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has an enormous in
uence on the integration concepts. We have implemented aprototype system combining the advantages of both paradigms. In large applica-tions the integrated system incorporates the proof engineering capabilities of aninteractive system and, at the same time, eliminates user interactions for thosegoals that can be solved by the e�cient combinatorial proof search embodiedin an automated prover. In this paper we report on the integration concept, onthe encountered problems, and on �rst experimental results with the prototypeimplementation. Furthermore we describe ongoing work.The technical basis for the integration are the systems KIV [21] and 3TAP [3]both of which were developed in the research groups of the authors of this paperat Ulm and Karlsruhe. KIV is an advanced veri�cation system which is appliedin large realistic case studies in academia and industry for many years now. 3TAPis an automated tableau prover for full �rst-order logic with equality. It does notrequire normal forms, and it is easily extensible. Although we experimented withthese particular systems, the conceptual results carry over to other provers.We estimate that in our application domain up to 30% of all user interac-tions needed by an interactive prover could be saved in principle by a �rst-ordertheorem prover. Current provers, however, are far from this goal, because theyare in general not prepared for deduction in large software speci�cations (i.e.,very large search spaces) or for typical domain speci�c reasoning. In Section 2we describe these and other problems and we present the solutions we came upwith so far.Many of our decisions were based on experimental evidence. Therefore, weput a lot of e�ort in a sophisticated veri�cation case study: Correct compilationof PROLOG programs into Warren Abstract Machine code. Although this casestudy is interesting in its own right, we mainly used it as a reference or bench-mark. Parts of it are repeated every now and then to evaluate the success of ourintegration concepts. This case study is presented in Section 3.In realistic applications in Software Veri�cation proof attempts are morelikely to fail than to go through. This is because speci�cations, programs, oruser-de�ned lemmas typically are erroneous. Correct versions usually are onlyobtained after a number of corrections and failed proof attempts. Therefore,the question is not only how to produce powerful theorem provers but also howto integrate proving and error correction. Ongoing research on this and relatedtopics is presented in Section 4. In Section 5 we draw conclusions.2 Integration Concepts2.1 Direct Application of 3TAP in KIVTheorem proving with an interactive system typically proceeds by simplifyinggoals using backward reasoning with proof rules (\tactics"). Some proof rulesmay be applied automatically, but usually the tactics corresponding to the mainline of argument in the proof must be supplied interactively. In order to allowthe \proof engineer" to keep track of the proof state, system response time tothe application of tactics should be short.



In the case of software veri�cation, the initial goals contain programs. Thetactics to reduce these goals make use of �rst-order lemmas and ultimately reducethe goal to a �rst-order formula. Usually, interactive theorem provers do nottreat �rst-order goals specially: Interaction is required to prove them. Using an(ideal) automated theorem prover would relieve the proof engineer from a lot ofinteraction. Therefore, the scenario we considered was to use 3TAP as a \tactic"to prove �rst-order goals, thus exploiting its capability of fast combinatorialsearch. A suitable interface was implemented such that 3TAP can be called eitherinteractively or by KIV's heuristics. Termination of this tactic was guaranteedsimply by imposing a time limit (usually between 15 seconds and 1 minute).Based on this �rst, loosely integrated version, we started to experiment withusing the automatic theorem prover to solve �rst-order theorems encountered insoftware veri�cation. As expected, the automatic theorem prover initially couldnot meet the requirements found in software veri�cation: Virtually no relevanttheorem could be proved. Analysis of the proof attempts identi�ed a number ofreasons, some expected and some unexpected. The most important ones are:Interface Automated theorem provers usually do not support separate input ofaxioms and goal. Instead, one is forced to prove the combined goal \axiomsimply theorem" with universally quanti�ed axioms and theorem. Most the-orem provers do some preprocessing on formulas to speed up proof search:In 3TAP links between potentially uni�able terms are computed, in manyother theorem provers formulas are converted to clauses. We found that pre-processing 200 axioms with 3TAP takes about 30 secs. (the same holds forother provers we tested). Preprocessing the axioms at every proof attemptis clearly unacceptable for interactive theorem proving.Correctness Management Automated provers do not record which assump-tions were actually needed in a proof.. But such information is necessary forthe \correctness management" of the interactive theorem prover, which pre-vents cycles in the dependencies of lemmas and invalidates only a minimalset of previous work when goals or speci�cations are changed.Inductive Theorems Many theorems can only be proved inductively from theaxioms, but most automated theorem provers (including 3TAP ) are not ca-pable of �nding inductive proofs.Large Theories Automated provers are tuned to prove theorems over smalltheories and a small signature. Moreover, given axioms are always relevantto prove the goal. In contrast, theories used in software veri�cation usuallycontain hundreds of axioms most of which are irrelevant for �nding a proof.Still, all axioms contribute to the search space.Domain Characteristics In the application domain \Software Veri�cation"speci�cations are well structured and have speci�c properties (e.g. sortedtheories, equality reasoning is important). Also, theorems used as lemmasoften have an operational semantics in the interactive theorem prover (e.g.equations oriented as rewrite rules). Automated theorem provers do not ex-ploit these properties.



The �rst two items above are technical problems requiring mere changes tothe interface: Now, preprocessing of axioms is done by 3TAP when the user ofthe integrated system selects a speci�cation to work on. A separate commandfor initiating proof attempts refers to the preprocessed axioms by naming thespeci�cation in which they occur. Embedding the automated prover in the cor-rectness management is done by converting proofs found by 3TAP to proofs inthe sequent calculus used in KIV.The presence of inductive theorems is a fundamental problem. It can be mit-igated by adding previously derived (inductive) theorems as lemmas. On theone hand, this reduces the number of theorems which require inductive proofs toabout 10 % of all theorems. On the other hand, there are roughly as many poten-tially useful or necessary lemmas as there are axioms, which adds considerablyto the problem of large theories.This leaves us with two problems, namely handling large theories and ex-ploiting domain characteristics (of software veri�cation). Both will be tackledin the remainder of this section, which is organized as follows: The numberof potentially relevant axioms in proving a goal is minimized by exploiting aspeci�cation's structure (Section 2.2). Measures we have taken to exploit thecharacteristics of software veri�cation are presented next. Finally, in Section 2.6details on converting proofs from 3TAP to KIV are given.2.2 Reduction of the Axiom Set in KIVSpeci�cations in KIV are built up from elementary �rst-order theories with theusual operations of algebraic speci�cation: union, enrichment, parameterization,actualization, and renaming. Their semantics is the whole class of models (loosesemantics). Reachability constraints like \nat generated by 0, succ" are usedto de�ne induction principles. Typical speci�cations used to formally describesoftware systems contain several hundred axioms.Structuring operations are not used arbitrarily in formal speci�cations ofsoftware systems. Almost all enrichments \enrich SPEC by �" are hierarchypersistent. This property means that every model of SPEC can be extended toa model of the whole (enriched) speci�cation. Hierarchy persistency cannot bechecked syntactically, but is usually guaranteed by a modular implementationof the speci�cation [21].Hierarchy persistency can be exploited to de�ne simple, syntactic criteriafor eliminating many irrelevant axioms, which then no longer must be passedto the automated theorem prover. It is su�cient, for example, to work merelywith the axioms of the minimal speci�cation whose signature contains that ofthe theorem. This results in drastic reduction for the WAM case study, becauseits speci�cation hierarchy is 
at (cf. Section 3).2.3 Equality HandlingIncremental Equality Reasoning KIV speci�cations|as most real wordproblems|make heavy use of equality. It is, therefore, essential for an auto-



mated deduction system that is integrated with an interactive prover to employe�cient equality reasoning techniques.Part of 3TAP is a special equality background reasoner that uses a completion-based method [2] for solving E-uni�cation problems extracted from tableaubranches. This equality reasoner is much more e�cient than just adding theequality axioms to the data base. In addition to the mere e�ciency of thetableau-based foreground reasoner and that of the equality reasoner, the in-teraction between them plays a critical role for their combined e�ciency: It is adi�cult problem to decide when it is useful to call the equality reasoner and howmuch time to allow for its computations. Even with good heuristics at hand, onecannot avoid calling the equality reasoner either too early or too late.This problem is aggravated in the framework of integration by the fact thatmost equalities present on a branch are actually not needed to close it, suchthat computing a completion of all available equalities not only is expensive, butquite useless.These di�culties can (at least partially) be avoided by using incrementalmethods for equality reasoning [4]. These are algorithms that|after a futiletry to solve an E-uni�cation problem|allow to store the results of the equal-ity reasoner's computations and to reuse them for a later call (with additionalequalities). Then, in case of doubt, the equality reasoner can be called early with-out running the risk of doing useless computations. In addition, an incrementalreasoner can reuse data for di�erent extensions of a set of equalities.Fortunately, due to the inherently incremental nature of 3TAP 's algorithm forsolving E-uni�cation problems, it was possible to design and implement an in-cremental version of it: rewrite rules and uni�cation problems that are extractedfrom new literals on a branch can simply be added to the data of the backgroundreasoner.Previously, information computed by the equality reasoner of 3TAP couldnot be reused, and the background reasoner was either called (a) on exhaustedtableau branches (i.e., no expansion rule is applicable; this meant that becauseof redundant equalities even simple theorems could not be proved) or (b) it wascalled each time before a branching rule was applied (which usually lead to earlycalls and repeated computation of the same information). Now 3TAP avoids bothproblems. The incremental equality reasoner may be called each time before adisjunctive rule is applied without risking useless computations.GeneratingPrecedence Orders from Simpli�erRules As in most interac-tive theorem provers proof search in KIV is based on simpli�er rules. Simpli�errules are theorems over a data structure, which have been marked by the proofengineer for use in the simpli�er. The way of use is determined by their syntac-tic shape. The most common simpli�er rules are conditional rewrite rules of theform � ! � = � , intended for rewriting instances of � to instances of � if � isprovable.The fact that simpli�er rules have an operational semantics within an inter-active prover can be used in several ways to guide proof search in automated



systems: One example is the automatic generation of useful precedence ordersof function symbols (otherwise, an order must be provided manually or an arbi-trary default order is used). Such orders are used in many re�nements of calculiin theorem proving, hence our results are of general interest.In 3TAP the precedence order is used to orient equations with a lexicographicpath order based on it. The more equations occurring during a proof can beordered, the smaller the search space becomes.A �rst attempt to generate an order from rewrite rules is to de�ne f > gfor top-most function symbols f and g, that occur on the left and on the rightside of a rewrite rule, respectively, provided f 6= g. The attempt to generate atotal order from this information (by a topological sort), however, mostly failsdue to con
icts such as the following (cons, car, cdr and append are the usuallist operations):append(cons(a,x),y) = cons(a,append(x,y))x 6= nil ! cons(car(x),append(cdr(x),y)) = append(x,y)The �rst rule suggests, in accordance with intuition, that append > cons,while the second one suggests the contrary. To avoid such con
icts, one excludesrewrite rules of the form �! � = � , where � can be homomorphically embeddedinto � (as is the case in the second rule above). We tested the resulting algorithmwith �ve speci�cations from existing case studies in KIV, each having ca. 100rewrite rules. The result was that the function symbols could always be topolog-ically sorted, except one con
icting pair of rewrite rules. Additional restrictionson the order could be extracted by considering the �rst di�ering function sym-bols in rewrite rules instead of the top-most ones (no additional con
icts arised).For maximal 
exibility KIV passes on only a partial order (if a con
ict is found,no information on this function symbol is generated). The partial order is madetotal and used in the equality handling module of 3TAP . For yet another use, seethe following section.Our considerations show that rules which are used to \simplify" terms in anintuitive sense in interactive theorem proving can be translated rather directlyinto information used in automated theorem proving. Experiments showed thatwith suitable simpli�er rules and a similar algorithm as the one above, oneobtains an analogous result for predicate symbols (provided that the equalitysymbol is considered to be special).2.4 Restricting the Search Space by Problem-Speci�c OrdersCalculi which incorporate search space restrictions based on atom and literalorders are relatively well investigated in the domain of resolution theory [10](although rarely used in practice). In order to employ such restrictions in 3TAP ,we could build on recent work on order-based re�nements for tableau calculi [13,14]. In fact this latter research was partially motivated by the integration ofparadigms discussed in the present article.



Ordered tableaux constitute a re�nement of free-variable tableaux [11]. Theyhave a number of advantages that become particularly important in the con-text of software veri�cation: They are de�ned for unrestricted �rst-order for-mulas [13] (in contrast to mere clausal normal form) and they are compatiblewith another important re�nement called regularity [20]. It is possible to extendordering restrictions to theory reasoning [14]. Moreover, ordered tableaux areproof con
uent [19]: every partial tableau proof can be extended to a completeproof provided the theorem to be proven is valid. This property is an essentialprerequisite for automated search for counter examples, cf. Section 4.4 below;Finally, problem-speci�c knowledge can be used to choose an order, which notonly restricts the search space but, more importantly, rearranges it favorably.The last point is di�cult to exploit in general, but in the KIV-3TAP inte-gration one can take advantage of the same information computed already toreduce the number of axioms (Section 2.2) and to provide meaningful simpli�-cation orders for equality handling (Section 2.3).Ordered tableaux can be characterized by restricting branch extension asfollows: a formula � can be used to extend a tableau branch B i� either (i) � hasan order-maximal connection intoB (i.e., the connection literal of � occurs order-maximally in �) or (ii) � has an order-maximal connection into another inputformula  (i.e., the connection literals of both � and  occur order-maximally).A partial order < of the function and predicate symbols occurring in a prob-lem can be naturally extended to an A-order �: a binary, irre
exive, transitiverelation on atoms which is stable under substitutions. It su�ces to stipulate forterms/atoms s = f(s1; : : : ; sn), t = g(t1; : : : ; tm) that s � t i� (i) either f < g orf = g, n = m, and ti � si for 1 � i � n and (ii) the variables of s are a subsetof the variables of t.Thus � can be automatically computed in such a way as to re
ect the hierar-chy of speci�cations and the implicit hierarchy of function symbols within eachspeci�cation. � often prevents literals from unrelated hierarchies to be maximaland, as a consequence, a formula � has no maximal connection into a branchwith only literals from a hierarchy unreachable from the maximal literals of �.Even when � does not perfectly re
ect the hierarchy within a problem, com-pleteness of the calculus still guarantees that a proof can be found, althoughproof search might not be in
uenced as favorably.2.5 Application-Speci�c Search Space OptimizationAs explained above, the automated part of the integrated system is used toprove those sub-tasks that are of \�rst-order" nature. In our context of softwareveri�cation, �rst-order formulas appear in very di�erent situations: as axioms of aspeci�ed theory, as rewrite lemmas, or as subgoals in a proof of a (dynamic logic)theorem. Each of these formula contexts carries its own pragmatics concerningthe way formulas are used in proofs. So it is a basic task to enable the automatedprover to make use of as much pragmatic information as possible. One solutionis to add new logical connectives to the logic of the automated (tableau) prover.



Expansion of a disjunctive formula causes a splitting of the current branch,after which one of the two resulting branches has to be chosen to be the newbranch in focus. This choice heavily a�ects the search space. Consider, for ex-ample, the formula p(x) _ q(x): its expansion generates two (sub-)branches, sayB1 and B2, with leaves p(x) and q(x), respectively. Suppose there are many dif-ferent instantiations of x that allow to close B1, but only few instantiations thatallow to close B2. In this case, the search for an instantiation that closes bothbranches should be done by �rst searching for an instantiation that allows toclose B2 and then checking whether it allows to close B1 as well; obviously, amuch smaller search space is spanned this way.In general one has no information that allows to decide which branch shouldbe closed �rst, so the disjunctive connectives (_,! and$) are treated in a stan-dard way; by default, the left argument is handled �rst (some theorem proverstake the relative size of p and q into account, which may or may not be bene-�cial). On the other hand, speci�c knowledge on the role of p or q in the proofwould allow to rearrange and optimize the search space.Typical candidates for this are implications that are intended to exclude ex-ceptions. Consider the formulan 6= 0 ! property(n). It states a property holdingfor all natural numbers except 0. Assume this formula occurs on the branch infocus and property(n) is a complex formula. Expanding the implication, stan-dard treatment puts the new branch B1 with leaf n = 0 in focus. As each of thesubstitutions fn 1g; fn 2g; : : : closes B1, the natural numbers are enumer-ated by backtracking. It is much better to examine the branch B2 containingproperty(n) �rst, and then check that the instantiation of n used to close B2 isnot equal to 0.For this we added a version of implication to the 3TAP logic, called if then,whose declarative semantics is the same as that of usual implication, but thatcarries the pragmatic information that the branch associated with the then-partshould be closed �rst.In the integrated system, the control speci�c distinction between logicallyequivalent connectives is made by KIV, used by 3TAP , but hidden to the user,protecting him from being confused by operational semantics.2.6 Converting ProofsUsually, automated and interactive theorem provers use strongly di�ering calculi,supporting machine-oriented proof search, respectively, the intuition of a humanuser. In an integrated system there are two alternatives for dealing with thisgap. The �rst is to look for a monolithic method that constitutes a compromisebetween both sides' divergent requirements. Such a homogeneous solution doesnecessarily yield a system which is less adapted to the needs of the machine andthe user. As can be seen in the sections above, this is not the alternative wechoose.Instead we use a dual approach, switching when required between the inter-active part of the system (based on a sequent calculus) and the automated part



of the system (based on free-variable tableaux). Doing this we exploit the fullpower of both methods.The resulting question is: What kind of information do both system partshave to exchange when they co-operate to construct a proof? Focusing on thedynamic information depending on a current goal,3 the answer is roughly: KIVasks 3TAP to prove a goal and 3TAP responds with yes or no (if not timed out).Even this short response is extremely valuable, because it can save the user timeand e�ort otherwise spent in a boring and potentially long proof task.But there are good reasons for a more informative response, yielding thewhole proof (if one was found) or at least the assumptions used in it. One im-portant reason is the correctness management used in KIV, which automaticallyguarantees the absence of cycles in lemma dependencies and which automati-cally invalidates proofs a�ected by the modi�cation of a lemma. To embed theproofs found by 3TAP into this management, KIV needs more than just a yes.The second reason (which requires the complete proof as a response) is the re-play mechanism of KIV, which is able to rebuild the remaining valid branches ofan invalidated proof tree. That is why all proofs found by 3TAP should be fullytransformable into KIV proof trees. Finally, embedding 3TAP proofs into the KIVcalculus makes it possible to visualize the overall proof in a single framework,enabling the user to understand what is going on without requiring him or herto deal with two di�erent calculi.Therefore, 3TAP proofs must be translated into KIV proofs. The technicaldetails of this translation go far beyond the scope and size of this paper, thuswe only mention its basic properties: (i) to strip whatever techniques automatedprovers use in order to restrict the search space (these techniques have no coun-terpart in the interactively used calculus, because they reduce legibility and arenot required in a proof environment where the user guides the search); (ii) thetransformation enlargens proofs by at most a constant factor by judicious in-troduction of cuts (which, on the other hand, are not allowed in the automatedprover's calculus, where they would cause a search space explosion).3 Compilation of Prolog to WAM3.1 The Role of the WAM in the ProjectTo evaluate our project results and to demonstrate improvements in the inte-grated system, we chose to verify selected compilation steps from PROLOG tothe \Warren Abstract Machine" (WAM) as our major case study. The algorithmsand a mathematical analysis of the compiler were already provided [5], allowingus to concentrate on the development of a formal speci�cation and on theoremproving. A �rst analysis [24] of the associated correctness problems showed thatveri�cation of the �rst compilation step poses tasks challenging for both KIVand 3TAP , which should lead to synergy e�ects. One important challenge for3 Examples for static information are: signature, axioms, lemmas and the speci�cationstructure.



the interactive prover was the fact, that due to its complexity the correctnessproof could be developed only in an incremental process of failed proof attempts,error correction and re-proof (\evolutionary veri�cation"). For the use of the au-tomated prover an important aspect was, that a large number of standard datatypes (lists, sets, tuples, : : : ) is required, thus a large number of �rst-order the-orems had to be proved. These theorems were used as benchmarks to evaluateimprovement of the integrated system. The following section is a short summaryof the content of the case study and its results.3.2 Content and Results of the WAM Case StudyMost Prolog implementations use the WAM [27] (or a variant of it) as an abstracttarget machine for compilation. Recently, correctness of the WAM-based Prologcompilation was mathematically analyzed by B�orger & Rosenzweig [5].As a starting point they formalized Prolog's semantics with an interpretergiven as a Gurevich Abstract State Machine (formerly known as Evolving Al-gebra) [12]. This interpreter is then re�ned stepwise in altogether twelve steps,introducing more and more WAM concepts, until it serves as an interpreter ofpure WAM code. In parallel, the Prolog program is compiled stepwise, whichmeans that at intermediate levels it consists of WAM instructions interspersedwith Prolog.To verify selected compilation steps, we �rst speci�ed the �rst six interpretersas imperative programs with 100{150 lines of code each. The data types inthese programs were speci�ed algebraically. Correctness of the interpreters wasexpressed as program equivalence in Dynamic Logic (the logic used in KIV tospecify properties of imperative programs, see [15]).As typical examples we then veri�ed the �rst step, which transforms a Pro-log search tree into a stack of \choicepoints", and the �rst proper compilationstep (step four) with KIV. Details on the veri�cation are given in [23, 1]. Theequivalence proofs turned out to be very complex. Each proof requires a formulato describe the invariant part of the correspondence between states of the twoprograms (the coupling invariant), which covers about one page! Writing downa su�cient version ad hoc is just impossible. Instead, the correct version had tobe developed by proof iterations. Whenever a proof attempt failed, the resultingunprovable goal told us what was missing in the coupling invariant and how ithad to be improved. This led to an evolutionary process of completing the in-variant by veri�cation attempts. The most important feature for this techniquewas the powerful reuse of failed proofs as implemented in our system o�eringgood support for the evolutionary veri�cation process.Veri�cation revealed some formal gaps in the analysis of [5]. Moreover, therule system for one of the interpreters was found to be indeterministic, whichcan cause non-termination, for example, for the Prolog program consisting ofclauses \p :- fail." and \p." with the query \?- p.".It took three man months of e�ort to verify the two correctness theoremsincluding all required lemmas. The �nal proofs of the two main theorems in Dy-namic Logic required 846 interactions with the user. The algebraic speci�cations



contained 207 axioms; 184 �rst-order lemmas were used. These were relativelyeasy to prove compared with the complexity of the main theorems, and usuallythe �rst attempt to state these lemmas was correct. Nevertheless, additional 350interactions were required. About 90 % of these interactions could potentiallybe saved by the use of an (ideal) automated theorem prover (the remaining in-teractions involve induction). In reality, �rst tests with the 58 theorems of thetop-level speci�cation showed that 3TAP was only able to prove 5 of these, giv-ing a ratio of only 8 %. With the improvements of the integrated system wehave implemented so far, the integrated system is now able to prove 21 (36 %)theorems fully automatic. The most signi�cant gain in the productivity of 3TAP(from 9 to 21) was achieved by the reduction of the set of axioms, which oftenleft only 10{20 relevant axioms for each proof.4 Ongoing Research4.1 Tableau Rewriting Using Simpli�ersSimpli�ers of the form (8x)(p(x)!  (x)) are frequently used in KIV speci�ca-tions. Typical examples are de�nitions, where the formula  is used to specify themeaning of the predicate symbol p,4 such as in (8x)(even(x)! (9y)(x = 2� y)).Simpli�ers carry pragmatic information: In proofs a simpli�er is used solelyto deduce an instance  (t) of the conclusion from a given instance p(t) of thepremise, thus it is known (and part of the pragmatics of the simpli�er) that thecontrapositive (8x)(: (x)! :p(x)) is not needed in proofs. Note, that althoughboth simpli�ers and if-then formulas are formal implications, the concept of asimpli�er is complementary to that of the if-then operator and their pragmaticsis completely di�erent.When a simpli�er is used in free-variable tableaux (where it is just an impli-cation) to derive  (t) from p(t), then �rst two new branches are generated; oneof these branches contains the formula :p(x) and the other the formula  (x), the�rst branch can be closed immediately, instantiating the free variable x with t.It is, however, much better to handle simpli�ers di�erently using their prag-matic information: If, and only if, a branch B contains (8x)(p(x)!  (x)) (whichmust be classi�ed as a simpli�er) and a literal p(t), the formula  (t) is addedto B. Thus, there is no need to generate a new branch. And, what is more im-portant, a simpli�er is only used, when a corresponding literal is present on thebranch, such that unnecessary branching of the tableau is avoided.As there is a strong relationship between simpli�ers and equality reductionrules, the improvement one can hope to gain is similar to that of using reductionrules for rewriting terms (as compared to using equalities in an unrestrictedway). The e�ects are even more drastic, if techniques similar to completion-based equality handling are used to make the set of simpli�ers con
uent. Thenthe conclusion  (t) can replace the premise p(t) on a branch.4 De�nitions are usually equivalences of the form (8x)(p(x)$  (x)); they replace thetwo simpli�ers (8x)(p(x)!  (x)) and (8x)(:p(x)! : (x)), but not the implication(8x)( (x)! p(x)), which is (in general) not a simpli�er.



4.2 Extending the Application DomainUntil now we have considered the use of automated theorem provers for goalsocurring as lemmas or explicit subgoals during interactive correctness proofs ofsoftware systems. There are, however, a lot of other �rst-order theorems hiddenin goals containing programs, which can be proved using automated systems.Some typical subgoals of this kind are:{ To test the applicability of a conditional rewrite rule, the validity of itscondition in the present context has to be proved.{ Often, disjunctive goals containing programs can be proved by consideringthe �rst-order disjuncts only. To avoid the unnecessary dynamic logic proofattempts on such goals, KIV routinely checks for �rst-order validity.{ If the test (or its logical complement) of a conditional in a program is validin a given context, then the else- (then-) branch needs not be proved.{ For recursive procedures KIV does a recursion analysis. This analysis involvesto determine in a given context, whether the recursive call is reachable. Thischeck is again a �rst-order goal.For all these proof tasks, KIV uses its general simpli�er (possibly involvinguser interaction). But all these tasks are suitable for trying 3TAP as they do notrequire induction. Compared to the �rst-order theorems we proved until now,they have a very di�erent characteristic: Most of these goals are no theorems. Theones which are should be �ltered out quickly. The performance of the theoremprover becomes even more important, because a proof engineer is usually willingto wait a few seconds for the proof of a goal which he expects to be a theorem,but not for proof attempts on goals he expects (or even knows) to be non-theorems. Another new characteristic is that not only a lot of axioms (and usablelemmas) are irrelevant to the proof, but also the goals themselves contain a lotof subformulas which are irrelevant. For routine application of 3TAP these newproblems have to be solved �rst.4.3 Proof EngineeringBeside a large degree of automation, an important criterion for the e�cient ver-i�cation of large software systems is the existence of powerful proof engineeringtools. These allow incremental development of proofs and thus to cope withfailures and resulting corrections and changes. Major components (apart fromfriendly heuristics and visualization of proof trees) are:{ methods for the analysis of proofs,{ methods to construct counter examples,{ methods to reuse proofs and proof attempts.The importance of these tools reappeared in the incremental developmentof the \coupling invariant" in the WAM case study. Currently there exists amethod in KIV to reuse proofs on program changes [22]. It is based on the idea



to calculate the di�erences between proofs from the di�erences of programs. Thecorrespondence between parts of a proof and parts of a program is given by theproof rules.This method could not be applied often in the WAM case study, becauseprograms were already given and only one major correction (to correct the \in-determinism" problem, see Section 3) was necessary. However, a lot of correctionswere necessary to �rst-order formulas. Here the replay of proofs was often helpfulas it already handles a lot of deviations between old (wrong) and new (corrected)goals. But still too many parts of proofs had to be redone following changes.Therefore, one of our major e�orts in the future will be to improve thepossibilities to analyze and to reuse proofs with changed �rst-order formulas.4.4 Computing Counter Examples for Non-Valid ProblemsFirst-order problems deriving from program veri�cation often do not constituteprovable formulas. The reasons range from bugs in the object program or thespeci�cation to erroneous tactical decisions supplied earlier by the user (e.g., tooweak induction hypothesis). Also, extending the application of an automatedprover, as discussed in Section 4.2, involves non-theorems. It is, therefore, anextremely desirable feature of an automated theorem prover to provide counterexamples for non-valid formulas.In general, of course, falsifying interpretations for non-valid �rst-order for-mulas are not computable, but in the limited context of program veri�cationadditional observations (which have so far been rarely uttered explicitly) sim-plify the situation considerably: if a program contains bugs then only thoseoccurring after �nitely many steps on �nite input are worth knowing. Thus, thecorresponding counter examples are �nite, too. In practice, counter examplesderiving from buggy programs and speci�cations tend to be very small. So thereis no need to deal with large terms while looking for them.Several approaches to automated model building exist [26, 25, 7, 6, 18, 9], butnone of them exploits further features speci�cally present in problems derivedfrom program veri�cation: counter examples correspond to initial models �nitelygenerated by a known set of function symbols and constants. Moreover, variablesare sorted, which further restricts the number of models. On the other hand, oneneeds to generate models relative to an equality theory.We believe that in our speci�c context a suitable extension (by equality andsorts) of the ground model generator MGTP [16] is most promising.4.5 ConcurrencyThe integrated system described so far coordinates two sub-systems, an inter-active and an automated theorem prover. In the current version, the two partsinteract sequentially: KIV calls 3TAP and waits for an answer, at most until thetimeout. The next step is to let both parts work in parallel. There are manypossibilities for interleaving proof attempts. The most e�ective would surely be



to exploit the time span in which the user thinks about his next decision onhow to continue the proof. In the meantime the automated prover should tryto close the current goal. Even several instances of an automated prover couldwork in parallel (maybe in a network) on all currently open goals of a proof. Toevaluate the tradeo� between the complexity of realizing such an interface andthe bene�ts of such a scenario, still a lot of experience has to be collected, whichcan only be gained by running case studies.5 ConclusionWhen we began the project of integrating interactive and automatic theoremprovers, we had the strong feeling to be working on a strategic and promisingtopic. Already the expected bene�t from combining the two provers, that hadbeen developed over the last years in our research teams, provided su�cient mo-tivation to set to work with extra e�ort. But even in our most modest momentswe had hoped to get more.We anticipated to identify problems that are not particular to our two theo-rem proving systems, but would arise in any attempt to combine the two theoremproving paradigms. And in fact we can now name typical trouble spots: the dif-�culties of automated provers to cope with large sets of axioms, the mismatchbetween �rst-order automated theorem proving and higher-order tactic provers,the use of pragmatic information to guide proof search. We have made substan-tial progress towards �nding solutions, which again have signi�cance beyondthe special situation we are dealing with. We feel thus justi�ed to call what weare doing not just combining provers but speak of integrating interactive andautomatic theorem proving.References1. W. Ahrendt. Von PROLOG zur WAM|Veri�kation der Prozedur�ubersetzung mitKIV. Diplomarbeit, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Dec. 1995.2. B. Beckert. A completion-based method for mixed universal and rigid E-uni�ca-tion. In A. Bundy, editor, Proc. 12th CADE, Nancy, France, LNCS 814, pages678{692. Springer, 1994.3. B. Beckert, R. H�ahnle, P. Oel, and M. Sulzmann. The tableau-based theoremprover 3TAP , version 4.0. In M. McRobbie, editor, Proc. 13th CADE, NewBrunswick/NJ, USA, LNCS 1104, pages 303{307. Springer, 1996.4. B. Beckert and C. Pape. Incremental theory reasoning methods for semantictableaux. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proc.5th TABLEAUX, Terrasini/Palermo, Italy, LNCS 1071, pages 93{109. Springer,1996.5. E. B�orger and D. Rosenzweig. The WAM|de�nition and compiler correctness.In C. Beierle and L. Pl�umer, editors, Logic Programming: Formal Methods andPractical Applications. North-Holland, 1995.6. R. Caferra and N. Peltier. Model building and interactive theory discovery.In P. Baumgartner, R. H�ahnle, and J. Posegga, editors, Proc. 4th TABLEAUX,St. Goar, Germany, LNCS 918, pages 154{168. Springer, 1995.
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