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ANALYTIC TABLEAUX

1. INTRODUCTION

1.1. Overview of this Chapter

The aim of this chapter is twofold: first, introducing the basic concepts of an-
alytic tableaux and, secondly, presenting state-of-the-art techniques for using
non-clausal tableaux in automated deduction.

An important point involves problems arising with implementing tableau
calculi, in particular with designing a deterministic proof procedure (although
no concrete implementation is presented). The most important optimizations
of analytic tableaux are discussed; but there are too many togive a complete
list here. Instead, we present examples for the important types of optimiza-
tions, and describe the general techniques for proving soundness and com-
pleteness of different tableau variants.

In Section 2, we introduce tableaux for full first-order logic, including
unifying notation, both ground and free variable versions of tableau rules,
and the (non-deterministic) construction of tableau proofs. In Section 3, the
semantics of tableaux is defined, which is used to prove soundness and com-
pleteness of free variable tableau in Section 4. Besides thecompleteness proof
that uses the notion of Hintikka sets, an alternative proof is presented, based
on an induction on the number of different symbols in the signature (Sec-
tion 4.3). In Section 5, we discuss difficulties that emerge while resolving
the inherent indeterminism of the tableau calculus and in defining a concrete,
deterministic (and complete) procedure for systematic free variable tableau
proof search. Finally, in Section 6 examples for optimizations of tableaux are
presented, in particular those that are different from the corresponding refine-
ments of tableaux for clause logic; it is shown how to adapt the two types of
completeness proofs to certain types of optimizations.

1.2. The General Idea of Tableaux

A tableau, in the present chapter, is a (partial) formal proof of a logical for-
mula. Themethod(or, as one should rather say, the family of methods) of
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10 BERNHARD BECKERT AND REINER HÄHNLE

tableaux is a way to find such proofs in a systematic manner: a bunch of in-
ference rules and some instructions on how to combine them, in other words,
a logical calculus.

It takes more than this, of course, to distinguish tableaux from, say, nat-
ural deduction or resolution. This can be difficult, becausesome variants of
tableaux are virtually indistinguishable from Gentzen systems, others yet can
alternatively be viewed as a certain form of resolution. Nevertheless we try
to give a number of characteristic properties of tableau systems which are
widely agreed upon:

Proof Methodology
In most cases (and certainly in the present chapter) a tableau proof can be
envisioned as a proof by (a) contradiction and (b) case distinction, i.e., each
separate case must give rise to a logical contradiction.1 The tableau frame-
work essentially provides a sound and systematic way to generate an exhaus-
tive set of cases for each given formula. It thus can be seen asa systematic
way to derive a counter example to an assertion.

Semantic Aspects
The inference rules of tableau systems follow closely the semantics of logical
connectives. Often, semantic elements are explicitly introduced as syntactic
objects into a tableau system (for example, constants that refer to truth values
or to worlds in modal frames). In the propositional case (andsometimes even
in the first-order case), a failed tableau proof attempt can readily be turned
into a counter example for the assertion to be proven.

Unrestricted Syntax
Although tableau systems for syntactically restricted input exist (see the fol-
lowing chapters for a thorough discussion of tableaux for clause logic), they
have been developed to deal with full logic syntax includingany kind of con-
nective. In the present chapter we consider tableau systemsfor full first-order
logic.

Analyticity and Cut-Freeness
With rare exceptions tableaux are analytic2, i.e., only (possibly negated in-
stances of) subformulae of the formula to be refuted occur ina tableau and
no others. Usually, an even stronger property holds: each formula occurring

1 Dually, one can interpret tableaux as systematic composition of tautologies.
2 “Analytic” is even a constituent of the calculus’ name (the term “analytic ta-

bleaux” was first used by Smullyan (1968)).
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ANALYTIC TABLEAUX 11

in the conclusion of a tableau inference rule is (a possibly negated instance
of) a direct subformula occurring in its premiss. In particular, the cut rule is
not used anywhere.

Because of the aforementioned properties of tableaux, their use is favored
in deductive tasks, where natural proof representation andthe ability to handle
non-classical logics are important. Typical scenarios include formal software
verification or modeling of intelligent agents.

1.3. Other Sources of Information

The most comprehensive available source of information on tableau systems
is theHandbook of Tableau Methods(D’Agostino et al., 1998). Its introduc-
tory chapter contains a detailed historical account. Otherchapters cover the
main variants of clausal and non-clausal, of propositionaland first-order ta-
bleau systems, as well as their implementation. The most important families
of non-classical logics are given treatment in specific chapters. There is also
an annotated bibliography. While the Handbook’s approach is encyclopedic,
it does not contain selected in-depth treatments as does thepresent collection
whose task is to provide widely readable access to vanguard research topics.

Although Smullyan’s classic text (Smullyan, 1968) is somewhat outdated
it still constitutes an excellent introduction for those interested primarily in
proof theory. As a more contemporary introduction to tableau methods cov-
ering also aspects of automated deduction, Fitting’s book (Fitting, 1996) is
highly recommended.

New results in the area of tableaux are mainly presented at theConference
on Tableaux and Related Methodsand at theConference on Automated De-
duction, both held annually. There is as yet no journal devoted to tableaux.
Papers are published in journals devoted to logic or deduction.

1.4. Notation

A first-order signatureΣ = hPΣ;FΣi consists of a non-empty setPΣ of predi-
cate symbols and a setFΣ of function symbols. For skolemization we do not
use symbols fromFΣ but from a special infinite setFsko of Skolem function
symbolsthat is disjoint fromFΣ; the extended signaturehPΣ;FΣ [Fskoi is de-
noted byΣ�. The symbols inPΣ, FΣ andFsko may be used with any arityn� 0;
in particular function symbols can be used as constant symbols (arity 0). In
addition, there is an infinite set Var ofobject variables.

Thelogical operatorsare the connectives_ (disjunction),̂ (conjunction)
and: (negation), the quantifier symbols8 and9, and the constant operators
trueandfalse. Formulae that are identical up to associativity (but not commu-
tativity) of _ and^ are identified. Implication and equivalence are considered
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12 BERNHARD BECKERT AND REINER HÄHNLE

to be defined operators, i.e.,φ! ψ is the same as:φ_ψ, andφ$ ψ is the
same as(φ^ψ)_ (:φ^:ψ).
DEFINITION 1. The setLΣ of well-formed formulae(wffs) over a signa-
tureΣ is defined by: (1)true, falseand atoms overΣ are wffs. (2) Ifφ is a wff,
then:φ is a wff. (3) Ifφ1; : : : ;φn, n� 2, are wffs but not conjunctions (dis-
junctions), thenφ1^ : : :^φn (resp.φ1_ : : :_φn) is a conjunction (disjunction)
and a wff. (4) Ifφ is a wff and x2 Var, then8x(φ) and9x(φ) are wffs.

Thecomplementφ of a wffφ is defined by:φ = ψ if φ is of the form:ψ,
andφ = :φ otherwise.

As we deal with arbitrary formulae, we have to account for thefact that a
disjunctive subformula may occur negated and thus is implicitly a conjunctive
formula etc. Also, the sign of a literal may be implicitly complemented.

DEFINITION 2. An occurrence of a subformulaρ of φ 2 LΣ is (1) positive
if φ = ρ, (2) negative(positive) if φ is of the form:ψ and the occurrence ofρ
is positive (negative) inψ, (3) positive(negative) if the occurrence ofρ is
positive (negative) in an immediate subformulaψ of φ such thatφ 6= :ψ.

The notions of free and bound variable, term, atom, literal (trueandfalse
are literals but not atoms), (immediate) subformula, substitution,and sentence
(a formula not containing free variables) are defined as usual. If in doubt, the
reader is referred to (Fitting, 1996) for the exact definitions.

2. GROUND AND FREE VARIABLE TABLEAUX

2.1. Unifying Notation

Following Smullyan (1968), the set of formulae that are not literals is divided
into four classes:α for formulae of conjunctive type,β for formulae of dis-
junctive type,γ for quantified formulae of universal type and finallyδ for
quantified formulae of existential type (unifying notation). This classifica-
tion is motivated by thetableau expansion rulesthat are associated with each
(non-literal) formula. The rules characterize the assignment of a truth value
to a formula by means of assigning truth values to its direct subformulae. For
example,φ^ψ holds if and only ifφ andψ hold.

Tableau systems come in two versions, namely unsigned and signed; for
first-order logic the signsT (true) andF (false) are used. Although signed
tableaux are more flexible and for most (non-classical) logics it is necessary
to use signs, we will (mainly) be using the unsigned version;all techniques
presented apply as well to the signed version or can easily beadapted.
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ANALYTIC TABLEAUX 13

Table I. Correspondence between formulae and rule types (unsigned version).

α α1; : : :;αn

φ1^ : : :^φn φ1; : : :;φn:(φ1_ : : :_φn) :φ1; : : :;:φn::φ φ

β β1; : : :;βn

φ1_ : : :_φn φ1; : : :;φn:(φ1^ : : :^φn) :φ1; : : :;:φn

γ γ18x(φ(x)) φ(x):9x(φ(x)) :φ(x) δ δ1:8x(φ(x)) :φ(x)9x(φ(x)) φ(x)
Table II. Correspondence between formulae and rule types (signed version).

α α1; : : :;αn

T(φ1^ : : :^φn) Tφ1; : : :;Tφn

F(φ1_ : : :_φn) Fφ1; : : :;Fφn

T:φ Fφ
F:φ Tφ

β β1; : : :;βn

T(φ1_ : : :_φn) Tφ1; : : :;Tφn

F(φ1^ : : :^φn) Fφ1; : : :;Fφn

γ γ1

T8x(φ(x)) Tφ(x)
F9x(φ(x)) Fφ(x) δ δ1

F8x(φ(x)) Fφ(x)
T9x(φ(x)) Tφ(x)

DEFINITION 3. The non-literal formulae inLΣ� are assigned atypeaccord-
ing to Table I (resp. Table II for the signed version of tableaux). A formula of
typeξ 2 fα;β;γ;δg is called aξ-formula.

The lettersα, β, γ, andδ are used to denote formulae of (and only of) the
appropriate type. The variablex that is bound by the (top-most) quantifier in
γ- andδ-formulae is made explicit by writingγ(x) (resp.δ(x)); accordingly,
γ1(t) denotes the result of replacing all occurrences ofx in γ1 by t.

2.2. Ground Tableau Expansion Rules

We start with thegroundversion of tableaux for first-order logic, called so,
because universally quantified variables are replaced bygroundterms when
theγ-rule is applied.
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14 BERNHARD BECKERT AND REINER HÄHNLE

Table III. Rule schemata for the ground version of tableaux.

α
α1
...

αn

β
β1 � � � βn

γ(x)
γ1(t)

wheret is any
ground term.

δ(x)
δ1(c)

wherec= sko(δ).
In Table III the ground expansion rule schemata for the various formula

types are given schematically. Premisses and conclusions are separated by a
horizontal bar, while vertical bars in the conclusion denote differentexten-
sions. The formulae in an extension are implicitly conjunctivelyconnected,
and different extensions are implicitly disjunctively connected. We usen-ary
α- andβ-rules, i.e., when theβ-rule is applied to a formulaψ = φ1_ : : :_φn,
thenψ is broken up inton subformulae (instead of splitting it into two formu-
laeφ1_ : : :_φr andφr+1_ : : :_φn, 1� r < n).

Besides usingn-ary rules we deviate from the classic definition of tableaux
(as given by Smullyan) by using an improvedδ-rule that, for the purpose
of constructing the Skolem term, does not introduce anewSkolem function
symbol. Rather, each equivalence class ofδ-formulae identical up to variable
renaming is assigned its own unique Skolem symbol (which canbe seen as
a Gödelization of that class) (Beckert et al., 1993). Thisδ-rule is easier to
implement than the classical one; and it guarantees that only a finite number
of different symbols is required, thus restricting the search space.

DEFINITION 4. Given a signatureΣ = hPΣ;FΣi, the functionskoassigns to
eachδ 2 LΣ� a symbolsko(δ) 2 Fsko such that (a)sko(δ)> f for all f 2 Fsko
occurring inδ, where> is an arbitrary but fixed ordering on Fsko, and (b) for
all δ;δ0 2 LΣ the symbolssko(δ) and sko(δ0) are identical if and only ifδ
andδ0 are identical up to variable renaming (including renaming of the bound
variables).

The purpose of condition (a) in the above definition ofsko is to avoid
cycles like:sko(δ) = f , f occurs inδ0, sko(δ0) = g, g occurs inδ.

2.3. Free Variable Tableau Expansion Rules

Using free variable3 quantifier rules (Prawitz, 1960; Wang, 1960; Brown,
1978; Broda, 1980; Reeves, 1987; Fitting, 1996) is crucial for efficient im-
plementation. They reduce at each step the number of possible next steps

3 In the literature, several other names have been used for thesame concept, e.g.,
parameters, dummy variables, meta variables.
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ANALYTIC TABLEAUX 15

Table IV. γ- andδ-rule schemata for free variable tableaux.

γ(x)
γ1(y)

wherey2 Var is new
to the tableau.

δ(x)
δ1( f (x1; : : :;xn))

where f = sko(δ) and
x1; : : :;xn are the free variables inδ.

in the construction of a tableau proof and thus the size of thesearch space.
Whenγ-rules are applied, a new free variable is substituted for the quantified
variable, instead of replacing it by a ground term, that has to be “guessed.”
Free variables can later be instantiated “on demand,” when atableau branch
is closed.

To preserve correctness, the schema forδ-rules has to be changed as well:
the Skolem terms introduced now contain the free variables occurring in the
formula to which aδ-rule is applied;4 the free variable rule schemata forγ-
andδ-formulae are shown in Table IV; the rules for propositionalformulae
are identical to those of the ground version of tableaux (seeTable III).

2.4. Tableau Subformulae

The formulae being derived from a formulaφ and added to a tableau by ap-
plying tableau expansion rules are calledtableau subformulaeof φ. They are
closely related to, but not identical to the subformulae ofφ.

DEFINITION 5. To each non-literal formulaφ in LΣ� , a sequence ofimme-
diate tableau subformulaeis assigned, which are the formulae in the conclu-
sion when the appropriate tableau rule is applied toφ (see Tables III and IV).
Thetableau subformularelation is the reflexive, transitive closure of the im-
mediate tableau subformula relation.

A ξ-formula ψ that is a tableau subformula of a formulaφ is called a
ξ-subformulaof φ.

The indexi (1� i � n) of the immediate tableau subformulae is an opera-
tor; thus,β2 is by definition the secondβ-subformula ofβ2 LΣ� . Note that the

4 In earlier versions of free variable tableaux, all free variables occurring on the
tableaubranchwere made part of the Skolem term, which can lead to longer proofs.
The δ-rule we present here has been shown to be correct in (Beckertet al., 1993);
a similar δ-rule has already been used in (Brown, 1978).δ-rules that allow even
shorter proofs have been investigated in (Baaz and Fermüller, 1995). See Section 4.4
of Chapter I.1.4 for a detailed discussion of differentδ-rules and their relation to the
analytic cut rule.
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16 BERNHARD BECKERT AND REINER HÄHNLE

definition of tableau subformulae depends on the tableau rules that are used;
in particular, the tableau subformulae ofγ- andδ-formulae differ in ground
and free variable tableaux.

EXAMPLE 1. Let β be theβ-formula:(p^:9x(Q(x))); thenβ1 = :p and
β2 = ::9x(Q(x)). β2 is anα-subformula ofβ (because it is anα-formula),
and9x(Q(x)) is a δ-subformula ofβ. The tableau subformulae ofβ are: β it-
self,:p,::9x(Q(x)), 9x(Q(x)), and Q(c) where c= sko9x(Q(x)) (they are
the same for both ground and free variable tableau rules). The subformulae
of β are: β itself, p^:9x(Q(x)), p,:9x(Q(x)), 9x(Q(x)) and Q(x).
2.5. Tableau Proofs

We consider the formulae in the given setΦ, whose unsatisfiability is to be
proven, to be implicit elements of all tableau branches. Thus, the construction
of a tableau proof starts with the initial tableau consisting of the single node
true. Neither is a tableau rule for explicitly adding formulae from Φ to a
tableau branch needed, nor is it necessary to make the formulae inΦ elements
of the initial tableau (which would restrictΦ to be finite).

For pedagogical reasons, we prefer to view tableaux as treesin our pre-
sentation, but we regard this choice as inessential: implementations naturally
avoid copying formulae and thus are closer to the path-basedview preferred
by other authors. On the other hand, we believe there is a crucial difference
between normal form and non-normal form calculi: it is not always obvi-
ous how to transform a proof of the normalized version of a problem to a
non-normal form proof. One should not confuse this issue with truly presen-
tational aspects such as whether one prefers trees over matrices or vice versa.

DEFINITION 6. Let Σ be a first-order signature. Atableau(over Σ) is a
finitely branching tree whose nodes are formulae fromLΣ� . A branchin a
tableau T is a maximal path in T .5 Given a setΦ of sentences fromLΣ, the
tableaux forΦ are (recursively) defined by:

1. The tree consisting of a single node labeled withtrue is a tableau forΦ
(initialization).

2. Let T be a tableau forΦ, B a branch of T , andψ a formula in B[Φ. If the
tree T0 is constructed by extending B by as many new linear subtrees as
the tableau expansion rule corresponding toψ has extensions, where the
nodes of the new subtrees are labeled with the formulae in theextensions,
then T0 is a tableau forΦ (expansion).

5 Where no confusion can arise, branches are often identified with the set of for-
mulae they contain.
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3. Let T be a tableau forΦ, B a branch of T , andψ andψ0 literals in B[Φ.
If ψ andψ0 are unifiable with a most general unifier (MGU)σ, and T0 is
constructed by applyingσ to all formulae in T (i.e., T0 = Tσ), then T0 is
a tableau forΦ (closure).6

The tableau expansion rule corresponding to a formulaφ is obtained by
looking up the formula type ofφ in Table I (resp. Table II) and instantiating
the matching rule schema in Table III or Table IV; the quantifier rules in
Table III are used for the ground version and the quantifier rules in Table IV
for the free-variable version of tableaux.

The closure rule in Def. 6 only allows the application ofmost generalclos-
ing substitutions (MGU closure rule) and only uses complementary pairs of
literals. Instead one could allow the application of arbitrary substitutions and
use complementary non-literal formulae for closure; thesealternative closure
rules, however, increase the number of choice points in the construction of a
tableau proof (see Section 5).

DEFINITION 7. Given a tableau T for a setΦ of sentences, a branch B of T
is closediff B[Φ contains a pairφ;:φ 2 LΣ� of complementary formulae, or
falseor :true; otherwise it isopen. A tableau is closed ifall its branches are
closed.

DEFINITION 8. A tableau prooffor (the unsatisfiability of) a setΦ� LΣ of
sentences consists of a tableau T forΦ that is closed.

EXAMPLE 2. We give a tableau proof for the set-theoretic theorem that,
given sets P;Q;R;S such that the propositions (1) S\Q = /0, (2) P� Q[R,
(3) P 6= /0 or Q 6= /0, and (4) Q[R�S hold, we have (5) P\R 6= /0. To formalize
this theorem, we use the signatureΣ = hfP;Q;R;Sg;fgi; the theorem holds
iff the setΦ is unsatisfiable that consists of the following fiveLΣ-sentences:
(1):9x(S(x)^Q(x)), (2)8x(:P(x)_Q(x)_R(x)), (3)9x(P(x))_9x(Q(x)),
(4) 8x(:(Q(x)_R(x))_S(x)), and (5):9x(P(x)^R(x)).

Figure 1 shows a tableau T forΦ. The nodes of the tableau are numbered
starting from 6 (the numbers 1–5 refer to the formulae inΦ); a pair [i; j] is
attached to the i-th node Ni , the number j denotes that Ni has been created
by applying an expansion rule to the formula in Nj (resp. formula j inΦ).

When theδ-rule is applied to nodes 7 resp. 8 to create nodes 9 and 25, the
Skolem symbols c= sko(9x(P(x))) and d= sko(9x(Q(x))) are introduced.

All branches of T except the one with leaf 25 can be closed by applying
the closure rule; the triple[i;k;σ] below each of these branches denotes that

6 The complement of signed formulae is defined byTφ = Fφ andFφ = Tφ.
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18 BERNHARD BECKERT AND REINER HÄHNLE

[6;–] true

[7;3] 9x(P(x))
[9;7] P(c)

[10;5] :(P(x1)^R(x1))
[11;10] :P(x1)�

[9;11;fx1=cg] [12;10]:R(x1)
[13;2] :P(x2)_Q(x2)_R(x2)

[14;13]:P(x2)�
[9;14;fx2=cg] [15;13] Q(x2)

[17;1] :(S(x3)^Q(x3))
[18;17]:S(x3)

[20;4] :(Q(x4)_R(x4))_S(x4)
[21;20]:(Q(x4)_R(x4))

[23;21]:Q(x4)
[24;21]:R(x4)�

[15;23;fx4=cg] [22;20] S(x4)�
[18;22;fx3=cg][19;17]:Q(x3)�

[15;19;id]

[16;13] R(x2)�
[12;16;id]

[8;3] 9x(Q(x))
[25;8] Q(d)

Figure 1. Partial free variable tableau proof for the setΦ from Example 2.

the closure rule can be applied to the complementary literals i and j using
the unifierσ (assuming that the branches are closed from left to right). When
these substitutions have been applied, the resulting taleau T0 is not a tableau
proof yet, but it can be extended to a closed tableau by addinga copy of
the subtableau with root node 17 below node 25 and instantiating the free
variables in that copy with d (instead of c).

2.6. A Tableau Construction Procedure

The—non-deterministic—procedure shown in Table V constructs a free vari-
able tableau proof for the unsatisfiability of a given setΦ of sentences.

The main loop of this procedure contains the following four choice points:
(1) A branchB has to be chosen (select branch); (2) it has to be decided
whetherB is to be closed or to be expanded (select mode); (3) if B is to be
closed, a pair of complementary literals and thus a closing substitution has to
be chosen (select pair); (4) if B is to be expanded, a formula has to be chosen
to which an expansion rule is applied (select formula).
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ANALYTIC TABLEAUX 19

Table V. A tableau construction procedure.
input Φ;
T := tableau whose single node istrue;
while T is not closeddo

select a branchB of T that is not closed;
Compl:= fhφ;φ0i j φ;φ0 literals inB[Φ, φ;φ0 unifiableg;
if Compl 6= /0 then select a modeM 2 fclose;expandg
elseM := expand
fi;
if M = closethen

selecthφ;φ0i 2Compl;
σ := most general unifier ofφ;φ0;
T := Tσ

else
select non-literal formulaφ 2 B[Φ;
T := result of applying the appropriate rule toφ onB

fi
od;
output T

In the ground version of tableaux, the third choice point does not exist, be-
cause complementary literals do not contain variables and therefore all have
the same most general unifier (the empty substitution). Instead there is an ad-
ditional choice point when theγ-rule is applied: the ground term has to be
chosen that replaces the quantified variable.

3. SEMANTICS OF TABLEAUX

In this section we first introduce the (standard) semantics for first-order logic,
and then extend these semantics to free variable tableaux.

DEFINITION 9. A structureM = hD; Ii for a signatureΣ consists of a do-
main D and an interpretationI , which gives meaning to the function and
predicate symbols ofΣ. A structureM is a term structureif D is the set of all
ground terms overΣ.

A variable assignmentis a mapping µ: Var!D from the set of variables to
the domainD. Specifically, µ[x d] denotes the variable assignment that is
defined by: µ[x d](x) = d and µ[x d](y) = µ(y) for all other variables y.

An interpretationI and an assignment µ associate (by structural recur-
sion) with each term t overΣ an element tI ;µ in D.
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20 BERNHARD BECKERT AND REINER HÄHNLE

Theevaluation functionvalI ;µ is, for all well-formed formulaeφ in LΣ, de-

fined by: valI ;µ(φ) = true in case (1)φ = P(t1; : : :; tn) andht I ;µ
1 ; : : : ; t I ;µ

n i 2 PI ;

(2) φ = :P(t1; : : : ; tn) and ht I ;µ
1 ; : : : ; t I ;µ

n i 62 PI ; (3) φ = true; (4) φ = :false;
(5) φ = α and valI ;µ(αi) = true for all αi; (6) φ = β and valI ;µ(βi) = true
for someβi ; (7) φ = γ and valI ;µ[x d](γ1) = true for all d 2 D; (8) φ = δ and
valI ;µ[x d](δ1) = truefor some d2 D; and valI ;µ(φ) = falseotherwise.

If valI ;µ(φ) = true, which is denoted by(M ;µ) j= φ, holds for all assign-
ments µ, thenM is amodelof φ.

In the sequel we only consider term structures, which is justified by the
following well known theorem:

THEOREM 1. A setΦ of formulae has a model if and only if it has a term
model, i.e., a model that is a term structure.

DEFINITION 10. A tableau T forΦ � LΣ is satisfiableif there is a (term)
modelM of Φ such that for every variable assignment µ there is a branch B
of T with(M ;µ) j= B. In that case we say thatM is a model of T , denoted by
M j= T.

Note that in the above definition there has to be asinglemodelM satis-
fying a branch ofT for all variable assignments;M has to be a model ofΦ,
because the formulae inΦ are implicit elements of all branches ofT.

4. SOUNDNESS ANDCOMPLETENESS

We prove soundness and completeness of free variable tableaux. The proofs
can easily be adapted for ground tableaux. In addition to theusual complete-
ness proof based on Hintikka sets, an alternative proof for propositional ta-
bleaux is presented.

4.1. Soundness of Free Variable Tableaux

The main part of the proof is to show that all tableau expansion and closure
rules preserve satisfiability—which implies that, if the set Φ and thus the
initial tableau is satisfiable, then all tableaux forΦ are satisfiable and, thus,
cannot be closed. Then, the existence of a closed tableau forΦ implies the
unsatisfiability ofΦ.

For the soundness proof we restrict all considerations tocanonicalstruc-
tures, where Skolem symbols are interpreted “in the right way,” such that the
δ-rule preserves satisfiability (in canonical models).
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DEFINITION 11. A term structureM = hD; Ii is canonicaliff for all vari-
able assignments µ and allδ(x) 2 LΣ� the following holds: If(M ;µ) j= δ(x)
then(M ;µ) j= δ1( f (x1; : : : ;xn)), where f= sko(δ) and x1; : : : ;xn are the free
variables inδ.

Restriction to canonical structures makes sense, because every structureM
for a signatureΣ that satisfies a setΦ� LΣ of sentences can be extended to a
canonical structure forΣ�, which still satisfiesΦ.

LEMMA 1. Given a signatureΣ, if the setΦ� LΣ of sentences is satisfiable,
then there is a canonical structureM� overΣ� such thatM� j= Φ.

Proof.SinceΦ is satisfiable, there is a structureM = hD; Ii over Σ with
M j= Φ. The Skolem function symbols inFsko do not occur inΦ, therefore it
suffices to choose their interpretation such that the resulting structureM� is
canonical, leaving the interpretation of the symbols inΣ unchanged.

The rankrk( f ) of the symbolsf 2 Fsko is defined as follows: (1) if no
δ 2 LΣ� exists such thatsko(δ) = f , then rk( f ) = 0; (2) if f = sko(δ) for
someδ 2 LΣ, thenrk( f ) = 1; (3) if f = sko(δ) for someδ not in LΣ, then
rk( f ) = 1+maxfrk( f 0) j f 0 2 Fsko occurs inδg. Because of condition (a) in
Def. 4,rk( f ) is well defined for all function symbolsf .

We inductively define a sequence(Mn)n�0 of structures that all have the
domainD. Mn = hD; Ini is a structure over the signatureΣn that is the re-
striction ofΣ� to function symbols of rank not greater thann; In+1 coincides
with In on all symbols inΣn[Σ. I0 is defined byf I0 = f I for all f 2 FΣ,
and for all f 2 Fsko of rank 0 the value off I0

is chosen arbitrarily. The func-
tion symbols f 2 Fsko of rank r � n have already been interpreted inMn.
Consider f 2 Fsko of rank n+ 1 with f = sko(δ(x)); for all argument tu-
ples b1; : : :;bk 2 D of the same length as the tuplex1; : : : ;xk of free vari-
ables inδ(x) we define f In+1

by: if there is a variable assignmentµ with
µ(xi) = bi (for 1� i � n), and(Mn;µ) j= δ, choose an elementc 2 D with(Mn;µ[x c]) j= δ1(x), and setf In+1(b1; : : : ;bk) = c. Sincef is of rankn+1,
the symbols inδ are from the signatureΣn. Otherwise, if(Mn;µ) 6j= δ(x),
choosef In+1(b1; : : :;bk) to be an arbitrary element inD.

We can think of the sequence(Mn)n�0 as an approximation to the structure
M� = hD; I�i over Σ�. I� coincides withIn; In+1; : : : on the symbols inΣn.
M� is canonical by construction and satisfies the formulae inΦ.

Theδ-rule is a special case of the more general concept ofskolemization,
which, according to the following lemma, preserves satisfiabilityby canonical
models.
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LEMMA 2. LetM� be a canonical model overΣ�, µ a variable assignment,
and φ 2 LΣ� ; and let φ0 be constructed fromφ by replacing (a) a positive
occurrence of someδ(x) in φ byδ1( f (x1; : : :;xn)) or (b) a negative occurrence
of δ(x) in φ by δ1( f (x1; : : :;xn); where f= sko(δ(x)) and x1; : : : ;xn are the
free variables inδ(x). Then(M�;µ) j= φ implies(M�;µ) j= φ0.

Proof.If (M�;µ) j= δ(x) then(M�;µ) j= δ1( f (x1; : : : ;xn)), asM� is canon-
ical; and if(M�;µ) 6j= δ(x) then(M�;µ) 6j= δ1( f (x1; : : :;xn)) (by double nega-
tion). Using these relations, the lemma is easily proven by induction on the
structure ofφ.

EXAMPLE 3. In the formulaφ=:(:9x(P(x;y))_8x(Q(x))), theδ-formula
δ(x) = 9x(P(x;y)) occurs positively and this occurrence can be replaced by
δ1( f (y)) = P( f (y);y), where f= sko(9x(P(x;y)). The complement of theδ-
formulaδ0(x) = :8x(Q(x)) is δ0(x) = 8x(Q(x)); it occurs negatively inφ and
that occurrence can be replaced byδ01(c) = Q(c), where c= sko(:8x(Q(x)).
Thus,(M�;µ) j= φ implies(M�;µ) j= :(:(P( f (y);y))_Q(c)).

Next we prove that satisfiability by canonical models is preserved by the
tableau expansion and closure rules and, therefore, all tableaux for a satisfi-
able setΦ� LΣ are satisfiable (by a canonical model).

LEMMA 3. If T is a tableau for a satisfiable setΦ � LΣ of sentences, then
T is satisfiable.

Proof.By definition of tableaux forΦ there has to be a sequenceT1; : : : ;Tm

(m� 1), whereT = Tm andT1 is the initial tableau whose single node istrue,
and whereTi+1 is constructed fromTi by applying a single tableau expansion
or closure rule. SinceΦ is satisfiable, there is a canonical structureM� overΣ�
such thatM� j= Φ (Lemma 1). By induction onmwe prove thatM� satisfies
all the tableauxT1; : : : ;Tm (and in particularT).

m= 1: true is the only label ofT1, so triviallyM� j= T1.

m! m+1, expansion rule: letBm be a branch inTm. Tm+1 is obtained from
Tm by applying a tableau expansion rule to a formulaφ 2 Bm[Φ.

Let µ be a fixed assignment. By assumptionM� satisfiesTm; thus we have(M�;µ) j= B0
m for some branchB0

m of Tm. If B0
m is different fromBm, thenB0

m
is also a branch ofTm+1 and we are through.

If, on the other hand,B0
m = Bm and therefore(M�;µ) j= φ, we show that(M�;µ) satisfies one of the branches ofTm+1 by cases according to which

tableau rule is applied to obtainTm+1 from Tm.

β-rule (φ = β): Tm+1 is constructed fromTm by addingβi to Bm obtaining
Bi

m+1 (1 < i � k, wherek is the number of immediate tableau subformulae
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of β). Since(M�;µ) j= β we have, by the property ofβ-formulae (Def. 9),(M�;µ) j= βi for somei 2 f1; : : :;kg. Therefore(M�;µ) j= Bi
m+1.

α-rule (φ = α): similar to theβ-rule.
γ-rule (φ = γ(x)): Tm+1 is constructed fromTm by addingγ1(y) to Bm ob-

taining the branchBm+1. Since(M�;µ) j= γ(x) we have, by definition ofj=,
that(M�;µ[x d]) j= γ1(x) for all elementsd 2 D. Since this is in particular
true ford = µ(y), we get(M�;µ) j= γ1(y) and therefore(M�;µ) j= Bm+1.

δ-rule (φ = δ(x)): the tableauTm+1 is constructed fromTm by adding
δ1( f (x1; : : : ;xn)) to Bm obtaining the branchBm+1, where f = sko(δ(x)) and
x1; : : :;xn are the free variables inδ(x). Since(M�;µ) j= δ(x) andM� is canon-
ical, (M�;µ) j= δ1( f (x1; : : : ;xn)) (Lemma 2), and thus(M�;µ) j= Bm+1.

m! m+1, closure rule: it suffices to show that the application of any sub-
stitutionσ to the satisfiable tableauTm preserves satisfiability. To prove this
claim we consider an arbitrary variable assignmentν and define the variable
assignmentµ by µ(x) = (xσ)I ;ν for all x 2 Var. That implies for all terms
over Σ�, and in particular for all termst in the tableauTm, (tσ)I ;ν = t I ;µ and
therefore, since(M�;µ) j= B whereB is a branch inTm, as well(M�;ν) j= Bσ;
Bσ is a branch inTmσ = Tm+1 and thus(M�;ν) j= Tm+1.

The construction ofM� does depend only on the setΦ and not on the
tableaux, so we not only have shown that a tableau for a satisfiable formula
setΦ is satisfiable, but that there is a single structureM� satisfying all ta-
bleaux forΦ.

THEOREM 2. (Soundness).If there is a tableau proof for a setΦ � LΣ of
sentences, thenΦ is unsatisfiable.

Proof.There is a tableau proof forΦ, i.e., a closed tableauT for Φ. Since
all branches inT are closed and thus contain a complementary pair of literals,:true, or false, there is no canonical structureM� and no assignmentµ such
that (M�;µ) satisfies any of the branches ofT; thereforeT is unsatisfiable.
If Φ were satisfiable, thenT would be satisfiable as well (Lemma 3), which
would lead to a contradiction.

4.2. Completeness Proof Using Hintikka Sets

We start with the “classical” version of the completeness proof for free vari-
able semantic tableaux based on Hintikka sets proceeding asfollows: Hin-
tikka sets are downward saturated formula sets that do not contain contra-
dictions on the literal level; it is shown that Hintikka setsare satisfiable. For
a given setΦ of sentences an infinite tableauT∞ is defined as the result of
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an infinite sequence of expansion rule applications. It turns out that if the
rules are applied in afair manner and ifT∞ contains an open branchB, then
there is a substitutionσ∞ such thatBσ∞ [Φ is a Hintikka set, implying that
Bσ∞[Φ and thusΦ is satisfiable. Therefore, ifΦ is unsatisfiable, thenT∞σ∞
must be closed. But then there is afinite subtableauT of T∞ such thatTσ∞
is closed. It remains to show thatσ∞ can be decomposed into most general
closing substitutionsσ1; : : :;σr such thatTσ1 � � �σr is closed.

DEFINITION 12. A set H� LΣ� of sentences is aHintikka set if it satisfies
the following conditions: (1)false62 H, :true 62 H, and there are no comple-
mentary literals in H. (2) Ifα 2 H, then allαi are in H. (3) If β 2 H, then
someβi is in H. (4) Ifγ(x)2H, thenγ1(t)2H for all groundΣ�-terms t. (5) If
δ(x) 2 H, thenδ1(t) 2 H for some groundΣ�-term t.

LEMMA 4. (Hintikka). If H is a Hintikka set, then H is satisfiable.
Proof.A term modelM = hD; Ii of H can be defined by:t I = t for all t 2D,

andpI (t1; : : : ; tk) = true iff P(t1; : : : ; tk) 2 H for all ground atomsP(t1; : : :; tk)
overΣ�. By induction on the structure of formulae inH it is easy to prove that
M satisfiesH.

DEFINITION 13. The construction of a sequence(Tn)n�1 of tableaux for
Φ� LΣ, where Tn is obtained from Tn�1 by applying a tableau expansion rule,
is fair if the following holds for all branches B in the infinite tableau that is
approximated by that sequence: (1) Allα, β, andδ occurring on B or inΦ
have been used to expand B (by applying the appropriate expansion rule).
(2) All γ occurring on B or inΦ have been used infinitely often to expand B
(by applying theγ-rule).

One may construct a fair sequence of tableaux for any set of sentences.
Combining the fair application of the expansion rule with fair application of
the closure rule, however, is a difficult problem (see Section 5).

THEOREM 3. (Completeness).If the setΦ � LΣ of sentences is unsatisfi-
able, then there is a tableau proof for the unsatisfiability of Φ.

Proof.Let (Tn)n�1 be a fair sequence of tableaux forΦ starting with the
tableau consisting of the single nodetrue; this sequence approximates the
infinite treeT∞. We define a particular substitutionσ∞ as follows: let(Bk)k�1

be an enumeration of the branches ofT∞. Let (φi)i�1 be an enumeration of
theγ-formulae inT∞. For everyγ-formulaφi, if φi occurs onBk then letxi jk

be the (new) variable that has been introduced by thej-th application of the
γ-rule toφi onBk. Let (t j) j�1 be an enumeration of all ground terms overΣ�.
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To ensure that the branchBk is a potential source of a model, the in-
stances ofφi onBkσ∞ must “cover” all the ground termst j . To this end choose
σ∞(xi jk) = t j for all i; j;k� 1.

The construction ofσ∞ and the fact thatT∞ is constructed in a fair way
ensures that: ifB is a branch inT∞ andBσ∞ is open, thenBσ∞[Φ is a Hintikka
set, and thusΦ is satisfiable. Since this would contradict the assumption of the
theorem, we can conclude that there is a substitutionσ (for exampleσ∞) such
thatT∞σ is closed. BecauseT∞σ is a finitely branching tree and the distance
of all the complementary literals that close branches to itsroot node is finite,
König’s Lemma7 applies, and there has to be ann� 1 such that the finite
tableauTnσ is closed.

The substitutionσ, however, is in general not amost generalunifier of
complementary literals, and cannot be used in an MGU closurerule applica-
tion to Tn. Therefore, it remains to show thatσ can be suitably decomposed:
σ = σ0 �σr �σr�1�� � ��σ1, whereσi is a most general closing substitution for
the instantiationBiσ1σ2 : : :σi�1 of the i-th branchBi in Tn (1� i � r); σ0 is
the part ofσ that is not actually needed to closeTn. Theσi are inductively
constructed as follows:

Let σ01 = σ. For 1< i � r , let σi be a most general substitution such that
(1) σ0i�1 is a specialization ofσi ; that is, there is a substitutionσ0i such that
σ0i�1 = σ0i �σi; and (2)σi is a closing substitution forBiσ1σ2 : : :σi�1. Now
σi is a most generalclosingsubstitution ofBiσ1σ2 : : :σi�1. Otherwise, there
is a closing substitutionσ00i being more general thanσi . The is-more-general
relation is transitive, henceσ00i is more general thanσ0i�1 in contradiction toσi

being a most general substitution satisfying (1) and (2). Finally, letσ0 = σ0r .
To obtain a Hintikka set from a fairly constructed sequence of tableaux it

suffices to apply the appropriate expansion rule exactly once to eachα-, β-,
or δ-formula on each branch. This has the practically relevant consequence
that only toγ-formulae must a rule be applied more than once per branch.

4.3. Anderson-Bledsoe Completeness Proof

As an alternative to Hintikka-style completeness proofs, Anderson & Bled-
soe’s (1970) method for proving completeness ofresolutioncan be adapted
to tableaux. In contrast to the Hintikka proof, which involves induction on
the formula structure, this style of proof works by induction on the size of
the signature, leading to a quite different pattern: while in the Hintikka proof

7 “A tree that is finitely branching but infinite must have an infinite branch.” A
proof is, for example, in (Fitting, 1996).
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anycomplete and fair (open) tableau is shown to contain enough information
to construct a model, the Anderson-Bledsoe argument directly constructs a
tableau for a given unsatisfiable formula from suitable subtableaux provided
by the induction hypothesis. This makes it possible to exclude certain ta-
bleaux from being acceptable as proofs by imposing additional conditions on
the subproofs used in the construction. In contrast to this,at the heart of the
Hintikka-style proof lies the saturation of a formula set. Whenever such a sat-
uration is possible the corresponding calculus must beproof confluent, i.e.,
every partial tableau proof for an unsatisfiable formula canbe extended to a
closed tableau. This means that this proof method is not suitable for non-proof
confluent tableau variants as defined in Section 6.2 below.

The proof given below is taken (slightly modified) from (Hähnle et al.,
1997). We only consider tableaux for propositional formulae, but complete-
ness of free variable tableaux can be proven using a similar technique based
on enumerating instantiations as in the previous section. In the proof, we
make use of the following equivalences: (1):false� true; (2) :true� false;
(3)
Vn

i=1 αi � Vn
i=1;i 6= j αi if α j = true; (4)

Wn
i=1 βi �Wn

i=1;i 6= j βi if β j = false;
(5)
Vn

i=1 αi � falseif α j = false; (6)
Wn

i=1 βi � true if β j = true. A formula to
which these rules have been applied is calledsimplified.

THEOREM 4. If Φ� LΣ is any unsatisfiable finite set of simplified proposi-
tional formulae, then there is a tableau proof for the unsatisfiability ofΦ.

Proof. Let Φ be as above; we proceed by induction on the numbern of
distinct atoms inΦ.

If n = 0, thenΦ = ffalseg (as it is simplified), and there is nothing to
prove; so assume the theorem holds for all formula sets with at mostn distinct
atoms, and letΦ be a set of formulae withn+1 distinct atoms.

Let Φp be the set of formulae produced as follows: first replace inΦ each
positive occurrence ofp with false, call the resultΦ0p. By a routine argument
Φ0p is still unsatisfiable.8 Also, sincep does now only occur negatively inΦ0p,
all remaining occurrences ofp may be replaced withtrue, again preserving
unsatisfiability (the latter can be seen as a non-clausal version of the Pure
Rule, see (Ramesh, 1995)). Finally, simplify to obtainΦp.

By the induction hypothesis, there is a closed tableauTp for Φp. Let T 0p be
the tableau tree produced by applying each extension inTp to the correspond-
ing formulae inΦ. If T 0p is closed, we are done. If not, then all open branches
in T 0p must result from formulae containingp.

8 Here is a sketch: assumeI satisfiesΦ0
p, but notΦ. As p does not occur posi-

tively in Φ0
p we can safely modifyI at p to befalse. ThenI still satisfiesΦ0

p, but by
definition ofΦ0

p it must satisfyΦ as well—contradiction.
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A formula that contains a positive occurrence ofp is a formula ofΦ in
which this p was replaced withfalse to obtain the corresponding formula
of Φp. Whetherp occurred in anα- or in a β-subformula, in both cases a
branch ofTp that was closed because it containedfalse is open inT 0p and
containsp (because simplification cannot propagate over changing types of
subformulae).

Dually, negative occurrences ofp are replaced withtrue and a closed
branch ofTp containing:true is open inT 0p and contains::p. By a single
α-rule application this givesp on each such branch. Hence, all open branches
in T 0p contain nodes labeledp.

Similarly, by replacing negative occurrences ofp by false, positive occur-
rences bytrue, followed by simplification one produces the set of formulae
Φp. The induction hypothesis provides a proofTp of Φp and a corresponding
proof treeT 0p of Φ. The leaves of all open branches ofT 0p are labeled:p.

Finally, to obtain a closed tableau forΦ from T 0p andT 0p, we appendT 0p to
all open branches ofT 0p and observe that any branch not closed withinT 0p or
within T 0p has nodes labeledp and labeled:p and thus is closed.

5. RESOLVING THE INDETERMINISM

In this section we discuss the difficulties that emerge if onewants to define
a concrete, i.e. deterministic, (and complete) procedure that systematically
looks for free variable tableau proofs.

In the case of ground tableaux this is relatively easy: theirrules arenon-
destructive, thus it suffices to add systematically all ground instancesof γ-
formulae until a branch is closed, after which the next branch is considered.
Any fair selection of ground instances together with König’s lemma guaran-
tees completeness.

DEFINITION 14. A tableau calculus isnon-destructiveif all tableaux that
can be derived from a given tableau T contain T as an initial subtree; other-
wise the calculus isdestructive.

In free variable tableaux the closure rule obviously renders the calculus
destructive. In the completeness proof this situation was resolved by restrict-
ing the closure rule such that it is only applied when the whole tableau can be
closed. Then, a fair selection offree variableinstances ofγ-formulae suffices.
Such a procedure seems impractical, because (1) it requiresto store the whole
tableau, and (2) after each extension step the whole tableaumust be tested for
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Φ = f8x(P(x)! P(s(x)));:P(s(s(0)));
P(0)g true

P(x1)! P(s(x1)):P(x1)�fx1=0g P(s(x1))
P(x2)! P(s(x2)):P(x2)�fx2=0g P(s(x2))...

closure

closure

Figure 2. Incompleteness caused by unfairselect pair.

closure. So far no techniques have been developed to deal with this problem
efficiently.

In the remainder of the section, we discuss variants of free variable ta-
bleaux, where the closure rule is unrestricted in the sense that closure of the
whole tableau is not required, rather, closure of at least one branch suffices
to trigger its application. With unrestricted substitution, the free variable ta-
bleau calculus isproof confluent(although it is destructive). This is trivial by
the fact that a closed tableau (which is guaranteed to exist by completeness)
can always be appended to each open branch.

A much more difficult problem is to explicitly specify a deterministic con-
struction rule for destructive free variable tableaux thatis complete. The prob-
lem is that different possibilities to close a certain branch can be mutually ex-
clusive. When the wrong choice is made and, thus, the wrong substitution is
applied to the tableau, it may become impossible to use the next (and possibly
more usuful) branch closure immediately afterwards. Instead, it may become
necessary to repeat the sequence of expansion rule applications that lead to
the situtation in which the wrong choice was made; moreover the original sit-
uation may have to be reconstructed on each branch that has been generated
in the meantime and that cannot be closed because of the bad choice. A prac-
tically convincing solution has so far proved elusive, but see (Billon, 1996)
for a promising suggestion.

With a few examples, we illustrate incompleteness phenomena arising
from unfair selection strategies for the various kinds of choice points. Need-
less to say, these can also interact in a complex way. The examples are more
naturally formulated with the implication connective; forthe tableau rules,
recall thatφ! ψ abbreviates:φ_ψ.

In Figure 2, the literalP(0) is preferred in closures resulting in append-
ing the same instance of:P(xi) time and again. In Figure 3 theγ-formula
is preferred for rule application thus delaying expansion of the inconsistent
second formula indefinitely. Finally, in Figure 4, a branch is closed as early
as possible. Independently of which branch is closed first, the variablex gets
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Φ = fQ^:Q; 8x(P(x))g true

P(x1)
P(x2)...

γ-rule

γ-rule

Figure 3. Incompleteness caused by unfairselect formula.

ψ = ((P(b)^P(c))! P(x))!:(Q(x)! (Q(b)_Q(c)))
Φ = fP(a); 8x(ψ); :Q(d)g

true
ψ:((P(b)^P(c))! P(x1))

P(b)^P(c):P(x1) :(Q(x1)! (Q(b)_Q(c)))
Q(x1):(Q(b)_Q(c))possible

closure
possible

closure

Figure 4. Incompleteness caused by unfairselect mode.

“used up” by a substitution that blocks closure of the other branch. Of course,
a second free variable instance of theγ-formula may be created, but then the
same happens one level below etc. The example highlights theproblems of
destructivefree variable tableaux.

We discuss remaining alternatives for free variable tableau proof search.
It will be useful to visualize the AND-OR search tree spannedby the non-
deterministic tableau procedure in Section 2: each non-deterministic action
select branch, select formula,select pair, andselect modecreates an OR node
with as many successors as there are alternatives; the recursive call of the
procedure on each new branch creates an AND node. Each searchtree is
finitely branching (provided the closure rule suitably restricts the choice of a
closing substitution, as does, for instance, the MGU closure rule); branches
are either finite and end with aselect pairaction or they have infinite length
(if a γ-formula is accessible). In Figure 5 the start of a search tree is displayed.

No OR nodes are created forselect branchalternatives. This is because all
branches of a tableau have to be closed, so different branch selection strate-
gies merely correspond to different traversals of the search tree. Less obvious,
but simple enough is the observation that OR nodes arising from select for-
mula alternatives can be eliminated as well provided that in the remaining
branches of the search tree each free variable instance of each γ-formula does
occur. This can be achieved with a fair selection strategy.

Possibly, further branches in the remaining search tree canbe removed.
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true

P(x1)! P(s(x1))
P(x2)! P(s(x2))

...

:P(x1)
...
fx1=0g P(s(x1))

P(x2)! P(s(x2))
P(x3)! P(s(x3))

...

:P(x2)
...
fx2=0g fx2=s(x1)g P(s(x2))

...
id

Figure 5. Start of AND-OR search tree for finding a tableau proof for thesetfp(0);8x(p(x) ! p(s(x)));:p(s(s(0)))g of sentences. OR arcs are indicated by
curly braces, AND arcs are straight lines. The dashed parts of braces constitute alter-
natives that were not selected in the actual proof. The solidparts of braces represent
a successful proof. Mode and pair selection are combined in one OR node.

Assume, for example, there are substitutionsσ and laterτ occurring during a
tableau proof search whose supports (thesupportof a substitutionσ is the set
of variables on whichσ is not the identity) have an empty intersection. Then
it is unnecessary to consider the part of the search tree, where the sequence
of applyingσ andτ is reversed, becauseτσ = στ. Redundancies of this kind
are hard to detect efficiently, though.

We return to the problem of finding a successful proof in our AND-OR
search tree, a common AI search problem. Unrestricteddepth firstsearch is
excluded because of the difficulties discussed above to find aselection stra-
tegy that ensures completeness, leavingbreadth firstanddepth first iterative
deepeningsearch.

For both the concept of acompletion modeis useful: this is a monotone
functionm from IN to sets of tableaux such that

S
i2IN m(i) includes all pos-

sible tableaux. LetM(i) be the part of the tableau search tree that contains
all tableaux inm(i), but not the ones inm( j) for j < i. As search trees have
infinite depth, breadth first search has to considerM(i) for somei, which
is guessed. As breadth first search is space expensive and forall practical
completion modesjm(i)j grows exponentially ini, it has been suggested by
Stickel (1988) to use depth first iterative deepening (DFID)search (Korf,
1985): successively search

S
j<i M( j) for i = 0;1;2; : : : causing only poly-

nomial overhead as compared to a breadth first search at “the right level.”
A fundamental advantage of DFID over breadth first search is that it can

be implemented efficiently via bounded depth first search andbacktracking
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as in (Beckert and Posegga, 1995). Although this leads to acceptable per-
formance of tableau-based automated theorem provers, it should be stressed
that DFID search is only a compromise while a complete selection strategy
without backtracking (making full use of the proof confluency of analytic
tableaux) is not yet available.

6. OPTIMIZATIONS

6.1. A Classification of Optimizations

Below, the main types of optimizations of analytic tableauxare described.
Most known variants of tableaux belong to one of these classes (although the
classes are not completely disjoint).

1. Restrictions that forbid certain rule applications to avoid parts of the search
space that (a) are symmetrical to or subsumed by other parts,or that (b) for
some reason are known not to contain a proof; typical examples are for (a)
theregularitycondition (Section 6.3) and for (b) theconnectednesscondition
(Section 6.2).

2. Changes to the tableau rules or the introduction of additional rules that
strengthen the calculus, i.e., allow to derive additional tableau proofs; this
only makes sense if the additional proofs that can be found are shorter and
replace (subsume)severalother proofs; an example is the universal formula
technique (Section 6.4), allowing to use more general closing substitutions.

3. Optimizations making use of knowledge accumulated during proof search
(a) for restricting and/or rearranging the search space (for examplepruning
of redundant branches, Section 6.5), or (b) for reusing parts of the already
constructed proof (like local lemmata).

6.2. Links

One of the first crucial advances in resolution-based theorem proving was the
introduction of the set-of-support (SOS) strategy (Wos et al., 1965). It has the
effect of preventing deduction steps that are unrelated to previous ones.

A similar effect can be achieved with tableaux. The basic idea is that a
formula used for extension should lead to the closure of at least one branch.
When all formulae are clauses this amounts to saying that theclause used for
extension and the branch on which it is used must contain a complementary
pair of literals. Several calculi based on this idea are discussed in detail in
Chapters I.1.2 and I.1.3 of this volume. In the non-clausal case a little more
effort must be spent.
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Recall that skolemization (Lemma 2) provides the option of eliminating
all δ-subformulae from a formula before any other rules are applied and yet
preserves tableau semantics, i.e., satisfiability under canonical models. Sim-
ilarly, we define afree variable instanceof a formula by (a) replacing each
positive subformula occurrence of someγ(x) by γ1(x0), and (b) replacing each
negative occurrence ofγ(x) by γ1(x0); where thex0 are new variables.

DEFINITION 15. Given (not necessarily closed) formulaeφ1;φ2 2 LΣ� , the
formulaφ1 has alink into φ2 (is linked toφ2) with MGU σ iff free variable
instancesφ01 andφ02 of their skolemizations contain literalsρ1 andρ2, respec-
tively, with different polarity (i.e., one literal occurrence is positive and one
is negative), andρ1;ρ2 are unifiable with MGUσ. If one ofφ1;φ2 is a set of
formulae it is treated as the conjunction of its elements.

A formulaφ 2 LΣ� has alink into itself (is linked to itself) with MGUσ iff
there is anα-subformulaα of φ such that two immediate tableau subformulae
αi andα j, i 6= j, of α are linked with MGUσ.

EXAMPLE 4. The formula P(x) has a link into the formula:(q_P(a))with
MGU fx ag. Theα-formula:(p_:p) has a link into itself; whereas the
β-formula p_:p isnot linked to itself.

DEFINITION 16. A tableau T forΦ is weakly connectediff for all expan-
sion rule applications used in its construction the following holds: if the rule
has been applied to a formulaφ extending a branch B, then the instanceφ0 of
φ that occurs inΦ or on the (sub-)branch B0 of T (which is an instance of B)
has a link into B0[Φ or is linked to itself.

It is connectediff the link is always fromφ0 into (a) a formula of B0 that
appears below the node on B0 that corresponds to the last branching node
of B, or (b) intoΦ if there is no branching node in B.

EXAMPLE 5. The formulae to which an expansion rule is applied to con-
struct the tableau that is shown in Figure 2 areφ0 = 8x(P(x)! P(s(x))) and
φi = P(xi)! P(s(xi)) for i � 1. The formulaφ0 is identical to its instances,
which have a link intoΦ (namely to the atoms ofΦ); all instances of the for-
mulaeφi are linked toφ0 and so have a link intoΦ. Thus, the tableau is weakly
connected. It is, however,notconnected, as the instanceφ02 = P(0)! P(s(0))
of φ2 is not linked to the atom P(s(0)), which is the only formula below the
last branching point of the branch expanded by applying theβ-rule to φ02.

This shows that the unfair choice of complementary pairs exemplified in
Figure 2 cannot be avoided by weak connectedness. If, however, the connect-
edness condition is observed, at least this type of unfair choice is avoided
(other types of wrong or unfair choice are, of course, still possible).
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The tableau shown in Figure 3 isnot weakly connected (hence, not con-
nected) because the formula8x(P(x)) used for expansion does not have a link
to any formula inΦ or on the branch.

Observe that the destructive closure rule of free variable tableaux creates
a serious implementation challenge as its application may injure weak con-
nectedness at any point. In (Pape, 1996) an implementation using term con-
straints is suggested. Alternatively, one applies the MGU corresponding to
a connection immediately and admits backtracking over extensions. In this
latter version, connected tableaux, the connection method(Bibel, 1982), and
matings (Andrews, 1981) can be considered to be notational variants of each
other. Restricted to CNF, connected tableaux are also closely related to model
elimination (Loveland, 1969). Variants of connected CNF tableaux are dis-
cussed in great detail in Chapters I.1.2, I.1.3, and I.1.5 ofthis volume.

Both notions of connectivity can be refined further byregularity(see Sec-
tion 6.3) and weakly connected tableaux can in addition be refined with literal
orderings (Hähnle and Klingenbeck, 1996).

Connected tableaux are not proof confluent—even on the propositional
level—, as the simple exampleΦ = f(p^:p)_q; r ^:rg shows: if the first
formula (that has a link into itself) is used for extension, there is no way to ob-
tain a connected closed tableau from there. It is necessary to take the extend-
ing formulae from a minimally unsatisfiable subset (MUS) ofΦ. Complete-
ness of refinements of this kind can be proven with the Anderson-Bledsoe
technique, which is compatible with considering an MUS. On the other hand,
proof confluent refinements are best tackled with a saturation-based method.
Below, we show paradigmatically how the basic techniques for proving com-
pleteness from Section 4 are revamped to deal with more advanced calculi.

THEOREM 5. If Φ is any unsatisfiable finite set of simplified propositional
formulae, then there exists a closed connected tableau for it.

Proof. We proceed as in the proof of Theorem 4, but make two modifi-
cations: first, one restricts attention to a minimally unsatisfiable subset ofΦ;
second, one notes that the proof still goes through if the induction hypothesis
is strengthened as follows:

For all minimally unsatisfiable sets of simplified formulaeΦ with at most
n distinct atoms and any non-literalφ 2 Φ, there exists a closed connected
tableau in which the first rule is applied toφ.

As before,n = 0 is trivial and so isn = 1 when there are only literals
in Φ. Thus, for the induction, take any atomp such that there are formulae
φ 2Φ containing a positive occurrence ofp andφ0 2Φ containing a negative
occurrence ofp. Then constructΦp andΦp as before, but instead of these
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sets themselves use any minimally unsatisfiable subsets that still containφp

resp.φ0p (the proof for the existence of these minimally unsatisfiable subsets is
not hard, but it requires some technical definitions, see (Hähnle et al., 1997)).

This time the induction hypothesis gives closed connected tableauxTp

for Φp andTp for Φp in which the first rule has been applied toφp resp. toφ0p.
As before, from these one obtains tableauxT 0p, T 0p in which all open branches
containp resp.:p. Observe that the branches ofT 0p containingp do not exist
in Tp and thus are never extended therein; thereforep occursafter the last
branching pointon these branches.

Finally, the fact thatT 0p, T 0p start with rule applications to formulae con-
tainingp resp.:p implies that appendingT 0p to the open branches ofT 0p gives
a connected tableau forΦ (asφ0 andp are linked by definition) starting with
a rule application toφ.

6.3. Regularity

Regularity, another well known refinement from clausal tableaux (see Chap-
ter I.1.2) is also defined in the non-clausal case (Hähnle andKlingenbeck,
1996; Hähnle et al., 1997).

The following definition of the (ir-)regularity of a formulaφ takes only
the immediatetableau subformulae ofφ into concern. It is possible to give a
more elaborate definition that takes all tableau subformulae ofφ into concern
(Hähnle and Klingenbeck, 1996).

DEFINITION 17. A formulaφ 2 LΣ� is irregularw.r.t. a branch B of a ta-
bleau forΦ � LΣ iff (1) φ is an α- or δ-formula and all immediate tableau
subformulae ofφ are in B[Φ, or (2) φ is a β-formula and someβi 2 B[Φ.

A tableau T forΦ � LΣ is regulariff, for each expansion rule applica-
tions used in its construction, the following holds, where the rule has been
applied to a formulaφ extending a branch B: the instanceφ0 of φ on the
(sub-)branch B0 of T (which is an instance of B) is regular w.r.t. B0.

A formula that is regular w.r.t. a branch may become irregular through
the application of a substitution (take, for instance, a branch containing the
formulaeP(x)_q andP(y), and the substitutionfx=a;y=ag). This is a serious
implementation problem in free variable tableaux; see (Letz et al., 1992) for
a possible solution. Contrary to the clausal case, neither aformula occurring
more than once on a certain branch, nor a tableau branch that is a subset of
another branch implies irregularity. Take, for example, a closed tableau for
the formula:p^ (p_ (p^ p^q)): one of its branches is a proper subset of
the other branch, and the latter contains two occurrences ofp.
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THEOREM 6. If the setΦ� LΣ of sentences is unsatisfiable, then there is a
regulartableau proof for the unsatisfiability ofΦ.

Proof.The completeness proof for free variable tableaux without the reg-
ularity condition can easily be adapted. The only difference is that a tableau
T 0∞ is used instead ofT∞: all expansion rule applications that are part of con-
structingT∞ and that violate the regularity condition are left out; the result
is T 0∞. Because of the definition of irregular formulae, the setB0∞σ∞ is still a
Hintikka set (whereB0∞ is the branch ofT 0∞ that corresponds to, and is a subset
of, the branchB∞ of T∞).

A similar argument can be used to prove completeness of many refine-
ments of free variable tableaux (Hähnle and Klingenbeck, 1996); one shows
that any open branch of an infinite tableauT∞ constructed in a fair way is still
a (subset of) a Hintikka set, even if the saturation conditions of Def. 13 do
not apply to all formulae of the branch.

6.4. Universal Formulae

A formula is often needed in several instances in order to close a branch (or a
subtableau) with different substitutions for the free variables occurring in it.
In free variable tableaux the mechanism to do so is to apply theγ-rule multiply
to generate several instances ofφ with different free variables. Free variables
in tableaux arenot implicitly universally quantified (as it is, for instance, the
case with variables in clauses when using a resolution calculus), but arerigid:
a substitutionmust be applied to all occurrences of a free variable in a tableau.

Suppose we have a branchB with a formulaφ(x) on it; assume further
that the expansion of the tableau then proceeds with creating new branches.
Some of these branches contain occurrences ofx; for closing the generated
branches, the same substitution forx has to be used on all of them. For exam-
ple, we might have a tableau forΦ = f:P(a)_:P(b); 8x(P(x))g that con-
sists of two branches, one containingP(x) and:P(a), and the other contain-
ing P(x) and:P(b). This tableau cannot be closed immediately as no single
substitution closes both branches. To find a proof, theγ-rule has to be applied
again to create another instance ofP(x). In the example, as a logical conse-
quence ofΦ and the formulae already on the tableau (in a sense made precise
in Def. 18),8x(φ(x)) can be added toB. In such cases, different substitutions
for x can be used without destroying soundness of the calculus. The tableau
above then closes immediately. Recognizing such situations and exploiting
them allows to use more general closing substitutions, yields shorter tableau
proofs, and in most cases reduces the search space.
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DEFINITION 18. Supposeφ is a formula on a branch B of a tableau T for
Φ � LΣ. Let T0 result from adding8xφ to B for some x2 Var. Then,φ is
universalon B with respect to x if Tj= T 0, where T and T0 are identified with
the disjunctions of their branches, which in turn are the conjunctions of their
labels.UVar(φ) is the set of all variables w.r.t. whichφ is universal.

Instead of designing a closure rule that takes universal formulae into ac-
count (replacing rule (3) in Def. 6), we generalize the concept of unifier:

DEFINITION 19. A substitutionσ is aunifierof formulaeφ, φ0 on a branch
of a tableau T if it is the restriction of a substitutionτ with the property(φπ)τ = (φ0π)τ to VarnU, where U= UVar(φ)\UVar(φ0) andπ is a renam-
ing of the variables in U with variables new to T.

With the closure rule based on this modified concept of unification, a ta-
bleau proof with less applications of expansion rules than in the standard free
variable tableau calculus may be found; the calculus is strengthened.

Recognizing universal formulae is undecidable in general,however, an im-
portant class can be recognized easily (and this can alreadyshorten tableau
proofs exponentially): a formulaφ on a branchB of a tableauT is univer-
sal w.r.t.x if all branchesB0 of T containing an occurrence ofx that is not
on B as well are closed; this holds in particular if the branchB contains all
occurrences ofx in T. In any sequence of tableau rule applications with a
variablex introduced byγ-rule application and not distributed over different
branches byβ-rule application, the above criterion is obviously satisfied and
all formulae generated in this sequence are universal w.r.t. x, formally:

LEMMA 5. A formulaφ on a branch B of a tableau T is universal w.r.t. x
on B if in the construction of T the formulaφ was added to B by applying
(1) a γ-rule and x is the free variable introduced; (2) anα-, γ-, or δ-rule to a
formula that is universal on B w.r.t. x; or (3) aβ-rule to a formulaβ that is
universal on B w.r.t. x, and x does not occur in anyβi 6= φ.

The soundness proof of free variable tableaux (Section 4.1)can accomo-
date the universal formula technique.

An adaption of the universal formula technique to clausal tableaux is dis-
cussed in Section 5.1 of the following chapter. Bibel (1982)proposed a tech-
nique for reducing the size of proofs in the connection method, calledsplit-
ting by need; like universal formulae it is based on the idea to avoid copying a
universally quantified formula in cases where it is sound to use a single copy
with different variable instantiations.
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6.5. Pruning

Pruning, which is closely related to thecondensingtechnique described in
(Oppacher and Suen, 1988), allows the reduction of both the size of the search
space and the size of generated tableau proofs.

Suppose a branchB of a tableau was extended by aβ-rule application and
one of the extensionsβi wasnot used to close the subtableauTi below βi,
thenTi is still closed when appended to any of the other extensionsβ j , j 6= i,
or even immediately toB (the extensionβi is usedif βi itself or any of its
tableau subformulae is a literal used in an application of the closure rule).
To make use of this situation, either the closure rule is changed such that
all branches in the tableau containingB as a subbranch are considered to be
closed, or—similarly—all branches containing one of theβ j arepruned, i.e.,
the effects of theβ-rule application are removed:

unused B

β1
...

� � � βi

closed

� � � βn
...

; B

closed
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