework) that are rea
hable by running the program p . In standard DL there
an be severalof these states (worlds) be
ause the programs
an be non-deterministi
; but here, sin
e Java programsare deterministi
, there is exa
tly one su
h world (if p terminates) or there is no su
h world (if p doesnot terminate). The formula hp i� expresses that the program p terminates in a state in whi
h � holds.A formula � ! hp i is valid if for every state s satisfying the pre-
ondition �, a run of the program pstarting in s terminates, and in the terminating state the post-
ondition holds.2.2 UML/OCL Semanti
s SOCLThe �rst semanti
s for Java integer arithmeti
 we present is motivated by the semanti
s of the OCL andthus, it is
alled SOCL in the following. In SOCL, ea
h of the primitive Java types byte, short, int, andlong is interpreted in the same way as the OCL type Integer. Also, the arithmeti
al Java operatorsare interpreted in the same way as the arithmeti
al operators in the OCL (and thus as in mathemati
s).This means, in SOCL the primitive Java types are interpreted as having an in�nite range and over
owis totally disregarded. Thus, it is easy to see that SOCL di�ers from the semanti
s implemented by thevirtual ma
hine. Nevertheless, this semanti
s is used in many publi
ations (e. g. [6, 11℄) on the semanti
sof Java.2.3 Java Semanti
s SJavaThe se
ond semanti
s, whi
h is
alled SJava, exa
tly
orresponds to the semanti
s de�ned in the Javalanguage spe
i�
ation [5℄ (and thus to the semanti
s implemented by the virtual ma
hine). Espe
ially, thismeans that the primitive types byte, short, int, and long are interpreted as being �nite and over
owis handled
orre
tly. Semanti
s SJava is for example used for the JavaCard DL presented in [10℄. Usingsemanti
s SJava, from the validity of the DL proof obligations one
an
on
lude that all spe
i�ed prop-erties hold during the exe
ution of the program on the virtual ma
hine sin
e the DL semanti
s and thevirtual ma
hine semanti
s are equivalent. This means, using SJava, the notions \validity of proof obliga-tions" (generated from the spe
i�
ation and the implementation) and \
orre
tness of the implementation"
oin
ide. Thus, one might think SJava is the best
hoi
e. But there are also some drawba
ks whi
h aredis
ussed in the following.To spe
ify properties about integer numbers in the OCL, the type Integer is used. On the otherhand, in the implementation usually the Java type int1 is used for integer arithmeti
. Thus, the data typeint with �nite range is used in the implementation of the program that is supposed to ful�ll propertiesstated using the type Integer with in�nite range. If one is not aware of that fa
t during the spe
i�-
ation and implementation, this might lead to an program that is merely \in
identally"
orre
t. Thismeans that a program ful�lls its spe
i�
ation although over
ow may o

ur, but the fa
t that over
owo

urs was not intended neither by the modeler nor the programmer. Thus, the behaviour of the pro-gram during the exe
ution may di�er from the intended behaviour. For example, using SJava, the formulai > 0! hi=i+1; i=i-1ii > 0 is valid although in
ase the value of i is MAX int, an over
ow o

urs andthe value of i is (surprisingly) negative in the intermediate state after the �rst assignment. This phe-nomenon mostly o

urs if the spe
i�
ation is in
omplete or
onsists only of some safety
onstraints (likei > 0). Of
ourse, it is better if a program is only \in
identally"
orre
t than it is in
orre
t, but we think\in
identally"
orre
t programs are also a sour
e of error (see the extended example in Se
tion 4).1 The other primitive integer types byte, short, and long
ould be used as well but as the name Integer suggests,mostly int is used. 8

Of
ourse, the above problem does not arise dire
tly from the semanti
s SJava itself but rather fromthe
ombination of the spe
i�
ation language UML/OCL and the implementation language Java. Butsin
e these languages are used in the KeY proje
t, the problems arising from this
ombination have to be
onsidered in our semanti
s for integer arithmeti
.A real disadvantage of SJava itself is the fa
t that formulas, that are intuitively valid in mathemati
slike 8x9y(y > x) are not valid any more if x; y are of a built-in Java type like for example int.3 A Combination of Both Worlds3.1 The Basi
 IdeaNow, that we have explained why, in our opinion, both semanti
s SOCL and SJava are not suitable forsoftware veri�
ation, we present our approa
h. Of
ourse, we want to maintain the property of SJava thata veri�ed program (this means, that the proof obligations are valid DL formulas) ful�lls the spe
i�edproperties during the exe
ution. But we also want to prevent that programs are only \in
identally"
orre
t(due to unintended over
ow) and we want that intuitively valid formulas in mathemati
s like 8x9y(y > x)are valid in our JavaDL as well. To a
hieve that, we extend the syntax of Java by the additional primitivedata types arithByte, arithShort, arithInt, and arithLong whi
h are
alled arithmeti
al types in
ontrast to the built-in types byte, short, int, and long. The �rst obvious di�eren
e between semanti
sSKeY and SOCL or SJava is, that the signatures of the underlying programming languages di�er sin
e SKeYis a semanti
s for our extended Java, whereas SOCL and SJava are semanti
s for standard Java.In SKeY , the additional arithmeti
al types basi
ally have an in�nite range. The operators a
ting onthem have the same semanti
s as in SOCL with the following restri
tion: If the values of the argumentsof an operator are in valid range (this means, they are representable in the
orresponding built-in types)but the result would not (this means, over
ow o

urs repla
ing the arithmeti
al types with the
orre-sponding built-in types), then the result is
al
ulated by an invo
ation of the impli
itly de�ned methodoverflow(x,y,op)2 whose behaviour remains unspe
i�ed. This means in
ase of over
ow, the result isunspe
i�ed and the exe
ution of the method overflow does not have to terminate.Leaving overflow unspe
i�ed has two main advantages.The �rst one is, that there is no reasonable implementation for the method overflow. In prin
iple,there are three possible implementations but ea
h of them is not suitable as we shortly explain in thefollowing (a
on
rete implementation of overflow leads to a semanti
s that is an \instan
e" of SKeY):{ The implementation of the method overflow is su
h that it returns the value of the mathemati
al resultof the operation and the exe
ution of overflow always terminates. In this
ase, the same problems asin semanti
s SOCL o

ur and thus, this implementation is not a

eptable.{ The implementation of overflow
al
ulates the result of the operation as if the operator had thesame semanti
s as de�ned in the Java language spe
i�
ation and the exe
ution of overflow alwaysterminates. The instan
e of semanti
s SKeY , resulting from this implementation, is
alled SJava0 . Asthe name SJava0 suggests, it is similar to SJava (the di�eren
es are dis
ussed later). The problem ofSJava, that programs are only \in
identally"
orre
t, also applies to SJava0 . An advantage of semanti
sSJava0
ompared to SJava is that, using the arithmeti
al types, formulas like 8x9y(y > x) are valid.{ The implementation of overflow is su
h that it never terminates. This implementation is not a

ept-able, be
ause in this
ase, a formula like [arithInt i=MAX int+1;℄i := 5 is (trivially) valid be
ausethe program in the box operator does not terminate due to over
ow and the invo
ation of methodoverflow. But the exe
ution of the program on the Java virtual ma
hine terminates and thus, thesame problem as in SOCL o

urs, namely that programs
ontained in valid DL formulas in general donot satisfy the spe
i�ed properties during the exe
ution on the virtual ma
hine.As one
an see, ea
h of the three possible implementations leads to a semanti
s that is not suitable forprogram veri�
ation.The se
ond advantage of leaving overflow unspe
i�ed
on
erns the
onne
tion between the derivabilityof a formula in our
al
ulus and the behaviour of a program
ontained in this formula during the exe
utionon the Java virtual ma
hine.2 The parameter op is the operator that
aused over
ow and x,y are its arguments.9

If a JavaDL formula � is derivable in our
al
ulus based on SKeY (i. e. overflow is unspe
i�ed), then� is valid in SKeY for all implementations of overflow (this follows from the soundness of the
al
ulus).In parti
ular, � is a valid formula for the se
ond implementation of overflow mentioned above. Thus, �is valid in semanti
s SJava0 and, what is very important, one knows that no over
ow o

urs during theexe
ution of p . Note, that the latter information is a
on
lusion from the validity of � in semanti
s SKeY . Ifone only knows that � is valid in semanti
s SJava0 , this
on
lusion is not
orre
t. However, the information,that no over
ow o

urs, is very important and is used in Theorem 2.3.2 Properties of the Combined Semanti
s SKeYThe additional types of the extended Java have an in�nite range, and thus, in a DL based on SJava0 , thereare states that do neither exist in DL based on SJava nor in the virtual ma
hine. In the following, we
allsu
h states \unreal" states3, whereas states, that exist in both DLs, are
alled \real" states. But we areinterested in the behaviour of a program during the exe
ution on the virtual ma
hine, and thus, it does notmatter, if a formula holds in an unreal state or not, sin
e unreal states
annot be rea
hed by the virtualma
hine.In real states, SJava and SJava0 are equivalent (in both, the result of over
ow is the same). In parti
ular,this means, that in real states the semanti
s SJava of the built-in types
orresponds to the semanti
s SJava0of the arithmeti
al types. Thus, in real states a program p is equivalent to a program ptransf (p), wherethe arithmeti
al types are repla
ed with the
orresponding built-in types (see Theorem 3).Corollary 1 summarises the
onsiderations of the previous paragraphs. It states that, if the formula� ! hp i derivable in our
al
ulus and program p is started in a real state s satisfying s j=SKeY � , noover
ow o

urs during the exe
ution of the transformed program ptransf (p) on the Java virtual ma
hineand after the exe
ution, the property holds.Note, that Corollary 1 does not apply to arbitrary formulas be
ause a formula like [p ℄true is alwaysderivable, no matter whether over
ow o

urs during the exe
ution of p or not. However, the generationof proof obligations from the spe
i�
ation and implementation typi
ally results in formulas of the form� ! hp i .As mentioned above, a disadvantage of semanti
s SJava is that formulas, that are intuitively valid overthe integer numbers Z like 8x9y(y > x), are not valid if the variables are of a built-in Java type like int,be
ause of their �niteness. This disadvantage does not apply to the arithmeti
al types sin
e their range isin�nite, and the above formula is valid if the variables are of an arithmeti
al type.In SKeY , the semanti
s of the built-in types and the operators a
ting on them exa
tly
orresponds tosemanti
s SJava and thus to the de�nitions in the Java language spe
i�
ation. Thus, using the built-intypes, it is still possible to make use of the e�e
ts of over
ow. On the other hand, using the arithmeti
altypes, the danger of unintended over
ow is eliminated.Above, we mentioned, that the method overflow is invoked if the result value of an operation of anarithmeti
al type is not in valid range. But there is an ex
eption, namely if at least one argument of theoperation is not in valid range. In this
ase, method overflow is not invoked. The reason for that is, thata state, in whi
h this situation o

urs, is always an unreal state and thus, this does not a�e
t the a
tualexe
ution of a program. For example, the formula 9i(i > MAX T ^ hj=i+1;ij := i+ 1) is valid in SKeYif i,j are of an arithmeti
al type T .4 In this
ase, method overflow is not invoked during the symboli
exe
ution in JavaDL, sin
e the state, in whi
h the addition is evaluated, is an unreal state. In this
ase,propositions about the behaviour of the transformed program during the exe
ution on the virtual ma
hinemake no sense be
ause unreal states
annot be rea
hed by the virtual ma
hine.In Table 1, the properties of the three semanti
s SOCL, SJava, and SKeY are summarised and
ompared.Of
ourse, arithmeti
al types are not allowed to o

ur in a program that is supposed to be
ompiledand run on the virtual ma
hine. Thus, the arithmeti
al types have to be repla
ed with the
orresponding3 The name \unreal" suggests that those states are not rea
hable by the exe
ution of a program on the virtual ma-
hine. Intuitively, in \unreal" states, the value of at least one variable of an arithmeti
al type is not representablein a variable of the
orresponding built-in type.4 A
tually, a program variable must not be quanti�ed and a formula like 8i�(i) is a short form for the synta
ti
ally
orre
t formula 8xhi=x;i�(i). 10

Property SOCL SJava SKeYUnderlying programming language Java Java extended JavaOver
ow on built-in integer types no yes yesOver
ow on arithmeti
al types | | in unreal statesRange of built-in integer types in�nite �nite �niteRange of arithmeti
al types | | in�niteExisten
e of unreal states yes no yesBehaviour of programs in DL and on the JVM di�erent equal equal under
ertain
onditionsTable 1. Comparison of some properties of SOCL, SJava, and SKeY .built-in types before the program
an be
ompiled and exe
uted. We therefore de�ne a transformationptransf that repla
es all arithmeti
al types in a program by the
orresponding primitive Java types.A
onsequen
e of applying the type transformation ptransf to a program p before
ompiling and runningit on the virtual ma
hine is, that the a
tually exe
uted program ptransf(p) and the veri�ed program pdi�er. However, the following theorems show that this di�eren
e is harmless and does not a�e
t the veri�edbehaviour of p .Theorem 1. If a Java program p is well-typed, then the program ptransf (p) is well-typed.Theorem 2. If `KeY � (and, therefore, j=SKeY �), then both j=SOCL � and j=SJava0 �.De�nition 1. Let s be a real JavaDL state. The isomorphi
 state iso(s) to s is the virtual ma
hine state,in whi
h all state elements (program variables and �elds) of arithmeti
al type in s are of the
orrespondingbuilt-in types and are assigned the same values as in s.If s is a real state, the existen
e of iso(s) is guaranteed, sin
e by de�nition, in real states the values of allvariables of the arithmeti
al types are representable in the
orresponding built-in types. In the followingtheorem, s [[p ℄℄SJava0 s0 means that program p , started in state s, terminates in state s0 using the DLsemanti
s SJava0 .Theorem 3. Let p be a Java program that may
ontain arithmeti
al types. Then, for all real states s andall (arbitrary) states s0: If s [[p℄℄SJava0 s0, then iso(s) [[ptransf (p)℄℄SJava iso(s0).The following
orollary states, that, if � ! hp i is derivable in our
al
ulus and program p is startedin a real state s with s j=SKeY � , no over
ow o

urs during the exe
ution of ptransf (p) started in iso(s).The meaning of s j=SKeY � is that � holds in s for all possible implementations of overflow.Corollary 1. Let � ; be pure �rst-order predi
ate logi
al formulas, let p be an arbitrary Java programthat may
ontain arithmeti
al types, and let s be an arbitrary JavaDL state.If (i) `KeY � ! hpi , (ii) s j=SKeY �, and (iii) s is a real state, then, when the transformedprogram ptransf (p) is started in iso(s) on the virtual ma
hine, (a) no over
ow o

urs and (b) the exe
utionterminates in the state iso(s0).Some sample formulas and the ne
essary type to make the a

ording formula valid in the di�erentsemanti
s are depi
ted in Table 2.Below, we summarise the main features of semanti
s SKeY .{ It is still possible to make use of the e�e
ts of over
ow by expli
itly using the primitive built-in Javatypes in the spe
i�
ation as well as in the implementation.{ Unintended over
ow is a
ommon sour
e of error whi
h, following our approa
h,
an be avoided byusing the additional arithmeti
al types.{ Formulas like 8x9y(y > x) that are intuitively valid over the integer numbers Z, are still valid if x; yare of an arithmeti
al type. 11

Formula SOCL SJava SKeY8i9j(j > i) int | arithInt9i(i > 0! hi=i+1;ii < 0) | int int8ihi=i+1;ii := i+ 1 int | |8ihi=i+1-1;ii := i int int int8ihi=i;ii := i int | arithInt8i(even(i)! hi=i+2;ieven(i)) int int intTable 2. This table shows some formulas and in the last three
olumns is denoted of whi
h type the programvariables i and j have to be that the a

ording formula is valid in semanti
s SOCL, SJava, or SKeY .3.3 Variants of Semanti
s SKeYIn semanti
s SKeY , we de�ned, that the method overflow does not have a known implementation andthus is unspe
i�ed. By giving axioms, that overflow must satisfy, it is possible to de�ne variants of SKeY .For example, one
ould de�ne, that overflow always terminates or is symmetri
. If overflow alwaysterminates, a formula like � ! hp itrue is possibly derivable, even if over
ow o

urs during the exe
u-tion of p and overflow is invoked, sin
e goals of the form � ` hx=overflow(arg1,arg2,op);itrue
animmediately be
losed with the information that the invo
ation of overflow terminates.As long as the axioms are su
h that they are satis�able by the instan
es SOCL and SJava0 of SKeY ,Theorem 2 and Theorem 3 still hold.3.4 Steps in Software DevelopmentFollowing our approa
h, the steps in software development are the following.1. Spe
i�
ation: In the UML/OCL spe
i�
ation, the type OCL type Integer is used.2. Implementation: If an operation is spe
i�ed using Integer, in the implementation, the arithmeti
altypes arithByte, arithShort, arithInt, or arithLong are used.3. Veri�
ation: Using our
al
ulus, one has to derive the proof obligations generated from the spe
i�
ationand implementation using the translation des
ribed in [7, 4℄. If all proof obligations are derivable, fromCorollary 1 follows, that the program, if the requirements of the
orollary are satis�ed, after repla
ingthe arithmeti
al types with the
orresponding built-in types, satis�es all spe
i�ed properties duringthe exe
ution on the virtual ma
hine and in parti
ular, no over
ow o

urs.4 Extended ExampleIn this example we des
ribe the spe
i�
ation, implementation, and veri�
ation of a PIN-
he
k module fora
ash dispensers. Before we give an informal spe
i�
ation of the PIN-
he
k module of the
ash dispenser,we des
ribe the s
enario of a
ustomer trying to withdraw money.First, the
ustomer inserts his
redit
ard and then is prompted for his PIN. If the PIN was
orre
t, the
ustomer may withdraw money and then gets his
redit
ard ba
k. Otherwise, if the PIN was in
orre
t,the
ustomer has another two attempts to enter the
orre
t PIN. If he has entered an in
orre
t PIN morethan two times, he is still able to enter another PINs but even if one of these PINs is
orre
t, he
annotwithdraw money and the
redit
ard is retained to prevent misuse.Our PIN-
he
k module should
ontain a boolean method pinChe
k that
he
ks whether the PIN enteredis
orre
t and the number of attempts is less or equal three. The informal spe
i�
ation of this method is,that the result value is true if and only if the PIN entered is
orre
t and if the number of attempts is lessor equal three.The formal spe
i�
ation of the method pinChe
k
onsists of the OCL post
ondition
ontext PIN::pinChe
k(input:Integer):Booleanpost: result=true implies input=pin and attempt<=312

lass PIN {private int attempt=0;private int pin=1234;publi
 boolean pinChe
k() {int input;while (true) {attempt++;input=promptForPIN();if (input==pin && attempt<=3)return true;}}}

lass PIN {arithInt attempt=0;private int pin=1234;publi
 boolean pinChe
k() {int input;while (true){if (attempt<3) attempt++;else attempt=4;input=promptForPIN();if (input==pin && attempt<=3)return true;}}}Fig. 1. Implementation of method pinChe
k without (left) and with (right) using the additional arithmeti
al typearithInt.stating that the return value of pinChe
k is true if and only if input (the PIN entered) is equal to pin(the
orre
t PIN of the
ustomer) and the number of attempts is less or equal three.In this simple example, it is easy to see that the formal spe
i�
ation is not adequate (this means doesnot
orrespond to the des
ribed s
enario), but in more
omplex spe
i�
ations it is not trivial to
he
k thatthe formal spe
i�
ation really
orresponds to the informal spe
i�
ation. Thus, the problems arising froman in
omplete spe
i�
ation whi
h are pointed out in this example, may also o

ur in pra
ti
e and not onlyin our simple example.Without our additional arithmeti
al types, a possible implementation
ould be the one shown on theleft in Figure 1. In parti
ular, su
h an implementation may bw written by a programmer who does not takeover
ow into a

ount. This implementation of pinChe
k basi
ally
onsists of a non-terminating while-loopwhi
h
an only be left with the statement return true;. In the body of the loop, at �rst the
ounterattempt is in
remented by one and the method promptForPin is invoked, whi
h returns the PIN enteredby the user whi
h then is assigned to the variable input. In
ase the entered PIN is equal to the user's
orre
t PIN and the number of attempts is less or equal three, the loop and thus the method terminateswith return true;.The generation of proof obligations from the spe
i�
ation and implementation yields the followingJavaDL formula, where the body of the loop is abbreviated with p:` hpiresult := true ! input := pin ^ attempt <= 3This sequent is derivable in our
al
ulus. Therefore, due to the
orre
tness of the rules, it is valid in SKeYand, thus, in parti
ular in SJava. Consequently, the above implementation is said to be
orre
t, whi
hmeans that it satis�es the spe
i�
ation.But this implementation has a behaviour that is probably not intended by the programmer. Suppose,the
redit
ard was stolen and the thief wants to withdraw money but does not know the PIN. Thus, hehas to try all possible PINs. A
tually, a

ording to the informal spe
i�
ation, after three wrong attemptsany further attempt should not be su

essful any more. But if he does not give up, sometime the
ounterattempt will over
ow and then has the negative value MIN int. Then, the thief has many attempts toenter the
orre
t PIN and thus, to withdraw money.Of
ourse, one reason for the unexpe
ted behaviour of this implementation is the in
omplete spe
i�-
ation. But in the following we will demonstrate that this unintended behaviour of the program
an bedete
ted and thus be avoided following our approa
h.Following our approa
h, in the implementation we would use the arithmeti
al type arithInt for thevariable attempt instead of the built-in type int. This results in a proof obligation similar to the one above.The only di�eren
e is that the variable attempt in the body of the method is now of type arithInt insteadof int. Sin
e nothing is known about overflow, the only way to derive this in our JavaDL
al
ulus is toprove|as a lemma or sub-goal|that no over
ow o

urs (and, thus, overflow is not invoked). Therefore,13

after several proof steps and simpli�
ations, one gets the goalin arithInt(attempt); in arithInt(1) ` in arithInt(attempt+ 1):But the above sequent is neither valid nor derivable, be
ause it is not true in states where attempthas the value MAX int. In su
h states the addition
auses over
ow and the above formula does not holdbe
ause the premiss is true and the
on
lusion is false (be
ause attempt+ 1 is not in valid range).Note, that this error has been un
overed by using our additional arithmeti
al types and our semanti
sSKeY . If the built-in types are used in the implementation, this error is not dete
ted.Sin
e the proof obligation is not derivable in our
al
ulus due to over
ow, one has to
orre
t theimplementation to be able to prove its
orre
tness. For example, one has to
he
k whether the value ofattempt is less than 3 before it is in
remented. This results in the implementation depi
ted on the right sidein Figure 1. To be absolutely sure that the implementation meets the informal spe
i�
ation, one a
tuallyalso has to prove that the
lass invariant 0 � attempt � 3 holds.The resulting proof obligation
an now be derived in our
al
ulus and thus, from Corollary 1 followsthat no over
ow o

urs if the type arithInt is repla
ed with int in order to exe
ute the program on theJava virtual ma
hine. Thus, with this implementation, it
annot happen that a
ustomer has more thanthree attempts to enter the valid PIN and withdraw money sin
e no over
ow o

urs.To
on
lude, the main problem in this example is the inadequate spe
i�
ation (be
ause it is in
omplete)whi
h is satis�ed by the �rst implementation. But due to unintended over
ow, this implementation has abehaviour probably not supposed by the programmer. Following our approa
h, this unintended behaviouris un
overed and the program
annot be veri�ed until this problem arising from over
ow is solved.As the example in this se
tion shows, our approa
h
an also
ontribute to dete
t errors in the spe
i�-
ation and thus, if a program
ontaining arithmeti
al types
annot be veri�ed due to over
ow, one shouldalways
he
k whether the spe
i�
ation is adequate.Referen
es1. W. Ahrendt, T. Baar, B. Be
kert, M. Giese, E. Habermalz, R. H�ahnle, W. Menzel, and P. H. S
hmitt. The KeYapproa
h: Integrating obje
t oriented design and formal veri�
ation. In M. Ojeda-A
iego, I. P. de Guzman,G. Brewka, and L. M. Pereira, editors, Pro
eedings, Logi
s in Arti�
ial Intelligen
e (JELIA), Malaga, Spain,LNCS 1919. Springer, 2000.2. W. Ahrendt, T. Baar, B. Be
kert, M. Giese, R. H�ahnle, W. Menzel, W. Mostowski, and P. H. S
hmitt. TheKeY system: Integrating obje
t-oriented design and formal methods. In R.-D. Kuts
he and H. Weber, editors,Fundamental Approa
hes to Software Engineering. 5th International Conferen
e, FASE 2002 Held as Part ofthe Joint European Conferen
es on Theory and Pra
ti
e of Software, ETAPS 2002 Grenoble, Fran
e, April2002, Pro
eedings, volume 2306 of LNCS, pages 327{330. Springer, 2002.3. B. Be
kert. A dynami
 logi
 for the formal veri�
ation of Java Card programs. In I. Attali and T. Jensen,editors, Java on Smart Cards: Programming and Se
urity. Revised Papers, Java Card 2000, InternationalWorkshop, Cannes, Fran
e, LNCS 2041, pages 6{24. Springer, 2001.4. B. Be
kert, U. Keller, and P. H. S
hmitt. Translating the Obje
t Constraint Language into �rst-order predi
atelogi
. In Pro
eedings, VERIFY, Workshop at Federated Logi
 Conferen
es (FLoC), Copenhagen, Denmark,2002. To appear. Available at i12www.ira.uka.de/~key/do
/2002/Be
kertKellerS
hmitt02.ps.gz.5. J. Gosling, B. Joy, G. Steele, and G. Bra
ha. The Java Language Spe
i�
ation. Addison Wesley, 2nd edition,2000.6. M. Huisman. Java Program Veri�
ation in Higher-Order Logi
 with PVS and Isabelle. PhD thesis, Universityof Nijmegen, The Netherlands, 2001.7. U. Keller. �Ubersetzung von OCL Constraints in Formeln einer Dynamis
hen Logik f�ur Java Card. Master'sthesis, Universit�at Karlsruhe, 2002. Diplomarbeit, in german.8. Obje
t Management Group, In
., Framingham/MA, USA, www.omg.org. OMG Uni�ed Modeling LanguageSpe
i�
ation, Version 1.3, June 1999.9. S. S
hlager. Behandlung von Integer Arithmetik bei der Veri�kation von Java-Programmen. Master's thesis,Universit�at Karlsruhe, 2002. Available at i12www.ira.uka.de/~key/do
/2002/DA-S
hlager.ps.gz.10. K. Stenzel. Veri�
ation of JavaCard Programs. Te
hni
al report 2001-5, Institut f�ur Informatik, Universit�atAugsburg, Germany, 2001. Available at www.informatik.uni-augsburg.de/swt/fmg/papers/.11. D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logi
. PhD thesis,Te
hnis
he Universit�at M�un
hen, 2001. 14

