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Abstract

This paper reports on the ongoing KeY project aimed at
bridging the gap between (a) object-oriented software en-
gineering methods and tools and (b) deductive verification.
A distinctive feature of our approach is the use of a com-
mercial CASE tool enhanced with functionality for formal
specification and deductive verification.

1 Introduction

1.1 Analysis of the Current Situation

While formal methods are by now well established in
hardware and system design, usage of formal methods in
software development is still (and in spite of exceptions [8],
[9]) more or less confined to academic research. This is
true though case studies clearly demonstrate that computer-
aided specification and verification of realistic software is
feasible [14]. The real problem lies in the excessive demand
imposed by current tools on the skills of prospective users:

1. Tools for formal software specification and verification
are not integrated into industrial software engineering
processes.

2. User interfaces of verification tools are not ergonomic:
they are complex, idiosyncratic, and are often without
graphical support.

3. Users of verification tools are expected to know syn-
tax and semantics of one or more complex formal lan-
guages. Typically, at least a tactical programming lan-
guage and a logical language are involved. And even
worse, to make serious use of many tools, intimate
knowledge of employed logic calculi and proof search
strategies is necessary.�The KeY project is supported by the Deutsche Forschungsgemein-

schaft (grant no. Ha 2617/2-1).

Successful specification and verification of larger projects,
therefore, is done separately from software development by
academic specialists with several years of training in formal
methods, in many cases by the tool developers themselves.
It is unlikely that formal software specification and verifi-
cation will become a routine task in industry under these
circumstances.

The future challenge for formal methods is to make their
considerable potential feasible to use in an industrial envi-
ronment. This leads to the requirements:

1. Tools for formal software specification and verification
must be integrated into industrial software engineering
procedures.

2. User interfaces of these tools must comply with state-
of-the-art software engineering tools.

3. The necessary amount of training in formal methods
must be minimized. Moreover, techniques involving
formal software specification and verification must be
teachable in a structured manner. They should be inte-
grated in courses on software engineering topics.

To be sure, the thought that full formal software verifica-
tion might be possible without any background in formal
methods is utopian. An industrial verification tool should,
however, allow forgradualverification so that software en-
gineers at any (including low) experience level with formal
methods may benefit. In addition, an integrated tool with
well-defined interfaces facilitates “outsourcing” those parts
of the modeling process that require special skills.

Another important motivation to integrate design, devel-
opment, and verification of software is provided by mod-
ern software development methodologies which areitera-
tive and incremental. Post mortemverification would en-
force the antiquated waterfall model. Even worse, in a lin-
ear model the extra effort needed for verification cannot be
parallelized and thus compensated by greater work force.
Therefore, delivery time increases considerably and would
make formally verified software decisively less competitive.

But not only must the extra time for formal software
development be within reasonable bounds, the cost of for-
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mal specification and verification in an industrial context
requires accountability:

4. It must be possible to give realistic estimations of the
cost of each step in formal software specification and
verification depending on the type of software and the
degree of formalization.

This implies immediately that the mere existence of tools
for formal software specification and verification is not suf-
ficient, rather, formal specification and verification have to
be fully integrated into the software development process.

1.2 The Project

Since November 1998 the authors work on a project ad-
dressing the goals outlined in the previous section; we call
it the project (read “key”).

In the principal use case of the KeY system there are ac-
tors who want to implement a software system that complies
with given requirements and formally verify its correctness.
The system is responsible for adding formal detail to the
analysis model, for creating conditions that ensure the cor-
rectness of refinement steps (called proof obligations), for
finding proofs showing that these conditions are satisfied
by the model, and for generating counter examples if they
are not. Special features of KeY are:� We concentrate on object-oriented analysis and design

methods (OOAD)—because of their key role in today’s
software development practice—, and on JAVA as the
target language. In particular, we use the Unified Mod-
eling Language (UML) [20] for visual modeling of
designs and specifications and the Object Constraint
Language (OCL) for adding further restrictions. This
choice is supported by the fact, that the UML (which
contains OCL since version 1.3) is not only an OMG
standard, but has been adopted by all major OOAD
software vendors and is featured in recent OOAD text-
books [18].� We use a commercial CASE tool as starting point and
enhance it by additional functionality for formal speci-
fication and verification. The current tool of our choice
is TogetherSoft LLC’s TOGETHERJ.� Formal verification is based on an axiomatic semantics
of the real programming language JAVA CARD [23]
(soon to be replaced by Java 2 Micro Edition, J2ME).� As a case study to evaluate the usability of our ap-
proach we develop a scenario using smart cards with
JAVA CARD as programming language [12, 13]. JAVA

smart cards make an extremely suitable target for a
case study:

– As an object-oriented language, JAVA CARD is
well suited for OOAD;

– JAVA CARD lacks some crucial complications of
the full JAVA language (no threads, fewer data
types, no graphical user interfaces);

– JAVA CARD applications are small (JAVA smart
cards currently offer 16K memory for code);

– at the same time, JAVA CARD applications are
embedded into larger program systems or busi-
ness processes which should be modeled (though
not necessarily formally verified) as well;

– JAVA CARD applications are often security-criti-
cal, thus giving incentive to apply formal meth-
ods;

– the high number (usually millions) of deployed
smart cards constitutes a new motivation for for-
mal verification, because, in contrast to software
run on standard computers, arbitrary updates are
not feasible.1� Through direct contacts with software companies we

check the soundness of our approach for real world ap-
plications (some of the experiences from these contacts
are reported in [3]).

The KeY system consists of three main components:� Themodeling component: this component is based on
the CASE tool and is responsible for all user interac-
tions (except interactive deduction). It is used to gen-
erate and refine models, and to store and process them.
The extensions for precise modeling contains, e.g., ed-
itor and parser for the OCL. Additional functionality
for the verification process is provided, e.g., for writ-
ing proof obligations.� Theverification manager: the link between the model-
ing component and the deduction component. It gen-
erates proof obligations expressed in formal logic from
the refinement relations in the model. It stores and pro-
cesses partial and completed proofs; and it is respon-
sible for correctness management (to make sure, e.g.,
that there are no cyclic dependencies in proofs).� Thededuction component. It is used to actually con-
struct proofs—or counter examples—for proof obliga-
tions generated by the verification manager. It is based
on an interactive verification system combined with
powerful automated deduction techniques that increase
the degree of automation; it also contains a part for au-
tomatically generating counter examples from failed
proof attempts. The interactive and automated tech-
niques and those for finding counter examples are fully
integrated and operate on the same data structures.

Although consisting of different components, the KeY sys-
tem is going to be fully integrated with a uniform user in-
terface.

A first KeY system prototype has been implemented, in-
tegrating the CASE tool TOGETHERJ and a deductive com-
ponent (it has only limited capabilities and lacks the verifi-
cation manager component). Work on the full KeY system
is under progress.

1While JAVA CARD applets on smart cards can be updated in principle,
for security reasons this does not extend to those applets that verify and
load updates.
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2 Designing a System with

2.1 The Modeling Process

Software development is generally divided into four ac-
tivities: analysis, design, implementation, and test. The
KeY approach embraces verification as a fifth category. The
way in which the development activities are arranged in a
sequential order over time is called software development
process. It consists of different phases. The end of each
phase is defined by certain criteria the actual model should
meet (milestones).

In some older process models like the waterfall model or
Boehm’s spiral model no difference is made between the
main activities—analysis, design, implementation, test—
and the process phases. More recent process models distin-
guish between phases and activities very carefully; for ex-
ample, the Rational Unified Process [15] uses the phases in-
ception, elaboration, construction, and transition alongwith
the above activities.

The KeY system does neither support nor require the us-
age of aparticular process. However, it is taken into ac-
count that most modern processes have two principles in
common. They areiterativeandincremental. The design of
an iteration is often regarded as the refinement of the design
developed in the previous iteration. This has an influence
on the way in which the KeY system treats UML models
and additional verification tasks (see Section 2.3). The ver-
ification activities are spread across all phases in software
development. They are often carried out after test activities.

2.2 Specification with the UML and the OCL

The diagrams of the Unified Modeling Language pro-
vide, in principle, an easy and concise way to formulate
various aspects of a specification, however [25, foreword]:
“[. . . ] there are many subtleties and nuances of meaning
diagrams cannot convey by themselves.” This was a main
source of motivation for the development of the Object Con-
straint Language (OCL), part of the UML since version 1.3
[20]. Constraints written in this language are understood
in the context of a UML model, they never stand by them-
selves. The OCL allows to attach preconditions, postcondi-
tions, invariants, and guards to specific elements of a UML
model.

When designing a system with KeY, one develops a UML
model that is enriched by OCL constraints to make it more
precise. This is done using the CASE tool integrated into
the KeY system. To assist the user, the KeY system provides
menu and dialog driven input possibility. Certain standard
tasks, for example, generation of formal specifications of
inductive data structures (including the common ones such
as lists, stacks, trees) in the UML and the OCL can be done
in a fully automated way, while the user simply supplies
names of constructors and selectors. Even if formal specifi-
cations cannot fully be composed in such a schematic way,
considerable parts usually can.

In addition, we have developed a method supporting the
extension of a UML model by OCL constraints that is based
on enriched design patterns. In the KeY system we will

provide common patterns that come complete with prede-
fined constraint schemata. These schemata are formulated
in a language that is a slight extension of OCL. They are
flexible and allow the user to easily generate well-adapted
constraints for the different instances of a pattern. The user
needs not write formal specifications from scratch, but only
to adapt and complete them. A detailed description of this
technique and of experiences with its application in practice
is given in [4].

2.3 The Module Concept

The KeY system supports modularization of the model in
a particular way. Those parts of a model that correspond to
a certain component of the modeled system are grouped to-
gether and form amodule. Modules are a different structur-
ing concept than iterations and serve a different purpose. A
module contains all the model components (diagrams, code
etc.) that refer to a certain system component. A module is
not restricted to a single level of refinement.

There are three main reasons behind the module concept
of the KeY system:

Structuring: Models of large systems can be structured,
which makes them easier to handle.

Information hiding: Parts of a module that are not rele-
vant for other modules are hidden. This makes it eas-
ier to change modules and correct them when errors
are found, and to re-use them for different purposes.

Verification of single modules: Different modules can be
verified separately, which allows to structure large ver-
ification problems. If the size of modules is limited,
the complexity of verifying a system grows linearly in
the number of its modules and thus in the size of the
system. This is indispensable for the scalability of the
KeY approach.

In the KeY approach, a hierarchical module concept with
sub-modules supports the structuring of large models. The
modules in a system model form a tree with respect to the
sub-module relation.

Besides sub-modules and model components, a module
contains the refinement relations between components that
describe the same part of the modeled system in two con-
secutive levels of refinement. The verification problem as-
sociated with a module is to show that these refinements
are correct (see Section 3.1). The refinement relations must
be provided by the user; typically, they include a signature
mapping.

To facilitate information hiding, a module is divided into
a public part, itscontract, and a private (hidden) part; the
user can declare parts ofeachrefinement level as public or
private. Only the public information of a moduleA is visi-
ble in another moduleB provided that moduleB implicitly
or explicitly imports moduleA. Moreover, a component
of moduleB belonging to some refinement level can only
seethe visible information from moduleA that belongs to
the same level. Thus, the private part of a module can be
changed as long as its contract is not affected. For the de-
scription of a refinement relation (like a signature mapping)
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all elements of a module belonging to the initial model or
the refined model are visible, whether declared public or
not.

As the modeling process proceeds through iterations, the
system model becomes ever more precise. The final step is a
special case, though: the involved models—the implemen-
tation model and its realization in JAVA —do not necessar-
ily differ in precision, but use different paradigms (specifi-
cation vs. implementation) and different languages (UML
with OCL vs. JAVA ).

The ideas of refinement and modularization in the KeY
module concept can be compared with (and are partly influ-
enced by) the KIV approach [21] and the B Method [1, 17],
but still follow different guidelines.

2.4 The Internal State of Objects

The formal specification of objects and their behavior re-
quires special techniques. One important aspect is that the
behavior of objects depends on their state that is stored in
their attributes, however, the methods of a JAVA class can in
general not be described as functions on their input as they
may have side effects and change the state. To fully spec-
ify the behavior of an object or class, it must be possible
to refer to its state (including its initial state). Difficulties
may arise if methods for observing the state are not defined
or are declared private and, therefore, cannot be used in the
public contract of a class. To model such classes,observer
methodshave to be added. These allow to observe the state
of a class without changing it.

3 Formal Verification with

Once a program is formally specified to a sufficient de-
gree one can start to formally verify it. Neither a program
nor its specification need to be complete in order to start
verifying it. In this case one suitably weakens the postcon-
ditions (leaving out properties of unimplemented or unspec-
ified parts) or strengthens preconditions (adding assump-
tions about unimplemented parts). Data encapsulation and
structuredness of OO designs are going to be of great help
here.

The verification process will be automated as much as
possible with the help of deduction techniques based on pre-
vious work [2] done in our group on integrating our auto-
mated [6] and interactive theorem provers [21].

3.1 Proof Obligations and Program Logic

For obtaining the proof obligations to be justified, we
employ design by contract [19] with the same restriction
as [25]: run-time aspects are completely ignored.

The logic we use is dynamic logic (DL) [16]. It is a full
logic with first-order quantification, built from basic blocks
of the formh�iQ with the meaning: program� terminates
and afterwards formulaQ holds. We decided to take a bold
step and allow any legal JAVA CARD program to occur in
the place of�. A more detailed description of KeY-DL is
given in [5]. The central point is, of course, to deal with

features of OO languages such as side effects and exception
handling.

3.2 The Deduction Component

The KeY system comprises a deductive component that
can handle KeY-DL. This KeY prover combines interactive
and automated theorem proving techniques. Experiences
with the KIV system [21] have shown how to cope with DL
proof obligations: The original goal is reduced to first-order
predicate logic using DL rules, as described in [5].

Our deductive system uses a technique ofschematic the-
ory specific rules, which combine purely logical knowledge,
information on how this knowledge should be used, and
information on when and where this knowledge should be
presented for interactive use. This technique has been im-
plemented in the interactive proof system IBIJa2.

Interactive proving is greatly enhanced by intermediate
automated steps based on proof search in the style of ana-
lytic tableaux [11]. Also, a component ofdisprovingfor-
mulas by finding counterexamples is being developed.

4 Related Work

There are many projects dealing with formal methods in
software engineering including several ones aimed at JAVA

as a target language. There is also work on security of
JAVA CARD and ACTIVEX applications as well as on se-
cure smart card applications in general. We are, however,
not aware of any project quite like ours. We mention some
of the more closely related projects:� The COGITO project [24] resulted in an integrated for-

mal software development methodology and support
system based on extendedZ as specification language
and Ada as target language. It is not integrated into a
CASE tool, but stand-alone.� The FUZE project [10] realized CASE tool support for
integrating the FUSION OOAD process with the for-
mal specification languageZ. The aim was to formal-
ize OOAD methods and notations such as the UML,
whereas we are interested to derive formal specifica-
tions with the help of an OOAD process extension.� The goal of the QUEST project [22] is to enrich the
CASE tool AUTOFOCUS for description of distributed
systems with means for formal specification and sup-
port by model checking. Applications are embedded
systems, description formalisms are state charts, activ-
ity diagrams, and temporal logic.� Aim of the SYSLAB project is the development of a
scientifically founded approach for software and sys-
tems development. At the core is a precise and formal
notion of hierarchical “documents” consisting of infor-
mal text, message sequence charts, state transition sys-
tems, object models, specifications, and programs. All
documents have a “mathematical system model” that
allows to precisely describe dependencies or transfor-
mations [7].

2More information on IBIJa is available at i11www.ira.uka.de/˜ibija.
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� The goal of the PROSPER project was to provide the
means to deliver the benefits of mechanized formal
specification and verification to system designers in
industry (www.dcs.gla.ac.uk/prosper/index.html). The
difference to the KeY project is that the dominant goal
is hardware verification; and the software part involves
only specification.

5 Conclusion and the Future of

We described the current state of the KeY project and its
ultimate goal: To facilitate and promote the use of formal
verification in an industrial context for real-world applica-
tions. It remains to be seen to which degree this goal can be
achieved.

Our vision is to make the logical formalisms transparent
for the user with respect to OO modeling. That is, whenever
user interaction is required, the current state of the verifica-
tion task is presented in terms of the environment the user
has created so far and not in terms of the underlying deduc-
tion machinery. The situation is comparable to a symbolic
debugger that lets the user step through the source code of a
program while it actually executes compiled machine code.
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