
A Program Logi
 for Handling JAVACARD'sTransa
tion Me
hanismBernhard Be
kert1 and Woj
ie
h Mostowski21 Institute for Logi
, Complexity, and Dedu
tion Systems,University of Karlsruhe, Germanybe
kert�ira.uka.de2 Chalmers University of Te
hnology, G�oteborg, SwedenComputing S
ien
e Departmentwoj�
s.
halmers.seAbstra
t. In this paper we extend a program logi
 for verifying JAVACARD appli
ations by introdu
ing a \throughout" operator that allowsus to prove \strong" invariants. Strong invariants
an be used to ensure\rip out" properties of JAVACARD programs (properties that are to bemaintained in
ase of unexpe
ted termination of the program). Alongwith introdu
ing the \throughout" operator, we show how to handle theJAVACARD transa
tion me
hanism (and, thus,
onditional assignments)in our logi
. We present sequent
al
ulus rules for the extended logi
.1 Introdu
tionOverview. The work presented in this paper is part of the KeY proje
t [1, 9℄.One of the main goals of KeY is to provide dedu
tive veri�
ation for a real worldprogramming language. Our
hoi
e is the JAVACARD language [6℄ (a subset ofJAVA) for programming smart
ards. This
hoi
e is motivated by the followingreasons. First of all JAVACARD appli
ations are subje
t to formal veri�
ation,be
ause they are usually se
urity
riti
al (e.g., authenti
ation) and diÆ
ult toupdate in
ase a fault is dis
overed. At the same time the JAVACARD languageis easier to handle than full JAVA (for example, there is no
on
urren
y andno GUI). Also, JAVACARD programs are smaller than normal JAVA programsand thus easier to verify. However, there is one parti
ular aspe
t of JAVACARDthat does not exist in JAVA and whi
h requires the veri�
ation me
hanism tobe extended with additional rules and
on
epts: the persisten
y of the obje
tsstored on a smart
ard in
ombination with JAVACARD's transa
tion me
hanism(ensuring atomi
ity of bigger pie
es of a program) and the possibility of a
ard\rip out" (unexpe
ted termination of a JAVACARD program by taking the smart
ard out of the reader/terminal). Sin
e we want to have support for the full JAVACARD language in the KeY system we have to handle this aspe
t.To ensure that a JAVACARD program is \rip-out safe" we need to be able tospe
ify \strong" invariants|invariants that must hold throughout the whole ex-e
ution of a JAVACARD program (ex
ept when a transa
tion is in progress). TheKeY system's dedu
tion
omponent uses a program logi
, whi
h is a version of

Dynami
 Logi
 modi�ed to handle JAVACARD programs (JAVACARD DL) [2, 3℄.An extension to pure Dynami
 Logi
 to in
lude tra
e modalities \throughout"and \at least on
e" is presented in [4℄. Here we extend that work and introdu
ethe \throughout" operator to JAVACARD DL (we do not introdu
e \at leaston
e" sin
e it is not ne
essary for handling \rip out" properties). Then we addte
hniques ne
essary to deal with the JAVACARD transa
tion me
hanism (spe
if-i
ally
onditional assignments inside the transa
tions). We present the sequent
al
ulus rules for our extensions. So far we have not implemented the new rulesin the KeY system's intera
tive prover (the implementation for the unextendedJAVACARD DL is fully fun
tional). But
onsidering the extensibility and openar
hite
ture of the KeY prover it is not a diÆ
ult task.Related Work. As said above, the work presented here is based on [4℄, whi
hextends pure Dynami
 Logi
 with tra
e modalities \throughout" and \at leaston
e". There exist a number of attempts to extend OCL with temporal
on-stru
ts, see [5℄ for an overview. In [16℄ temporal
onstru
ts are introdu
ed tothe JAVA Modelling Language (JML), but they refer to sequen
es of methodinvo
ations and not to sequen
es of intermediate program states.Stru
ture of the Paper. The rest of this paper is organised as follows. Se
tion 2gives some more details on the ba
kground and motivation of our work and someinsights into the JAVACARD transa
tion me
hanism. Se
tion 3
ontains a briefintrodu
tion to JAVACARD Dynami
 Logi
. Se
tion 4 introdu
es the \through-out" operator in detail and presents sequent
al
ulus rules to handle the newoperator and the transa
tion me
hanism. Se
tion 5 shows some of the rules ina
tion by giving simple proof examples and �nally Se
tion 6 summarises thepaper.2 Ba
kgroundThe KeY Proje
t. The main goal of the KeY proje
t [1, 9℄ is to enhan
e a
ommer-
ial CASE tool with fun
tionality for formal spe
i�
ation and dedu
tive veri�
a-tion and, thus, to integrate formal methods into real-world software developmentpro
esses. A

ordingly, the design prin
iples for the software veri�
ation
ompo-nent of the KeY system are: (1) The spe
i�
ation language should be usable bypeople who do not have years of training in formal methods. The Obje
t Con-straint Language (OCL), whi
h is in
orporated into the
urrent version of theUni�ed Modelling Language (UML), is the spe
i�
ation language of our
hoi
e.(2) The programs that are veri�ed should be written in a \real" obje
t-orientedprogramming language. We de
ided to use JAVACARD (we have already statedour reasons for this de
ision in the introdu
tion).For verifying JAVACARD programs, the already mentioned JAVACARD Dy-nami
 Logi
 has been developed within the KeY proje
t (Se
tion 3
ontains adetailed des
ription of this logi
). The KeY system translates OCL spe
i�
ationsinto JAVACARD DL formulas, whose validity
an then be proved with the KeYsystem's dedu
tion
omponent.

Motivation. The main motivation for this work resulted from an analysis of aJAVACARD
ase study [11℄. In short, the
ase study involves a JAVACARD appletthat is used for user authenti
ation in a Linux system (instead of a passwordme
hanism). After analysing the appli
ation and testing it, the following obser-vation was made: the JAVACARD applet in question is not \rip-out safe". Thatis, it is possible to destroy the applet's fun
tionality by removing (ripping out)the JAVACARD devi
e from the
ard reader (terminal) during the authenti
ationpro
ess. The applet's memory is
orrupted and it is left in an unde�ned state,
ausing all subsequent authenti
ation attempts to be unsu

essful (fortunatelythis error
auses the applet to be
ome useless but does not allow unauthoriseda

ess, whi
h would have been worse).It be
ame
lear that, to avoid su
h errors, one has to be able to spe
ify(and if possible verify) the property that a
ertain invariant is maintained at alltimes during the applet's exe
ution, su
h that it holds in parti
ular in
ase ofan abrupt termination. Standard UML/OCL invariants do not suÆ
e for thispurpose, be
ause their semanti
s is that if they hold before a method is exe
utedthen they hold after the exe
ution of a method. Normally it is not required foran invariant to hold in the intermediate states of a method's exe
ution. To solvethis problem, we introdu
e \strong" invariants, whi
h allow to spe
ify propertiesabout all intermediate states of a program.For example, the following \strong" invariant (expressed in pseudo OCL) saysthat we do not allow partially initialised PersonalData obje
ts at any point inour program. In
ase the program is abruptly terminated we should end up witheither a fully initialised obje
t or an uninitialised (empty) one:
ontext PersonalData throughout:not self.empty impliesself.firstName <> null and self.lastName <> null and self.age > 0Sin
e the
ase study was explored in the
ontext of the KeY proje
t, we extendedthe existing JAVACARD DL with a new modality to handle strong invariants.The JAVACARD Transa
tion Me
hanism. Here we des
ribe the aspe
ts of trans-a
tion handling in JAVACARD relevant to this paper. A full des
ription of thetransa
tion me
hanism
an be found in [6, 13{15℄.The memory model of JAVACARD di�ers slightly from JAVA's model. In smart
ards there are two kinds of writable memory: persistent memory (EEPROM),whi
h holds its
ontents between
ard sessions, and transient memory (RAM),whose
ontents disappear when power loss o

urs, i.e., when the
ard is removedfrom the
ard reader. Thus every memory element in JAVACARD (variable orobje
t �eld) is either persistent or transient. The JAVACARD language spe
i�
a-tion gives the following rules (this is a slightly simpli�ed view of what is reallyhappening): All obje
ts (in
luding the referen
e to the
urrently running ap-plet, this, and arrays) are
reated in persistent memory. Thus, in JAVACARDall assignments like \o.attr = 2;", \this.a = 3;", and \arr[i℄ = 4;" havea permanent
hara
ter; that is, the assigned values will be kept after the
ard

loses power. A programmer
an
reate an array with transient elements, but
ur-rently there is no possibility to make obje
ts (�elds) other than array elementstransient. All lo
al variables are transient.The distin
tion between persistent and transient obje
ts is very importantsin
e these two types of obje
ts are treated in a di�erent way by JAVACARD'stransa
tion me
hanism. The following are the JAVACARD system
alls for trans-a
tions with their des
ription:JCSystem.beginTransa
tion() begins an atomi
 transa
tion. From this pointon, all assignments to �elds of obje
ts are exe
uted
onditionally, while as-signments to transient variables or array elements are exe
uted un
ondition-ally (immediately).JCSystem.
ommitTransa
tion()
ommits the transa
tion. All
onditional as-signments are
ommitted (in one atomi
 step).JCSystem.abortTransa
tion() aborts the transa
tion. All the
onditional as-signments are rolled ba
k to the state in whi
h the transa
tion started. As-signments to transient variables and array elements remain un
hanged (as ifthere had not been a transa
tion in progress).As an example to illustrate how transa
-tions work in pra
ti
e,
onsider the frag-ment of a JAVACARD program shown onthe right. After the exe
ution of this pro-gram, the value of this.a is still 100(value before the transa
tion), while thevalue of i now is 100 (the value it wasupdated to during the transa
tion).
this.a = 100;int i = 0;JCSystem.beginTransa
tion();i = this.a;this.a = 200;JCSystem.abortTransa
tion();Transa
tions do not have to be nested properly with other program
on-stru
ts, e.g., a transa
tion
an be started within one method and
ommittedwithin another method. However, transa
tions must be nested properly withea
h other (whi
h is not relevant for the
urrent version of JAVACARD, wherethe nesting depth of transa
tions is restri
ted to 1).The whole program pie
e inside the transa
tion is seen by the outside worldas if it were exe
uted in one atomi
 step (
onsidering the persistent obje
ts). Byintrodu
ing strong invariants we want to ensure the
onsisten
y of the persistentmemory of a JAVACARD applet, thus strong invariants will not (and should not)be
he
ked within a transa
tion|in
ase our program is terminated abruptlyduring a transa
tion, the persistent variables will be rolled ba
k to the statebefore the transa
tion was started for whi
h the strong invariant was established.3 JAVACARD Dynami
 Logi
Dynami
 Logi
 [7, 8, 10, 12℄
an be seen as an extension of Hoare logi
. It isa �rst-order modal logi
 with modalities [p℄ and hpi for every program p (weallow p to be any sequen
e of JAVACARD statements). In the semanti
s of thesemodalities a world w (
alled state in the DL framework) is a

essible from the

urrent world, if the program p terminates in w when started in the
urrentworld. The formula [p℄� expresses that � holds in all �nal states of p, andhpi� expresses that � holds in some �nal state of p. In versions of DL with anon-deterministi
 programming language there
an be several su
h �nal states(worlds). Here, sin
e JAVACARD programs are deterministi
, there is exa
tly onesu
h world (if p terminates) or there is no su
h world (if p does not terminate).The formula �! hpi is valid if, for every state s satisfying pre
ondition �, arun of the program p starting in s terminates, and in the terminating state thepost-
ondition holds. The formula �! [p℄ expresses the same, ex
ept thattermination of p is not required, i.e., must only hold if p terminates.3.1 Syntax of JAVACARD DLAs said above, a dynami
 logi
 is
onstru
ted by extending some non-dynami
logi
 with modal operators of the form h�i and [�℄. The non-dynami
 base logi
of our DL is a typed �rst-order predi
ate logi
. We do not des
ribe in detailwhat the types of our logi
 are (basi
ally they are identi
al with the JAVA types)nor how exa
tly terms and formulas are built. The de�nitions
an be foundin [2℄. Note that terms (whi
h we often
all \logi
al terms" in the following) aredi�erent from JAVA expressions|they never have side e�e
ts.The programs in DL formulas are basi
ally exe
utable JAVACARD
ode. How-ever, we introdu
ed an additional
onstru
t not available in plain JAVACARD,whose purpose is the handling of method
alls. Methods are invoked by synta
-ti
ally repla
ing the
all by the method's implementation. To treat the returnstatement in the right way, it is ne
essary (a) to re
ord the obje
t �eld or vari-able x that the result is to be assigned to, and (b) to mark the boundaries ofthe implementation prog when it is substituted for the method
all. For thatpurpose, we allow statements of the form method
all(x){prog} to o

ur. Thisis a \harmless" extension be
ause the additional
onstru
t is only used for proofpurposes and never o

urs in the veri�ed JAVACARD programs.3.2 Semanti
s of JAVACARD DLThe semanti
s of a program p is a state transition, i.e., it assigns to ea
h state sthe set of all states that
an be rea
hed by running p starting in s. Sin
e JAVACARD is deterministi
, that set either
ontains exa
tly one state (if p terminatesnormally) or is empty (if p does not terminate or terminates abruptly).For formulas � that do not
ontain programs, the notion of � being satis�edby a state is de�ned as usual in �rst-order logi
. A formula hpi� is satis�ed by astate s if the program p, when started in s, terminates normally in a state s0 inwhi
h � is satis�ed. A formula is satis�ed by a model M , if it is satis�ed by oneof the states of M . A formula is valid in a model M if it is satis�ed by all statesof M ; and a formula is valid if it is valid in all models. Sequents are notatedfollowing the s
heme �1; : : : ; �m ` 1; : : : ; n whi
h has the same semanti
s asthe formula (8x1) � � � (8xk)((�1 ^ : : : ^ �m)! (1 _ : : :_ n)), where x1; : : : ; xkare the free variables of the sequent.

3.3 State UpdatesWe allow updates of the form fx := tg resp. fo:a := tg to be atta
hed to termsand formulas, where x is a program variable, o is a term denoting an obje
twith attribute a, and t is a term. The intuitive meaning of an update is that theterm or formula that it is atta
hed to is to be evaluated after
hanging the statea

ordingly, i.e., fx := tg� has the same semanti
s as hx = t;i�.3.4 Rules of the Sequent Cal
ulusHere we only present a small number of rules ne
essary to get proper intuitionof how the JAVACARD DL sequent
al
ulus works.Notation. The rules of our
al
ulus operate on the �rst a
tive statement p ofa program �p!. The non-a
tive pre�x �
onsists of an arbitrary sequen
e ofopening bra
es \{", labels, beginnings \try{" of try-
at
h-finally blo
ks,and beginnings \method
all(: : :){" of method invo
ation blo
ks. The pre�xis needed to keep tra
k of the blo
ks that the (�rst) a
tive statement is partof, su
h that the abruptly terminating statements throw, return, break, and
ontinue
an be handled appropriately. The post�x ! denotes the \rest" ofthe program, i.e., everything ex
ept the non-a
tive pre�x and the part of theprogram the rule operates on. For example, if a rule is applied to the JAVAblo
k \ l:{try{ i=0; j=0; }finally{ k=0; }} ", operating on its �rst a
tivestatement \ i=0;", then the non-a
tive pre�x � is \ l:{try{" and the \rest" !is \j=0; }finally{ k=0; }} ".In the following rule s
hemata, U stands for an arbitrary update.The Rule for if. As the �rst simple example, we present the rule for the ifstatement:�; U(b := true) ` Uh�p!i� �; U(b := false) ` Uh�q!i�� ` Uh� if(b){p}else{q}!i� (R1)The rule has two premisses, whi
h
orrespond to the two
ases of the if state-ment. The semanti
s of this rule is that, if the two premisses hold in a state,then the
on
lusion is true in that state. In parti
ular, if the two premisses arevalid, then the
on
lusion is valid. In pra
ti
e rules are applied from bottom totop: from the old proof obligation new proof obligations are derived. As the ifrule demonstrates, applying a rule from bottom to top
orresponds to a symboli
exe
ution of the program to be veri�ed.The Assignment Rule and Handling State Updates. The assignment rule� ` Uflo
 := exprgh� !i�� ` Uh� lo
 = expr;!i� (R2)adds the assignment to the list of updates U . Of
ourse, this does not solvethe problem of
omputing the e�e
t of an assignment, whi
h is parti
ularly

ompli
ated in JAVA be
ause of aliasing. This problem is postponed and solvedby rules for simplifying updates.The assignment rule
an only be used if the expression expr is a logi
alterm. Otherwise, other rules have to be applied �rst to evaluate expr (as thatevaluation may have side e�e
ts). For example, these rules repla
e the formulahx = ++i;i� with hi = i+1; x = i;i�.4 Extension for Handling \Throughout" and Transa
tionsIn some regard JAVACARD DL (and other versions of DL) la
ks expressivity|the semanti
s of a program is a relation between states; formulas
an only de-s
ribe the input/output behaviour of programs. JAVACARD DL
annot be usedto reason about program behaviour not manifested in the input/output rela-tion. Therefore, it is inadequate for verifying strong invariants that must bevalid throughout program exe
ution.Following [4℄, we over
ome this de�
ien
y and in
rease the expressivity ofJAVACARD DL by adding a new modality [[�℄℄ (\throughout"). In the extendedlogi
, the semanti
s of a program is the sequen
e of all states its exe
utionpasses through when started in the
urrent state (its tra
e). Using [[�℄℄, it ispossible to spe
ify properties of the intermediate states of terminating andnon-terminating programs. And su
h properties (typi
ally strong invariants andsafety
onstraints)
an be veri�ed using the JAVACARD DL
al
ulus extendedwith additional sequent rules for [[�℄℄ presented in Se
tion 4.1.A \throughout" property (formula) has to be
he
ked after every single �eldor variable assignment, i.e., the sequent rules for the throughout modality willhave more premisses and bran
h more frequently. A

ording to the JAVACARDruntime environment spe
i�
ation [14℄, ea
h single �eld or variable assignmentis atomi
. This mat
hes exa
tly JAVACARD DL's notion of a single update.Thus, a \throughout" property has to hold after every single JAVACARD DLupdate. However, additional
he
ks have to be suspended when a transa
tion isin progress. This will require marking the modality (resp. the program in themodality) with a tag saying that a transa
tion is in progress, so that di�erentrules apply. Sin
e transa
tions do not have to be nested properly with otherprogram
onstru
ts, en
losing a transa
tion in a blo
k with a separate set ofrules for that kind of blo
k (like the method
all blo
ks) is not possible.In addition, we have to
over
onditional assignments and assignment roll-ba
k (after abortTransa
tion) in the
al
ulus. This not only a�e
ts the\throughout" modality, but the h�i and [�℄ modalities as well, sin
e rolling ba
kan assignment a�e
ts the �nal program state.In pra
ti
e only formulas of the form � ! [[p℄℄� will be
onsidered. If tran-sient arrays are involved in � (expli
itly or impli
itly), one also has to prove� ! hinitAllTransientArrays();i�, i.e., that after a
ard rip-out the reini-tialisation of transient arrays preserves the invariant.

4.1 Additional Sequent Cal
ulus Rules for the [[�℄℄ ModalityBelow, we present the assignment and the while rules for the [[�℄℄ modality. Dueto spa
e restri
tions, we
annot list all additional rules. However, the other looprules are very similar to the while rule, and all other [[�℄℄ rules are essentially thesame as for [�℄|ex
ept for the transa
tion rules whi
h we present in the nextsubse
tion.The Assignment Rule for [[�℄℄. An assignment lo
 = expr; is an atomi
 program,if expr is a logi
al term (and, in parti
ular, is free of side e�e
ts and
an be
omputed in a single step). By de�nition, its semanti
s is a tra
e
onsisting ofthe initial state s and the �nal state s0 = flo
 := val s(expr)gs. Therefore, themeaning of [[lo
 = expr;℄℄� is that � is true in both s and s0, whi
h is what thetwo premisses of the following assignment rule express:� ` U� � ` Uflo
 := exprg[[�!℄℄�� ` U [[� lo
 = expr; !℄℄� (R3)The left premiss states that the formula � has to hold in the state s before theassignment takes pla
e. The right premiss says that � has to hold in the state s0after the assignment|and in all states thereafter during the exe
ution of therest ! of the program.It is easy to see that using this rule
auses some extra bran
hing of the proofsinvolving the [[�℄℄ modality. This bran
hing is unavoidable due to the fa
t thatthe strong invariant has to be
he
ked (evaluated) for ea
h intermediate state ofthe program exe
ution. However, many of those bran
hes, whi
h do not involveJAVACARD programs any more,
an be
losed automati
ally.The while Rule for [[�℄℄. Another essential programming
onstru
t, where therule for the [[�℄℄ modality di�ers from the
orresponding rule for the [�℄ modality,is the while loop. As in the
ase of the while rule for the [�℄ modality a user hasto supply a loop invariant Inv . Intuitively, the rule establishes three things: (1) Inthe state before the loop is exe
uted, some invariant Inv holds. (2) If the bodyof the loop terminates normally (there is no break and no ex
eption is thrownbut possibly
ontinue is used) then at the end of a single exe
ution of the loopbody the invariant Inv has to hold again. (3) Provided Inv holds, the formula� has to hold during and
ontinuously after loop body exe
ution in all of thefollowing
ases: (i) when the loop body is exe
uted on
e and terminates normally,(ii) when the loop body is not exe
uted (the loop
ondition is not satis�ed), and(iii) when the loop body terminates abruptly (by break,
ontinue, or throwingan ex
eption) resulting in a termination of the whole loop.Formally, the while rule for [[�℄℄ is the following:� ` UInv Inv ` h�itrue; [�℄Inv Inv ` [[��!℄℄�� ` U [[� �while(a) {p} !℄℄� (R4)where� � if(a) {lbreak : {try {l
ont : {p0} abort;}
at
h(Ex
eption e){}}}� � if(a) l
ont : lbreak : {p0}

In the above rule, � is a (possibly empty) sequen
e \l1 : : : : ln : " of labels,and p0 is p with (a) every \
ontinue;" and every \
ontinue li;"
hangedto \break l
ont;" and (b) every \break;" and every \break li;"
hanged to\break lbreak;". The three premisses establish the three
onditions listed above,respe
tively. When the program p0 terminates normally, the abort in � is rea
hedand, thus, the formula h�itrue evaluates to false and [�℄Inv has to be proved.En
losing program p0 in \if(a) : : : " takes
are of both
ases, where the loopbody is exe
uted (intermediate loop body exe
ution) and where it is not exe-
uted (loop exit). They are later in the proof
onsidered separately by applyingthe rule for if.4.2 Additional Sequent Cal
ulus Rules for Transa
tionsAdditional Syntax. Before presenting the sequent rules for transa
tions, we �rsthave to introdu
e some new programming
onstru
ts (statements) and transa
-tion markers to JAVACARD DL.The three new statements are bT (JAVACARD beginning of a transa
tion),
T (JAVACARD end of a transa
tion, i.e.,
ommit), and aT (JAVACARD end of atransa
tion, i.e., abort). These statements are used in the proof when the trans-a
tion is started resp. �nished in the JAVACARD program. The statements areonly part of the rules and not the JAVACARD programming language. Thus forexample, when a transa
tion is started in a JAVACARD program by a
all toJCSystem.beginTransa
tion() the
al
ulus assumes the following implemen-tation of beginTransa
tion():publi

lass JCSystem {private stati
 int _transDepth = 0;publi
 stati
 void beginTransa
tion() throws Transa
tionEx
eption {if(_transDepth > 0)Transa
tionEx
eption.throwIt(Transa
tionEx
eption.IN_PROGRESS);_transDepth++;bT;}...Thus, when we en
ounter any of bT,
T or aT in our proof we
an assume theyare properly used (nested).The se
ond thing we need is the possibility to mark modalities (resp. theprograms they
ontain) with a tag saying that a transa
tion is in progress. Wewill use two kinds of tags and make them part of the ina
tive program pre�x � inthe sequent. The two markers are: \TR
ommit: "|a transa
tion is in progress andis expe
ted to be
ommitted (
T), and \TRabort: "|a transa
tion is in progressand is expe
ted to be aborted (aT). This distin
tion is very helpful in taking
are of
onditional assignments|sin
e we know how the transa
tion is going toterminate \beforehand" we
an treat
onditional assignments
orrespondingly,
ommit them immediately in the �rst
ase or \forget" them in the se
ond
ase.

Rules for Beginning a Transa
tion. For ea
h of the three operators (h�i, [�℄, [[�℄℄)there is one \begin transa
tion" rule (the rules for h�i and [�℄ are identi
al, so weonly show one of them):� ` U� � ` U [[TR
ommit:�!℄℄� � ` U [[TRabort:�!℄℄�� ` U [[� bT; !℄℄� (R5)� ` UhTRabort: �!i� � ` UhTR
ommit: �!i�� ` Uh� bT; !i� (R6)In
ase of the [[�℄℄ operator the following things have to be established. First of all,� has to hold before the transa
tion is started. Then we split the sequent intotwo
ases: the transa
tion will be terminated by a
ommit, or the transa
tionwill be terminated by an abort. In both
ases the sequent is marked with theproper tag, so that
orresponding rules
an be applied later, depending on the
ase. The h�i and [�℄ rules for \begin transa
tion" are very similar to [[�℄℄ ex
eptthat � does not have to hold before the transa
tion is started.Rules for Committing and Aborting Transa
tions. These rules are the same forall three operators, so we only show the [[�℄℄ rules.The �rst two rules apply when the expe
ted type of termination is en
oun-tered (\TR
ommit: " for
ommit resp. \TRabort: " for abort). In that
ase, the
or-responding transa
tion marker is simply removed, whi
h means that the trans-a
tion is no longer in progress. These are the rules:� ` U [[�!℄℄�� ` U [[TR
ommit: �
T; !℄℄� (R7) � ` U [[�!℄℄�� ` U [[TRabort: � aT; !℄℄� (R8)We also have to deal with the
ase where the transa
tion is terminated in an un-expe
ted way, i.e., a
ommit is en
ountered when the transa
tion was expe
tedto abort and vi
e versa. In this
ase we simply use an axiom rule, whi
h im-mediately
loses the proof bran
h (one of the proof bran
hes produ
ed by the\begin transa
tion" rule will always be
ome obsolete sin
e ea
h transa
tion
anonly terminate by either
ommit or abort). The rules are the following:� ` U [[TRabort: �
T; !℄℄� (R9) � ` U [[TR
ommit:� aT; !℄℄� (R10)Rules for Conditional Assignment Handling within a Transa
tion. Finally, we
ome to the essen
e of
onditional assignment handling in our rules. In
asethe transa
tion is expe
ted to
ommit, no spe
ial handling is required|all theassignments are exe
uted immediately. Thus, the rule for an assignment in thes
ope of [[TR
ommit: : : : ℄℄ is the same as the rule for an assignment within [�℄(the same holds for all other programming
onstru
ts). Note that, even usingthe [[TR
ommit: : : : ℄℄ modality, � only has to hold at the end of the transa
tion,whi
h is
onsidered to be atomi
.� ` Uflo
 := exprg[[TR
ommit:�!℄℄�� ` U [[TR
ommit:� lo
 = expr; !℄℄� (R11)

In
ase a transa
tion is terminated by an abort, all the
onditional assignmentsare rolled ba
k as if they were not performed. If we know that the transa
tion isgoing to abort be
ause of a TRabort: marker, we
an deliberately
hoose not toperform the updates to persistent obje
ts as we en
ounter them. However, we
annot simply skip them sin
e the new values assigned to (�elds of) persistentobje
ts during a transa
tion may be referred to later in the same transa
tion(before the abort). The idea to handle this, is to assign the new value to a
opyof the obje
t �eld or array element while leaving the original un
hanged, andto repla
e|until the transa
tion is aborted|referen
es to persistent �elds andarray elements by referen
es to their
opies holding the new value. Note that ifan obje
t �eld to whi
h no new value has been assigned is referen
ed (and forwhi
h therefore no
opy has been initialised), the original referen
e is used.Making this work in pra
ti
e requires
hanging the assignment rule for the
ases where a transa
tion is in progress and is expe
ted to abort (i.e., wherethe \TRabort: " marker is present). Also the rules for update evaluation
hangea bit, whi
h
hanges the semanti
s of an update as well, see des
ription of therule below. The following is the assignment rule for the [[�℄℄ modality with the\TRabort: " tag present. The
orresponding rules for h�i and [�℄ are the same:� ` Uflo
0 := expr 0g[[TRabort:�!℄℄�� ` U [[TRabort: � lo
 = expr; !℄℄� (R12)As usual expr has to be a logi
al term. To handle obje
ts �elds persistent arrayselements, all sub-expressions su
h as obj :a1:arr [e℄:a2 : : : in expr are repla
ed byobj :a 01:arr 0[e 0℄0:a 02 : : : in expr 0 (for obje
t �elds the prime denotes a
opy of that�eld and for array a

ess fun
tion [℄ the prime denotes a \shadow" a

ess fun
-tion that operates on
opies of elements of a given array). The �rst referen
e objor arr (as in arr [i ℄:a) in expr is not primed, sin
e it is either a lo
al variable,whi
h is not persistent, or the this referen
e, whi
h is not assignable, or a stati

lass referen
e, like SomeClass, whi
h also
an be viewed as not assignable. Allsubexpressions that are lo
al variables are left un
hanged in expr 0. The expres-sion lo
 on the left side of the assignment and the subexpression e are
hangedinto lo
 0 resp. e 0 in the same way as all the subexpressions in expr .As mentioned, the semanti
s of an update has to be
hanged to take
are ofthe
ases when a
opy of an obje
t's �eld has not been initialised. In the newsemanti
s, if the value of obj :a 0 or arr [i ℄0 is referred to in an update but is notknown (i.e., there was no su
h value assigned in the pre
eding updates) then itis
onsidered to be equal to obj :a or arr [i ℄, respe
tively.The assignments to the
opies are not visible outside the transa
tion, wherethe original values are used again|the e�e
t of a roll-ba
k is a

omplished. Ea
hseparate transa
tion has to have its own
opies of �elds or array elements, so these
ond en
ountered transa
tion
an, for example, use 00, the third one 000, et
.One more thing that we have to handle here is the
ase when the programmerexpli
itly de�nes an array to be transient (the above rule assumes that it wasnot the
ase). It is not possible to know beforehand whi
h arrays are transientand whi
h are not, sin
e they are de�ned to be transient by referen
e and not

by name. This problem
an be treated by adding an extra �eld to ea
h array(only in the rules) indi
ating whether the given array is transient or persistent(rules for initialising arrays
an set this �eld). Then for ea
h o

urren
e of arrayreferen
e arr in lo
 and expr in rule (R12) we
an split the proof into two
ases,following the s
hema:�; U(o:arr 0:trans := true) ` Ufo:arr 0[e 0℄ := expr 0g[[TRabort:�!℄℄��; U(o:arr 0:trans := false) ` Ufo:arr 0[e 0℄0 := expr 0g[[TRabort:�!℄℄�� ` U [[TRabort:� o.arr[e℄ = expr; !℄℄� (R13)The remaining rules for [[TRabort: �℄℄ (i.e., for other programming
onstru
ts)are the same as for [�℄, and the remaining rules for [TRabort: �℄ and hTRabort: �iare the same as if there were no transa
tion marker.5 ExamplesIn the following, we show two examples of proofs using the above rules. The�rst example shows how the [[�℄℄ assignment and while rules are used, the se
ondexample shows the transa
tion rules in a
tion. The formula we are trying to provein the se
ond example is deliberately not provable and shows the importan
e ofthe transa
tion me
hanism when it
omes to \throughout" properties.The proofs presented here may look like tedious work, but most of the steps
an be done automati
ally, in fa
t the only pla
e where user intera
tion is re-quired, is providing the loop invariant. The KeY system provides ne
essary me
h-anisms to perform proof steps automati
ally whenever possible.Example 1. Consider the program p shown on theright. We show that throughout the exe
ution of thisprogram, the strong invariant � � x � 2 holds, i.e.,we prove the formula x � 2 ! [[p℄℄x � 2. Figure 1shows the whole proof labelled with applied rules.Here we only point out the most interesting things. x = 3;while (x < 10) {if(x == 2) x = 1;else x++;}When applying the while rule (R4) to (3) formula x � 3 has to be used asthe loop invariant Inv . Using Inv0 = � = x � 2 would not be enough, be
ausethe statement x = 1 inside the if statement
ould not be dis
arded and x wouldbe assigned 1, whi
h would break the x � 2 property.For x < 10, the abort statement in � is rea
hed after some exe
ution steps(due to spa
e restri
tions, we do show the
orresponding proof steps). Sin
eabort is non-terminating, the formula habort;itrue is false and thus (5)
anbe redu
ed to (7). All sequents with an empty modality ([[�℄℄ or [�℄) are redu
edby removing the modality; the resulting sequents are then �rst-order provable.Sequents (9), (10) and (16) are valid by
ontradi
tion in the ante
edent.Example 2. Now
onsider the following program p (�elds of o are persistent):bT;o.x = 60;o.y = 40;
T;

(2) (4) (10) (13)(12)(11) (R2)(8) (R1) (9)(7)(5) (16) (18) (20)(19)(17) (R3)(14) (R1) (15)(6) (R1)(3) (R4)(1) (R3)x � 2 ` [[x = 3; : : : ℄℄x � 2 (1)x � 2 ` x � 2 (2)x � 2 ` fx := 3g[[while : : : ℄℄x � 2 (3)x � 2 ` fx := 3gx � 3 (4)x � 3 `h�itrue ; [if(x<10)�{�}℄x � 3 (5)x � 3 ` [[if(x<10)�{�}℄℄x � 2 (6)x � 3; x < 10 `[if(x<10)�{�}℄x � 3 (7)x � 3; x < 10; x < 10 `[�{�}℄x � 3 (8)x � 3; x � 10; x < 10 ` [℄x � 3 (9)x � 3; x < 10; x := 2 `[x = 1;℄x � 3 (10)x � 3; x < 10; :x := 2 `[x = x + 1;℄x � 3 (11)

x � 3; x < 10; :x := 2 `fx := x + 1g[℄x � 3 (12)x � 3; x < 10; :x := 2 `x + 1 � 3 (13)x � 3; x < 10 ` [[�{�}℄℄x � 2 (14)x � 3; x � 10 ` [[℄℄x � 2 (15)x � 3; x < 10; x := 2 `[[x = 1;℄℄x � 2 (16)x � 3; x < 10; :x := 2 `[[x = x + 1;℄℄x � 2 (17)x � 3; x < 10; :x := 2 ` x � 2 (18)x � 3; x < 10; :x := 2 `fx := x + 1g[[℄℄x � 2 (19)x � 3; x < 10; :x := 2 `x + 1 � 2 (20)Abbreviations: � � if(x < 10) { : : : �; abort; : : : } � � l
ont:lbreak:� � if(x == 2) x = 1; else x++;Fig. 1. The proof from Example 1t = o.x;o.x = o.y;o.y = t;We will try to prove that the strong invariant o:x + o:y := 100 holds throughoutthe exe
ution of this program. Note that this is not provable. The proof attemptis shown in Figure 2. Again, some of the sequents are �rst-order provable afterappropriate redu
tions. Noti
e that applying the assignment rule (R11) (resp.(R12)) inside a transa
tion does not bran
h. Sequent (6) is proved valid bythe axiom rule (R9) (transa
tion
ommits unexpe
tedly). Sequent (18) is notprovable. Inspe
ting our program
losely shows that indeed both o:x and o:yare equal to 40 at some point (after o.x = o.y; is exe
uted) and their sum is 80,whi
h violates the property we wanted to prove. Thus there is one open proofgoal in the proof tree.

(2) (6) (R9)(5) (R11)(4) (R11) (12)(10) (15)(13) (18)(16) (19)(17)(14) (R3)(11) (R3)(9) (R3)(8) (R7)(7) (R12)(3) (R12)(1) (R5)o:x + o:y := 100 ` [[bT; : : : ℄℄o:x + o:y := 100 (1)o:x + o:y := 100 ` o:x + o:y := 100 (2)o:x + o:y := 100 ` [[TR
ommit: o.x = 60; : : : ℄℄o:x + o:y := 100 (3)o:x + o:y := 100 ` [[TRabort: o.x = 60; : : : ℄℄o:x + o:y := 100 (4)o:x + o:y := 100 ` fo:x 0 := 60g[[TRabort: o.y = 40; : : : ℄℄o:x + o:y := 100 (5)o:x + o:y := 100 ` fo:x 0 := 60gfo:y 0 := 40g[[TRabort:
T; : : : ℄℄o:x + o:y := 100 (6)o:x + o:y := 100 ` fo:x := 60g[[TR
ommit: o.y = 40; : : : ℄℄o:x + o:y := 100 (7)o:x + o:y := 100 ` fo:x := 60gfo:y := 40g[[TR
ommit:
T; : : : ℄℄o:x + o:y := 100 (8)o:x + o:y := 100 ` fo:x := 60gfo:y := 40g[[t = o.x; : : : ℄℄o:x + o:y := 100 (9)o:x + o:y := 100 ` fo:x := 60gfo:y := 40go:x + o:y := 100 (10)o:x + o:y := 100 `fo:x := 60gfo:y := 40gft := o:xg[[o.x = o.y; : : : ℄℄o:x + o:y := 100 (11)o:x + o:y := 100 ` 60 + 40 := 100 (12)o:x + o:y := 100 ` fo:x := 60gfo:y := 40gft := o:xgo:x + o:y := 100 (13)o:x + o:y := 100 `fo:x := 60gfo:y := 40gft := o:xgfo:x := o:yg[[o.y = t; : : : ℄℄o:x + o:y := 100 (14)o:x + o:y := 100 ` 60 + 40 := 100 (15)o:x + o:y := 100 `fo:x := 60gfo:y := 40gft := o:xgfo:x := o:ygo:x + o:y := 100 (16)o:x + o:y := 100 `fo:x := 60gfo:y := 40gft := o:xgfo:x := o:ygfo:y := tg[[℄℄o:x + o:y := 100 (17)o:x + o:y := 100 ` 40 + 40 := 100 (18)o:x + o:y := 100 ` 40 + 60 := 100 (19)Fig. 2. The proof from Example 26 Con
lusions and Future WorkWe introdu
ed the \throughout" modality (and, thus, strong invariants) to JAVACARD Dynami
 Logi
 and presented the ne
essary sequent
al
ulus rules to han-dle this modality and
onditional assignments in JAVACARD transa
tions. Intro-

du
tion of this modality was a manageable task and the set of presented rulesis quite easy to use in theorem proving as shown in the examples. Our futureplan is to implement our rules in the KeY prover and then try our
al
ulus with\real" examples.Referen
es1. W. Ahrendt, T. Baar, B. Be
kert, M. Giese, R. H�ahnle, W. Menzel, W. Mostowski,and P. H. S
hmitt. The KeY system: Integrating obje
t-oriented design and for-mal methods. In R.-D. Kuts
he and H. Weber, editors, Pro
eedings, FundamentalApproa
hes to Software Engineering (FASE), Grenoble, Fran
e, LNCS 2306, pages327{330. Springer, 2002.2. B. Be
kert. A dynami
 logi
 for the formal veri�
ation of JAVACARD programs. InI. Attali and T. Jensen, editors, Revised Papers, JAVA on Smart Cards: Program-ming and Se
urity, Cannes, Fran
e, LNCS 2041, pages 6{24. Springer, 2001.3. B. Be
kert and B. Sasse. Handling JAVA's abrupt termination in a sequent
al-
ulus for Dynami
 Logi
. In B. Be
kert, R. Fran
e, R. H�ahnle, and B. Ja
obs,editors, Pro
eedings, IJCAR Workshop on Pre
ise Modelling and Dedu
tion forObje
t-oriented Software Development, Siena, Italy, pages 5{14. TR DII 07/01,Dipartimento di Ingegneria dell'Informazione, Universit�a degli Studi di Siena, 2001.4. B. Be
kert and S. S
hlager. A sequent
al
ulus for �rst-order dynami
 logi
 withtra
e modalities. In R. Gor�e, A. Leits
h, and T. Nipkow, editors, Pro
eedings,International Joint Conferen
e on Automated Reasoning, Siena, Italy, LNCS 2083,pages 626{641. Springer, 2001.5. J. C. Brad�eld, J. K. Filipe, and P. Stevens. Enri
hing OCL using observationalmu-
al
ulus. In R.-D. Kuts
he and H. Weber, editors, Pro
eedings, FundamentalApproa
hes to Software Engineering (FASE), Grenoble, Fran
e, LNCS 2306, pages203{217. Springer, 2002.6. Z. Chen. JAVACARD Te
hnology for Smart Cards. Addison Wesley, 2000.7. D. Harel. Dynami
 Logi
. In D. Gabbay and F. Guenthner, editors, Handbook ofPhilosophi
al Logi
, Volume II: Extensions of Classi
al Logi
. Reidel, 1984.8. D. Harel, D. Kozen, and J. Tiuryn. Dynami
 Logi
. MIT Press, 2000.9. KeY proje
t homepage. http://i12www.ira.uka.de/~projekt/.10. D. Kozen and J. Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Handbookof Theoreti
al Computer S
ien
e,
hapter 14, pages 89{133. Elsevier, 1990.11. W. Mostowski. Rigorous development of JAVACARD appli
ations. In T. Clarke,A. Evans, and K. Lano, editors, Pro
. Fourth Workshop on Rigorous Obje
t-Oriented Methods, London, 2002. http://www.
s.
halmers.se/~woj/papers/room2002.ps.gz.12. V. R. Pratt. Semanti
al
onsiderations on Floyd-Hoare logi
. In Pro
eedings, 18thAnnual IEEE Symposium on Foundation of Computer S
ien
e, 1977.13. Sun Mi
rosystems, In
. JAVACARD 2.2 Appli
ation Programming Interfa
e, 2002.14. Sun Mi
rosystems, In
. JAVACARD 2.2 Runtime Environment Spe
i�
ation, 2002.15. Sun Mi
rosystems, In
. JAVACARD 2.2 Virtual Ma
hine Spe
i�
ation, 2002.16. K. Trentelman and M. Huisman. Extending JML spe
i�
ations with temporallogi
. In Algebrai
 Methodology And Software Te
hnology (AMAST '02), LNCS2422, pages 334{348. Springer-Verlag, 2002.

