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Abstract. This paper highlights a project to integrate interactive and
automated theorem proving in Software Verification. Its aim is to com-
bine the advantages of the two paradigms. We report on the integration
concepts, and on the experimental results with a prototype implementa-
tion.

1 Introduction

For a long time, research in computer-aided reasoning was divided into two
major branches: The interactive (or tactical) theorem proving community, and
the supporters of fully automatic proof search. The two communities came up
with powerful tools for different target groups, with different solutions, leading
to different performance and application profiles.

In experiments with both interactive and automated theorem provers in Soft-
ware Verification the following phenomenon can be observed: Automatic provers
are very fast for the majority of the problems they can solve at all. When the
problems become increasingly complex, response time grows superproportional.
Beyond a certain problem size they cannot be applied reasonably. Interactive
provers can be used even in very large case studies because of the cooperation
with the user. However, most interactive provers require too many user interac-
tions for small problems, particularly when combinatorial exhaustive search has
to be performed.

Since strengths and weaknesses of the two paradigms are complementary,
there 1s a current trend in application oriented deduction towards their inte-
gration. At the moment there are three approaches to integration: Some try
to aggregate several automated provers under a common homogeneous user in-
terface (e.g. ILF [8]). Others try to extend existing automated provers by an
interactive component (e.g. INKA [17]).

Our approach explores the third way. We have investigated a conceptual inte-
gration of interactive and automated theorem proving for Software Verification
that goes beyond a loose coupling of two proof systems. We have fixed a con-
crete application domain, because it turned out that the the application domain
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has an enormous influence on the integration concepts. We have implemented a
prototype system combining the advantages of both paradigms. In large applica-
tions the integrated system incorporates the proof engineering capabilities of an
interactive system and, at the same time, eliminates user interactions for those
goals that can be solved by the efficient combinatorial proof search embodied
in an automated prover. In this paper we report on the integration concept, on
the encountered problems, and on first experimental results with the prototype
implementation. Furthermore we describe ongoing work.

The technical basis for the integration are the systems KIV [21] and 74P [3]
both of which were developed in the research groups of the authors of this paper
at Ulm and Karlsruhe. KIV is an advanced verification system which 1s applied
in large realistic case studies in academia and industry for many years now. sTAP
is an automated tableau prover for full first-order logic with equality. It does not
require normal forms, and it is easily extensible. Although we experimented with
these particular systems, the conceptual results carry over to other provers.

We estimate that in our application domain up to 30% of all user interac-
tions needed by an interactive prover could be saved in principle by a first-order
theorem prover. Current provers, however, are far from this goal, because they
are in general not prepared for deduction in large software specifications (i.e.,
very large search spaces) or for typical domain specific reasoning. In Section 2
we describe these and other problems and we present the solutions we came up
with so far.

Many of our decisions were based on experimental evidence. Therefore, we
put a lot of effort in a sophisticated verification case study: Correct compilation
of PROLOG programs into Warren Abstract Machine code. Although this case
study is interesting in its own right, we mainly used it as a reference or bench-
mark. Parts of it are repeated every now and then to evaluate the success of our
integration concepts. This case study is presented in Section 3.

In realistic applications in Software Verification proof attempts are more
likely to fail than to go through. This is because specifications, programs, or
user-defined lemmas typically are erroneous. Correct versions usually are only
obtained after a number of corrections and failed proof attempts. Therefore,
the question is not only how to produce powerful theorem provers but also how
to integrate proving and error correction. Ongoing research on this and related
topics 1s presented in Section 4. In Section 5 we draw conclusions.

2 Integration Concepts

2.1 Direct Application of 3’1’4P in KIV

Theorem proving with an interactive system typically proceeds by simplifying
goals using backward reasoning with proof rules (“tactics”). Some proof rules
may be applied automatically, but usually the tactics corresponding to the main
line of argument in the proof must be supplied interactively. In order to allow
the “proof engineer” to keep track of the proof state, system response time to
the application of tactics should be short.



In the case of software verification, the initial goals contain programs. The
tactics to reduce these goals make use of first-order lemmas and ultimately reduce
the goal to a first-order formula. Usually, interactive theorem provers do not
treat first-order goals specially: Interaction is required to prove them. Using an
(ideal) automated theorem prover would relieve the proof engineer from a lot of
interaction. Therefore, the scenario we considered was to use sTAP as a “tactic”
to prove first-order goals, thus exploiting its capability of fast combinatorial
search. A suitable interface was implemented such that s74P can be called either
interactively or by KIV’s heuristics. Termination of this tactic was guaranteed
simply by imposing a time limit (usually between 15 seconds and 1 minute).

Based on this first, loosely integrated version, we started to experiment with
using the automatic theorem prover to solve first-order theorems encountered in
software verification. As expected, the automatic theorem prover initially could
not meet the requirements found in software verification: Virtually no relevant
theorem could be proved. Analysis of the proof attempts identified a number of
reasons, some expected and some unexpected. The most important ones are:

Interface Automated theorem provers usually do not support separate input of
axioms and goal. Instead, one is forced to prove the combined goal “axioms
imply theorem” with universally quantified axioms and theorem. Most the-
orem provers do some preprocessing on formulas to speed up proof search:
In §74P links between potentially unifiable terms are computed, in many
other theorem provers formulas are converted to clauses. We found that pre-
processing 200 axioms with 74P takes about 30 secs. (the same holds for
other provers we tested). Preprocessing the axioms at every proof attempt
is clearly unacceptable for interactive theorem proving.

Correctness Management Automated provers do not record which assump-
tions were actually needed in a proof.. But such information is necessary for
the “correctness management” of the interactive theorem prover, which pre-
vents cycles in the dependencies of lemmas and invalidates only a minimal
set of previous work when goals or specifications are changed.

Inductive Theorems Many theorems can only be proved inductively from the
axioms, but most automated theorem provers (including 3TAP) are not ca-
pable of finding inductive proofs.

Large Theories Automated provers are tuned to prove theorems over small
theories and a small signature. Moreover, given axioms are always relevant
to prove the goal. In contrast, theories used in software verification usually
contain hundreds of axioms most of which are irrelevant for finding a proof.
Still, all axioms contribute to the search space.

Domain Characteristics In the application domain “Software Verification”
specifications are well structured and have specific properties (e.g. sorted
theories, equality reasoning is important). Also, theorems used as lemmas
often have an operational semantics in the interactive theorem prover (e.g.
equations oriented as rewrite rules). Automated theorem provers do not ex-
ploit these properties.



The first two items above are technical problems requiring mere changes to
the interface: Now, preprocessing of axioms is done by sTAP when the user of
the integrated system selects a specification to work on. A separate command
for initiating proof attempts refers to the preprocessed axioms by naming the
specification in which they occur. Embedding the automated prover in the cor-
rectness management is done by converting proofs found by 74P to proofs in
the sequent calculus used in KIV.

The presence of inductive theorems is a fundamental problem. It can be mit-
igated by adding previously derived (inductive) theorems as lemmas. On the
one hand, this reduces the number of theorems which require inductive proofs to
about 10 % of all theorems. On the other hand, there are roughly as many poten-
tially useful or necessary lemmas as there are axioms, which adds considerably
to the problem of large theories.

This leaves us with two problems, namely handling large theories and ex-
ploiting domain characteristics (of software verification). Both will be tackled
in the remainder of this section, which is organized as follows: The number
of potentially relevant axioms in proving a goal is minimized by exploiting a
specification’s structure (Section 2.2). Measures we have taken to exploit the
characteristics of software verification are presented next. Finally, in Section 2.6
details on converting proofs from 74P to KIV are given.

2.2 Reduction of the Axiom Set in KIV

Specifications in KIV are built up from elementary first-order theories with the
usual operations of algebraic specification: union, enrichment, parameterization,
actualization, and renaming. Their semantics is the whole class of models (loose
semantics). Reachability constraints like “nat generated by 0, succ” are used
to define induction principles. Typical specifications used to formally describe
software systems contain several hundred axioms.

Structuring operations are not used arbitrarily in formal specifications of
software systems. Almost all enrichments “enrich SPEC by A” are hierarchy
persistent. This property means that every model of SPEC can be extended to
a model of the whole (enriched) specification. Hierarchy persistency cannot be
checked syntactically, but is usually guaranteed by a modular implementation
of the specification [21].

Hierarchy persistency can be exploited to define simple, syntactic criteria
for eliminating many irrelevant axioms, which then no longer must be passed
to the automated theorem prover. It is sufficient, for example, to work merely
with the axioms of the minimal specification whose signature contains that of
the theorem. This results in drastic reduction for the WAM case study, because
its specification hierarchy is flat (cf. Section 3).

2.3 Equality Handling

Incremental Equality Reasoning KIV specifications—as most real word
problems—make heavy use of equality. It is, therefore, essential for an auto-



mated deduction system that is integrated with an interactive prover to employ
efficient equality reasoning techniques.

Part of 5T4P is a special equality background reasoner that uses a completion-
based method [2] for solving FE-unification problems extracted from tableau
branches. This equality reasoner is much more efficient than just adding the
equality axioms to the data base. In addition to the mere efficiency of the
tableau-based foreground reasoner and that of the equality reasoner, the in-
teraction between them plays a critical role for their combined efficiency: It is a
difficult problem to decide when 1t is useful to call the equality reasoner and how
much time to allow for its computations. Even with good heuristics at hand, one
cannot avoid calling the equality reasoner either too early or too late.

This problem is aggravated in the framework of integration by the fact that
most equalities present on a branch are actually not needed to close it, such
that computing a completion of all available equalities not only is expensive, but
quite useless.

These difficulties can (at least partially) be avoided by using incremental
methods for equality reasoning [4]. These are algorithms that—after a futile
try to solve an F-unification problem—allow to store the results of the equal-
ity reasoner’s computations and to reuse them for a later call (with additional
equalities). Then, in case of doubt, the equality reasoner can be called early with-
out running the risk of doing useless computations. In addition, an incremental
reasoner can reuse data for different extensions of a set of equalities.

Fortunately, due to the inherently incremental nature of s74P’s algorithm for
solving E-unification problems, 1t was possible to design and implement an in-
cremental version of it: rewrite rules and unification problems that are extracted
from new literals on a branch can simply be added to the data of the background
reasoner.

Previously, information computed by the equality reasoner of sT4P could
not be reused, and the background reasoner was either called (a) on exhausted
tableau branches (i.e., no expansion rule is applicable; this meant that because
of redundant equalities even simple theorems could not be proved) or (b) it was
called each time before a branching rule was applied (which usually lead to early
calls and repeated computation of the same information). Now 4I4P avoids both
problems. The incremental equality reasoner may be called each time before a
disjunctive rule is applied without risking useless computations.

Generating Precedence Orders from Simplifier Rules As in most interac-
tive theorem provers proof search in KIV is based on simplifier rules. Simplifier
rules are theorems over a data structure, which have been marked by the proof
engineer for use in the simplifier. The way of use is determined by their syntac-
tic shape. The most common simplifier rules are conditional rewrite rules of the
form ¢ — ¢ = 7, intended for rewriting instances of ¢ to instances of 7 if ¢ is
provable.

The fact that simplifier rules have an operational semantics within an inter-
active prover can be used in several ways to guide proof search in automated



systems: One example 1s the automatic generation of useful precedence orders
of function symbols (otherwise, an order must be provided manually or an arbi-
trary default order is used). Such orders are used in many refinements of calculi
in theorem proving, hence our results are of general interest.

In 574P the precedence order is used to orient equations with a lexicographic
path order based on i1t. The more equations occurring during a proof can be
ordered, the smaller the search space becomes.

A first attempt to generate an order from rewrite rules is to define f > g
for top-most function symbols f and g, that occur on the left and on the right
side of a rewrite rule, respectively, provided f # g. The attempt to generate a
total order from this information (by a topological sort), however, mostly fails
due to conflicts such as the following (cons, car, cdr and append are the usual
list operations):

append(cons(a,x),y) = cons(a,append(x,y))
x # nil — cons(car(x),append(cdr(x),y)) = append(x,y)

The first rule suggests, in accordance with intuition, that append > cons,
while the second one suggests the contrary. To avoid such conflicts, one excludes
rewrite rules of the form ¢ — ¢ = 7, where 7 can be homomorphically embedded
into o (as is the case in the second rule above). We tested the resulting algorithm
with five specifications from existing case studies in KIV, each having ca. 100
rewrite rules. The result was that the function symbols could always be topolog-
ically sorted, except one conflicting pair of rewrite rules. Additional restrictions
on the order could be extracted by considering the first differing function sym-
bols in rewrite rules instead of the top-most ones (no additional conflicts arised).
For maximal flexibility KIV passes on only a partial order (if a conflict is found,
no information on this function symbol is generated). The partial order is made
total and used in the equality handling module of sTAP. For yet another use, see
the following section.

Our considerations show that rules which are used to “simplify” terms in an
intuitive sense in interactive theorem proving can be translated rather directly
into information used in automated theorem proving. Experiments showed that
with suitable simplifier rules and a similar algorithm as the one above, one
obtains an analogous result for predicate symbols (provided that the equality
symbol is considered to be special).

2.4 Restricting the Search Space by Problem-Specific Orders

Calculi which incorporate search space restrictions based on atom and literal
orders are relatively well investigated in the domain of resolution theory [10]
(although rarely used in practice). In order to employ such restrictions in 44P,
we could build on recent work on order-based refinements for tableau calculi [13,
14]. In fact this latter research was partially motivated by the integration of
paradigms discussed in the present article.



Ordered tableaux constitute a refinement of free-variable tableaux [11]. They
have a number of advantages that become particularly important in the con-
text of software verification: They are defined for unrestricted first-order for-
mulas [13] (in contrast to mere clausal normal form) and they are compatible
with another important refinement called regularity [20]. Tt is possible to extend
ordering restrictions to theory reasoning [14]. Moreover, ordered tableaux are
proof confluent [19]: every partial tableau proof can be extended to a complete
proof provided the theorem to be proven is valid. This property i1s an essential
prerequisite for automated search for counter examples, cf. Section 4.4 below;
Finally, problem-specific knowledge can be used to choose an order, which not
only restricts the search space but, more importantly, rearranges it favorably.

The last point is difficult to exploit in general, but in the KIV-sTAP inte-
gration one can take advantage of the same information computed already to
reduce the number of axioms (Section 2.2) and to provide meaningful simplifi-
cation orders for equality handling (Section 2.3).

Ordered tableaux can be characterized by restricting branch extension as
follows: a formula ¢ can be used to extend a tableau branch B iff either (i) ¢ has
an order-maximal connection into B (i.e., the connection literal of ¢ occurs order-
maximally in ¢) or (ii) ¢ has an order-maximal connection into another input
formula ¢ (i.e., the connection literals of both ¢ and ¢ occur order-maximally).

A partial order < of the function and predicate symbols occurring in a prob-
lem can be naturally extended to an A-order <: a binary, irreflexive, transitive
relation on atoms which is stable under substitutions. It suffices to stipulate for
terms/atoms s = f(s1,...,8,), t = g(t1,...,tm) that s < tiff (i) either f < g or
f=g,n=m and t; < s; for 1 <i<n and (ii) the variables of s are a subset
of the variables of ¢.

Thus < can be automatically computed in such a way as to reflect the hierar-
chy of specifications and the implicit hierarchy of function symbols within each
specification. < often prevents literals from unrelated hierarchies to be maximal
and, as a consequence, a formula ¢ has no maximal connection into a branch
with only literals from a hierarchy unreachable from the maximal literals of ¢.

Even when < does not perfectly reflect the hierarchy within a problem, com-
pleteness of the calculus still guarantees that a proof can be found, although
proof search might not be influenced as favorably.

2.5 Application-Specific Search Space Optimization

As explained above, the automated part of the integrated system is used to
prove those sub-tasks that are of “first-order” nature. In our context of software
verification, first-order formulas appear in very different situations: as axioms of a
specified theory, as rewrite lemmas, or as subgoals in a proof of a (dynamic logic)
theorem. Each of these formula contexts carries its own pragmatics concerning
the way formulas are used 1n proofs. So it is a basic task to enable the automated
prover to make use of as much pragmatic information as possible. One solution
is to add new logical connectives to the logic of the automated (tableau) prover.



Expansion of a digjunctive formula causes a splitting of the current branch,
after which one of the two resulting branches has to be chosen to be the new
branch in focus. This choice heavily affects the search space. Consider, for ex-
ample, the formula p(x) V ¢(x): its expansion generates two (sub-)branches, say
By and Ba, with leaves p(z) and ¢(z), respectively. Suppose there are many dif-
ferent instantiations of x that allow to close By, but only few instantiations that
allow to close By. In this case, the search for an instantiation that closes both
branches should be done by first searching for an instantiation that allows to
close By and then checking whether 1t allows to close By as well; obviously, a
much smaller search space is spanned this way.

In general one has no information that allows to decide which branch should
be closed first, so the digjunctive connectives (V, — and <) are treated in a stan-
dard way; by default, the left argument is handled first (some theorem provers
take the relative size of p and ¢ into account, which may or may not be bene-
ficial). On the other hand, specific knowledge on the role of p or ¢ in the proof
would allow to rearrange and optimize the search space.

Typical candidates for this are implications that are intended to exclude ez-
ceptions. Consider the formulan # 0 — property(n). It states a property holding
for all natural numbers except 0. Assume this formula occurs on the branch in
focus and property(n) is a complex formula. Expanding the implication, stan-
dard treatment puts the new branch B; with leaf n = 0 in focus. As each of the
substitutions {n < 1}, {n < 2}, ... closes By, the natural numbers are enumer-
ated by backtracking. It is much better to examine the branch Bs containing
property(n) first, and then check that the instantiation of n used to close Bj is
not equal to 0.

For this we added a version of implication to the s74P logic, called if_then,
whose declarative semantics is the same as that of usual implication, but that
carries the pragmatic information that the branch associated with the then-part
should be closed first.

In the integrated system, the control specific distinction between logically
equivalent connectives is made by KIV, used by s74P, but hidden to the user,
protecting him from being confused by operational semantics.

2.6 Converting Proofs

Usually, automated and interactive theorem provers use strongly differing calculi,
supporting machine-oriented proof search, respectively, the intuition of a human
user. In an integrated system there are two alternatives for dealing with this
gap. The first is to look for a monolithic method that constitutes a compromise
between both sides’ divergent requirements. Such a homogeneous solution does
necessarily yield a system which is less adapted to the needs of the machine and
the user. As can be seen in the sections above, this is not the alternative we
choose.

Instead we use a dual approach, switching when required between the inter-
active part of the system (based on a sequent calculus) and the automated part



of the system (based on free-variable tableaux). Doing this we exploit the full
power of both methods.

The resulting question is: What kind of information do both system parts
have to exchange when they co-operate to construct a proof? Focusing on the
dynamic information depending on a current goal,® the answer is roughly: KIV
asks 4T4P to prove a goal and sTAP responds with yes or no (if not timed out).
Even this short response 1s extremely valuable, because it can save the user time
and effort otherwise spent in a boring and potentially long proof task.

But there are good reasons for a more informative response, yielding the
whole proof (if one was found) or at least the assumptions used in it. One im-
portant reason is the correctness management used in KIV, which automatically
guarantees the absence of cycles in lemma dependencies and which automati-
cally invalidates proofs affected by the modification of a lemma. To embed the
proofs found by sTAP into this management, KIV needs more than just a yes.
The second reason (which requires the complete proof as a response) is the re-
play mechanism of KIV, which is able to rebuild the remaining valid branches of
an invalidated proof tree. That is why all proofs found by sTAP should be fully
transformable into KIV proof trees. Finally, embedding 74P proofs into the KIV
calculus makes 1t possible to visualize the overall proof in a single framework,
enabling the user to understand what is going on without requiring him or her
to deal with two different calculi.

Therefore, sTAP proofs must be translated into KIV proofs. The technical
details of this translation go far beyond the scope and size of this paper, thus
we only mention its basic properties: (i) to strip whatever techniques automated
provers use in order to restrict the search space (these techniques have no coun-
terpart in the interactively used calculus, because they reduce legibility and are
not required in a proof environment where the user guides the search); (ii) the
transformation enlargens proofs by at most a constant factor by judicious in-
troduction of cuts (which, on the other hand, are not allowed in the automated
prover’s calculus, where they would cause a search space explosion).

3 Compilation of Prolog to WAM

3.1 The Role of the WAM in the Project

To evaluate our project results and to demonstrate improvements in the inte-
grated system, we chose to verify selected compilation steps from PROLOG to
the “Warren Abstract Machine” (WAM) as our major case study. The algorithms
and a mathematical analysis of the compiler were already provided [5], allowing
us to concentrate on the development of a formal specification and on theorem
proving. A first analysis [24] of the associated correctness problems showed that
verification of the first compilation step poses tasks challenging for both KIV
and sTAP, which should lead to synergy effects. One important challenge for

Examples for static information are: signature, axioms, lemmas and the specification
structure.



the interactive prover was the fact, that due to its complexity the correctness
proof could be developed only in an incremental process of failed proof attempts,
error correction and re-proof (“evolutionary verification”). For the use of the au-
tomated prover an important aspect was, that a large number of standard data
types (lists, sets, tuples, ...) is required, thus a large number of first-order the-
orems had to be proved. These theorems were used as benchmarks to evaluate
improvement of the integrated system. The following section is a short summary
of the content of the case study and its results.

3.2 Content and Results of the WAM Case Study

Most Prolog implementations use the WAM [27] (or a variant of it) as an abstract
target machine for compilation. Recently, correctness of the WAM-based Prolog
compilation was mathematically analyzed by Borger & Rosenzweig [5].

As a starting point they formalized Prolog’s semantics with an interpreter
given as a Gurevich Abstract State Machine (formerly known as Evolving Al-
gebra) [12]. This interpreter is then refined stepwise in altogether twelve steps,
introducing more and more WAM concepts, until it serves as an interpreter of
pure WAM code. In parallel, the Prolog program is compiled stepwise, which
means that at intermediate levels it consists of WAM instructions interspersed
with Prolog.

To verify selected compilation steps, we first specified the first six interpreters
as imperative programs with 100-150 lines of code each. The data types in
these programs were specified algebraically. Correctness of the interpreters was
expressed as program equivalence in Dynamic Logic (the logic used in KIV to
specify properties of imperative programs, see [15]).

As typical examples we then verified the first step, which transforms a Pro-
log search tree into a stack of “choicepoints”, and the first proper compilation
step (step four) with KIV. Details on the verification are given in [23, 1]. The
equivalence proofs turned out to be very complex. Each proof requires a formula
to describe the invariant part of the correspondence between states of the two
programs (the coupling invariant), which covers about one page! Writing down
a sufficient version ad hoc is just impossible. Instead, the correct version had to
be developed by proof iterations. Whenever a proof attempt failed, the resulting
unprovable goal told us what was missing in the coupling invariant and how it
had to be improved. This led to an evolutionary process of completing the in-
variant by verification attempts. The most important feature for this technique
was the powerful reuse of failed proofs as implemented in our system offering
good support for the evolutionary verification process.

Verification revealed some formal gaps in the analysis of [5]. Moreover, the
rule system for one of the interpreters was found to be indeterministic, which
can cause non-termination, for example, for the Prolog program consisting of
clauses “p :- fail.” and “p.” with the query “?- p.”.

It took three man months of effort to verify the two correctness theorems
including all required lemmas. The final proofs of the two main theorems in Dy-
namic Logic required 846 interactions with the user. The algebraic specifications



contained 207 axioms; 184 first-order lemmas were used. These were relatively
easy to prove compared with the complexity of the main theorems, and usually
the first attempt to state these lemmas was correct. Nevertheless, additional 350
interactions were required. About 90 % of these interactions could potentially
be saved by the use of an (ideal) automated theorem prover (the remaining in-
teractions involve induction). In reality, first tests with the 58 theorems of the
top-level specification showed that sTAP was only able to prove 5 of these, giv-
ing a ratio of only 8 %. With the improvements of the integrated system we
have implemented so far, the integrated system is now able to prove 21 (36 %)
theorems fully automatic. The most significant gain in the productivity of sTAP
(from 9 to 21) was achieved by the reduction of the set of axioms, which often
left only 10-20 relevant axioms for each proof.

4 Ongoing Research

4.1 Tableau Rewriting Using Simplifiers

Simplifiers of the form (Y&)(p(z) — ¥(x)) are frequently used in KIV specifica-
tions. Typical examples are definitions, where the formula v is used to specify the
meaning of the predicate symbol p,* such as in (Vo) (even(z) — (Fy)(z = 2*y)).

Simplifiers carry pragmatic information: In proofs a simplifier is used solely
to deduce an instance ¢(t) of the conclusion from a given instance p(t) of the
premise, thus it is known (and part of the pragmatics of the simplifier) that the
contrapositive (V) (—¢(x) — —p(x)) is not needed in proofs. Note, that although
both simplifiers and if-then formulas are formal implications, the concept of a
simplifier is complementary to that of the if-then operator and their pragmatics
is completely different.

When a simplifier is used in free-variable tableaux (where it is just an impli-
cation) to derive ¢(¢) from p(t), then first two new branches are generated; one
of these branches contains the formula =p(z) and the other the formula ¢ (), the
first branch can be closed immediately, instantiating the free variable z with ¢.

It is, however, much better to handle simplifiers differently using their prag-
matic information: If, and only if, a branch B contains (Va)(p(x) — ¢(«)) (which
must be classified as a simplifier) and a literal p(t), the formula ¢(t) is added
to B. Thus, there is no need to generate a new branch. And, what is more im-
portant, a simplifier is only used, when a corresponding literal is present on the
branch, such that unnecessary branching of the tableau is avoided.

As there is a strong relationship between simplifiers and equality reduction
rules, the improvement one can hope to gain is similar to that of using reduction
rules for rewriting terms (as compared to using equalities in an unrestricted
way). The effects are even more drastic, if techniques similar to completion-
based equality handling are used to make the set of simplifiers confluent. Then
the conclusion () can replace the premise p(t) on a branch.

* Definitions are usually equivalences of the form (Vx)(p(x) <> ¥(%)); they replace the
two simplifiers (Vz)(p(z) = ¢¥(z)) and (Vz)(—p(z) = —¢(z)), but not the implication
(Vz)(¥(z) = p(x)), which is (in general) not a simplifier.



4.2 Extending the Application Domain

Until now we have considered the use of automated theorem provers for goals
ocurring as lemmas or explicit subgoals during interactive correctness proofs of
software systems. There are, however, a lot of other first-order theorems hidden
in goals containing programs, which can be proved using automated systems.
Some typical subgoals of this kind are:

— To test the applicability of a conditional rewrite rule, the validity of its
condition in the present context has to be proved.

— Often, disjunctive goals containing programs can be proved by considering
the first-order disjuncts only. To avoid the unnecessary dynamic logic proof
attempts on such goals, KIV routinely checks for first-order validity.

— If the test (or its logical complement) of a conditional in a program is valid
in a given context, then the else- (then-) branch needs not be proved.

— For recursive procedures KIV does a recursion analysis. This analysis involves
to determine in a given context, whether the recursive call is reachable. This
check is again a first-order goal.

For all these proof tasks, KIV uses its general simplifier (possibly involving
user interaction). But all these tasks are suitable for trying 4I4P as they do not
require induction. Compared to the first-order theorems we proved until now,
they have a very different characteristic: Most of these goals are no theorems. The
ones which are should be filtered out quickly. The performance of the theorem
prover becomes even more important, because a proof engineer is usually willing
to wait a few seconds for the proof of a goal which he expects to be a theorem,
but not for proof attempts on goals he expects (or even knows) to be non-
theorems. Another new characteristic is that not only a lot of axioms (and usable
lemmas) are irrelevant to the proof, but also the goals themselves contain a lot
of subformulas which are irrelevant. For routine application of sTAP these new
problems have to be solved first.

4.3 Proof Engineering

Beside a large degree of automation, an important criterion for the efficient ver-
ification of large software systems is the existence of powerful proof engineering
tools. These allow incremental development of proofs and thus to cope with
failures and resulting corrections and changes. Major components (apart from
friendly heuristics and visualization of proof trees) are:

— methods for the analysis of proofs,
— methods to construct counter examples,
— methods to reuse proofs and proof attempts.

The importance of these tools reappeared in the incremental development
of the “coupling invariant” in the WAM case study. Currently there exists a
method in KIV to reuse proofs on program changes [22]. Tt is based on the idea



to calculate the differences between proofs from the differences of programs. The
correspondence between parts of a proof and parts of a program is given by the
proof rules.

This method could not be applied often in the WAM case study, because
programs were already given and only one major correction (to correct the “in-
determinism” problem, see Section 3) was necessary. However, a lot of corrections
were necessary to first-order formulas. Here the replay of proofs was often helpful
as it already handles a lot of deviations between old (wrong) and new (corrected)
goals. But still too many parts of proofs had to be redone following changes.

Therefore, one of our major efforts in the future will be to improve the
possibilities to analyze and to reuse proofs with changed first-order formulas.

4.4 Computing Counter Examples for Non-Valid Problems

First-order problems deriving from program verification often do not constitute
provable formulas. The reasons range from bugs in the object program or the
specification to erroneous tactical decisions supplied earlier by the user (e.g., too
weak induction hypothesis). Also, extending the application of an automated
prover, as discussed in Section 4.2, involves non-theorems. It is, therefore, an
extremely desirable feature of an automated theorem prover to provide counter
examples for non-valid formulas.

In general, of course, falsifying interpretations for non-valid first-order for-
mulas are not computable, but in the limited context of program verification
additional observations (which have so far been rarely uttered explicitly) sim-
plify the situation considerably: if a program contains bugs then only those
occurring after finitely many steps on finite input are worth knowing. Thus, the
corresponding counter examples are finite, too. In practice, counter examples
deriving from buggy programs and specifications tend to be very small. So there
is no need to deal with large terms while looking for them.

Several approaches to automated model building exist [26, 25, 7, 6, 18, 9], but
none of them exploits further features specifically present in problems derived
from program verification: counter examples correspond to initial models finitely
generated by a known set of function symbols and constants. Moreover, variables
are sorted, which further restricts the number of models. On the other hand, one
needs to generate models relative to an equality theory.

We believe that in our specific context a suitable extension (by equality and
sorts) of the ground model generator MGTP [16] is most promising.

4.5 Concurrency

The integrated system described so far coordinates two sub-systems, an inter-
active and an automated theorem prover. In the current version, the two parts
interact sequentially: KIV calls s74P and waits for an answer, at most until the
timeout. The next step i1s to let both parts work in parallel. There are many
possibilities for interleaving proof attempts. The most effective would surely be



to exploit the time span in which the user thinks about his next decision on
how to continue the proof. In the meantime the automated prover should try
to close the current goal. Even several instances of an automated prover could
work in parallel (maybe in a network) on all currently open goals of a proof. To
evaluate the tradeoff between the complexity of realizing such an interface and
the benefits of such a scenario, still a lot of experience has to be collected, which
can only be gained by running case studies.

5 Conclusion

When we began the project of integrating interactive and automatic theorem
provers, we had the strong feeling to be working on a strategic and promising
topic. Already the expected benefit from combining the two provers, that had
been developed over the last years in our research teams, provided sufficient mo-
tivation to set to work with extra effort. But even in our most modest moments
we had hoped to get more.

We anticipated to identify problems that are not particular to our two theo-
rem proving systems, but would arise in any attempt to combine the two theorem
proving paradigms. And in fact we can now name typical trouble spots: the dif-
ficulties of automated provers to cope with large sets of axioms, the mismatch
between first-order automated theorem proving and higher-order tactic provers,
the use of pragmatic information to guide proof search. We have made substan-
tial progress towards finding solutions, which again have significance beyond
the special situation we are dealing with. We feel thus justified to call what we
are doing not just combining provers but speak of integrating interactive and
automatic theorem proving.
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