
Improving the Usability of
Specification Languages and Methods for

Annotation-based Verification?

Bernhard Beckert, Thorsten Bormer, and Vladimir Klebanov

Institute for Theoretical Computer Science,
Karlsruhe Institute of Technology, Germany

http://formal.iti.kit.edu

Abstract. It is widely recognized that human input is indispensable in
deductive verification of real-world code. Verification engineers have to
guide the proof search and provide information reflecting their insight
into the workings of the program. Lately we have seen a shift towards an
annotation-based paradigm – sometimes called “verifying compiler” –,
where this information is provided in the form of program annotations
instead of interactively during proof construction.
Suspicions have been growing recently that expressing verification knowl-
edge as annotations in their current form suffers from serious scalability
and maintainability issues.
In this paper, we pinpoint some of the biggest neuralgic spots and pro-
vide recommendations to the designers of annotation-based verification
systems aimed to improve usability of specification languages and meth-
ods and, thus, the tool’s productivity. We clarify the different purposes
that annotations can serve and show why a certain class of annotations
that are not program requirements is currently indispensable for proof
construction. Moreover, we discuss how the use of data abstractions can
be improved in annotation-based specifications.

1 Introduction

Program annotations as a form of interaction with the software verification
tool have several important advantages. They make verification attempts self-
contained, as human guidance is captured textually (and typically in terms
closely related to the program at hand). They also keep the program and the
specification close to each other, which is helpful as both unavoidably (co-)evolve.

At the same time, suspicions have been growing recently that expressing
verification knowledge as annotations in their current form suffers from serious
scalability and maintainability issues. This is part of a more general concern that
writing specifications may turn into a bottle-neck for program verification (this
observation was also, e.g., made in [13]).
? Work partially funded by the German Federal Ministry of Education and Research

(BMBF) in the framework of the Verisoft XT project under grant 01 IS 07008 H.
The responsibility for this article lies with the authors.

The problems with annotation-based verification arise as the lines between
(a) requirement specification, (b) auxiliary information needed for proof con-
struction, and (c) information for proof-search guidance get blurred. Even worse,
related specification parts get dispersed and different levels of abstraction inter-
mixed.

In this paper, we pinpoint some of the biggest neuralgic spots and provide rec-
ommendations to the designers of annotation-based verification systems aimed
to improve usability of specification languages and methods and, thus, the tool’s
productivity.

After an introduction to the typical architecture and working cycle of anno-
tation-based verification systems (Sect. 2), we discuss in Section 3 the different
purposes that annotations can serve, based on a clarification of what the no-
tion of completeness means in this framework. We show why a certain class of
annotations that are not program requirements is currently indispensable for
proof construction. Users are often surprised that they cannot omit certain non-
requirement annotations even for the simplest (sub-)problems. We plead that
they must be better educated about the inner workings of a verification system
and what kinds of annotations are indispensable in which situations. This is in
conflict with the desire to enable the user to work with the verification system
as a “black box”, which is generally seen as an important feature of the verifying
compiler paradigm.

In Section 4, we discuss how the use of data abstractions can be improved in
annotation-based specifications. The lack of syntactical separation between the
(abstract) requirements and the non-requirement annotations obscures the inner
structure of specifications and makes them hard to understand and maintain.

Finally, in Section 5 we draw conclusions from our research and discuss future
work.

The problems we discuss are not inherent to annotation-based verification
(nor the verifying compiler approach), but rather due to the currently imple-
mented design decisions of such verification systems. All of the issues mentioned
in this work can be overcome by extending specification languages and method-
ologies. The general, central idea of annotating programs at source-code level –
using a language whose syntax is closely related to the programming language
– is not the source of the problems described in this paper.

2 Inside a Typical Annotation-based Verification System

Tools following the annotation-based paradigm include Spec# [1], VCC [12],
Caduceus [7] and others. They are all based on powerful fully-automatic provers
and decision procedures, and they support real-world programming languages
such as C and C#.

Compared to fully automatic verification approaches like model checking or
abstract interpretation that need no human interaction, the annotation-based
paradigm allows for full functional verification of programs. But the former meth-

ods are either restricted in the expressiveness of specifications, the precision of
results, or in the kind of programs that can be verified.

In the following we describe the process of software verification with the
Verifying C Compiler (VCC). Our observations (unless noted otherwise) are,
however, not restricted to this particular setup.

2.1 Structure of the Toolchain

The VCC toolchain allows for modular verification of C programs using method
contracts and invariants over data structures. Method contracts are specified by
pre- and postconditions. These contracts and invariants are stored as annotations
within the source code in a way that is transparent to the regular, non-verifying
compiler.

As most annotation-based verification systems today, VCC works using an
internal two-stage process. The reason for this is a better separation of con-
cerns and easy integration of different tools. We will discuss the interplay of
the two stages, but many of our remarks also apply to one-stage or multi-stage
approaches.

The first stage of the VCC toolchain translates the annotated C code into
first-order logic via an intermediate language called BoogiePL [6]. BoogiePL
is a simple imperative language with embedded assertions. From this BoogiePL
representation, it is easy to generate a set of first-order logic formulas, which state
that the program satisfies the assertions. These formulas are called verification
conditions and the stage a verification condition generator (VCG).

In the second stage, the resulting formulas are given to an automatic theorem
prover (TP) resp. SMT solver (in our case Z3 [5]) together with a background
theory capturing the semantics of C’s built-in operators, etc. The prover checks
whether the verification conditions are entailed by the background theory. En-
tailment implies that the original program is correct w.r.t. its specification.

See Sections 3 and 4 for some real-world examples for specification and ver-
ification of C programs with VCC.

2.2 The Possible Outcomes of Invoking an Annotation-based
Verification Tool

In practice, where the limitations of resources are relevant, the possible outcomes
of a verification attempt using a two-stage annotation-based verification system
are:1

1. The formulas generated by the VCG are valid, and the TP has found a proof
for that. This outcome entails that the original program has the specified
properties.

1 We assume that the programs to be verified are of reasonable size such that only the
theorem proving stage can run out of resources and not the VCG stage.

2. Some generated formula is not valid, and the TP has found a counter-
example. This can mean two things: (a) The program is not correct w.r.t. its
specification, i.e., there is an error in either the program code or the specifi-
cation. (b) The program satisfies the specification, but some loop invariant
or other auxiliary annotation is missing or not strong enough and, as a con-
sequence, some generated verification condition is not a valid formula. We
will discuss this distinction in more detail in Section 3.1.

3. The TP runs out of resources (time or space). This can mean two things:
(a) The generated formula is valid and the program is correct (as in Case 1
above), but the TP could not find a proof in the allotted time/space. (b) The
formula is not valid (as in Case 2 above), but the TP could not find a counter-
example. The non-validity can, again, be due either to the program being
incorrect or to some auxiliary annotation being not strong enough.

In Case 1 above, the invocation of the verification system was successful –
a desired but rare case in practice. Cases 2 and 3 are much more common, and
the user has to analyze the problem. If they find (using the potential counter-
example) that the program indeed does not satisfy the specification, the error
has to be corrected. If they find that the program satisfies the specification, then
new auxiliary annotations (stronger invariants, helpful lemmas, etc.) have to be
added. This process is repeated until the program can be verified.

3 Distinguishing Different Kinds of Annotations

3.1 Annotations and their Properties

Preliminaries. In the following we assume as given a programming language,
and an annotation language for expressing specifications. Which annotations are
possible depends on the particular language; typical annotations are for example
invariants, pre-/postcondition pairs, and assertions of various kinds. In order to
easily relate alternative potential annotations for the same program, we take
the view that annotations are disjoint from regular program statements. On
the other hand, each annotation has an intended context (statement, method,
class, etc.). We assume that we only deal with combinations of programs and
annotations without context mismatches, i.e., annotations are compatible with
the programs to which they are added. The context an annotation refers to must
actually exist in the program, and the symbols used in the annotation must be
defined for that context.

Definition 1 (Combination of program and annotations). If P is a pro-
gram and A is a set of annotations compatible with P , then we call the pair
P+<A the combination of the two. The parameter < fixes the order of annota-
tions if several of them have the same intended context. We will omit the ordering
whenever it is irrelevant or clear from the context and simply write P+A.

Definition 2 (Annotation satisfaction). We assume that there is a defini-
tion of when a program P satisfies a specification REQ, denoted by |= P+REQ.

Definition 3 (Strength of annotations). An annotation A is (logically)
stronger than an annotation B, in symbols A ⇒ B, if |= P+B holds for all
programs P with |= P+A.

Different Purposes of Program Annotations. Annotations can serve dis-
tinctively different purposes, though sometimes several different ones simultane-
ously. The following classification of annotations is neither syntactic nor seman-
tic, but concerns rather the pragmatics of their use and the intentions of their
author.

Requirement Annotations. Requirement annotations constitute the spec-
ification of the program. They assure the behavior of the program (module) to-
wards its environment. They are the reason for performing verification. Typical
requirement annotations are pre- and postconditions, class invariants, or resource
consumption limits. They are visible externally and cannot be changed easily.

Auxiliary Annotations. Auxiliary annotations are used to guide the proof
search. They are usually not part of program requirements. As long as they
satisfy their purpose, auxiliary annotations can be changed anytime without
notice. We further distinguish two subclasses of auxiliary annotations:

(a) The first subclass is necessary merely for efficiency reasons. It encompasses
lemmas, intermediate assertions, quantifier instantiation triggers, and the
like. These annotations are not necessary for completeness. They can always
be made obsolete by increasing the space/time available for proof search or
by advances in SMT prover technology. Another purpose of annotations from
this subclass is to inspect the proof state. For this, the user temporarily adds
auxiliary annotations to get information about implicit “knowledge” of the
proof system at particular points in the proof search – in order to eventually
come up with the right auxiliary annotations needed to complete the proof
(as defined in Def. 7).

(b) The other subclass of auxiliary annotations are essential annotations. Get-
ting them right is essential for completeness, the very existence of a correct-
ness proof. The most prominent essential annotations are loop invariants.
Further auxiliary annotations that can be essential are data-structure in-
variants and abstractions, ownership annotations, and framing conditions.

Monotonicity of Auxiliary Annotations. A very desirable property of anno-
tation satisfaction is monotonicity. Adding auxiliary annotations should strictly
increase the strength of the specification, i.e., |= should be monotonic w.r.t.
adding annotations.

Definition 4 (Monotonicity of |=). |= is monotonic w.r.t. adding annota-
tions iff, for all programs P and all specifications REQ and AUX the following
holds:

if |= P+(REQ ∪AUX) then |= P+REQ .

In reality, monotonicity of |= w.r.t. adding auxiliary annotations is not given
unless we make some restrictions. One concerns assume annotations that add
an unchecked assumption to the following proof (and thus can make a specifica-
tion weaker). Since all proved properties only hold modulo these assumptions,
assume annotations are a correctness risk. For these reasons we always classify
assume annotations as part of the requirement and never as auxiliary.

In the same vein, adding a formula to a precondition, and thus weakening it,
violates the condition of Def. 4 and is not an acceptable way of adding auxiliary
annotations.

3.2 Annotations and Existence of Proofs

To separate the annotations that are essential for the existence of a proof and
the ones that are needed only for supporting proof search, one needs a clear
understanding of the notion of completeness. In this section, we discuss what
completeness means in the framework of annotation-based verification systems
and give formal definitions.

Completeness and Relative Completeness. The classical notion of com-
pleteness for deduction systems can be adapted to annotation-based verification
systems as follows:

Definition 5 (Completeness). Let S be a verification calculus or system. S
is complete if, for any program P satisfying its requirement specification REQ,
this fact can be proved using the calculus from a fixed set of axioms ThS. In
symbols:

if |= P+REQ then ThS `S P+REQ

The semantics of the programming language (used for P) and the annotation
language (used for REQ) are encoded in the calculus rules `S and in the back-
ground theory ThS . The restriction of resources (time and space) of real-world
systems is usually not considered for the notion of completeness.

Note also the difference between |= and `: Fewer annotations are easier to
satisfy by the program (|=), while more annotations may make it easier to find
a proof (`).

Since first-order arithmetics is undecidable, all non-trivial properties of pro-
grams are undecidable (Rice’s Theorem), and all program verification systems
are necessarily incomplete in the sense of Def. 5. Instead the notion of relative
completeness is used, i.e., completeness in the sense that the system or calcu-
lus would be complete if it had an oracle for the validity of formulas about
arithmetic [4]. This can be formalized as follows:

Definition 6 (Relative completeness). A verification system S, consisting
of `S and ThS, is relatively complete (w.r.t. arithmetics) if, for each program P
and specification REQ with

|= P+REQ ,

there is a set Arith of valid arithmetical formulas such that

ThS ∪Arith `S P+REQ .

Luckily, undecidability of first-order arithmetics is usually not an obstacle
for verification in practice. Experience shows that the axiomatization Th to-
gether with the calculus rules of the theorem prover approximate arithmetics
well enough and that the valid arithmetic formulas occurring in practice can
be derived (which does not imply that finding a derivation is easy or possible
automatically but only that a derivation exists). One has to keep in mind, that
the distinction between completeness and relative completeness exists, even if
the restriction to relative completeness is not a real limitation in practice.

Theoretical Completeness Arguments. Relatively complete calculi exist
for many program logics. Harel gives one for first-order Dynamic Logic in [8].
Less-known is the fact that the presence of auxiliary annotations, such as loop
invariants, is not a prerequisite for relative completeness.

Harel conducts his relative completeness proof by showing that program log-
ics are no more expressive than first-order arithmetics. That is, for every pro-
gram there is a first-order arithmetics formula that encodes the same relation
between states that the program encodes. The less-known fact is that it is possi-
ble to effectively compute such a formula without further input. In fact, Harel’s
proof contains a simple algorithm that for any Dynamic Logic formula φ ef-
fectively computes an equivalent purely first-order arithmetics formula φA [8,
Theorem 3.2]. This construction gives along the way a means to automatically
compute the strongest invariant of any loop.

The algorithm is based on Gödelization, i.e., encoding a finite sequence of
domain elements into one element. The generated invariant formula asserts the
existence of a number encoding a sequence of states corresponding to the forth-
coming computation sequence of the loop until it terminates.

Thus, theoretically speaking, the strongest loop invariant for any given loop
and so the verification conditions for any given piece of code can be easily com-
puted in polynomial time. That is not a contradiction to general undecidability of
program verification, since one undecidable problem (program verification) gets
transformed into another undecidable problem (deciding first-order logic with
arithmetics). Still, assuming a theoretical standpoint, one can conclude that no
auxiliary annotations are really needed because all information contained in an-
notations can easily be computed by the VCG.

In Practice: Annotation Completeness. The theoretical fact that all nec-
essary annotations can “easily” be constructed (see above) is in practice a red
herring because the constructed annotations use Gödelization and, thus, com-
plex arithmetics. Proof obligations generated from such annotations would be
impossible to discharge by existing theorem provers. For practical purposes one
needs instead annotations containing all the necessary information in a clear and
direct manner and not obscured by Gödelization.

Therefore, in contrast to theory, all of today’s deductive verification systems
presuppose certain types of additional, non-requirement annotations to be given
by the user. It is neither given nor expected that an annotation-based verification
system is relatively complete in the sense of Def. 6. In practice, completeness
of a verification system means that if the program is correct w.r.t. its given
requirement specification REQ , then some auxiliary specification AUX exists
allowing to prove this.

Definition 7 (Annotation completeness). A verification system (`S ,ThS)
is annotation complete if, for each program P and specification REQ with

|= P+REQ ,

there is (a) a set AUX of annotations (not containing any assume clauses),
(b) an order < on the annotations, and (c) a set Arith of valid arithmetical
formulas such that

ThS ∪Arith `S P+<(REQ ∪AUX) .

The completeness of the whole verification process depends on completeness
of the components of the toolchain. As already described, the toolchain usually
consists of a VCG stage and an automated theorem proving or SMT backend.
The VCG must be able to generate valid formulas provided the auxiliary anno-
tations are sufficiently strong, i.e,

if |= P+REQ then Th |=FOL V CG(P+(REQ ∪AUX))

for some AUX . Then the TP, in its turn, must be able to prove these valid
formulas:

Th ` V CG(P+(REQ ∪AUX)) .

The users, who serve as an oracle for finding auxiliary annotations that are
strong enough to prove a given program correct are not relevant for the com-
pleteness as long as they are considered to be omniscient and always find the
required annotation (provided it exists). In practice, of course, users are not
omniscient. They may very well fail to find the required auxiliary annotation,
which may lead to a failure in the verification process even if the verification
system is complete.

Note that, if one annotation-complete system S is stronger than another
annotation-complete system S′ because it can automatically derive additional
annotations (it may, e.g., include a generator for loop invariants), then life is eas-
ier for the user of S; proofs will be found more often using S and with less effort
(less auxiliary annotations). Nevertheless, both systems S and S′ are annotation-
complete; there are no different degrees of annotation completeness.

Essential and Non-essential Annotations. When a verification system is
used that is annotation complete (Def. 7) but not relatively complete (Def. 6),

i.e., any annotation-based verification system, then there are essential auxiliary
annotations that cannot be omitted without losing the existence of a proof.
Besides such essential annotations there are non-essential annotations that are
not needed for the existence of a proof but for finding it more easily.

Definition 8 (Essential annotation). Given a verification system (`S ,ThS),
a program P , a specification REQ with |= P+REQ, and a set AUX of annota-
tions and an order < with

ThS ∪Arith `S P+(REQ ∪AUX)

for some set Arith of valid arithmetical formulas.
A subset AUX ess ⊂ AUX is essential if

ThS ∪Arith 6`S P+(REQ ∪ (AUX \AUX ess)) .

Otherwise it is non-essential.

The notion of essential annotations (Def. 8) has some awkward properties,
which make it difficult to recognize essential annotations in practice. It is possible
that some subsets A,A′ ⊂ AUX are both essential but A∪A′ is not. This happens
frequently if, for example, A is needed for the proof of A′ and A′ is needed for the
proof of A. Also, there is in general no single minimal set of essential annotations.
In fact there may be completely different sets of essential auxiliary annotations
for proving the same requirement that are both minimal but disjoint.

Besides the question of whether an annotation may be omitted or not, one
may also be interested in the question of whether it can be replaced by a weaker
annotation.

Definition 9 (Strongly essential annotation). A subset AUX ess ⊂ AUX is
strongly essential if

ThS ∪Arith 6`S P+REQ ∪ ((AUX \AUX ess) ∪AUX ′)

for all AUX ′ that are weaker than AUX ess , i.e., AUX ess ⇒ AUX ′.

While an auxiliary annotation that is strongly essential cannot be replaced
by a weaker annotation, it may well be possible to replace it by an equivalent
annotation that is “simpler” in some practical way not covered by Definition 9
(e.g., easier to understand for human users).

Note that even with the notion of strongly essential annotations, there is in
general no single minimal set of auxiliary annotations.

It is important for a user to know which annotations are essential because
during the verification process many auxiliary annotations are added. And as
too many annotations clutter the program and make it harder to find a proof,
users often remove unneeded annotations. This carries the danger that simple
but essential annotations get removed by accident, which – as experience shows
– leads to hard to solve problems in the search for a set of annotations with

which a proof can be constructed. Thus, to understand which annotations may
be essential, users have to possess a certain knowledge about the inner workings
of a verification system. As further discussed in Section 3.4, we also suggest to
enrich the annotation languages with a syntactical way (e.g., a key word) to
distinguish between the two kinds of annotations.

3.3 Possible Failures in Authoring Annotations

In the following, we use a concrete example to illustrate the three different ways
in which authoring annotations may fail.

Annotations and Program Code Can Be In Conflict. A program P and an an-
notation SPEC are in conflict if the program does not fulfill the specification:
6|= P+SPEC .

Consider the code in Figure 1 together with the requirement to compute
the minimum of a given array of length size. The precondition of the method
(keyword requires) states that array points to a C array in memory with
positive length size, which is not modified outside the current thread (the
latter enables sequential reasoning). The post-condition of the method (keyword
ensures) states that the result of the method is (a) less than or equal to all
elements and (b) contained in the array. We assume in the following that this is
the right set of requirement annotations.

One possible error that could occur in the program is that the variable min
has never been initialized (line labeled (A) missing). The resulting program is
legal C code, but depending on the random initial value of min and the contents
of the array, may fail to compute the minimum, and it does not satisfy the
annotations.

For this conflict, the VCC system is able to provide a counter-example. It
demonstrates that the second loop invariant does not hold when the loop is
entered. The variable assignment returned as counter-example is: size = 1,
min = 0, array[0] = 1.

Annotations Can Be Too Weak. An auxiliary annotation AUX is too weak if
|= P+REQ ∪AUX , i.e., the program is correct w.r.t. the specification, but this
cannot be shown. There are now two cases to distinguish:

1. The VCG produces valid verification conditions, i.e.,

Th |=FOL V CG(P+(REQ ∪AUX)) ,

and there is a proof for this, i.e.,

Th ` V CG(P+(REQ ∪AUX)) ,

but the TP stage runs out of resources before finding a proof.

#define uint unsigned int

int min(int *array, uint size)
_(requires size > 0)
_(requires \mutable_array(array, size))
_(ensures \forall uint i; 0<=i && i<size ==>

result <= array[i])
_(ensures \exists uint i; 0<=i && i<size &&

result == array[i])
{

uint i;
int min;
min = array[0]; // * (A) *
for (i = 0; i < size; i++)

_(invariant \forall uint j; 0 <= j && j < i ==>
array[j] >= min)

_(invariant \exists uint j; 0 <= j && j < size &&
min == array[j]) // * (B) *

{ if (array[i] < min) min = array[i]; }
return min;

}

Fig. 1: Computing the smallest element of an array by simple iteration

2. Something essential is missing from AUX and at least one of the verification
conditions generated by the VCG is invalid:

Th 6|=FOL V CG(P+(REQ ∪AUX)) ,

and (because of soundness) no proof exists, that is:

Th 6` V CG(P+(REQ ∪AUX)) .

In Case (1), no counter-example is available and the user has limited re-
course – to assist the user, VCC provides tools for inspecting the duration of
proof attempts for single proof obligations as well as identifying axioms that are
“costly” for the prover to instantiate, leading to an inefficient proof search. In
Case (2), a counter-example for the validity of the verification condition may be
constructed. We give an example for this latter case.

Assume that the second loop-invariant has been forgotten (label (B) in the
program in Fig. 1). Without that invariant, the system cannot verify the second
post-condition. The generated counter-example is still the same as above, but
this time it shows that the loop invariants (after the loop terminates) do not
logically entail the post-condition.

Annotations Can Be Inadequate. An annotation is inadequate when it does not
mean what its author thinks it means. Verification of inadequate annotations will

thus not have the expected impact in the real world. By its very nature, user
input cannot easily be verified or tested for adequacy. But, apart from many
systematic approaches for elicitation of requirements (which we will not cover
here), there are a number of ways in which verification technology can assist its
user to formulate meaningful specifications.

First, the builders of verification systems can work on formalisms that do
not make it unnecessarily hard for the users to express their exact intentions.
Second, the verification systems can produce a proof or a trace to justify the
result. Inspection of the proof is a very effective – if costly – measure to com-
bat misunderstandings in the meaning of the proof obligation. There are reports
that users of verification systems monitor the prover running time to detect ver-
ification based on inadvertently inconsistent specifications (a particular case of
inadequacy). In addition, VCC can check for inconsistencies in the specification
by trying to prove false at the different execution branches of the program – this
of course can also only give an indication whether the specification is consistent
or not.

Third, a whole new class of sanity checks based on mutation has been devel-
oped lately for automated program verification with model checking [10]. After
a successful verification attempt, the query (the program or the specification) is
mutated and the deduction is repeated. If verification succeeds again, then the
mutated part of the query probably plays no role in determining the outcome.
This indicates a problem with the query.

3.4 Improving the Annotation Languages and Methodologies

Annotation-based verification systems are currently not designed for complete-
ness in the sense that theorem provers are (Def. 6). They are designed for com-
pleteness in a different sense (Def. 7), requiring the user as an oracle to provide
sufficient auxiliary annotations in the form of, e.g., loop invariants or assertions.

Theoretically the user could always give auxiliary annotations of maximal
strength (i.e., logically entailing all other possible annotations), but this is not
feasible in practice. Instead, one is interested in a weak set of auxiliary annota-
tions that is still sufficient. Consequently, it is extremely important for the user
to have knowledge about which kind of annotations are essential for the given
VCG – even in cases where the requirement to be verified is comparatively sim-
ple. Without that knowledge they may continue to add the wrong annotations.
It is therefore essential to provide user documentation on what kind of auxiliary
annotations are needed by a verification system.

Moreover, requirement and auxiliary annotations must be syntactically dis-
tinguished. That makes specifications clearer and easier to read and understand.
In certification processes it is indispensable to have a very clear understanding
of which annotations form the requirement specification that has been verified.

It is preferable to keep the two in separate files: for instance, requirement
annotations in the header file and auxiliary annotations in the C source file.
Where no such separation is possible, keywords (in the style of visibility modifiers
public and private) should be used.

4 Using Data Abstractions in Annotation-based
Verification Systems

In this section, we discuss the use of data abstractions in annotation-based verifi-
cation systems, and how it can be improved. For that, we first introduce parts of
the VCC methodology and the VCC annotation language only as far as needed
for the examples. For a more detailed description of the VCC methodology,
see [3, 2].

The example we use as illustration is taken from the 1st Verified Software
Competition [9]. The goal of the competition was to implement, formally specify
and verify an algorithm that solves a problem defined in natural language. Our
example is based upon the following requirement:

Problem: Searching a linked list. Given a linked-list representation
of a list of integers, find the index of the first element that is equal to
zero. Show that the program returns a number i equal to the length of
the list if there is no such element. Otherwise, the element at index i
must be equal to zero, and all the preceding elements must be non-zero.

4.1 The VCC Approach

The particular solution presented here, consisting of a C implementation and a
specification in the VCC language, was developed after the competition by the
team “VC Crushers” (see [9]).2 It is an optimized version of their competition
solution – the amount of auxiliary annotations is kept to a minimum sufficient to
verify the requirement specification. Another VCC formalization of the list data
structure that introduces a more general abstraction suited for a large range of
applications is also made available by the team (because of space restrictions,
we cannot include this more general but also more complex solution here).

The concrete C implementation of the list data structure and the C method
find that is a solution to the above problem definition is shown in Fig. 2. Anno-
tations are given in VCC syntax and are enclosed in labelled frames throughout
the code.

Linked List Data Structure. In the implementation of the linked list data
structure (struct List), the field data contains the value stored in a node
of the list, and the field tail points to the rest of the list. Note that each node
of the list also stores the length of its tail (including the node itself). In this
implementation, the end of a list is thus not indicated by a null pointer or a
sentinel node but by the value of length being zero.

The semantics of the length field as well as an abstract representation of the
list’s contents are specified by the object invariants in the block labelled 〈OI 〉:
For each node, information about the elements of the sublist starting at that
node is stored in the map vals in ghost state (a specification state separate
2 For better readability, we have slightly modified the source code of the example.

typedef struct List {
int data;
struct List *tail;
unsigned length; 〈OI 〉 �
_(ghost int vals[unsigned])
_(invariant vals == \lambda unsigned i; //(I1)

i < length ? (i == 0 ? data
: tail->vals[i - 1])

: 0
)

_(invariant length == 0 //(I2)
|| (\mine(tail) && length == tail->length + 1)) �

} List, *PList;

unsigned find(PList l) 〈MC 〉 �
_(requires \wrapped(l))
_(ensures \result <= l->length)
_(ensures \result < l->length

==> l->vals[\result] == 0)
_(ensures \forall unsigned i; i < \result

==> l->vals[i] != 0) �
{
PList p;
for (p = l; p->length != 0; p = p->tail) 〈LI 〉 �
_(invariant p->length <= l->length) //(I3)
_(invariant p \in \domain(l)) //(I4)
_(invariant p->vals == \lambda unsigned j; //(I5)

j < p->length
? l->vals[l->length - p->length + j]
: 0)

_(invariant \forall unsigned j;
j < l->length - p->length ==> l->vals[j] != 0) �

{ 〈AN 〉 �
_(assert \forall unsigned j; j < p->tail->length

==> p->tail->vals[j] == p->vals[j + 1]) �
if (p->data == 0) {
break;

}
}
return l->length - p->length;

}

Fig. 2: Annotated C source code of find.

from the normal C memory). The invariant I1 defines the abstraction relation
between the list and its abstraction vals. The abstraction from linked list to
array is needed because the built-in data type array allows quantification and
recursion over the elements of the list. A direct quantification over the elements
is not possible in first-order logic because reachability is not first-order definable.

To be able to access all elements of the list (via the data field of the struc-
ture), each node is given exclusive ownership to the next node in the list (mine-
annotation of invariant I2). In addition, the invariant I2 implies acyclicity of the
list, as length is bounded and decreasing for each element that can be reached
via the tail pointer.

Implementation of the find Algorithm. Using the C data structure List,
the find method can be implemented by iterating over the list’s elements via
the tail pointer in a for-loop.

Annotations are used within the method at three locations – namely for the
method contract 〈MC 〉, the loop invariant 〈LI 〉 and as an auxiliary annotation
inside the loop body 〈AN 〉.

The method contract in block 〈MC 〉 specifies that the behavior of the method
conforms to its specification in natural language. The pre- and postconditions
〈MC 〉, together with the invariants 〈OI 〉 of the list data structure, capture the
intended semantics of find. 〈MC 〉 and 〈OI 〉 constitute the methods requirement
specification.

To be able to verify the implementation of find to be correct w.r.t. to its
requirement specification, a set of four essential auxiliary annotations has to be
provided the in form of loop invariants (block 〈LI 〉).

The invariants I3 and I5 state that the abstraction of the “iterator” p is
always a suffix of the abstraction of the input list l.

As each access to a list element p->data inside the loop has to be shown
to be a valid access, additional justification has to be provided to VCC to be
able to prove this. This justification is given with the invariant I4 – the property
depends on the fact that p is also a sublist of l in the concrete representation.

Even in this simple example, a non-essential auxiliary annotation is needed
at location 〈AN 〉 in order to be able to show that the loop body preserves the
third loop invariant. It asserts that the vals fields related to two adjacent nodes
are abstractions of the appropriate sublists starting at those nodes.

In order to come up with the right auxiliary annotations, in this case, the
user has to know about the inner workings of VCC, respectively the strengths
of the underlying SMT solver Z3.

4.2 Separation of Concerns: Annotation-based Verification and
Algebraic Specifications.

In the example shown in the previous section, annotations with different purposes
are intermingled. In the following, we suggest to use techniques known from

abstract data type specifications to provide a clean separation of requirement
and auxiliary annotations, and to make the specification more readable.

Assuming that we have defined an abstract data type IntList, an abstrac-
tion function abs from concrete linked lists to abstract lists, as well as an ab-
stract (specification) function absfind on IntList, a good method contract
for find could look like this:

unsigned find(PList l) 〈MC 〉 �
_(requires \wrapped(l))
_(ensures \result == absfind(abs(l))) �

This contract is very compact and easy to understand. It simply states that
find returns the same integer value that is the result of the abstract operation
absfind on the abstraction of the input list.

In the VCC example presented in Sect. 4.1, the equivalent of absfind is
implicitly given by postconditions 〈MC 〉 of method find. The abstraction func-
tion abs is concealed within the definition of structure List, namely in the
invariants in 〈OI 〉.

Of course, to complete the specification, we now have to define IntList
and absfind. The required syntax is not available in VCC (yet). We suggest to
use a syntax for abstract data type definitions based on the Common Algebraic
Specification Language (CASL) [11]. A possible definition then would look like
this:

spec IntList =
free type List ::= nil | cons(Int; List)

then vars i, e: Int; l, l’: List
op absfind : List -> Int

* absfind(nil) = 0

* absfind(cons(e, l)) = 1 when e = 0
else absfind(l) + 1

ops append : List x List -> List
tail : List -> List

* append(nil, l) = l

* append(cons(e,l’), l) = cons(e, append(l’,l))

* tail(nil) = nil

* tail(cons(e,l)) = l
within implementation find

end

To be able to specify the implementation of find with the help of the ab-
stract data type, the data type is equipped with the externally visible operation
absfind that captures the semantics of find according to the problem defi-
nition. In addition, the two operations append and tail are defined with the
usual semantics.

Compared to the rudimental abstraction given by the map vals in Sect. 4.1,
this specification is additional overhead in terms of lines of code. However, the

compactness of the map specification is partly due to the fact that maps are
a built-in feature of the verification tool. Furthermore, the flexibility offered
by defining arbitrary abstract data types in our opinion clearly outweighs the
annotation overhead, as we can choose the abstract data type representation
that matches the implementation data types best. Lastly, the above definition
is to a large extent reusable and can be seen as a sort of library definition.

To relate the concrete implementation data type List to its abstract data
type counterpart IntList, we have two options: (A) defining an abstraction
function abs from List to IntList (as already mentioned above), and (B) ax-
iomatizing the abstraction using concrete implementations for the (abstract)
constructors nil and cons.

For option (A), the abstraction function abs is defined in terms of the con-
crete implementation details (i.e., field data and pointer tail):

〈OI 〉 �
_(spec IntList abs(PList l)

returns(l->length == 0 ? nil :
cons(l->data, abs(l->tail)))

) �
With this definition, one of our goals is already achieved, namely providing

a clearly differentiated and discernible specification construct that couples the
concrete and abstract data types. However, this definition does not hide the
implementation details of the linked list data structure from callers of the find
method.

The alternative solution (B) uses concrete implementations of the construc-
tors of the list data structures (not shown in this paper). Then, no explicit defi-
nition of the abstraction function as in (A) is needed. The relation between the
abstract and the concrete constructors can, for example, be specified as follows:

〈OI 〉 �
PList cons(int e, PList l)

_(requires \wrapped(l))
_(ensures abs(\result) == cons(e, abs(l))) �

Note that the above method contract of cons does not use any implementa-
tion details of the linked list data type in C, so that these details do not become
part of the requirement specification.

Regardless of which alternative (A) or (B) is chosen, due to the separation
of abstract and concrete representation of the list data type, the annotation
overhead of the List data structure can be reduced:

typedef struct List {
int data;
struct List *tail;
unsigned length;

_(invariant \exists IntList l; abs(this) == l
&& (abs(this) == nil || \mine(tail)))

} List, *PList;

Only one invariant of list remains that is concerned with the state of the
structure according to the VCC methodology (keyword mine), as well as enforc-
ing the existence of an abstract element corresponding to the concrete instance
of the list (which rules out cyclic linked lists).

Using the two “library” functions tail and append, almost all auxiliary
annotations of our example can be simplified – for the loop invariants at location
〈LI 〉 the new annotations are:

_(invariant p \in \domain(l))
_(invariant \exists IntList front;

append(front, abs(p)) == abs(l)
&& absfind(f) == 0)

Furthermore, the single non-essential annotation at location 〈LI 〉 becomes:

_(assert abs(p->tail) == tail(abs(p)))

5 Conclusions and Future Work

We have described and analyzed problematic properties of current annotation-
based specification practices. A large part of the problem is the non-discrimina-
tory use of the same language to specify both requirements and auxiliary (non-
requirement) annotations. Among the latter some are (only) needed for efficiency
of proof search, while others are essential for completeness, i.e., indispensable for
proof construction. In practice, we often encountered confusion as to what the
important notion of completeness means in the framework of verifying compilers.
We have provided a clarification in Section 3.2. We have recommended measures
to alleviate the specification bottleneck in Sections 3.4 and 4.2. Beyond that, we
see the following issues as worth further exploration.

The distinction between requirement and auxiliary annotations is always rel-
ative to a module boundary. Some aspects of modularity are imposed by the
programming language, while others have to be defined by the specification lan-
guage and verification calculus. The designers of the latter should make their
modularity concepts (syntactically) explicit and better educate the users about
them. A hiding operator for annotations may be appropriate when composing
modules.

It is important to keep related parts of specifications together and not mix
different levels of abstraction. This tenet is frequently violated by the wide-
spread practice of mixing ghost code (providing an abstract specification) and
real code (implementing it) – often on the level of individual statements. While
a separation is desirable, it is not yet clear how to disentangle the two.

The verification system should track (and disclose) dependencies between
annotations. All annotations should carry a unique textual identifier (label). For
any given annotation, the user must be informed about which other annotations
are necessary to prove it. One way to accomplish this is by automated deduction
on the part of the system. Another way is to demand that the user explicitly
attach to each annotation a set of labels naming other annotations that are to
be considered as premisses in the proof.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS), International Workshop, 2004, Marseille, France, Revised Se-
lected Papers, LNCS 3362, pages 49–69. Springer, January 2005.

2. B. Beckert and M. Moskal. Deductive verification of system software in the
Verisoft XT project. KI, 2009. Online first version available at SpringerLink.

3. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C. In
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2009), volume 5674 of Lecture Notes in Computer
Science, pages 23–42, Munich, Germany, 2009. Springer. Invited paper.

4. S. A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. SIAM Journal of Computing, 7(1):70–90, 1978.

5. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc., 14th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems, Budapest,
Hungary, LNCS 4963, pages 337–340. Springer, 2008.

6. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-
ing object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Re-
search, 2005.

7. J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs. In Formal
Methods and Software Engineering, LNCS 3308, pages 15–29. Springer, 2004.

8. D. Harel. First-Order Dynamic Logic. Springer, 1979.
9. V. Klebanov, P. Müller, N. Shankar, G. T. Leavens, V. Wüstholz, E. Alkassar,

R. Arthan, D. Bronish, R. Chapman, E. Cohen, M. Hillebrand, B. Jacobs, K. R. M.
Leino, R. Monahan, F. Piessens, N. Polikarpova, T. Ridge, J. Smans, S. Tobies,
T. Tuerk, M. Ulbrich, and B. Weiß. The 1st Verified Software Competition: Experi-
ence report. In M. Butler and W. Schulte, editors, Proceedings, 17th International
Symposium on Formal Methods (FM), volume 6664 of LNCS. Springer, 2011. Ma-
terials available at www.vscomp.org.

10. O. Kupferman. Sanity checks in formal verification. In Proceedings, 17th Inter-
national Conference on Concurrency Theory, LNCS 4137, pages 37–51. Springer,
2006.

11. P. D. Mosses, editor. CASL Reference Manual – The Complete Documentation of
the Common Algebraic Specification Language, volume 2960 of Lecture Notes in
Computer Science. Springer, 2004.

12. W. Schulte, X. Songtao, J. Smans, and F. Piessens. A glimpse of a verifying C
compiler. In Proceedings, C/C++ Verification Workshop, 2007.

13. A. Zeller. Mining specifications: A roadmap. In Proceedings, The Future of Software
Engineering, Zurich, Switzerland, pages 173–182. Springer, 2010.

