BERNHARD BECKERT AND REINER HAHNLE

ANALYTIC TABLEAUX

1. INTRODUCTION

1.1. Overview of this Chapter

The aim of this chapter is twofold: first, introducing the lsancepts of an-
alytic tableaux and, secondly, presenting state-of-th&eahniques for using
non-clausal tableaux in automated deduction.

An important point involves problems arising with implentieg tableau
calculi, in particular with designing a deterministic pfpoocedure (although
no concrete implementation is presented). The most impboiatimizations
of analytic tableaux are discussed; but there are too magivéca complete
list here. Instead, we present examples for the importgestyf optimiza-
tions, and describe the general techniques for provingcdmess and com-
pleteness of different tableau variants.

In Section 2, we introduce tableaux for full first-order logincluding
unifying notation, both ground and free variable versiohsableau rules,
and the (non-deterministic) construction of tableau psobf Section 3, the
semantics of tableaux is defined, which is used to prove swsslnd com-
pleteness of free variable tableau in Section 4. Besidesoimpleteness proof
that uses the notion of Hintikka sets, an alternative pregiresented, based
on an induction on the number of different symbols in the atgre (Sec-
tion 4.3). In Section 5, we discuss difficulties that emerdelevresolving
the inherent indeterminism of the tableau calculus and fimitgy a concrete,
deterministic (and complete) procedure for systematie frariable tableau
proof search. Finally, in Section 6 examples for optimizasi of tableaux are
presented, in particular those that are different from tressponding refine-
ments of tableaux for clause logic; it is shown how to adaettito types of
completeness proofs to certain types of optimizations.

1.2. The General Idea of Tableaux

A tableau, in the present chapter, is a (partial) formal pod@ logical for-
mula. Themethod(or, as one should rather say, the family of methods) of
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10 BERNHARD BECKERT AND REINER HAHNLE

tableaux is a way to find such proofs in a systematic mannesinatbof in-
ference rules and some instructions on how to combine threathier words,
a logical calculus.

It takes more than this, of course, to distinguish tableaamf say, nat-
ural deduction or resolution. This can be difficult, becas@me variants of
tableaux are virtually indistinguishable from Gentzenteyss, others yet can
alternatively be viewed as a certain form of resolution. &itwless we try
to give a number of characteristic properties of tableatesys which are
widely agreed upon:

Proof Methodology

In most cases (and certainly in the present chapter) a talpiesf can be
envisioned as a proof by (a) contradiction and (b) casendistin, i.e., each
separate case must give rise to a logical contradictibhe tableau frame-
work essentially provides a sound and systematic way torgeman exhaus-
tive set of cases for each given formula. It thus can be seansgstematic
way to derive a counter example to an assertion.

Semantic Aspects

The inference rules of tableau systems follow closely timeesgics of logical
connectives. Often, semantic elements are explicithoohiced as syntactic
objects into a tableau system (for example, constantsefetto truth values
or to worlds in modal frames). In the propositional case (@maetimes even
in the first-order case), a failed tableau proof attempt eadity be turned
into a counter example for the assertion to be proven.

Unrestricted Syntax

Although tableau systems for syntactically restrictediirgxist (see the fol-
lowing chapters for a thorough discussion of tableaux fause logic), they
have been developed to deal with full logic syntax including kind of con-
nective. In the present chapter we consider tableau systems| first-order
logic.

Analyticity and Cut-Freeness

With rare exceptions tableaux are anal§itice., only (possibly negated in-
stances of) subformulae of the formula to be refuted occur tableau and
no others. Usually, an even stronger property holds: eachula occurring

1 Dually, one can interpret tableaux as systematic compsiti tautologies.
2 “Analytic” is even a constituent of the calculus’ name (teent “analytic ta-
bleaux” was first used by Smullyan (1968)).
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ANALYTIC TABLEAUX 11

in the conclusion of a tableau inference rule is (a possiblyated instance
of) a direct subformula occurring in its premiss. In part&uthe cut rule is
not used anywhere.

Because of the aforementioned properties of tableaux, uBeiis favored
in deductive tasks, where natural proof representatiottandbility to handle
non-classical logics are important. Typical scenariokiite formal software
verification or modeling of intelligent agents.

1.3. Other Sources of Information

The most comprehensive available source of informatiorableau systems
is theHandbook of Tableau Method®’Agostino et al., 1998). Its introduc-
tory chapter contains a detailed historical account. Othepters cover the
main variants of clausal and non-clausal, of propositiamal first-order ta-
bleau systems, as well as their implementation. The mosbiitapt families

of non-classical logics are given treatment in specific tdrgp There is also
an annotated bibliography. While the Handbook’s approa@ntyclopedic,
it does not contain selected in-depth treatments as dogsehent collection
whose task is to provide widely readable access to vangeasarch topics.

Although Smullyan’s classic text (Smullyan, 1968) is sorhatwoutdated
it still constitutes an excellent introduction for thoseeirested primarily in
proof theory. As a more contemporary introduction to tableethods cov-
ering also aspects of automated deduction, Fitting’s b&dtkirfg, 1996) is
highly recommended.

New results in the area of tableaux are mainly presentecg&dhference
on Tableaux and Related Methoalsd at theConference on Automated De-
duction both held annually. There is as yet no journal devoted ttegakx.
Papers are published in journals devoted to logic or dedinicti

1.4. Notation

A first-order signaturez = (P, Fs) consists of a non-empty sBt of predi-
cate symbols and a skEt of function symbols. For skolemization we do not
use symbols fronks but from a special infinite sdis, of Skolem function
symbolghat is disjoint fromFs; the extended signatut@s, Fs U Fsyo) is de-
noted by>*. The symbols i, iz andFs,,may be used with any arity> 0;
in particular function symbols can be used as constant simhoty 0). In
addition, there is an infinite set Var object variables

Thelogical operatorsare the connectives (disjunction),A (conjunction)
and- (negation), the quantifier symbadfsandd, and the constant operators
trueandfalse Formulae that are identical up to associativity (but nohow-
tativity) of v anda are identified. Implication and equivalence are considered
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12 BERNHARD BECKERT AND REINER HAHNLE

to be defined operators, i.ep— Y is the same as@Vv |, andg < Y is the
same agPA ) vV (A —-Y).

DEFINITION 1. The setcs of well-formed formulagwffs) over a signha-
ture X is defined by: (1jrue falseand atoms ovek are wifs. (2) If@is a wif,
then—q@is a wff. (3) If@y,..., @, n > 2, are wffs but not conjunctions (dis-
junctions), themp A ... A @, (resp.@1 V...V @) is a conjunction (disjunction)
and a wif. (4) Ifgis a wif and xe Var, thenvx(@) and3x(¢) are wifs.

Thecomplementp of a wif @ is defined byp= y if @is of the form-uy,
and@= —@otherwise.

As we deal with arbitrary formulae, we have to account forfta that a
disjunctive subformula may occur negated and thus is irtlglc conjunctive
formula etc. Also, the sign of a literal may be implicitly cpfemented.

DEFINITION 2. An occurrence of a subformufaof @ € £y is (1) positive
if = p, (2) negative(positive if @is of the form- and the occurrence qf
is positive (negative) iy, (3) positive (negativé if the occurrence op is
positive (negative) in an immediate subformylaf @ such thatp#£ —.

The notions of free and bound variable, term, atom, litdrak@andfalse
are literals but not atoms), (immediate) subformula, stuigin, and sentence
(a formula not containing free variables) are defined aslusua doubt, the
reader is referred to (Fitting, 1996) for the exact defimi&io

2. GROUND AND FREE VARIABLE TABLEAUX

2.1. Unifying Notation

Following Smullyan (1968), the set of formulae that are itetdls is divided
into four classesa for formulae of conjunctive type3 for formulae of dis-
junctive type,y for quantified formulae of universal type and finayfor
guantified formulae of existential type (unifying notatjoihis classifica-
tion is motivated by théableau expansion ruldbat are associated with each
(non-literal) formula. The rules characterize the assigninof a truth value
to a formula by means of assigning truth values to its direbf@mulae. For
example @A Y holds if and only ifg andy hold.

Tableau systems come in two versions, namely unsigned gnédsi for
first-order logic the sign3 (true) andF (false) are used. Although signed
tableaux are more flexible and for most (non-classical)degiis necessary
to use signs, we will (mainly) be using the unsigned versahtechniques
presented apply as well to the signed version or can easidylapted.
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ANALYTIC TABLEAUX 13

Table I. Correspondence between formulae and rule typesgiued version).

a a1,...,0n B Bl,~~~aBn
@A Ay Q1. .., ¢h @V...V@ Q1. .., ¢h
S(@V..V@) Q... (@A AG) Q..
Y o
Y Y1 o) 61
X(@x)  @(x) —YX(@(X)) (%)
QX)) —9(X) Ke(¥) @)X

Table Il. Correspondence between formulae and rule typgsgd version).

a a1,...,0n B Bl,~~~aBn
T(@A...A@) T@,.... T T(@V..V@) T@,.... T
Fl@V..V@) F@,...,F@n F(@A...A®) F@,...,F@n

T-0 Fo
F—o TQ

Y Y1 o) 61
TYX(O(X)  To(X) FyX(Q(x))  Fo(X)
FIX(@x) Fe(x) TIX(@X)  To(Xx)

DEFINITION 3. The non-literal formulae in s+ are assigned &ypeaccord-
ing to Table | (resp. Table Il for the signed version of takigg A formula of
typeg € {a,B,y, 8} is called a§-formula

The lettersn, B, y, andd are used to denote formulae of (and only of) the
appropriate type. The variabkghat is bound by the (top-most) quantifier in
y- andd-formulae is made explicit by writing(x) (resp.d(x)); accordingly,
ya1(t) denotes the result of replacing all occurrences iofy; by t.

2.2. Ground Tableau Expansion Rules
We start with thegroundversion of tableaux for first-order logic, called so,

because universally quantified variables are replacegrémyndterms when
they-rule is applied.
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14 BERNHARD BECKERT AND REINER HAHNLE

Table Ill. Rule schemata for the ground version of tableaux.

a B y(X) O(x)
GH Bt | - | Bn ya(t) 01(C)

: wheretisany  wherec = skqd).
an ground term.

In Table Il the ground expansion rule schemata for the verimrmula
types are given schematically. Premisses and conclusierseparated by a
horizontal bar, while vertical bars in the conclusion dendifferentexten-
sions The formulae in an extension are implicitly conjunctivegnnected,
and different extensions are implicitly disjunctively catted. We use-ary
o- andp-rules, i.e., when thg-rule is applied to a formul&y = @1 V...V @y,
thenuy is broken up intan subformulae (instead of splitting it into two formu-
lae@ Vv...v@ and@1V...V@, 1<r<n).

Besides using-ary rules we deviate from the classic definition of tableaux
(as given by Smullyan) by using an improvédule that, for the purpose
of constructing the Skolem term, does not introducea Skolem function
symbol. Rather, each equivalence clas&-&drmulae identical up to variable
renaming is assigned its own unigue Skolem symbol (whichbeaseen as
a Godelization of that class) (Beckert et al., 1993). Thislle is easier to
implement than the classical one; and it guarantees thgteofihite number
of different symbols is required, thus restricting the shapace.

DEFINITION 4. Given a signatur& = (Ps,Fs), the functionskoassigns to
eachd € L3+ a symbolskgd) € Fsiosuch that (a)skgd) > f forall f € Foo

occurring ind, where> is an arbitrary but fixed ordering ond,, and (b) for
all 3,8 € s the symbolskdd) and skq &) are identical if and only i®

andd' are identical up to variable renaming (including renamirfgtoe bound
variables).

The purpose of condition (a) in the above definitionsébis to avoid
cycles like:skqd) = f, f occurs ind, skgd') = g, g occurs ind.

2.3. Free Variable Tableau Expansion Rules

Using free variabl® quantifier rules (Prawitz, 1960; Wang, 1960; Brown,
1978; Broda, 1980; Reeves, 1987; Fitting, 1996) is cruaalefficient im-
plementation. They reduce at each step the number of pegsist steps

3 In the literature, several other names have been used feathe concept, e.g.,
parameters, dummy variables, meta variables.
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ANALYTIC TABLEAUX 15

Table IV. y- andd-rule schemata for free variable tableaux.

() 5(x)
YY) O1(f(xa, -, %))
wherey € Var is new wheref = skqd) and
to the tableau. Xi,...,% are the free variables i

in the construction of a tableau proof and thus the size ok#zch space.
Wheny-rules are applied, a new free variable is substituted feqgientified

variable, instead of replacing it by a ground term, that loalset “guessed.”
Free variables can later be instantiated “on demand,” whablaau branch
is closed.

To preserve correctness, the schemafaules has to be changed as well:
the Skolem terms introduced now contain the free variabdesming in the
formula to which ad-rule is applied® the free variable rule schemata fpr
ando-formulae are shown in Table IV; the rules for propositiofmaimulae
are identical to those of the ground version of tableaux Tséée 111).

2.4. Tableau Subformulae

The formulae being derived from a formupeand added to a tableau by ap-
plying tableau expansion rules are caltaileau subformulaef ¢. They are
closely related to, but not identical to the subformulae.of

DEFINITION 5. To each non-literal formulgin s+, a sequence afnme-
diate tableau subformulag assigned, which are the formulae in the conclu-
sion when the appropriate tableau rule is appliedpt¢see Tables Il and V).
Thetableau subformuleelation is the reflexive, transitive closure of the im-
mediate tableau subformula relation.

A &-formulay that is a tableau subformula of a formutgis called a
&-subformulaof @.

The index (1 < i < n) of the immediate tableau subformulae is an opera-
tor; thus 3, is by definition the secon@subformula of3 € £s-. Note that the

4 In earlier versions of free variable tableaux, all free aikes occurring on the
tableaubranchwere made part of the Skolem term, which can lead to longefpro
The &-rule we present here has been shown to be correct in (Begkatt, 1993);
a similar &-rule has already been used in (Brown, 19%jules that allow even
shorter proofs have been investigated in (Baaz and Fermiiie5). See Section 4.4
of Chapter 1.1.4 for a detailed discussion of differ&ntiles and their relation to the
analytic cut rule.
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16 BERNHARD BECKERT AND REINER HAHNLE

definition of tableau subformulae depends on the tableas thiat are used;
in particular, the tableau subformulaeyefand d-formulae differ in ground
and free variable tableaux.

EXAMPLE 1. Letf be theB-formula—(pA—-3x(Q(X))); thenp; = —p and
B2 = =—3X(Q(X)). B2 is ana-subformula of3 (because it is am-formula),
and3x(Q(x)) is ad-subformula of3. The tableau subformulae Bfare: 3 it-
self,—p, =—=3x(Q(X)), IX(Q(X)), and Qc) where c= skalx(Q(x)) (they are
the same for both ground and free variable tableau rulesg Jtbformulae
of B are: B itself, pA =3x(Q(X)), P, ~3IX(Q(X)), IX(Q(X)) and QX).

2.5. Tableau Proofs

We consider the formulae in the given setwhose unsatisfiability is to be
proven, to be implicit elements of all tableau branches sTthe construction
of a tableau proof starts with the initial tableau consigtifithe single node
true Neither is a tableau rule for explicitly adding formulaerfr ® to a
tableau branch needed, nor is it necessary to make the fagme elements
of the initial tableau (which would restrig® to be finite).

For pedagogical reasons, we prefer to view tableaux as inemas pre-
sentation, but we regard this choice as inessential: imgheations naturally
avoid copying formulae and thus are closer to the path-basedpreferred
by other authors. On the other hand, we believe there is datifference
between normal form and non-normal form calculi: it is navays obvi-
ous how to transform a proof of the normalized version of ebjam to a
non-normal form proof. One should not confuse this issul witly presen-
tational aspects such as whether one prefers trees ovecesatr vice versa.

DEFINITION 6. Let X be a first-order signature. Aableau(over 2) is a
finitely branching tree whose nodes are formulae froga. A branchin a
tableau T is a maximal path in T Given a setb of sentences froms, the
tableaux for® are (recursively) defined by:

1. The tree consisting of a single node labeled witeis a tableau for®
(initialization).

2. LetT be atableau fab, B a branch of T, and) a formulain BJ®. If the
tree T is constructed by extending B by as many new linear subtiees a
the tableau expansion rule correspondinglttnas extensions, where the
nodes of the new subtrees are labeled with the formulae iextensions,
then T is a tableau ford (expansion).

5 Where no confusion can arise, branches are often identifibctie set of for-
mulae they contain.
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ANALYTIC TABLEAUX 17

3. Let T be a tableau fab, B a branch of T, andy andy/’ literals in BU ®.
If ¢ andyy are unifiable with a most general unifier (MGld) and T is
constructed by applying to all formulaein T (i.e., T=To), then T is
a tableau ford (closure)®

The tableau expansion rule corresponding to a fornguiobtained by
looking up the formula type apin Table | (resp. Table Il) and instantiating
the matching rule schema in Table IIl or Table IV; the quatifiules in
Table Il are used for the ground version and the quantifilrsrin Table 1V
for the free-variable version of tableaux.

The closure rule in Def. 6 only allows the applicatiomodst generatlos-
ing substitutions (MGU closure rule) and only uses compleiary pairs of
literals. Instead one could allow the application of arbitrary sitbsbns and
use complementary non-literal formulae for closure; tradnative closure
rules, however, increase the number of choice points indhsteuction of a
tableau proof (see Section 5).

DEFINITION 7. GivenatableauT for a s& of sentences, a branch B of T
is closediff BU® contains a paip, ~@ ¢ L3+ of complementary formulae, or
falseor —true otherwise it isopen A tableau is closed il its branches are
closed.

DEFINITION 8. Atableau proofor (the unsatisfiability of) a s&b C £s of
sentences consists of a tableau T dothat is closed.

EXAMPLE 2. We give a tableau proof for the set-theoretic theorem that,
given sets B, R, S such that the propositions (1) =0, (2) Pc QUR,

(3) P£0or Q+£0, and (4) QJRC S hold, we have (5) PR+ 0. To formalize
this theorem, we use the signatare= ({P,Q,R,S},{}); the theorem holds

iff the set® is unsatisfiable that consists of the following fisse-sentences:
(1) ~3X(S(X) AQ(X)), (2) VX(=P(x) vV Q(X) VR(X)), (3) IX(P(x)) vV IX(Q(X)),

(4) ¥X(=(Q(X) VR(X)) v S(x)), and (8)-3x(P(x) AR(X)).

Figure 1 shows atableau T fob. The nodes of the tableau are numbered
starting from 6 (the numbers 1-5 refer to the formulaebiy a pair [i; j] is
attached to the i-th nodejNthe number j denotes that Ras been created
by applying an expansion rule to the formula in (Resp. formula j in®).

When thed-rule is applied to nodes 7 resp. 8 to create nodes 9 and 25, the
Skolem symbols skg3x(P(x))) and d= ska3x(Q(x))) are introduced.

All branches of T except the one with leaf 25 can be closed piyeg
the closure rule; the tripléi; k; o] below each of these branches denotes that

6 The complement of signed formulae is definedyy= F@andF = T®.
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18 BERNHARD BECKERT AND REINER HAHNLE

[6.-] true
— ~—
[7:3] Hxl(P(x)) (8:3] Hxl(Q(x))
[9:7] IP(c) [25:8] Q(d)
[205] = (P(X1) AR(X1))
— ~

[13;10] =P(X1) [12:10] =R(X1)

* I
9:11{x/cH] (1321 =P(X2) V Q(X2) V R(X2)
— I

[1413] = P(X2) [1513] Q(X2) [16:13] R(X2)
* I *
[9;:141xo/c}] 1711 = (S(X3) A Q(X3)) [12;16id]
— ~
[1817] TS(X:;) [1917] ~Q(X3)
*
[204] =(Q(Xa) VR(Xa)) VS(X4)  [15;19id]
— ~
[21,20] ﬁ(Q(Tq) V R(Xa)) [22:20] S(Xa)
*

[23,21] —||Q(X4) [18;22{x3/c}]

[2421] = R(Xa)

*
[15;23fxa/c}]

Figure 1. Partial free variable tableau proof for the defrom Example 2.

the closure rule can be applied to the complementary literalnd j using
the unifiero (assuming that the branches are closed from left to rightjew
these substitutions have been applied, the resulting taléss not a tableau
proof yet, but it can be extended to a closed tableau by addingpy of
the subtableau with root node 17 below node 25 and instantjahe free
variables in that copy with d (instead of c).

2.6. A Tableau Construction Procedure

The—non-deterministic—procedure shown in Table V cortstra free vari-
able tableau proof for the unsatisfiability of a given ®etf sentences.

The main loop of this procedure contains the following fadupice points:
(1) A branchB has to be chosersélect branchy (2) it has to be decided
whetherB is to be closed or to be expandesklect modg (3) if B is to be
closed, a pair of complementary literals and thus a closigtstution has to
be chosengelect paij; (4) if B is to be expanded, a formula has to be chosen
to which an expansion rule is appliesk{ect formul
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ANALYTIC TABLEAUX 19

Table V. A tableau construction procedure.
input @;
T := tableau whose single nodetisie
while T is not closeddo
select a brancB of T that is not closed;
Compl:= {{@,¢) | @, ¢ literals inBU ®, @ @ unifiable};
if Compl=# 0 then select a mod# € {close expand
elseM := expand
fi;
if M = closethen
select(g, ¢y € Compt
o := most general unifier af, ¢;
T:=To
else
select non-literal formulgc BU @;
T :=result of applying the appropriate ruleg¢mn B
fi
od;
output T

In the ground version of tableaux, the third choice pointioet exist, be-
cause complementary literals do not contain variables la@cttore all have
the same most general unifier (the empty substitution)e&tsthere is an ad-
ditional choice point when therule is applied: the ground term has to be
chosen that replaces the quantified variable.

3. SEMANTICS OF TABLEAUX

In this section we first introduce the (standard) semangicgrst-order logic,
and then extend these semantics to free variable tableaux.

DEFINITION 9. A structureM = (D, 1) for a signatureX consists of a do-
main D and an interpretatiorl, which gives meaning to the function and
predicate symbols &. A structureM is aterm structuref D is the set of all
ground terms oveE.

Avariable assignmeint a mapping pVar— D from the set of variables to
the domairD. Specifically, [x + d] denotes the variable assignment that is
defined by: [x + d](x) = d and jix + d](y) = p(y) for all other variablesy.

An interpretationl and an assignment p associate (by structural recur-
sion) with each term t oveX an element't*in D.
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20 BERNHARD BECKERT AND REINER HAHNLE

Theevaluation functiowval, ,, is, for all well-formed formulaein .5, de-
fined by: val (@) = truein case (1)p= P(t,...,t)) and{ty",... th") € P';
(2) @=-P(ty,....ty) and (", ... .t5") ¢ P'; (3) 9= trug (4) = —false
(5) ¢=a and val ,(a;) = true for all a;; (6) =B and val ,(Bi) = true
for some;; (7) @=yand va| yx.q)(y1) = truefor all d € D; (8) p=d and
val yx«dj(d1) = truefor some dc D; and val ,(9) = falseotherwise.

If val; (@) = trug which is denoted byM, 1) = @, holds for all assign-
ments Y, theM is amodelof @.

In the sequel we only consider term structures, which igfjedtby the
following well known theorem:

THEOREM 1. A set® of formulae has a model if and only if it has a term
model, i.e., a model that is a term structure.

DEFINITION 10. A tableau T for® C rs is satisfiabldf there is a (term)
modelM of ® such that for every variable assignment p there is a branch B
of T with(M, ) = B. In that case we say thd is a model of T, denoted by
MET.

Note that in the above definition there has to t&raglemodelM satis-
fying a branch ofT for all variable assignmentd) has to be a model @b,
because the formulae t are implicit elements of all branches Bf

4. SOUNDNESS ANDCOMPLETENESS

We prove soundness and completeness of free variable tablEhae proofs
can easily be adapted for ground tableaux. In addition taitheal complete-
ness proof based on Hintikka sets, an alternative proof fopgsitional ta-
bleaux is presented.

4.1. Soundness of Free Variable Tableaux

The main part of the proof is to show that all tableau expanaitd closure
rules preserve satisfiability—which implies that, if thé deand thus the
initial tableau is satisfiable, then all tableaux fbrare satisfiable and, thus,
cannot be closed. Then, the existence of a closed tableab fimplies the
unsatisfiability ofd.

For the soundness proof we restrict all consideratiortatmnicalstruc-
tures, where Skolem symbols are interpreted “in the right'gaich that the
o-rule preserves satisfiability (in canonical models).
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ANALYTIC TABLEAUX 21

DEFINITION 11. A term structureM = (D, 1) is canonicaliff for all vari-
able assignments p and &@l{x) € £s- the following holds: IfM, ) = &(x)
then(M, ) = d1(f(Xq,...,X%)), where f= skdd) and x,...,X, are the free
variables ind.

Restriction to canonical structures makes sense, becegigestructureM
for a signature that satisfies a sd C s of sentences can be extended to a
canonical structure far*, which still satisfiesb.

LEMMA 1. Given a signaturg, if the setd C 5 of sentences is satisfiable,
then there is a canonical structuld* over>* such thaM* = ®.

Proof. Since® is satisfiable, there is a structuve= (D, 1) over X with
M E @. The Skolem function symbols s, do not occur in®, therefore it
suffices to choose their interpretation such that the regugtructureM* is
canonical, leaving the interpretation of the symbol& imnchanged.

The rankrk(f) of the symbolsf € Fg, is defined as follows: (1) if no
d € Ly« exists such thaskgd) = f, thenrk(f) =0; (2) if f=skqgd) for
somed € Ly, thenrk(f) =1, (3) if f =skqd) for somed not in L3, then
rk(f) =1+ max{rk(f’) | f' € Fsko0ccurs ind}. Because of condition (a) in
Def. 4,rk(f) is well defined for all function symbols.

We inductively define a sequen¢®l"),>o of structures that all have the
domainD. M" = (D, ") is a structure over the signatut® that is the re-
striction of =* to function symbols of rank not greater than "** coincides
with I" on all symbols inz"UZ. 19 is defined byf!’ = f' for all f € Fs,
and for all f € Fg, 0f rank 0 the value of'’ is chosen arbitrarily. The func-
tion symbolsf € Fgo of rankr < n have already been interpreted N
Considerf € Fgo of rank n+ 1 with f = skgd(x)); for all argument tu-
plesb,...,bx € D of the same length as the tuplg,...,x of free vari-
ables ind(x) we definef'™" by: if there is a variable assignmeptwith
H(x) = b; (for 1 <i < n), and(M", ) |= 3, choose an elememtc D with
(M, u[x« ¢]) = & (x), and setf'™" (by, .., by) = c. Sincef is of rankn + 1,
the symbols ind are from the signatur®”. Otherwise, if(M",p) F d(X),
choosef'”“(bl, ...,bx) to be an arbitrary element .

We can think of the sequen¢® ") >0 as an approximation to the structure
M* = (D,1*) over =*. I* coincides withI",1™1 . on the symbols irz".
M* is canonical by construction and satisfies the formulag.in

Thed-rule is a special case of the more general concepkolemization
which, according to the following lemma, preserves satidfist by canonical
models.
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LEMMA 2. LetM* be a canonical model ovér*, | a variable assignment,
and @ € £s+; and letq be constructed fronp by replacing (a) a positive
occurrence of som&x) in @by ;1 (f(xy,...,%n)) or (b) a negative occurrence
of 3(x) in @by &1 (f(xg,...,%); where f= skdd(x)) and x,...,x, are the
free variables i(x). Then(M*, ) = @implies(M*, ) = ¢.

Proof.If (M*, ) = 8(x) then(M*, ) = d1(f(X1,...,%n)), asSM™ is canon-
ical; and if (M*, ) K 8(x) then(M*, ) £ 81(f (X1,...,%)) (by double nega-
tion). Using these relations, the lemma is easily provennilction on the
structure ofp.

EXAMPLE 3. Inthe formulap=—(—-3x(P(x,y)) VVX(Q(X))), thed-formula
d(x) = IX(P(x,y)) occurs positively and this occurrence can be replaced by
o1(f(y)) = P(f(y),y), where f=ska3x(P(x,y)). The complement of ti&
formulad (x) = =¥x(Q(x)) is & (x) = ¥x(Q(X)); it occurs negatively inpand

that occurrence can be replaced d)y(c) = Q(c), where c= sk —Vx(Q(X)).
Thus,(M*, 1) = @implies(M*, ) = =(=(P(f(y),y)) v Q(c)).

Next we prove that satisfiability by canonical models is preed by the
tableau expansion and closure rules and, therefore, ddlatak for a satisfi-
able setd C .y are satisfiable (by a canonical model).

LEMMA 3. If T is a tableau for a satisfiable sét c s of sentences, then
T is satisfiable.

Proof.By definition of tableaux fofb there has to be a sequerie..., Ty
(m> 1), whereT = T, andTs is the initial tableau whose single noddrige
and whereT; ; is constructed fronT; by applying a single tableau expansion
or closure rule. Sinc@ is satisfiable, there is a canonical structdreoverz*
such thaM* = ® (Lemma 1). By induction omwe prove thaM * satisfies
all the tableauXy, ..., Ty (and in particulai).

m= 1: trueis the only label ofT;, so triviallyM* = Tj.

m— m-+ 1, expansion rule: léB,, be a branch iy, Ty, 1 is obtained from
T by applying a tableau expansion rule to a formpka B, U .

Let ube a fixed assignment. By assumpthdn satisfiesT,; thus we have
(M* 1) = B, for some branciB?, of Ty, If BY, is different fromBy,, thenB,
is also a branch of,, 1 and we are through.

If, on the other handB?, = By, and therefordM*, ) = @, we show that
(M* ) satisfies one of the branches B, 1 by cases according to which
tableau rule is applied to obtaii,, 1 from Tp,.

~ B-rule @= B): Tmy1 is constructed fronTy, by addingp; to By, obtaining
Byt (1 <1 <k wherek is the number of immediate tableau subformulae
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of B). Since(M*, ) = B we have, by the property @-formulae (Def. 9),
(M*, ) k= B; for somei € {1,...,k}. Therefore(M*, ) =B}, ;.

a-rule (@= a): similar to thef3-rule.

y-rule @ = y(X)): Tms1 is constructed fronT,, by addingy:(y) to By, ob-
taining the branctBy, 1. Since(M*, ) = y(X) we have, by definition of=,
that(M*, u[x < d]) = y1(x) for all elementsd € D. Since this is in particular
true ford = p(y), we get(M*, ) = ya(y) and thereforéM* 1) |= By 1.

o-rule (@ = 6(x)): the tableauTy,1 is constructed fronT, by adding
O1(f(X1,...,X%n)) to By, obtaining the brancBm, 1, wheref = skad(x)) and
X1,...,% are the free variables &(x). Since(M*, ) = 6(x) andM* is canon-
ical, (M* ) = 01(f(X1,...,%)) (Lemma 2), and thudM*, 1) = Bmy1.
m— m+ 1, closure rule: it suffices to show that the application of sib-
stitutiono to the satisfiable tablealy, preserves satisfiability. To prove this
claim we consider an arbitrary variable assignmeand define the variable
assignmentt by p(x) = (xa)"V for all x € Var. That implies for all terms
over*, and in particular for all termsin the tableauly, (to)" = t"* and
therefore, sincéM*, 1) = BwhereB is a branch ifly, as well(M*,v) = Bo;
Bo is a branch inmo = Ty1 and thugM*, v) = Tnpa.

The construction oM* does depend only on the sétand not on the
tableaux, so we not only have shown that a tableau for a sdiefformula
set® is satisfiable, but that there is a single structMre satisfying all ta-
bleaux ford.

THEOREM 2. (Soundness)f there is a tableau proof for a s& C £y of
sentences, thed is unsatisfiable.

Proof. There is a tableau proof f@p, i.e., a closed tableali for ®. Since
all branches i are closed and thus contain a complementary pair of literals
—true or falsg there is no canonical structuk&* and no assignmemptsuch
that (M*, ) satisfies any of the branches Df thereforeT is unsatisfiable.
If ® were satisfiable, thef would be satisfiable as well (Lemma 3), which
would lead to a contradiction.

4.2. Completeness Proof Using Hintikka Sets

We start with the “classical” version of the completenesspfor free vari-
able semantic tableaux based on Hintikka sets proceedifgla®s: Hin-
tikka sets are downward saturated formula sets that do natitocontra-
dictions on the literal level; it is shown that Hintikka sei® satisfiable. For
a given setP of sentences an infinite tabledy is defined as the result of
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an infinite sequence of expansion rule applications. ltgwut that if the
rules are applied in &ir manner and iff, contains an open brand@) then
there is a substitutioa. such thaBo., U @ is a Hintikka set, implying that
Bo., U® and thusp is satisfiable. Therefore, # is unsatisfiable, thef.o.
must be closed. But then there idimite subtablead” of T, such thafl o,

is closed. It remains to show that, can be decomposed into most general
closing substitutionss, ..., o, such thafl oz - - - o; is closed.

DEFINITION 12. A set HC s« of sentences is Hintikka set if it satisfies
the following conditions: (1jalse¢ H, —true¢ H, and there are no comple-
mentary literals in H. (2) Ifa € H, then alla; are in H. (3) If B € H, then
somef; isin H. (4) Ify(x) € H, thenyy (t) € H for all groundX*-termst. (5) If
d(X) € H, thend, (t) € H for some ground*-term t.

LEMMA 4. (Hintikka). If H is a Hintikka set, then H is satisfiable.

Proof.A term modeM = (D, 1) of H can be defined by! =t forallt € D,
andp' (ty,...,t) = trueiff P(ty,...,t) € H for all ground atom®(ty, . .., t)
overX*. By induction on the structure of formulaelthit is easy to prove that
M satisfieH.

DEFINITION 13. The construction of a sequen¢&,)n>1 of tableaux for

® C 5, where T is obtained from J_1 by applying a tableau expansionrule,
is fair if the following holds for all branches B in the infinite tablethat is
approximated by that sequence: (1) &ll3, andd occurring on B or in®
have been used to expand B (by applying the appropriate sikpamule).
(2) All'y occurring on B or in® have been used infinitely often to expand B

(by applying they-rule).

One may construct a fair sequence of tableaux for any setroéisees.
Combining the fair application of the expansion rule with &pplication of
the closure rule, however, is a difficult problem (see Sechp

THEOREM 3. (Completeness)f the set® C s of sentences is unsatisfi-
able, then there is a tableau proof for the unsatisfiabilitgo

Proof. Let (Th)n>1 be a fair sequence of tableaux forstarting with the
tableau consisting of the single notteie this sequence approximates the
infinite treeT.,. We define a particular substitution, as follows: let(By)k>1
be an enumeration of the branchesTgf Let (¢ )i>1 be an enumeration of
they-formulae inT.,. For everyy-formula@, if ¢ occurs onBy then letx;j
be the (new) variable that has been introduced byjttireapplication of the
y-rule tog onBy. Let (tj);>1 be an enumeration of all ground terms oxer
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To ensure that the brandBy is a potential source of a model, the in-
stances ofy on B0, must “cover” all the ground ternts. To this end choose
O (Xijk) =tj foralli, j,k> 1.

The construction ob, and the fact thal, is constructed in a fair way
ensures that: iBis a branch i, andBo. is open, theBo, U ® is a Hintikka
set, and thu® is satisfiable. Since this would contradict the assumptioine
theorem, we can conclude that there is a substitatifar exampleo.,) such
thatT.0 is closed. Becausg&,o is a finitely branching tree and the distance
of all the complementary literals that close branches tmit$ node is finite,
Konig's Lemmd applies, and there has to be arp 1 such that the finite
tableauT,,o is closed.

The substitutioro, however, is in general not most generalnifier of
complementary literals, and cannot be used in an MGU claosueeapplica-
tion to T,.. Therefore, it remains to show thaitcan be suitably decomposed:
0=0'00;00,_10---0071, Whereg; is a most general closing substitution for
the instantiatioBj010,...0;_; of thei-th branchB; in T, (1L <i <r); ¢’ is
the part ofo that is not actually needed to clo$g Theg; are inductively
constructed as follows:

Let o} = 0. For 1< i <r, leto; be a most general substitution such that
(1) o;_, is a specialization of;; that is, there is a substitutiasj such that
o,_, = 0/o0j; and (2)g; is a closing substitution foB;jo102...0i_1. Now
0; is a most generatlosingsubstitution ofB;01,0,...0i_1. Otherwise, there
is a closing substitutioa;’ being more general tham. The is-more-general
relation is transitive, hena@’ is more general thaol_, in contradiction tap;
being a most general substitution satisfying (1) and (2)aly, leto’ = o;.

To obtain a Hintikka set from a fairly constructed sequerfdaloieaux it
suffices to apply the appropriate expansion rule exactlydo®achu-, -,
or &-formula on each branch. This has the practically relevansequence
that only toy-formulae must a rule be applied more than once per branch.

4.3. Anderson-Bledsoe Completeness Proof

As an alternative to Hintikka-style completeness proofsdérson & Bled-
soe’s (1970) method for proving completenessesblutioncan be adapted
to tableaux. In contrast to the Hintikka proof, which inve$vinduction on
the formula structure, this style of proof works by induation the size of
the signature, leading to a quite different pattern: whiléhie Hintikka proof

7 “A tree that is finitely branching but infinite must have an mité branch.” A
proofis, for example, in (Fitting, 1996).
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anycomplete and fair (open) tableau is shown to contain enoufghmation
to construct a model, the Anderson-Bledsoe argument direonstructs a
tableau for a given unsatisfiable formula from suitable abletaux provided
by the induction hypothesis. This makes it possible to edeloertain ta-
bleaux from being acceptable as proofs by imposing additioonditions on
the subproofs used in the construction. In contrast to ¢ithe heart of the
Hintikka-style proof lies the saturation of a formula set&ever such a sat-
uration is possible the corresponding calculus mugprioef confluenti.e.,
every partial tableau proof for an unsatisfiable formula lsarextended to a
closed tableau. This means that this proof method is nalsi@ifor non-proof
confluent tableau variants as defined in Section 6.2 below.

The proof given below is taken (slightly modified) from (H¥art al.,
1997). We only consider tableaux for propositional fornaullaut complete-
ness of free variable tableaux can be proven using a simithnique based
on enumerating instantiations as in the previous sectiothé proof, we
make use of the following equivalences: (Afalse= true (2) ~true= false
(3) AiL1 @i = ALy @i if o = trug (4) VL1 Bi = Vilyx; Bi if Bj = false
(5) AL, a; = falseif aj = false (6) /L, Bi = trueif Bj = true A formula to
which these rules have been applied is cadiedplified

THEOREM 4. If ® C s is any unsatisfiable finite set of simplified proposi-
tional formulae, then there is a tableau proof for the unsibility of ®.

Proof. Let ® be as above; we proceed by induction on the nunmbefr
distinct atoms ird.

If n= 0, then® = {falsg (as it is simplified), and there is nothing to
prove; so assume the theorem holds for all formula sets wittoatn distinct
atoms, and le® be a set of formulae with+ 1 distinct atoms.

Let @, be the set of formulae produced as follows: first replacé gach
positive occurrence gb with false call the resultb,. By a routine argument
@, is still unsatisfiablé.Also, sincep does now only occur negatively @,
all remaining occurrences @f may be replaced witltrue again preserving
unsatisfiability (the latter can be seen as a non-clausaloreiof the Pure
Rule, see (Ramesh, 1995)). Finally, simplify to obt&in

By the induction hypothesis, there is a closed tablgglor ®p. Let Tj be
the tableau tree produced by applying each extensidpta the correspond-
ing formulae in®. If Tj is closed, we are done. If not, then all open branches
in Ty must result from formulae containing

8 Here is a sketch: assunesatisfiesd/,, but not®. As p does not occur posi-
tively in qyp we can safely modify at p to befalse Thenl still satisfies®’,, but by
definition of @}, it must satisfy® as well—contradiction.
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A formula that contains a positive occurrencepofs a formula of® in
which this p was replaced wittfalseto obtain the corresponding formula
of ®,. Whetherp occurred in aro- or in a 3-subformula, in both cases a
branch ofT, that was closed because it contairfatseis open inT; and
containsp (because simplification cannot propagate over changingstgb
subformulae).

Dually, negative occurrences @f are replaced withtrue and a closed
branch ofT, containing-trueis open inT, and contains-—p. By a single
a-rule application this givep on each such branch. Hence, all open branches
in T contain nodes labelepl

Similarly, by replacing negative occurrencespdfy false positive occur-
rences bytrue followed by simplification one produces the set of formulae
®p. The induction hypothesis provides a prdgfof ®5 and a corresponding
proof treeTy; of ®. The leaves of all open branchesTgfare labeled-p.

Finally, to obtain a closed tableau férfrom T; andT,, we appendy to
all open branches dffy and observe that any branch not closed witijror
within Tj has nodes labelegland labeled-p and thus is closed.

5. RESOLVING THE INDETERMINISM

In this section we discuss the difficulties that emerge if waats to define
a concrete, i.e. deterministic, (and complete) proceduae gystematically
looks for free variable tableau proofs.

In the case of ground tableaux this is relatively easy: theés arenon-
destructivethus it suffices to add systematically all ground instarafeg
formulae until a branch is closed, after which the next binaiscconsidered.
Any fair selection of ground instances together with Kégilgmma guaran-
tees completeness.

DEFINITION 14. A tableau calculus imon-destructivef all tableaux that
can be derived from a given tableau T contain T as an initibtsee; other-
wise the calculus idestructive

In free variable tableaux the closure rule obviously readbe calculus
destructive. In the completeness proof this situation waslwed by restrict-
ing the closure rule such that it is only applied when the whableau can be
closed. Then, a fair selection fsge variableinstances of-formulae suffices.
Such a procedure seems impractical, because (1) it reqaisésre the whole
tableau, and (2) after each extension step the whole tableatibe tested for
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= {Vé((P((X)( J) )P(S(X)))v true
~P(S(s(0))). P(xy) — P(s(x0)
P(0)} ﬁP(xl)/1 \Pl(S(Xl))
closure P(Xz)/—> P(?(Xz))

closure
{x2/0}
Figure 2. Incompleteness caused by unfeétect pair

closure. So far no techniques have been developed to déathisgtproblem
efficiently.

In the remainder of the section, we discuss variants of fegeble ta-
bleaux, where the closure rule is unrestricted in the sdratectosure of the
whole tableau is not required, rather, closure of at leastlmanch suffices
to trigger its application. With unrestricted substitutiohe free variable ta-
bleau calculus iproof confluentalthough it is destructive). This is trivial by
the fact that a closed tableau (which is guaranteed to exisbmpleteness)
can always be appended to each open branch.

A much more difficult problem is to explicitly specify a dat@nistic con-
struction rule for destructive free variable tableaux thabmplete. The prob-
lem is that different possibilities to close a certain braoan be mutually ex-
clusive. When the wrong choice is made and, thus, the wrobstsution is
applied to the tableau, it may become impossible to use tkigaed possibly
more usuful) branch closure immediately afterwards. bubté may become
necessary to repeat the sequence of expansion rule appisthat lead to
the situtation in which the wrong choice was made; moredweptiginal sit-
uation may have to be reconstructed on each branch that baggeeerated
in the meantime and that cannot be closed because of the b cA prac-
tically convincing solution has so far proved elusive, beg ¢Billon, 1996)
for a promising suggestion.

With a few examples, we illustrate incompleteness phenensising
from unfair selection strategies for the various kinds adick points. Need-
less to say, these can also interact in a complex way. Thegarare more
naturally formulated with the implication connective; fibve tableau rules,
recall thatp—  abbreviates-@V .

In Figure 2, the literaP(0) is preferred in closures resulting in append-
ing the same instance efP(x) time and again. In Figure 3 theformula
is preferred for rule application thus delaying expansibthe inconsistent
second formula indefinitely. Finally, in Figure 4, a bransttiosed as early
as possible. Independently of which branch is closed finstyariablex gets
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@ ={QA-Q, Vx(P(x))} true
\/ P(x1)
y-rule |
P(Xz)
y-rule .

Figure 3. Incompleteness caused by unfe@ect formula

possible
closure

possible
closure

Figure 4. Incompleteness caused by unfaélect mode

“used up” by a substitution that blocks closure of the othranbh. Of course,
a second free variable instance of thlermula may be created, but then the
same happens one level below etc. The example highlightsrtidems of
destructivdree variable tableaux.

We discuss remaining alternatives for free variable tabfgaof search.
It will be useful to visualize the AND-OR search tree spanbgdhe non-
deterministic tableau procedure in Section 2: each noerahiistic action
select branchselect formulaselect pair andselect modereates an OR node
with as many successors as there are alternatives; thesnexeall of the
procedure on each new branch creates an AND node. Each desecis
finitely branching (provided the closure rule suitably ress the choice of a
closing substitution, as does, for instance, the MGU clesule); branches
are either finite and end withselect pairaction or they have infinite length
(ifa y-formulais accessible). In Figure 5 the start of a sear@hisrdisplayed.

No OR nodes are created feglect branclalternatives. This is because all
branches of a tableau have to be closed, so different braiebti®n strate-
gies merely correspond to different traversals of the $eaee. Less obvious,
but simple enough is the observation that OR nodes arisorg $elect for-
mula alternatives can be eliminated as well provided that in #maining
branches of the search tree each free variable instancetojdéarmula does
occur. This can be achieved with a fair selection strategy.

Possibly, further branches in the remaining search treebeamoved.
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tr{Je
P(x1) = P(s(x1))

e

P(x2) = P(s(x2)) ﬁP(}x\l) P(s(x1))
: §" {x/0} P(x2) = P(s(x2))

P(x3) = P(s(x3)) —P(x2) P(s(x2))

-

——

¢ (e/0} {xo/s(x0)} f/ i

Figure 5. Start of AND-OR search tree for finding a tableau proof for tie¢
{p(0),¥x(p(x) — p(s(X))),—p(s(s(0)))} of sentences. OR arcs are indicated by
curly braces, AND arcs are straight lines. The dashed paisioes constitute alter-
natives that were not selected in the actual proof. The galits of braces represent
a successful proof. Mode and pair selection are combinedern@R node.

Assume, for example, there are substitutiorand latert occurring during a
tableau proof search whose supports @hpportof a substitution is the set
of variables on whiclw is notthe identity) have an empty intersection. Then
it is unnecessary to consider the part of the search treerevthe sequence
of applyingo andt is reversed, because = o1. Redundancies of this kind
are hard to detect efficiently, though.

We return to the problem of finding a successful proof in ourDARR
search tree, a common Al search problem. Unrestridegath firstsearch is
excluded because of the difficulties discussed above to fselextion stra-
tegy that ensures completeness, leavirgadth firstanddepth first iterative
deepeningearch.

For both the concept of @mpletion modés useful: this is a monotone
functionm from N to sets of tableaux such thigk.n m(i) includes all pos-
sible tableaux. LeM(i) be the part of the tableau search tree that contains
all tableaux inm(i), but not the ones im(j) for j < i. As search trees have
infinite depth, breadth first search has to considér) for somei, which
is guessed. As breadth first search is space expensive amdl foactical
completion mode$m(i)| grows exponentially in, it has been suggested by
Stickel (1988) to use depth first iterative deepening (DF$Barch (Korf,
1985): successively searth; ;M(j) for i =0,1,2,... causing only poly-
nomial overhead as compared to a breadth first search atigfidevel.”

A fundamental advantage of DFID over breadth first searchasit can
be implemented efficiently via bounded depth first searchlamktracking
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as in (Beckert and Posegga, 1995). Although this leads tepaable per-
formance of tableau-based automated theorem proverqutaghbe stressed
that DFID search is only a compromise while a complete selectrategy
without backtracking (making full use of the proof conflugraf analytic
tableaux) is not yet available.

6. OPTIMIZATIONS

6.1. A Classification of Optimizations

Below, the main types of optimizations of analytic tableaug described.
Most known variants of tableaux belong to one of these cta@dthough the
classes are not completely disjoint).

1. Restrictions that forbid certain rule applications toidwparts of the search
space that (a) are symmetrical to or subsumed by other partsat (b) for
some reason are known not to contain a proof; typical exasrgle for (a)
theregularitycondition (Section 6.3) and for (b) tltennectednesondition
(Section 6.2).

2. Changes to the tableau rules or the introduction of amithfirules that
strengthen the calculus, i.e., allow to derive additioablé¢au proofs; this
only makes sense if the additional proofs that can be fouadhorter and
replace (subsumeseveralother proofs; an example is the universal formula
technique (Section 6.4), allowing to use more general psubstitutions.

3. Optimizations making use of knowledge accumulated dypnoof search
(a) for restricting and/or rearranging the search spaageeffamplepruning
of redundant branches, Section 6.5), or (b) for reusingspairthe already
constructed proof (like local lemmata).

6.2. Links

One of the first crucial advances in resolution-based time@mving was the
introduction of the set-of-support (SOS) strategy (Wod4.e1.865). It has the
effect of preventing deduction steps that are unrelatede@iqus ones.

A similar effect can be achieved with tableaux. The basia idethat a
formula used for extension should lead to the closure ofaatlene branch.
When all formulae are clauses this amounts to saying thatithese used for
extension and the branch on which it is used must contain glernentary
pair of literals. Several calculi based on this idea areuwdised in detail in
Chapters 1.1.2 and 1.1.3 of this volume. In the non-clauaaka little more
effort must be spent.
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Recall that skolemization (Lemma 2) provides the optionlwhi@ating
all 3-subformulae from a formula before any other rules are apgmind yet
preserves tableau semantics, i.e., satisfiability undesrdaal models. Sim-
ilarly, we define dree variable instancef a formula by (a) replacing each
positive subformula occurrence of soi®) by y;(x'), and (b) replacing each
negative occurrence gfx) by y1(X); where thex are new variables.

DEFINITION 15. Given (not necessarily closed) formul@e @, € L5+, the
formulag@, has alink into ¢, (is linked tog,) with MGU o iff free variable
instancesp, and@, of their skolemizations contain literatg andp,, respec-
tively, with different polarity (i.e., one literal occumee is positive and one
is negative), ang,, p» are unifiable with MGUo. If one of@y, ¢, is a set of
formulae it is treated as the conjunction of its elements.

A formulag e £s- has alink into itself (is linked to itself) with MGW iff
there is ami-subformulax of @ such that two immediate tableau subformulae
a; andaj, i # j, of a are linked with MGUo.

EXAMPLE 4. The formula Rx) has a link into the formula:(qV P(a)) with
MGU {x + a}. Thea-formula—(pV —p) has a link into itself; whereas the
B-formula pv —p isnotlinked to itself.

DEFINITION 16. Atableau T ford is weakly connectedf for all expan-
sion rule applications used in its construction the follogrholds: if the rule
has been applied to a formud@extending a branch B, then the instang®f
@that occurs in® or on the (sub-)branch®f T (which is an instance of B)
has a link into BU @ or is linked to itself.

It is connectedff the link is always fromy into (a) a formula of Bthat
appears below the node ori Bhat corresponds to the last branching node
of B, or (b) into® if there is no branching node in B.

EXAMPLE 5. The formulae to which an expansion rule is applied to con-
struct the tableau that is shown in Figure 2 agg= Vx(P(x) — P(s(x))) and

@ =P(x)) — P(s(x)) fori> 1. The formulagy is identical to its instances,
which have a link intap (namely to the atoms @b); all instances of the for-
mulaeq are linked tagy and so have alink int®. Thus, the tableau is weakly
connected. Itis, howevamtconnected, as the instange= P(0) — P(s(0))

of @ is not linked to the atom (&(0)), which is the only formula below the
last branching point of the branch expanded by applying3nale to ¢,.

This shows that the unfair choice of complementary pairengkified in
Figure 2 cannot be avoided by weak connectedness. If, howleeeonnect-
edness condition is observed, at least this type of unfaifcehis avoided
(other types of wrong or unfair choice are, of course, stigpible).
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The tableau shown in Figure 3 i®t weakly connected (hence, not con-
nected) because the forma(P(x)) used for expansion does not have a link
to any formula in® or on the branch.

Observe that the destructive closure rule of free varigdidetiux creates
a serious implementation challenge as its application mpye weak con-
nectedness at any point. In (Pape, 1996) an implementagiog term con-
straints is suggested. Alternatively, one applies the M@tresponding to
a connection immediately and admits backtracking overnsxéas. In this
latter version, connected tableaux, the connection meffBibet|, 1982), and
matings (Andrews, 1981) can be considered to be notati@mins of each
other. Restricted to CNF, connected tableaux are alsolglodated to model
elimination (Loveland, 1969). Variants of connected CNBleéaux are dis-
cussed in great detail in Chapters 1.1.2, .1.3, and l.1thisfvolume.

Both notions of connectivity can be refined furtherrbgularity (see Sec-
tion 6.3) and weakly connected tableaux can in addition fieed with literal
orderings (Hahnle and Klingenbeck, 1996).

Connected tableaux are not proof confluent—even on the pitqoal
level—, as the simple exampte={(pA —p) v q,r A —r} shows: if the first
formula (that has a link into itself) is used for extensidwere is no way to ob-
tain a connected closed tableau from there. It is necessaake the extend-
ing formulae from a minimally unsatisfiable subset (MUSYofComplete-
ness of refinements of this kind can be proven with the AndeBledsoe
technigue, which is compatible with considering an MUS. Bmdther hand,
proof confluent refinements are best tackled with a saturdtased method.
Below, we show paradigmatically how the basic techniquepfoving com-
pleteness from Section 4 are revamped to deal with more addaralculi.

THEOREM 5. If @ is any unsatisfiable finite set of simplified propositional
formulae, then there exists a closed connected tablead.for i

Proof. We proceed as in the proof of Theorem 4, but make two modifi-
cations: first, one restricts attention to a minimally uisitble subset of;
second, one notes that the proof still goes through if thedtidn hypothesis
is strengthened as follows:

For all minimally unsatisfiable sets of simplified formul@evith at most
n distinct atoms and any non-liter@lc ®, there exists a closed connected
tableau in which the first rule is applied 4o

As before,n = 0 is trivial and so isn = 1 when there are only literals
in ®. Thus, for the induction, take any atomsuch that there are formulae
@ ¢ ® containing a positive occurrence paindg ¢ ® containing a negative
occurrence op. Then constructb, and ®y as before, but instead of these
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sets themselves use any minimally unsatisfiable subsdtstthaontaing,
resp.@ (the proof for the existence of these minimally unsatiséatibsets is
not hard, but it requires some technical definitions, se@(tet al., 1997)).

This time the induction hypothesis gives closed connecateauxT,
for @, and Ty for @ in which the first rule has been appliedggresp. tog.
As before, from these one obtains tabledyXT; in which all open branches
containp resp.—p. Observe that the branchesTfcontainingp do not exist
in Tp and thus are never extended therein; therefooecursafter the last
branching poinbn these branches.

Finally, the fact thaff;, Ty; start with rule applications to formulae con-
taining p resp.—p implies that appending; to the open branches @f gives
a connected tableau f@r (as@ andp are linked by definition) starting with
a rule application tap.

6.3. Regularity

Regularity another well known refinement from clausal tableaux (sesp€h
ter 1.1.2) is also defined in the non-clausal case (Hahnlekdimdjenbeck,
1996; Hahnle et al., 1997).

The following definition of the (ir-)regularity of a formul@ takes only
theimmediatdableau subformulae a@finto concern. It is possible to give a
more elaborate definition that takes all tableau subforenofginto concern
(Hahnle and Klingenbeck, 1996).

DEFINITION 17. A formulag € s« isirregularw.r.t. a branch B of a ta-
bleau for® C .5 iff (1) @is ana- or &formula and all immediate tableau
subformulae ofpare in BU®, or (2) @is a-formula and som@; ¢ BU .

A tableau T for® C £s is regulariff, for each expansion rule applica-
tions used in its construction, the following holds, whére tule has been
applied to a formulap extending a branch B: the instange of @ on the
(sub-)branch Bof T (which is an instance of B) is regular w.r.t..B

A formula that is regular w.r.t. a branch may become irregthaough
the application of a substitution (take, for instance, axbhacontaining the
formulaeP(x) v gandP(y), and the substitutiofx/a, y/a}). This is a serious
implementation problem in free variable tableaux; seezle¢tal., 1992) for
a possible solution. Contrary to the clausal case, neitfi@maula occurring
more than once on a certain branch, nor a tableau branchsthagubset of
another branch implies irregularity. Take, for example)ased tableau for
the formula—pA (pV (pA pAQ)): one of its branches is a proper subset of
the other branch, and the latter contains two occurrencps of
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THEOREM 6. If the setd C £s of sentences is unsatisfiable, then there is a
regulartableau proof for the unsatisfiability af.

Proof. The completeness proof for free variable tableaux withloatreg-
ularity condition can easily be adapted. The only diffeeeigcthat a tableau
T, is used instead OF.: all expansion rule applications that are part of con-
structingT. and that violate the regularity condition are left out; tlesult
is T.. Because of the definition of irregular formulae, theBlgt., is still a
Hintikka set (wherd,, is the branch o, that corresponds to, and is a subset
of, the branciB., of T).

A similar argument can be used to prove completeness of nefiner
ments of free variable tableaux (Hahnle and KlingenbecR6)%ne shows
that any open branch of an infinite tabléBuconstructed in a fair way is still
a (subset of) a Hintikka set, even if the saturation condgiof Def. 13 do
not apply to all formulae of the branch.

6.4. Universal Formulae

A formula is often needed in several instances in order teeckobranch (or a
subtableau) with different substitutions for the free abhkes occurring in it.
In free variable tableaux the mechanism to do so is to apply-thle multiply
to generate several instancegpfith different free variables. Free variables
in tableaux areotimplicitly universally quantified (as it is, for instancégt
case with variables in clauses when using a resolution keedjUbut areigid:
a substitution must be applied to all occurrences of a freabie in a tableau.
Suppose we have a branBhwith a formula@(x) on it; assume further
that the expansion of the tableau then proceeds with coeagw branches.
Some of these branches contain occurrences fufr closing the generated
branches, the same substitutionfdras to be used on all of them. For exam-
ple, we might have a tableau fdr= {-P(a) vV —-P(b), Vx(P(x))} that con-
sists of two branches, one containidg) and—P(a), and the other contain-
ing P(x) and—P(b). This tableau cannot be closed immediately as no single
substitution closes both branches. To find a proofythde has to be applied
again to create another instanceRgk). In the example, as a logical conse-
guence ofb and the formulae already on the tableau (in a sense made@reci
in Def. 18),vx(¢(x)) can be added tB. In such cases, different substitutions
for x can be used without destroying soundness of the calculestafieau
above then closes immediately. Recognizing such situsitaoil exploiting
them allows to use more general closing substitutionsggishorter tableau
proofs, and in most cases reduces the search space.
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DEFINITION 18. Supposepis a formula on a branch B of a tableau T for
® C £y. Let T result from addingvxg to B for some x Var. Then,@ is
universalon B with respect to x if = T', where T and Tare identified with
the disjunctions of their branches, which in turn are thejooctions of their
labels.UVar(g) is the set of all variables w.r.t. whiapis universal.

Instead of designing a closure rule that takes universatditae into ac-
count (replacing rule (3) in Def. 6), we generalize the camoé unifier:

DEFINITION 19. A substitutioro is a unifier of formulaeg, ¢ on a branch
of a tableau T if it is the restriction of a substitutianwith the property
(et = (¢t to Var\ U, where U= UVar(g) N UVar(¢) andTtis a renam-
ing of the variables in U with variablesnew to T.

With the closure rule based on this modified concept of uniticaa ta-
bleau proof with less applications of expansion rules thahé standard free
variable tableau calculus may be found; the calculus isgtheened.

Recognizing universal formulae is undecidable in genbmalever, an im-
portant class can be recognized easily (and this can algzalyen tableau
proofs exponentially): a formul@ on a branclB of a tableaul is univer-
sal w.r.t.x if all branchesB’ of T containing an occurrence afthat is not
on B as well are closed; this holds in particular if the brafcbontains all
occurrences ok in T. In any sequence of tableau rule applications with a
variablex introduced byy-rule application and not distributed over different
branches by-rule application, the above criterion is obviously satidfand
all formulae generated in this sequence are universal w.farmally:

LEMMAS. A formulag on a branch B of a tableau T is universal w.r.t. x
on B if in the construction of T the formutawas added to B by applying
(1) ay-rule and x is the free variable introduced; (2) am, y-, or d-rule to a
formula that is universal on B w.r.t. x; or (3) -rule to a formulaf that is
universal on B w.r.t. X, and x does not occur in gy~ @.

The soundness proof of free variable tableaux (Sectioncai accomo-
date the universal formula technique.

An adaption of the universal formula technique to claudale@ux is dis-
cussed in Section 5.1 of the following chapter. Bibel (198®posed a tech-
nigue for reducing the size of proofs in the connection metloalledsplit-
ting by needllike universal formulae it is based on the idea to avoid copy
universally quantified formula in cases where it is sounds® aisingle copy
with different variable instantiations.
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6.5. Pruning

Pruning, which is closely related to tliendensingechnique described in
(Oppacher and Suen, 1988), allows the reduction of bothizke$the search
space and the size of generated tableau proofs.

Suppose a brandb of a tableau was extended baule application and
one of the extension; wasnot used to close the subtable®ubelow {3;,
thenT; is still closed when appended to any of the other extenglpns+ i,
or even immediately t@® (the extensiorg; is usedif B; itself or any of its
tableau subformulae is a literal used in an application efdlosure rule).
To make use of this situation, either the closure rule is gkedrsuch that
all branches in the tableau containiB@s a subbranch are considered to be
closed, or—similarly—all branches containing one of fherepruned i.e.,
the effects of th-rule application are removed:

close
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